• 关于

    开发数据库扩展讲解

    的搜索结果

回答

不同的数据库连接数据库的方式不同,但是大体分为几种:ODBC(Open Database Connectivity,开放数据库互连)是微软公司开放服务结构(WOSA,Windows Open Services Architecture)中有关数据库的一个组成部分,它建立了一组规范,并提供了一组对数据库访问的标准API(应用程序编程接口)。这些API利用SQL来完成其大部分任务。DAO(Data Access Objects):数据访问对象是用来显露了Microsoft Jet数据库引擎(最早是给Microsoft Access 所使用,现在已经支持其它数据库),并允许开发者通过ODBC直接连接到其他数据库一样,直接连接到 Access 表。DAO 最适用于单系统应用程序或在小范围本地分布使用。其内部已经对Jet数据库的访问进行了加速优化,而且其使用起来也是很方便的。所以如果数据库是Access数据库且是本地使用的话,建议使用这种访问方式---应用的专一性RDO(Remote Data Objects)远程数据对象是一个到ODBC的、面向对象的数据访问接口,它同易于使用的DAO style组合在一起,提供了一个接口,形式上展示出所有ODBC的底层功能和灵活性。尽管RDO在很好地访问Jet或ISAM数据库方面受到限制,而且它只能通过现存的ODBC驱动程序来访问关系数据库。但是,RDO已被证明是许多SQL Server、Oracle 以及其他大型关系数据库开发者经常选用的最佳接口。RDO提供了用来访问存储过程和复杂结果集的更多和更复杂的对象、属性,以及方法。---无疑是在odbc基础上的OLE DB 是 Microsoft 的一个战略性系统级编程接口,用于管理整个组织内的数据。OLE DB 是建立在 ODBC 功能之上的一个开放规范。ODBC 是为访问关系型数据库而专门开发的,OLE DB 则用于访问关系型和非关系型信息源,例如主机 ISAM/VSAM 和层次数据库,电子邮件和文件系统存储,文本、图形和地理数据以及自定义业务对象。 OLE DB 定义了一组 COM 接口,对各种数据库管理系统服务进行封装,并允许创建软件组件,实现这些服务。OLE DB 组件包括数据提供程序(包含和表现数据)、数据使用者(使用数据)和服务组件(处理和传送数据,例如,查询处理器和游标引擎)。OLE DB 接口有助于平滑地集成组件,这样,OLE DB 组件厂商就可以快速地向市场提供高质量 OLE DB 组件。此外,OLE DB 包含了一个连接 ODBC 的“桥梁”,对现用的各种 ODBC 关系型数据库驱动程序提供一贯的支持。---号称取代odbc,但也兼容odbcADO(ActiveX Data Object)是DAO/RDO的后继产物。ADO 2.0在功能上与RDO更相似,而且一般来说,在这两种模型之间有一种相似的映射关系。ADO"扩展"了DAO和 RDO 所使用的对象模型,这意味着它包含较少的对象、更多的属性、方法(和参数),以及事件。 作为最新的数据库访问模式,ADO的使用也是简单易用,所以微软已经明确表示今后把重点放在ADO上,对DAO/RDO不再作升级,所以ADO已经成为了当前数据库开发的主流。 ADO涉及的数据存储有DSN(数据源名称)、ODBC(开放式数据连接)以及OLE DB三种方式。后面的例程将详细讲解这三种方式的具体访问实现。---可以说是对odbc,oledb这些系统级的编程接口的汇接,并对DAO,RDO这些应用级的编程接口的升级吧。
卓刀 2019-12-02 00:38:22 0 浏览量 回答数 0

回答

1、这次21天Java打卡活动中,你最大的收获是什么?说说你认为的《Alibaba Java技术图谱》在内容上的优缺点 优点是从java基本的语法逻辑入门然后web基础上的基本应用以及数据库的链接都有详尽的介绍,并添加相应测试案例。由浅入深,可以让小白快速入门,值得推荐。而且从开始的用MyEclipse编译器开始,这个和大学相接。到后面springboot框架和springcloud能够初学者快速搭建一个项目。避免ssm框架的大量配置文件的配置。能够紧跟企业发展。 缺点是:既然是从头开始的视频,完全用Idea编译软件进行讲解。同时多线程可以扩展一些企业级高并发讲解。能够激发初学者兴趣。 我个人最大收获就是这个学习比较系统有条理。能够帮我建立更合理的知识脉络。结构蓝图。 2、java的优势:原先是高并发,可用性安全性,和可移植性。比较完美。现在go语言,Python语言等都具备高并发性。唯一突出的就是java的安全性。以及过去二三十年开发者,为了开发所做的努力,基本上对于很多问题的解决都有一定完善的方案。 3、初学者《java核心技术卷》完全可以了。是一个入门书籍内容详尽。 爱看书的可以看看。太长。太乏味。
游客ymk3yqpdenzpg 2021-03-07 21:46:16 0 浏览量 回答数 0

