• 关于 开发数据类型转换讲解 的搜索结果

回答

初识 MyBatis MyBatis 是第一个支持自定义 SQL、存储过程和高级映射的类持久框架。MyBatis 消除了大部分 JDBC 的样板代码、手动设置参数以及检索结果。MyBatis 能够支持简单的 XML 和注解配置规则。使 Map 接口和 POJO 类映射到数据库字段和记录。 MyBatis 的特点 那么 MyBatis 具有什么特点呢?或许我们可以从如下几个方面来描述 MyBatis 中的 SQL 语句和主要业务代码分离,我们一般会把 MyBatis 中的 SQL 语句统一放在 XML 配置文件中,便于统一维护。 解除 SQL 与程序代码的耦合,通过提供 DAO 层,将业务逻辑和数据访问逻辑分离,使系统的设计更清晰,更易维护,更易单元测试。SQL 和代码的分离,提高了可维护性。 MyBatis 比较简单和轻量 本身就很小且简单。没有任何第三方依赖,只要通过配置 jar 包,或者如果你使用 Maven 项目的话只需要配置 Maven 以来就可以。易于使用,通过文档和源代码,可以比较完全的掌握它的设计思路和实现。 屏蔽样板代码 MyBatis 回屏蔽原始的 JDBC 样板代码,让你把更多的精力专注于 SQL 的书写和属性-字段映射上。 编写原生 SQL,支持多表关联 MyBatis 最主要的特点就是你可以手动编写 SQL 语句,能够支持多表关联查询。 提供映射标签,支持对象与数据库的 ORM 字段关系映射 ORM 是什么?对象关系映射(Object Relational Mapping,简称ORM) ,是通过使用描述对象和数据库之间映射的元数据,将面向对象语言程序中的对象自动持久化到关系数据库中。本质上就是将数据从一种形式转换到另外一种形式。 提供 XML 标签,支持编写动态 SQL。 你可以使用 MyBatis XML 标签,起到 SQL 模版的效果,减少繁杂的 SQL 语句,便于维护。 MyBatis 整体架构 MyBatis 最上面是接口层,接口层就是开发人员在 Mapper 或者是 Dao 接口中的接口定义,是查询、新增、更新还是删除操作;中间层是数据处理层,主要是配置 Mapper -> XML 层级之间的参数映射,SQL 解析,SQL 执行,结果映射的过程。上述两种流程都由基础支持层来提供功能支撑,基础支持层包括连接管理,事务管理,配置加载,缓存处理等。 接口层 在不与Spring 集成的情况下,使用 MyBatis 执行数据库的操作主要如下: InputStream is = Resources.getResourceAsStream("myBatis-config.xml"); SqlSessionFactoryBuilder builder = new SqlSessionFactoryBuilder(); SqlSessionFactory factory = builder.build(is); sqlSession = factory.openSession(); 其中的SqlSessionFactory,SqlSession是 MyBatis 接口的核心类,尤其是 SqlSession,这个接口是MyBatis 中最重要的接口,这个接口能够让你执行命令,获取映射,管理事务。 数据处理层 配置解析 在 Mybatis 初始化过程中,会加载 mybatis-config.xml 配置文件、映射配置文件以及 Mapper 接口中的注解信息,解析后的配置信息会形成相应的对象并保存到 Configration 对象中。之后,根据该对象创建SqlSessionFactory 对象。待 Mybatis 初始化完成后,可以通过 SqlSessionFactory 创建 SqlSession 对象并开始数据库操作。 SQL 解析与 scripting 模块 Mybatis 实现的动态 SQL 语句,几乎可以编写出所有满足需要的 SQL。 Mybatis 中 scripting 模块会根据用户传入的参数,解析映射文件中定义的动态 SQL 节点,形成数据库能执行的SQL 语句。 SQL 执行 SQL 语句的执行涉及多个组件,包括 MyBatis 的四大核心,它们是: Executor、StatementHandler、ParameterHandler、ResultSetHandler。SQL 的执行过程可以用下面这幅图来表示 MyBatis 层级结构各个组件的介绍(这里只是简单介绍,具体介绍在后面): SqlSession: ,它是 MyBatis 核心 API,主要用来执行命令,获取映射,管理事务。接收开发人员提供 Statement Id 和参数。并返回操作结果。Executor :执行器,是 MyBatis 调度的核心,负责 SQL 语句的生成以及查询缓存的维护。StatementHandler : 封装了JDBC Statement 操作,负责对 JDBC Statement 的操作,如设置参数、将Statement 结果集转换成 List 集合。ParameterHandler : 负责对用户传递的参数转换成 JDBC Statement 所需要的参数。ResultSetHandler : 负责将 JDBC 返回的 ResultSet 结果集对象转换成 List 类型的集合。TypeHandler : 用于 Java 类型和 JDBC 类型之间的转换。MappedStatement : 动态 SQL 的封装SqlSource : 表示从 XML 文件或注释读取的映射语句的内容,它创建将从用户接收的输入参数传递给数据库的 SQL。Configuration: MyBatis 所有的配置信息都维持在 Configuration 对象之中。 基础支持层 反射模块 Mybatis 中的反射模块,对 Java 反射进行了很好的封装,提供了简易的 API,方便上层调用,并且对反射操作进行了一系列的优化,比如,缓存了类的 元数据(MetaClass)和对象的元数据(MetaObject),提高了反射操作的性能。 类型转换模块 Mybatis 的别名机制,能够简化配置文件,该机制是类型转换模块的主要功能之一。类型转换模块的另一个功能是实现 JDBC 类型与 Java 类型的转换。在 SQL 语句绑定参数时,会将数据由 Java 类型转换成 JDBC 类型;在映射结果集时,会将数据由 JDBC 类型转换成 Java 类型。 日志模块 在 Java 中,有很多优秀的日志框架,如 Log4j、Log4j2、slf4j 等。Mybatis 除了提供了详细的日志输出信息,还能够集成多种日志框架,其日志模块的主要功能就是集成第三方日志框架。 资源加载模块 该模块主要封装了类加载器,确定了类加载器的使用顺序,并提供了加载类文件和其它资源文件的功能。 解析器模块 该模块有两个主要功能:一个是封装了 XPath,为 Mybatis 初始化时解析 mybatis-config.xml配置文件以及映射配置文件提供支持;另一个为处理动态 SQL 语句中的占位符提供支持。 数据源模块 Mybatis 自身提供了相应的数据源实现,也提供了与第三方数据源集成的接口。数据源是开发中的常用组件之一,很多开源的数据源都提供了丰富的功能,如连接池、检测连接状态等,选择性能优秀的数据源组件,对于提供ORM 框架以及整个应用的性能都是非常重要的。 事务管理模块 一般地,Mybatis 与 Spring 框架集成,由 Spring 框架管理事务。但 Mybatis 自身对数据库事务进行了抽象,提供了相应的事务接口和简单实现。 缓存模块 Mybatis 中有一级缓存和二级缓存,这两级缓存都依赖于缓存模块中的实现。但是需要注意,这两级缓存与Mybatis 以及整个应用是运行在同一个 JVM 中的,共享同一块内存,如果这两级缓存中的数据量较大,则可能影响系统中其它功能,所以需要缓存大量数据时,优先考虑使用 Redis、Memcache 等缓存产品。 Binding 模块 在调用 SqlSession 相应方法执行数据库操作时,需要制定映射文件中定义的 SQL 节点,如果 SQL 中出现了拼写错误,那就只能在运行时才能发现。为了能尽早发现这种错误,Mybatis 通过 Binding 模块将用户自定义的Mapper 接口与映射文件关联起来,系统可以通过调用自定义 Mapper 接口中的方法执行相应的 SQL 语句完成数据库操作,从而避免上述问题。注意,在开发中,我们只是创建了 Mapper 接口,而并没有编写实现类,这是因为 Mybatis 自动为 Mapper 接口创建了动态代理对象。 MyBatis 核心组件 在认识了 MyBatis 并了解其基础架构之后,下面我们来看一下 MyBatis 的核心组件,就是这些组件实现了从 SQL 语句到映射到 JDBC 再到数据库字段之间的转换,执行 SQL 语句并输出结果集。首先来认识 MyBatis 的第一个核心组件 SqlSessionFactory 对于任何框架而言,在使用该框架之前都要经历过一系列的初始化流程,MyBatis 也不例外。