问题

【教程免费下载】 Python数据科学实践指南

Foreword 前言 为什么要写这本书 我接触大数据技术的时间算是比较早的,四五年前当大数据这个词火遍互联网的时候,我就已经在实验室里学习编程及算法的知识。那个时候我一心想要做学术,每天阅读大量的...
沉默术士 2019-12-01 22:07:52 1973 浏览量 回答数 2

云数据库新人专场

MySQL年付低至19.9,其它热门产品1元起购!

回答

1,架构师是什么?要想往架构师的方向发展首先要知道架构师是什么?架构师是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。一个架构师得需要足够的想像力,能把各种目标需求进行不同维度的扩展,为目标客户提供更为全面的需求清单。架构师在软件开发的整个过程中起着很重要的作用。说的详细一些,架构师就是确认和评估系统需求,给出开发规范,搭建系统实现的核心构架,并澄清技术细节、扫清主要难点的技术人员。主要着眼于系统的“技术实现”。2,架构师的任务架构师的主要任务不是从事具体的软件程序的编写,而是从事更高层次的开发构架工作。他必须对开发技术非常了解,并且需要有良好的组织管理能力。可以这样说,一个架构师工作的好坏决定了整个软件开发项目的成败。在成为Java架构师之前,应当先成为Java工程师。熟练使用各种框架,并知道它们实现的原理。jvm虚拟机原理、调优,懂得jvm能让你写出性能更好的代码;池技术,什么对象池,连接池,线程池……Java反射技术,写框架必备的技术,遇到有严重的性能问题,替代方案java字节码技术;nio,没什么好说的,值得注意的是"直接内存"的特点,使用场景;java多线程同步异步;java各种集合对象的实现原理,了解这些可以让你在解决问题时选择合适的数据结构,高效的解决问题,比如hashmap的实现原理,好多五年以上经验的人都弄不清楚,还有为什扩容时有性能问题?不弄清楚这些原理,就写不出高效的代码,还会认为自己做的很对;总之一句话,越基础的东西越重要,很多人认为自己会用它们写代码了,其实仅仅是知道如何调用api而已,离会用还差的远。如果你立志做架构,首先打好基础,从最底层开始。然后发展到各种技术和语言,什么都要懂两点,要全面且不肤浅。为什么不是懂一点?你要看得透彻,必须尽量深入一些。别人懂一点,你要做架构师,必须再多懂一点。比如你发现golang很流行,别人可能写一个helloworld就说自己玩过golang,但你至少要尝试写一个完整的应用。不肯下苦功,如何高人一头?另外你要非常深入地了解至少一门语言,如果你的目标是java,就学到极致,作为敲门砖,先吃饱了才能谈理想。3,架构师都是从码农过来的而Java学到极致势必涉及到设计模式,算法和数据结构,多线程,文件及网络IO,数据库及ORM,不一而足。这些概念放之一切语言都适用。先精一门,为全面且不肤浅打基础。另外就是向有经验的架构师学习,和小伙伴们讨论辩论争论。其实最重要的能力就是不断学习。在思考新的技术是否能更好地解决你们遇到的问题之前,你首先得知道并了解新的技术。架构师都是从码农过来的,媳妇熬成婆。千万不要成为不写代码的架构师,有些公司专门产不写技术的架构师。所谓架构师,只是功底深厚的程序员而已。个人认为应该扎扎实实学习基础知识,学习各种规范,架构,需要广泛的知识面,懂的东西越多视野越开阔,设计的东西当然会越好越全面。成为架构师需要时间的积累的,不但要知其然还要知其所以然。平时的一点一滴你感觉不到特别用处,但某天你会发现所有东西都没有白学的。4,架构师知识体系下面是我总结多年经验开发的架构师知识体系一、分布式架构架构分布式的英文( Distributed computing 分布式计算技术)的应用和工具,成熟目前的技术包括 J2EE,CORBA 和 .NET(DCOM),这些技术牵扯的内容非常广,相关的书籍也非常多。本文不介绍这些技术的内容,也没有涉及这些技术的细节,只是从各种分布式系统平台产生的背景和在软件开发中应用的情况来探讨它们的主要异同。分布式系统是一个古老而宽泛的话题,而近几年因为“大数据”概念的兴起,又焕发出了新的青春与活力。除此之外,分布式系统也是一门理论模型与工程技法。并重的学科内容相比于机器学习这样的研究方向,学习分布式系统的同学往往会感觉:“入门容易,深入难”的确,学习分布式系统几乎不需要太多数学知识。分布式系统是一个复杂且宽泛的研究领域,学习一两门在线课程,看一两本书可能都是不能完全覆盖其所有内容的。总的来说,分布式系统要做的任务就是把多台机器有机的组合,连接起来,让其协同完成一件任务,可以是计算任务,也可以是存储任务。如果一定要给近些年的分布式系统研究做一个分类的话,我个人认为大概可以包括三大部分:分布式存储系统分布式计算系统分布式管理系统二、微服务当前微服务很热,大家都号称在使用微服务架构,但究竟什么是微服务架构?微服务架构是不是发展趋势?对于这些问题,我们都缺乏清楚的认识。为解决单体架构下的各种问题,微服务架构应运而生。与其构建一个臃肿庞大,难以驯服的怪兽,还不如及早将服务拆分。微服务的核心思想便是服务拆分与解耦,降低复杂性。微服务强调将功能合理拆解,尽可能保证每个服务的功能单一,按照单一责任原则(Single Responsibility Principle)明确角色。将各个服务做轻,从而做到灵活,可复用,亦可根据各个服务自身资源需求,单独布署,单独作横向扩展。微服务架构(Microservice Architecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。你可以将其看作是在架构层次而非获取服务的类上应用很多 SOLID 原则。微服务架构是个很有趣的概念,它的主要作用是将功能分解到离散的各个服务当中,从而降低系统的耦合性,并提供更加灵活的服务支持。概念:把一个大型的单个应用程序和服务拆分为数个甚至数十个的支持微服务,它可扩展单个组件而不是整个的应用程序堆栈,从而满足服务等级协议。定义:围绕业务领域组件来创建应用,这些应用可独立地进行开发,管理和迭代在分散的组件中使用云架构和平台式部署,管理和服务功能,使产品交付变得更加简单。本质:用一些功能比较明确,业务比较精练的服务去解决更大,更实际的问题。三、源码分析从字面意义上来讲,源文件的英文指一个文件,指源代码的集合。源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。源码分析是一种临界知识,掌握了这种临界知识,能不变应万变,源码分析对于很多人来说很枯燥,生涩难懂。源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心。我认为是阅读源码的最核心驱动力我见到绝大多数程序员,对学习的态度,基本上就是这几个层次(很偏激哦):1,只关注项目本身,不懂就百度一下。2,除了做好项目,还会阅读和项目有关的技术书籍,看维基百科。3,除了阅读和项目相关的书外,还会阅读IT行业的书,比如学的Java的时,还会去了解函数语言,如LISP。4,找一些开源项目看看,大量试用第三方框架,还会写写演示。5,阅读基础框架,J2EE 规范,调试服务器内核。大多数程序都是第1种,到第5种不光需要浓厚的兴趣,还需要勇气:?我能读懂吗其实,你能够读懂的耐心,真的很重要。因为你极少看到阅读源码的指导性文章或书籍,也没有人要求或建议你读。你读的过程中经常会卡住,而一卡主可能就陷进了迷宫这时,你需要做的,可能是暂时中断一下,再从外围看看它:如API结构,框架的设计图。四、工具使用工欲善其事必先利其器,工具对 Java 的的程序员的重要性不言而喻现在有很多库,实用工具和程序任的 Java 的开发人员选择。下图列出的工具都是程序员必不可少的工具五、性能优化不管是应付前端面试还是改进产品体验,性能优化都是躲不开的话题。优化的目的是让用户有“快”的感受,那如何让用户感受到快呢?加载速度真的很快,用户打开输入网址按下回车立即看到了页面加载速度并没有变快,但用户感觉你的网站很快性能优化取决于多个因素,包括垃圾收集,虚拟机和底层操作系统(OS)设置。有多个工具可供开发人员进行分析和优化时使用,你可以通过阅读爪哇工具的源代码优化和分析来学习和使用它们。必须要明白的是,没有两个应用程序可以使用相同的优化方式,也没有完美的优化的 Java 应用程序的参考路径。使用最佳实践并且坚持采用适当的方式处理性能优化。想要达到真正最高的性能优化,你作为一个 Java 的开发人员,需要对 Java 的虚拟机(JVM)和底层操作系统有正确的理解。性能优化,简而言之,就是在不影响系统运行正确性的前提下,使之运行地更快,完成特定功能所需的时间更短。性能问题永远是永恒的主题之一,而优化则更需要技巧。Java程序员如何学习才能快速入门并精通呢?当真正开始学习的时候难免不知道从哪入手,导致效率低下影响继续学习的信心。但最重要的是不知道哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以有一套实用的视频课程用来跟着学习是非常有必要的。为了让学习变得轻松、高效,今天给大家免费分享一套阿里架构师传授的一套教学资源。帮助大家在成为架构师的道路上披荆斩棘。这套视频课程详细讲解了(Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构)等这些成为架构师必备的内容!而且还把框架需要用到的各种程序进行了打包,根据基础视频可以让你轻松搭建分布式框架环境,像在企业生产环境一样进行学习和实践。
auto_answer 2019-12-02 01:51:27 0 浏览量 回答数 0