MyBatis 的初始化流程如下 String resource = "org/mybatis/example/mybatis-config.xml"; InputStream inputStream = Resources.getResourceAsStream(resource); SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream); sqlSessionFactory.openSession(); 上述流程中比较重要的一个对象就是SqlSessionFactory,SqlSessionFactory 是 MyBatis 框架中的一个接口,它主要负责的是 MyBatis 框架初始化操作 为开发人员提供SqlSession 对象 SqlSessionFactory 有两个实现类,一个是 SqlSessionManager 类,一个是 DefaultSqlSessionFactory 类 DefaultSqlSessionFactory : SqlSessionFactory 的默认实现类,是真正生产会话的工厂类,这个类的实例的生命周期是全局的,它只会在首次调用时生成一个实例(单例模式),就一直存在直到服务器关闭。 SqlSessionManager : 已被废弃,原因大概是: SqlSessionManager 中需要维护一个自己的线程池,而使用MyBatis 更多的是要与 Spring 进行集成,并不会单独使用,所以维护自己的 ThreadLocal 并没有什么意义,所以 SqlSessionManager 已经不再使用。 ####SqlSessionFactory 的执行流程 下面来对 SqlSessionFactory 的执行流程来做一个分析 首先第一步是 SqlSessionFactory 的创建 SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream); 1 从这行代码入手,首先创建了一个 SqlSessionFactoryBuilder 工厂,这是一个建造者模式的设计思想,由 builder 建造者来创建 SqlSessionFactory 工厂 然后调用 SqlSessionFactoryBuilder 中的 build 方法传递一个InputStream 输入流,Inputstream 输入流中就是你传过来的配置文件 mybatis-config.xml,SqlSessionFactoryBuilder 根据传入的 InputStream 输入流和environment、properties属性创建一个XMLConfigBuilder对象。SqlSessionFactoryBuilder 对象调用XMLConfigBuilder 的parse()方法,流程如下。 XMLConfigBuilder 会解析/configuration标签,configuration 是 MyBatis 中最重要的一个标签,下面流程会介绍 Configuration 标签。 MyBatis 默认使用 XPath 来解析标签,关于 XPath 的使用,参见 https://www.w3school.com.cn/xpath/index.asp 在 parseConfiguration 方法中,会对各个在 /configuration 中的标签进行解析 重要配置 说一下这些标签都是什么意思吧 properties,外部属性,这些属性都是可外部配置且可动态替换的,既可以在典型的 Java 属性文件中配置,亦可通过 properties 元素的子元素来传递。 <properties> <property name="driver" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/test" /> <property name="username" value="root" /> <property name="password" value="root" /> </properties> 一般用来给 environment 标签中的 dataSource 赋值 <environment id="development"> <transactionManager type="JDBC" /> <dataSource type="POOLED"> <property name="driver" value="${driver}" /> <property name="url" value="${url}" /> <property name="username" value="${username}" /> <property name="password" value="${password}" /> </dataSource> </environment> 还可以通过外部属性进行配置,但是我们这篇文章以原理为主,不会介绍太多应用层面的操作。 settings ,MyBatis 中极其重要的配置,它们会改变 MyBatis 的运行时行为。 settings 中配置有很多,具体可以参考 https://mybatis.org/mybatis-3/zh/configuration.html#settings 详细了解。这里介绍几个平常使用过程中比较重要的配置 一般使用如下配置 <settings> <setting name="cacheEnabled" value="true"/> <setting name="lazyLoadingEnabled" value="true"/> </settings> typeAliases,类型别名,类型别名是为 Java 类型设置的一个名字。 它只和 XML 配置有关。 <typeAliases> <typeAlias alias="Blog" type="domain.blog.Blog"/> </typeAliases> 当这样配置时,Blog 可以用在任何使用 domain.blog.Blog 的地方。 typeHandlers,类型处理器,无论是 MyBatis 在预处理语句(PreparedStatement)中设置一个参数时,还是从结果集中取出一个值时, 都会用类型处理器将获取的值以合适的方式转换成 Java 类型。 在 org.apache.ibatis.type 包下有很多已经实现好的 TypeHandler,可以参考如下 你可以重写类型处理器或创建你自己的类型处理器来处理不支持的或非标准的类型。 具体做法为:实现 org.apache.ibatis.type.TypeHandler 接口, 或继承一个很方便的类 org.apache.ibatis.type.BaseTypeHandler, 然后可以选择性地将它映射到一个 JDBC 类型。 objectFactory,对象工厂,MyBatis 每次创建结果对象的新实例时,它都会使用一个对象工厂(ObjectFactory)实例来完成。默认的对象工厂需要做的仅仅是实例化目标类,要么通过默认构造方法,要么在参数映射存在的时候通过参数构造方法来实例化。如果想覆盖对象工厂的默认行为,则可以通过创建自己的对象工厂来实现。 public class ExampleObjectFactory extends DefaultObjectFactory { public Object create(Class type) { return super.create(type); } public Object create(Class type, List constructorArgTypes, List constructorArgs) { return super.create(type, constructorArgTypes, constructorArgs); } public void setProperties(Properties properties) { super.setProperties(properties); } public boolean isCollection(Class type) { return Collection.class.isAssignableFrom(type); } } 然后需要在 XML 中配置此对象工厂 <objectFactory type="org.mybatis.example.ExampleObjectFactory"> <property name="someProperty" value="100"/> </objectFactory> plugins,插件开发,插件开发是 MyBatis 设计人员给开发人员留给自行开发的接口,MyBatis 允许你在已映射语句执行过程中的某一点进行拦截调用。MyBatis 允许使用插件来拦截的方法调用包括:Executor、ParameterHandler、ResultSetHandler、StatementHandler 接口,这几个接口也是 MyBatis 中非常重要的接口,我们下面会详细介绍这几个接口。 environments,MyBatis 环境配置,MyBatis 可以配置成适应多种环境,这种机制有助于将 SQL 映射应用于多种数据库之中。例如,开发、测试和生产环境需要有不同的配置;或者想在具有相同 Schema 的多个生产数据库中 使用相同的 SQL 映射。 这里注意一点,虽然 environments 可以指定多个环境,但是 SqlSessionFactory 只能有一个,为了指定创建哪种环境,只要将它作为可选的参数传递给 SqlSessionFactoryBuilder 即可。 SqlSessionFactory factory = new SqlSessionFactoryBuilder().build(reader, environment); SqlSessionFactory factory = new SqlSessionFactoryBuilder().build(reader, environment, properties); databaseIdProvider ,数据库厂商标示,MyBatis 可以根据不同的数据库厂商执行不同的语句,这种多厂商的支持是基于映射语句中的 databaseId 属性。 <databaseIdProvider type="DB_VENDOR"> <property name="SQL Server" value="sqlserver"/> <property name="DB2" value="db2"/> <property name="Oracle" value="oracle" /> </databaseIdProvider> mappers,映射器,这是告诉 MyBatis 去哪里找到这些 SQL 语句,mappers 映射配置有四种方式 上面的一个个属性都对应着一个解析方法,都是使用 XPath 把标签进行解析,解析完成后返回一个 DefaultSqlSessionFactory 对象,它是 SqlSessionFactory 的默认实现类。这就是 SqlSessionFactoryBuilder 的初始化流程,通过流程我们可以看到,初始化流程就是对一个个 /configuration 标签下子标签的解析过程。 SqlSession 在 MyBatis 初始化流程结束,也就是 SqlSessionFactoryBuilder -> SqlSessionFactory 的获取流程后,我们就可以通过 SqlSessionFactory 对象得到 SqlSession 然后执行 SQL 语句了。具体来看一下这个过程‘ 在 SqlSessionFactory.openSession 过程中我们可以看到,会调用到 DefaultSqlSessionFactory 中的 openSessionFromDataSource 方法,这个方法主要创建了两个与我们分析执行流程重要的对象,一个是 Executor 执行器对象,一个是 SqlSession 对象。执行器我们下面会说,现在来说一下 SqlSession 对象 SqlSession 对象是 MyBatis 中最重要的一个对象,这个接口能够让你执行命令,获取映射,管理事务。SqlSession 中定义了一系列模版方法,让你能够执行简单的 CRUD 操作,也可以通过 getMapper 获取 Mapper 层,执行自定义 SQL 语句,因为 SqlSession 在执行 SQL 语句之前是需要先开启一个会话,涉及到事务操作,所以还会有 commit、 rollback、close 等方法。这也是模版设计模式的一种应用。 MapperProxy MapperProxy 是 Mapper 映射 SQL 语句的关键对象,我们写的 Dao 层或者 Mapper 层都是通过 MapperProxy 来和对应的 SQL 语句进行绑定的。下面我们就来解释一下绑定过程 这就是 MyBatis 的核心绑定流程,我们可以看到 SqlSession 首先调用 getMapper 方法,我们刚才说到 SqlSession 是大哥级别的人物,只定义标准(有一句话是怎么说的来着,一流的企业做标准,二流的企业做品牌,三流的企业做产品)。 SqlSession 不愿意做的事情交给 Configuration 这个手下去做,但是 Configuration 也是有小弟的,它不愿意做的事情直接甩给小弟去做,这个小弟是谁呢?它就是 MapperRegistry,马上就到核心部分了。MapperRegistry 相当于项目经理,项目经理只从大面上把握项目进度,不需要知道手下的小弟是如何工作的,把任务完成了就好。最终真正干活的还是 MapperProxyFactory。看到这段代码 Proxy.newProxyInstance ,你是不是有一种恍然大悟的感觉,如果你没有的话,建议查阅一下动态代理的文章,这里推荐一篇 (https://www.jianshu.com/p/95970b089360) 也就是说,MyBatis 中 Mapper 和 SQL 语句的绑定正是通过动态代理来完成的。 通过动态代理,我们就可以方便的在 Dao 层或者 Mapper 层定义接口,实现自定义的增删改查操作了。那么具体的执行过程是怎么样呢?上面只是绑定过程,别着急,下面就来探讨一下 SQL 语句的执行过程。 MapperProxyFactory 会生成代理对象,这个对象就是 MapperProxy,最终会调用到 mapperMethod.execute 方法,execute 方法比较长,其实逻辑比较简单,就是判断是 插入、更新、删除 还是 查询 语句,其中如果是查询的话,还会判断返回值的类型,我们可以点进去看一下都是怎么设计的。 很多代码其实可以忽略,只看我标出来的重点就好了,我们可以看到,不管你前面经过多少道关卡处理,最终都逃不过 SqlSession 这个老大制定的标准。 我们以 selectList 为例,来看一下下面的执行过程。 这是 DefaultSqlSession 中 selectList 的代码,我们可以看到出现了 executor,这是什么呢?我们下面来解释。 Executor 还记得我们之前的流程中提到了 Executor(执行器) 这个概念吗?我们来回顾一下它第一次出现的位置。 由 Configuration 对象创建了一个 Executor 对象,这个 Executor 是干嘛的呢?下面我们就来认识一下 Executor 的继承结构 每一个 SqlSession 都会拥有一个 Executor 对象,这个对象负责增删改查的具体操作,我们可以简单的将它理解为 JDBC 中 Statement 的封装版。 也可以理解为 SQL 的执行引擎,要干活总得有一个发起人吧,可以把 Executor 理解为发起人的角色。 首先先从 Executor 的继承体系来认识一下 如上图所示,位于继承体系最顶层的是 Executor 执行器,它有两个实现类,分别是BaseExecutor和 CachingExecutor。 BaseExecutor 是一个抽象类,这种通过抽象的实现接口的方式是适配器设计模式之接口适配 的体现,是Executor 的默认实现,实现了大部分 Executor 接口定义的功能,降低了接口实现的难度。BaseExecutor 的子类有三个,分别是 SimpleExecutor、ReuseExecutor 和 BatchExecutor。 SimpleExecutor : 简单执行器,是 MyBatis 中默认使用的执行器,每执行一次 update 或 select,就开启一个Statement 对象,用完就直接关闭 Statement 对象(可以是 Statement 或者是 PreparedStatment 对象) ReuseExecutor : 可重用执行器,这里的重用指的是重复使用 Statement,它会在内部使用一个 Map 把创建的Statement 都缓存起来,每次执行 SQL 命令的时候,都会去判断是否存在基于该 SQL 的 Statement 对象,如果存在 Statement 对象并且对应的 connection 还没有关闭的情况下就继续使用之前的 Statement 对象,并将其缓存起来。因为每一个 SqlSession 都有一个新的 Executor 对象,所以我们缓存在 ReuseExecutor 上的 Statement作用域是同一个 SqlSession。 BatchExecutor : 批处理执行器,用于将多个 SQL 一次性输出到数据库 CachingExecutor: 缓存执行器,先从缓存中查询结果,如果存在就返回之前的结果;如果不存在,再委托给Executor delegate 去数据库中取,delegate 可以是上面任何一个执行器。 