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙
剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

回答

1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP) 8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11.大数据工程师(Hadoop)12.Android13.IOS14.运营 一.产品1 工作内容:了解用户需求,做竞品调研,画产品原型,写产品文档,讲解产品需求,测试产品Bug,收集用户反馈,苦练金刚罩以防止程序员拿刀砍。2 需要技能:PPT,Word, Axure,XP,MVP,行业知识,沟通。 二. UI1 工作内容:收到产品原型,给原型上色,偶尔会自作主张调整下原型的位置,出不同的风格给老板和客户选,然后听他们的意见给出一个自己极不喜欢的风格,最好给Android,IOS或者是CSS做好标注,还有的需要直接帮他们切好图,最后要练出来象素眼,看看这些不靠谱的程序员们有没有上错色或者是有偏差。2 需要技能:PS,Illustrator,Sketch,耐性,找素材。 三. CSS1 工作内容:产品设计好原型,UI做出来了效果图,剩下的就是CSS工程师用代码把静态文件写出来的。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【PS,域名,Html,Html5,CSS,CSS3】扩展【自适应,响应式,Bootstrap,Less,Flex】 四 .JS 1 工作内容:JS工程师其实分成两类,在之前讲CSS的时候已经提到过,一个是套页面的,一个是前后端分离的。对这两个概念还是分不太清的,可以回过头去看CSS的部分。 2 需要技能:环境【IDE(WEBStorm,Sublime,EditPlus),源码管理(SVN/Git) ,WEB服务器(nginx)】基础【Http,REST,跨域,语法,组件,F12,Json,Websocket】框架【JQuery,AngularJS,Bower,RequireJS,GruntJS,ReactJS,PhoneGap】业务【金融,教育,医疗,汽车,房产等等等等各种行业】 五 .后端(Java/python/go) 1 工作内容:大部分的后端工程师都停留在功能实现的层面上。这是现在国内二流或者是三流的公司的现状,甚至是在某些一流的公司。很多时候都是架构师出了架构设计,更多的外包公司根本就是有DBA来做设计,然后后端程序员从JS到CSS到Java全写,完全就是一个通道,所有的复杂逻辑全部交给DB来做,这也是几年前DBA很受重视的原因。 2 需要技能:环境【IDE(Idea/Eclipse,Maven,jenkins,Nexus,Jetty,Shell,Host),源码管理(SVN/Git) ,WEB服务器(nginx,tomcat,Resin)】基础【Http,REST,跨域,语法,Websocket,数据库,计算机网络,操作系统,算法,数据结构】框架【Spring,AOP,Quartz,Json TagLib,tiles,activeMQ,memcache,redis,mybatis,log4j,junit等等等等等】业务【金融,教育,医疗,汽车,房产等等等等各种行业】。 六 .DBA  1 工作内容:如果你做了一个DBA,基本上会遇到两种情况。一种是你的后端工程师懂架构,知道怎么合便使用DB,知道如何防止穿透DB,那么恭喜你,你只是需要当一个DB技术兜底的顾问就好,基本上没什么活可以做,做个监控,写个统计就好了。你可以花时间在MongoDB了,Hadoop了这些,随便玩玩儿。再按照我之前说的,做好数据备份。如果需求变动比较大,往往会牵涉到一些线上数据的更改,那么就在发布的时候安静的等着,等着他们出问题。。。。如果不出问题就可以回家睡觉了。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop】工具【各种DB的版本,工具,备份,日志等】。 七. 