Executor 的创建和选择 我们上面提到 Executor 是由 Configuration 创建的,Configuration 会根据执行器的类型创建,如下 这一步就是执行器的创建过程,根据传入的 ExecutorType 类型来判断是哪种执行器,如果不指定 ExecutorType ,默认创建的是简单执行器。它的赋值可以通过两个地方进行赋值: 可以通过 标签来设置当前工程中所有的 SqlSession 对象使用默认的 Executor <settings> <!--取值范围 SIMPLE, REUSE, BATCH --> <setting name="defaultExecutorType" value="SIMPLE"/> </settings> 另外一种直接通过Java对方法赋值的方式 session = factory.openSession(ExecutorType.BATCH); Executor 的具体执行过程 Executor 中的大部分方法的调用链其实是差不多的,下面是深入源码分析执行过程,如果你没有时间或者暂时不想深入研究的话,给你下面的执行流程图作为参考。 我们紧跟着上面的 selectList 继续分析,它会调用到 executor.query 方法。 当有一个查询请求访问的时候,首先会经过 Executor 的实现类 CachingExecutor ,先从缓存中查询 SQL 是否是第一次执行,如果是第一次执行的话,那么就直接执行 SQL 语句,并创建缓存,如果第二次访问相同的 SQL 语句的话,那么就会直接从缓存中提取。 上面这段代码是从 selectList -> 从缓存中 query 的具体过程。可能你看到这里有些觉得类都是什么东西,我想鼓励你一下,把握重点,不用每段代码都看,从找到 SQL 的调用链路,其他代码想看的时候在看,看源码就是很容易发蒙,容易烦躁,但是切记一点,把握重点。 上面代码会判断缓存中是否有这条 SQL 语句的执行结果,如果没有的话,就再重新创建 Executor 执行器执行 SQL 语句,注意, list = doQuery 是真正执行 SQL 语句的过程,这个过程中会创建我们上面提到的三种执行器,这里我们使用的是简单执行器。 到这里,执行器所做的工作就完事了,Executor 会把后续的工作交给 StatementHandler 继续执行。下面我们来认识一下 StatementHandler 上面代码会判断缓存中是否有这条 SQL 语句的执行结果,如果没有的话,就再重新创建 Executor 执行器执行 SQL 语句,注意, list = doQuery 是真正执行 SQL 语句的过程,这个过程中会创建我们上面提到的三种执行器,这里我们使用的是简单执行器。 到这里,执行器所做的工作就完事了,Executor 会把后续的工作交给 StatementHandler 继续执行。下面我们来认识一下 StatementHandler StatementHandler 的继承结构 有没有感觉和 Executor 的继承体系很相似呢?最顶级接口是四大组件对象,分别有两个实现类 BaseStatementHandler 和 RoutingStatementHandler,BaseStatementHandler 有三个实现类, 他们分别是 SimpleStatementHandler、PreparedStatementHandler 和 CallableStatementHandler。 RoutingStatementHandler : RoutingStatementHandler 并没有对 Statement 对象进行使用,只是根据StatementType 来创建一个代理,代理的就是对应Handler的三种实现类。在MyBatis工作时,使用的StatementHandler 接口对象实际上就是 RoutingStatementHandler 对象。 BaseStatementHandler : 是 StatementHandler 接口的另一个实现类,它本身是一个抽象类,用于简化StatementHandler 接口实现的难度,属于适配器设计模式体现,它主要有三个实现类 SimpleStatementHandler: 管理 Statement 对象并向数据库中推送不需要预编译的SQL语句。PreparedStatementHandler: 管理 Statement 对象并向数据中推送需要预编译的SQL语句。CallableStatementHandler:管理 Statement 对象并调用数据库中的存储过程。 StatementHandler 的创建和源码分析 我们继续来分析上面 query 的调用链路,StatementHandler 的创建过程如下 MyBatis 会根据 SQL 语句的类型进行对应 StatementHandler 的创建。我们以预处理 StatementHandler 为例来讲解一下 执行器不仅掌管着 StatementHandler 的创建,还掌管着创建 Statement 对象,设置参数等,在创建完 PreparedStatement 之后,我们需要对参数进行处理了。 如 如果用一副图来表示一下这个执行流程的话我想是这样 这里我们先暂停一下,来认识一下第三个核心组件 ParameterHandler ParameterHandler - ParameterHandler 介绍 ParameterHandler 相比于其他的组件就简单很多了,ParameterHandler 译为参数处理器,负责为 PreparedStatement 的 sql 语句参数动态赋值,这个接口很简单只有两个方法 ParameterHandler 只有一个实现类 DefaultParameterHandler , 它实现了这两个方法。 getParameterObject: 用于读取参数setParameters: 用于对 PreparedStatement 的参数赋值ParameterHandler 的解析过程 上面我们讨论过了 ParameterHandler 的创建过程,下面我们继续上面 parameterSize 流程 这就是具体参数的解析过程了,下面我们来描述一下 下面用一个流程图表示一下 ParameterHandler 的解析过程,以简单执行器为例 我们在完成 ParameterHandler 对 SQL 参数的预处理后,回到 SimpleExecutor 中的 doQuery 方法 上面又引出来了一个重要的组件那就是 ResultSetHandler,下面我们来认识一下这个组件 ResultSetHandler - ResultSetHandler 简介 ResultSetHandler 也是一个非常简单的接口 ResultSetHandler 是一个接口,它只有一个默认的实现类,像是 ParameterHandler 一样,它的默认实现类是DefaultResultSetHandler ResultSetHandler 解析过程 MyBatis 只有一个默认的实现类就是 DefaultResultSetHandler,DefaultResultSetHandler 主要负责处理两件事 处理 Statement 执行后产生的结果集,生成结果列表 处理存储过程执行后的输出参数 按照 Mapper 文件中配置的 ResultType 或 ResultMap 来封装成对应的对象,最后将封装的对象返回即可。 其中涉及的主要对象有: ResultSetWrapper : 结果集的包装器,主要针对结果集进行的一层包装,它的主要属性有 ResultSet : Java JDBC ResultSet 接口表示数据库查询的结果。 有关查询的文本显示了如何将查询结果作为java.sql.ResultSet 返回。 然后迭代此ResultSet以检查结果。 TypeHandlerRegistry: 类型注册器,TypeHandlerRegistry 在初始化的时候会把所有的 Java类型和类型转换器进行注册。 ColumnNames: 字段的名称,也就是查询操作需要返回的字段名称 ClassNames: 字段的类型名称,也就是 ColumnNames 每个字段名称的类型 JdbcTypes: JDBC 的类型,也就是 java.sql.Types 类型 ResultMap: 负责处理更复杂的映射关系 在 DefaultResultSetHandler 中处理完结果映射,并把上述结构返回给调用的客户端,从而执行完成一条完整的SQL语句。 内容转载自:CSDN博主:cxuann 原文链接:https://blog.csdn.net/qq_36894974/article/details/104132876?depth_1-utm_source=distribute.pc_feed.none-task&request_id=&utm_source=distribute.pc_feed.none-task

问问小秘 2020-03-05 15:44:27 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

反射---Java高级开发必须懂的?报错

爱吃鱼的程序员 2020-06-08 13:13:13 0 浏览量 回答数 1

高校特惠专场

助力学生创业梦,0元体验,快速入门云计算!

回答

Checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 证应用流图状态的一致性。Flink的checkpoint机制原理来自“Chandy-Lamport algorithm”算法。 每个需要checkpoint的应用在启动时,Flink的JobManager为其创建一个 CheckpointCoordinator,CheckpointCoordinator全权负责本应用的快照制作。 CheckpointCoordinator周期性的向该流应用的所有source算子发送barrier。 2.当某个source算子收到一个barrier时,便暂停数据处理过程,然后将自己的当前状 态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告 自己快照制作情况,同时向自身所有下游算子广播该barrier,恢复数据处理 3.下游算子收到barrier之后,会暂停自己的数据处理过程,然后将自身的相关状态制作成快照,并保存到指定的持久化存储中,最后向CheckpointCoordinator报告自身 快照情况,同时向自身所有下游算子广播该barrier,恢复数据处理。 每个算子按照步骤3不断制作快照并向下游广播,直到最后barrier传递到sink算子,快照制作完成。 当CheckpointCoordinator收到所有算子的报告之后,认为该周期的快照制作成功; 否则,如果在规定的时间内没有收到所有算子的报告,则认为本周期快照制作失败 如果一个算子有两个输入源,则暂时阻塞先收到barrier的输入源,等到第二个输入源相 同编号的barrier到来时,再制作自身快照并向下游广播该barrier。具体如下图所示 两个输入源 checkpoint 过程 假设算子C有A和B两个输入源 在第i个快照周期中,由于某些原因(如处理时延、网络时延等)输入源A发出的 barrier先到来,这时算子C暂时将输入源A的输入通道阻塞,仅收输入源B的数据。 当输入源B发出的barrier到来时,算子C制作自身快照并向CheckpointCoordinator报 告自身的快照制作情况,然后将两个barrier合并为一个,向下游所有的算子广播。 当由于某些原因出现故障时,CheckpointCoordinator通知流图上所有算子统一恢复到某 个周期的checkpoint状态,然后恢复数据流处理。分布式checkpoint机制保证了数据仅被 处理一次(Exactly Once)。 持久化存储 目前,Checkpoint持久化存储可以使用如下三种: MemStateBackend 该持久化存储主要将快照数据保存到JobManager的内存中,仅适合作为测试以及 快照的数据量非常小时使用,并不推荐用作大规模商业部署。 FsStateBackend 该持久化存储主要将快照数据保存到文件系统中,目前支持的文件系统主要是 HDFS和本地文件。如果使用HDFS,则初始化FsStateBackend时,需要传入以 “hdfs://”开头的路径(即: new FsStateBackend("hdfs:///hacluster/checkpoint")), 如果使用本地文件,则需要传入以“file://”开头的路径(即:new FsStateBackend("file:///Data"))。在分布式情况下,不推荐使用本地文件。如果某 个算子在节点A上失败,在节点B上恢复,使用本地文件时,在B上无法读取节点 A上的数据,导致状态恢复失败。 RocksDBStateBackend RocksDBStatBackend介于本地文件和HDFS之间,平时使用RocksDB的功能,将数 据持久化到本地文件中,当制作快照时,将本地数据制作成快照,并持久化到 FsStateBackend中(FsStateBackend不必用户特别指明,只需在初始化时传入HDFS 或本地路径即可,如new RocksDBStateBackend("hdfs:///hacluster/checkpoint")或new RocksDBStateBackend("file:///Data"))。 如果用户使用自定义窗口(window),不推荐用户使用RocksDBStateBackend。在自 定义窗口中,状态以ListState的形式保存在StatBackend中,如果一个key值中有多 个value值,则RocksDB读取该种ListState非常缓慢,影响性能。用户可以根据应用 的具体情况选择FsStateBackend+HDFS或RocksStateBackend+HDFS。 语法 ​ val env = StreamExecutionEnvironment.getExecutionEnvironment() // start a checkpoint every 1000 ms env.enableCheckpointing(1000) // advanced options: // 设置checkpoint的执行模式,最多执行一次或者至少执行一次 env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) // 设置checkpoint的超时时间 env.getCheckpointConfig.setCheckpointTimeout(60000) // 如果在只做快照过程中出现错误,是否让整体任务失败:true是 false不是 env.getCheckpointConfig.setFailTasksOnCheckpointingErrors(false) //设置同一时间有多少 个checkpoint可以同时执行 env.getCheckpointConfig.setMaxConcurrentCheckpoints(1) ​ 例子 需求 假定用户需要每隔1秒钟需要统计4秒中窗口中数据的量,然后对统计的结果值进行checkpoint处理 数据规划 使用自定义算子每秒钟产生大约10000条数据。 
 产生的数据为一个四元组(Long,String,String,Integer)—------(id,name,info,count)。 
 数据经统计后,统计结果打印到终端输出。 
 打印输出的结果为Long类型的数据。 
 开发思路 
 source算子每隔1秒钟发送10000条数据,并注入到Window算子中。 window算子每隔1秒钟统计一次最近4秒钟内数据数量。 每隔1秒钟将统计结果打印到终端 每隔6秒钟触发一次checkpoint,然后将checkpoint的结果保存到HDFS中。 //发送数据形式 case class SEvent(id: Long, name: String, info: String, count: Int) class SEventSourceWithChk extends RichSourceFunction[SEvent]{ private var count = 0L private var isRunning = true private val alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWZYX0987654321" // 任务取消时调用 override def cancel(): Unit = { isRunning = false } //// source算子的逻辑,即:每秒钟向流图中注入10000个元组 override def run(sourceContext: SourceContext[SEvent]): Unit = { while(isRunning) { for (i <- 0 until 10000) { sourceContext.collect(SEvent(1, "hello-"+count, alphabet,1)) count += 1L } Thread.sleep(1000) } } } /** 该段代码是流图定义代码,具体实现业务流程,另外,代码中窗口的触发时间使 用了event time。 */ object FlinkEventTimeAPIChkMain { def main(args: Array[String]): Unit ={ val env = StreamExecutionEnvironment.getExecutionEnvironment env.setStateBackend(new FsStateBackend("hdfs://hadoop01:9000/flink-checkpoint/checkpoint/")) env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE) env.getCheckpointConfig.setCheckpointInterval(6000) env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) // 应用逻辑 val source: DataStream[SEvent] = env.addSource(new SEventSourceWithChk) source.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[SEvent] { // 设置watermark override def getCurrentWatermark: Watermark = { new Watermark(System.currentTimeMillis()) } // 给每个元组打上时间戳 override def extractTimestamp(t: SEvent, l: Long): Long = { System.currentTimeMillis() } }) .keyBy(0) .window(SlidingEventTimeWindows.of(Time.seconds(4), Time.seconds(1))) .apply(new WindowStatisticWithChk) .print() env.execute() } } //该数据在算子制作快照时用于保存到目前为止算子记录的数据条数。 // 用户自定义状态 class UDFState extends Serializable{ private var count = 0L // 设置用户自定义状态 def setState(s: Long) = count = s // 获取用户自定状态 def getState = count } //该段代码是window算子的代码,每当触发计算时统计窗口中元组数量。 class WindowStatisticWithChk extends WindowFunction[SEvent, Long, Tuple, TimeWindow] with ListCheckpointed[UDFState]{ private var total = 0L // window算子的实现逻辑,即:统计window中元组的数量 override def apply(key: Tuple, window: TimeWindow, input: Iterable[SEvent], out: Collector[Long]): Unit = { var count = 0L for (event <- input) { count += 1L } total += count out.collect(count) } // 从自定义快照中恢复状态 override def restoreState(state: util.List[UDFState]): Unit = { val udfState = state.get(0) total = udfState.getState } // 制作自定义状态快照 override def snapshotState(checkpointId: Long, timestamp: Long): util.List[UDFState] = { val udfList: util.ArrayList[UDFState] = new util.ArrayList[UDFState] val udfState = new UDFState udfState.setState(total) udfList.add(udfState) udfList } } flink-SQL Table API和SQL捆绑在flink-table Maven工件中。必须将以下依赖项添加到你的项目才能使用Table API和SQL: org.apache.flink flink-table_2.11 1.5.0 另外,你需要为Flink的Scala批处理或流式API添加依赖项。对于批量查询,您需要添加: org.apache.flink flink-scala_2.11 1.5.0 Table API和SQL程序的结构 Flink的批处理和流处理的Table API和SQL程序遵循相同的模式; 所以我们只需要使用一种来演示即可 要想执行flink的SQL语句,首先需要获取SQL的执行环境: 两种方式(batch和streaming): // *************** // STREAMING QUERY // *************** val sEnv = StreamExecutionEnvironment.getExecutionEnvironment // create a TableEnvironment for streaming queries val sTableEnv = TableEnvironment.getTableEnvironment(sEnv) // *********** // BATCH QUERY // *********** val bEnv = ExecutionEnvironment.getExecutionEnvironment // create a TableEnvironment for batch queries val bTableEnv = TableEnvironment.getTableEnvironment(bEnv) 通过getTableEnvironment可以获取TableEnviromment;这个TableEnviromment是Table API和SQL集成的核心概念。它负责: 在内部目录中注册一个表 注册外部目录 执行SQL查询 注册用户定义的(标量,表格或聚合)函数 转换DataStream或DataSet成Table 持有一个ExecutionEnvironment或一个参考StreamExecutionEnvironment 在内部目录中注册一个表 TableEnvironment维护一个按名称注册的表的目录。有两种类型的表格,输入表格和输出表格。 输入表可以在Table API和SQL查询中引用并提供输入数据。输出表可用于将表API或SQL查询的结果发送到外部系统 输入表可以从各种来源注册: 现有Table对象,通常是表API或SQL查询的结果。 TableSource,它访问外部数据,例如文件,数据库或消息传递系统。 DataStream或DataSet来自DataStream或DataSet程序。 输出表可以使用注册TableSink。 注册一个表 // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // register the Table projTable as table "projectedX" tableEnv.registerTable("projectedTable", projTable) // Table is the result of a simple projection query val projTable: Table = tableEnv.scan("projectedTable ").select(...) 注册一个tableSource TableSource提供对存储在诸如数据库(MySQL,HBase等),具有特定编码(CSV,Apache [Parquet,Avro,ORC],...)的文件的存储系统中的外部数据的访问或者消息传送系统(Apache Kafka,RabbitMQ,...) // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // create a TableSource val csvSource: TableSource = new CsvTableSource("/path/to/file", ...) // register the TableSource as table "CsvTable" tableEnv.registerTableSource("CsvTable", csvSource) 注册一个tableSink 注册TableSink可用于将表API或SQL查询的结果发送到外部存储系统,如数据库,键值存储,消息队列或文件系统(使用不同的编码,例如CSV,Apache [Parquet ,Avro,ORC],...) // get a TableEnvironment val tableEnv = TableEnvironment.getTableEnvironment(env) // create a TableSink val csvSink: TableSink = new CsvTableSink("/path/to/file", ...) // define the field names and types val fieldNames: Array[String] = Array("a", "b", "c") val fieldTypes: Array[TypeInformation[_]] = Array(Types.INT, Types.STRING, Types.LONG) // register the TableSink as table "CsvSinkTable" tableEnv.registerTableSink("CsvSinkTable", fieldNames, fieldTypes, csvSink) 例子 //创建batch执行环境 val env = ExecutionEnvironment.getExecutionEnvironment //创建table环境用于batch查询 val tableEnvironment = TableEnvironment.getTableEnvironment(env) //加载外部数据 val csvTableSource = CsvTableSource.builder() .path("data1.csv")//文件路径 .field("id" , Types.INT)//第一列数据 .field("name" , Types.STRING)//第二列数据 .field("age" , Types.INT)//第三列数据 .fieldDelimiter(",")//列分隔符,默认是"," .lineDelimiter("\n")//换行符 .ignoreFirstLine()//忽略第一行 .ignoreParseErrors()//忽略解析错误 .build() //将外部数据构建成表 tableEnvironment.registerTableSource("tableA" , csvTableSource) //TODO 1:使用table方式查询数据 val table = tableEnvironment.scan("tableA").select("id , name , age").filter("name == 'lisi'") //将数据写出去 table.writeToSink(new CsvTableSink("bbb" , "," , 1 , FileSystem.WriteMode.OVERWRITE)) //TODO 2:使用sql方式 // val sqlResult = tableEnvironment.sqlQuery("select id,name,age from tableA where id > 0 order by id limit 2") //// //将数据写出去 // sqlResult.writeToSink(new CsvTableSink("aaaaaa.csv", ",", 1, FileSystem.WriteMode.OVERWRITE)) able和DataStream和DataSet的集成 1:将DataStream或DataSet转换为表格 在上面的例子讲解中,直接使用的是:registerTableSource注册表 对于flink来说,还有更灵活的方式:比如直接注册DataStream或者DataSet转换为一张表。 然后DataStream或者DataSet就相当于表,这样可以继续使用SQL来操作流或者批次的数据 语法: // get TableEnvironment // registration of a DataSet is equivalent Env:DataStream val tableEnv = TableEnvironment.getTableEnvironment(env) val stream: DataStream[(Long, String)] = ... // register the DataStream as Table "myTable" with fields "f0", "f1" tableEnv.registerDataStream("myTable", stream) 例子 object SQLToDataSetAndStreamSet { def main(args: Array[String]): Unit = { // set up execution environment val env = StreamExecutionEnvironment.getExecutionEnvironment val tEnv = TableEnvironment.getTableEnvironment(env) //构造数据 val orderA: DataStream[Order] = env.fromCollection(Seq( Order(1L, "beer", 3), Order(1L, "diaper", 4), Order(3L, "rubber", 2))) val orderB: DataStream[Order] = env.fromCollection(Seq( Order(2L, "pen", 3), Order(2L, "rubber", 3), Order(4L, "beer", 1))) // 根据数据注册表 tEnv.registerDataStream("OrderA", orderA) tEnv.registerDataStream("OrderB", orderB) // union the two tables val result = tEnv.sqlQuery( "SELECT * FROM OrderA WHERE amount > 2 UNION ALL " + "SELECT * FROM OrderB WHERE amount < 2") result.writeToSink(new CsvTableSink("ccc" , "," , 1 , FileSystem.WriteMode.OVERWRITE)) env.execute() } } case class Order(user: Long, product: String, amount: Int) 将表转换为DataStream或DataSet A Table可以转换成a DataStream或DataSet。通过这种方式,可以在Table API或SQL查询的结果上运行自定义的DataStream或DataSet程序 1:将表转换为DataStream 有两种模式可以将 Table转换为DataStream: 1:Append Mode 将一个表附加到流上 2:Retract Mode 将表转换为流 语法格式: // get TableEnvironment. // registration of a DataSet is equivalent // ge val tableEnv = TableEnvironment.getTableEnvironment(env) // Table with two fields (String name, Integer age) val table: Table = ... // convert the Table into an append DataStream of Row val dsRow: DataStream[Row] = tableEnv.toAppendStreamRow // convert the Table into an append DataStream of Tuple2[String, Int] val dsTuple: DataStream[(String, Int)] dsTuple = tableEnv.toAppendStream(String, Int) // convert the Table into a retract DataStream of Row. // A retract stream of type X is a DataStream[(Boolean, X)]. // The boolean field indicates the type of the change. // True is INSERT, false is DELETE. val retractStream: DataStream[(Boolean, Row)] = tableEnv.toRetractStreamRow 例子: object TableTODataSet_DataStream { def main(args: Array[String]): Unit = { //构造数据,转换为table val data = List( Peoject(1L, 1, "Hello"), Peoject(2L, 2, "Hello"), Peoject(3L, 3, "Hello"), Peoject(4L, 4, "Hello"), Peoject(5L, 5, "Hello"), Peoject(6L, 6, "Hello"), Peoject(7L, 7, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(20L, 20, "Hello World")) val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tEnv = TableEnvironment.getTableEnvironment(env) val stream = env.fromCollection(data) val table: Table = tEnv.fromDataStream(stream) //TODO 将table转换为DataStream----[数控等离子切割机](http://www.158cnc.com)[http://www.158cnc.com](http://www.158cnc.com)将一个表附加到流上Append Mode val appendStream: DataStream[Peoject] = tEnv.toAppendStream[Peoject](table) //TODO 将表转换为流Retract Mode true代表添加消息,false代表撤销消息 val retractStream: DataStream[(Boolean, Peoject)] = tEnv.toRetractStream[Peoject](table) retractStream.print() env.execute() } } case class Peoject(user: Long, index: Int, content: String) 将表转换为DataSet 语法格式 // get TableEnvironment // registration of a DataSet is equivalent val tableEnv = TableEnvironment.getTableEnvironment(env) // Table with two fields (String name, Integer age) val table: Table = ... // convert the Table into a DataSet of Row val dsRow: DataSet[Row] = tableEnv.toDataSetRow // convert the Table into a DataSet of Tuple2[String, Int] val dsTuple: DataSet[(String, Int)] = tableEnv.toDataSet(String, Int) 例子: case class Peoject(user: Long, index: Int, content: String) object TableTODataSet{ def main(args: Array[String]): Unit = { //构造数据,转换为table val data = List( Peoject(1L, 1, "Hello"), Peoject(2L, 2, "Hello"), Peoject(3L, 3, "Hello"), Peoject(4L, 4, "Hello"), Peoject(5L, 5, "Hello"), Peoject(6L, 6, "Hello"), Peoject(7L, 7, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(8L, 8, "Hello World"), Peoject(20L, 20, "Hello World")) //初始化环境,加载table数据 val env = ExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tableEnvironment = TableEnvironment.getTableEnvironment(env) val collection: DataSet[Peoject] = env.fromCollection(data) val table: Table = tableEnvironment.fromDataSet(collection) //TODO 将table转换为dataSet val toDataSet: DataSet[Peoject] = tableEnvironment.toDataSet[Peoject](table) toDataSet.print() // env.execute() } }

凹凹凸曼 2020-06-16 19:23:12 0 浏览量 回答数 0

问题

2018python技术问答集锦,希望能给喜欢python的同学一些帮助

技术小能手 2019-12-01 19:31:10 2040 浏览量 回答数 2

问题

【精品问答】前端开发必懂之JS技术二百问

茶什i 2019-12-01 22:05:04 146 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

回答

在Java中,常量池的概念想必很多人都听说过。这也是面试中比较常考的题目之一。在Java有关的面试题中,一般习惯通过String的有关问题来考察面试者对于常量池的知识的理解,几道简单的String面试题难倒了无数的开发者。所以说,常量池是Java体系中一个非常重要的概念。 谈到常量池,在Java体系中,共用三种常量池。分别是字符串常量池、Class常量池和运行时常量池。 本文先来介绍一下到底什么是Class常量池。 什么是Class文件 在Java代码的编译与反编译那些事儿中我们介绍过Java的编译和反编译的概念。我们知道,计算机只认识0和1,所以程序员写的代码都需要经过编译成0和1构成的二进制格式才能够让计算机运行。 我们在《深入分析Java的编译原理》中提到过,为了让Java语言具有良好的跨平台能力,Java独具匠心的提供了一种可以在所有平台上都能使用的一种中间代码——字节码(ByteCode)。 有了字节码,无论是哪种平台(如Windows、Linux等),只要安装了虚拟机,都可以直接运行字节码。 同样,有了字节码,也解除了Java虚拟机和Java语言之间的耦合。这话可能很多人不理解,Java虚拟机不就是运行Java语言的么?这种解耦指的是什么? 其实,目前Java虚拟机已经可以支持很多除Java语言以外的语言了,如Groovy、JRuby、Jython、Scala等。之所以可以支持,就是因为这些语言也可以被编译成字节码。而虚拟机并不关心字节码是有哪种语言编译而来的。 Java语言中负责编译出字节码的编译器是一个命令是javac。 javac是收录于JDK中的Java语言编译器。该工具可以将后缀名为.java的源文件编译为后缀名为.class的可以运行于Java虚拟机的字节码。 如,我们有以下简单的HelloWorld.java代码: public class HelloWorld { public static void main(String[] args) { String s = "Hollis"; } } 通过javac命令生成class文件: javac HelloWorld.java 生成HelloWorld.class文件:  如何使用16进制打开class文件:使用 vim test.class ,然后在交互模式下,输入:%!xxd 即可。 可以看到,上面的文件就是Class文件,Class文件中包含了Java虚拟机指令集和符号表以及若干其他辅助信息。 要想能够读懂上面的字节码,需要了解Class类文件的结构,由于这不是本文的重点,这里就不展开说明了。 读者可以看到,HelloWorld.class文件中的前八个字母是cafe babe,这就是Class文件的魔数(Java中的”魔数”) 我们需要知道的是,在Class文件的4个字节的魔数后面的分别是4个字节的Class文件的版本号(第5、6个字节是次版本号,第7、8个字节是主版本号,我生成的Class文件的版本号是52,这时Java 8对应的版本。也就是说,这个版本的字节码,在JDK 1.8以下的版本中无法运行)在版本号后面的,就是Class常量池入口了。 Class常量池 Class常量池可以理解为是Class文件中的资源仓库。 Class文件中除了包含类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池(constant pool table),用于存放编译器生成的各种字面量(Literal)和符号引用(Symbolic References)。 由于不同的Class文件中包含的常量的个数是不固定的,所以在Class文件的常量池入口处会设置两个字节的常量池容量计数器,记录了常量池中常量的个数。  当然,还有一种比较简单的查看Class文件中常量池的方法,那就是通过javap命令。对于以上的HelloWorld.class,可以通过 javap -v HelloWorld.class 查看常量池内容如下:  从上图中可以看到,反编译后的class文件常量池中共有16个常量。而Class文件中常量计数器的数值是0011,将该16进制数字转换成10进制的结果是17。 原因是与Java的语言习惯不同,常量池计数器是从0开始而不是从1开始的,常量池的个数是10进制的17,这就代表了其中有16个常量,索引值范围为1-16。 常量池中有什么 介绍完了什么是Class常量池以及如何查看常量池,那么接下来我们就要深入分析一下,Class常量池中都有哪些内容。 常量池中主要存放两大类常量:字面量(literal)和符号引用(symbolic references)。 字面量 前面说过,运行时常量池中主要保存的是字面量和符号引用,那么到底什么字面量? 在计算机科学中,字面量(literal)是用于表达源代码中一个固定值的表示法(notation)。几乎所有计算机编程语言都具有对基本值的字面量表示,诸如:整数、浮点数以及字符串;而有很多也对布尔类型和字符类型的值也支持字面量表示;还有一些甚至对枚举类型的元素以及像数组、记录和对象等复合类型的值也支持字面量表示法。 以上是关于计算机科学中关于字面量的解释,并不是很容易理解。说简单点,字面量就是指由字母、数字等构成的字符串或者数值。 字面量只可以右值出现,所谓右值是指等号右边的值,如:int a=123这里的a为左值,123为右值。在这个例子中123就是字面量。 int a = 123; String s = "hollis"; 上面的代码事例中,123和hollis都是字面量。 本文开头的HelloWorld代码中,Hollis就是一个字面量。 符号引用 常量池中,除了字面量以外,还有符号引用,那么到底什么是符号引用呢。 符号引用是编译原理中的概念,是相对于直接引用来说的。主要包括了以下三类常量: * 类和接口的全限定名 * 字段的名称和描述符 * 方法的名称和描述符 这也就可以印证前面的常量池中还包含一些com/hollis/HelloWorld、main、([Ljava/lang/String;)V等常量的原因了。 Class常量池有什么用 前面介绍了这么多,关于Class常量池是什么,怎么查看Class常量池以及Class常量池中保存了哪些东西。有一个关键的问题没有讲,那就是Class常量池到底有什么用。 首先,可以明确的是,Class常量池是Class文件中的资源仓库,其中保存了各种常量。而这些常量都是开发者定义出来,需要在程序的运行期使用的。 在《深入理解Java虚拟》中有这样的表述: Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接。也就是说,在Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法得到真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。关于类的创建和动态连接的内容,在虚拟机类加载过程时再进行详细讲解。 前面这段话,看起来很绕,不是很容易理解。其实他的意思就是: Class是用来保存常量的一个媒介场所,并且是一个中间场所。在JVM真的运行时,需要把常量池中的常量加载到内存中。 至于到底哪个阶段会做这件事情,以及Class常量池中的常量会以何种方式被加载到具体什么地方,会在本系列文章的后续内容中继续阐述。欢迎关注我的博客(http://www.hollischuang.com) 和公众号(Hollis),即可第一时间获得最新内容。 另外,关于常量池中常量的存储形式,以及数据类型的表示方法本文中并未涉及,并不是说这部分知识点不重要,只是Class字节码的分析本就枯燥,作者不想在一篇文章中给读者灌输太多的理论上的内容。感兴趣的读者可以自行Google学习,如果真的有必要,我也可以单独写一篇文章再深入介绍。 参考资料 《深入理解java虚拟机》 《Java虚拟机原理图解》 1.2.2、Class文件中的常量池详解(上)

montos 2020-06-02 10:12:18 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播