运维  1 工作内容:运维的工作大概分成几个部分,我对于修真院学习运维的少年们都这么说,大概是:A。基础环境的搭建和常用软件的安装和配置(兼网管的还有各种程控机),常用软件指的是SVN,Git,邮箱这种,更细节的内容请参考修真院对于运维职业的介绍。B。日常的发布和维护,如刚刚讲到的一样,测试环境和线上环境的发布和记录,原则上,对线上所有的变更都应该有记录。C。数据的备份和服务的监控&安全配置。各种数据,都要做好备份和回滚的手段,提前准备好各种紧急预案,服务的监制要做好。安全始终都是不怎么被重点考虑的问题,因为这个东西无底洞,你永远不知道做到什么程度算是比较安全了,所以大多数都是看着情况来。D。运维工具的编写。这一点在大的云服务器商里格外常见,大公司也是一样的。E。Hadoop相关的大数据体系架构的运维,确实有公司在用几百台机器做Hadoop,所以虽然不常见,我还是列出来吧。 2 需要技能:环境【Linux,Mysql,Oracle,MongoDB,Hadoop,nginx,apache,F5,lvs,vpn,iptable,svn,git,memcache,redis】工具【linux 常用工具,Mysql常用工具,Jenkins,zabbix,nagios】自动化运维【openstack,docker,ansible】语言【shell,python】 八 .QA  1 工作内容:QA需要了解需求,很多公司会要求QA写测试用例,我觉得是扯淡。完全是在浪费时间。通常开发三周,QA测试的时间只有一周到一周半。还有关于提前写测试用例的,都不靠谱。 2 需要技能:流程【Bug修复流程,版本发布流程】工具【禅道,BugZilla,Jira,Excel表格来统计Bug数,自动化测试】性格【严谨,耐心】 九. 算法工程师  1 工作内容:算法工程师的工作内容,大部分时间都是在调优。就是调各种参数和语料,寻找特征,验证结果,排除噪音。也会和Hadoop神马的打一些交道,mahout神马的,我那个时候还在用JavaML。现在并不知道有没有什么更好用的工具了。有的时候还要自己去标注语料---当然大部分人都不爱做这个事儿,会找漂亮的小编辑去做。2 需要技能:基础【机器学习,数据挖掘】工具【Mahout,JavaML等其他的算法工具集】 十. 搜索工程师  1 工作内容: 所以搜索现在其实分成两种。一种是传统的搜索。包括:A。抓取 B。解析C。去重D。处理E。索引F。查询另一种是做为架构的搜索。并不包括之前的抓取解析去重,只有索引和查询。A。索引B。查询 2 需要技能:环境【Linux】框架【Luence,Slor,ElasticSearch,Cassandra,MongoDB】算法【倒排索引,权重计算公式,去重算法,Facet搜索的原理,高亮算法,实时索引】 十一. 大数据工程师  1 工作内容:工作内容在前期会比较多一些,基础搭建还是一个挺讲究的事儿。系统搭建好之后呢,大概是两种,一种是向大数据部门提交任务,跑一圈给你。一种是持续的文本信息处理中增加新的处理模块,像我之前说的增加个分类啦,实体识别神马的。好吧第一种其实我也不记得是从哪得来的印象了,我是没有见到过的。架构稳定了之后,大数据部门的工作并不太多,常常会和算法工程师混到一起来。其他的应该就是大数据周边产品的开发工作了。再去解决一些Bug什么的。2 需要技能:环境【Linux】框架【Hadoo,spark,storm,pig,hive,mahout,zookeeper 】算法【mapreduce,hdfs,zookeeper】。 十二. Android工程师  1 工作内容:Android工程师的日常就是听产品经理讲需求,跟后端定接口,听QA反馈哪款机器不兼容,闹着申请各种测试机,以及悲催的用Android做IOS的控件。 2 需要技能:环境【Android Studio,Maven,Gradle】基础【数据结构,Java,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】 十三. IOS工程师  1 工作内容:IOS工程师的工作内容真的挺简单的,听需求,定接口。做个适配,抛弃一下iphone4。还有啥。。马丹,以我为数不多的IOS知识来讲,真的不知道还有啥了。我知道的比较复杂的系统也是各种背景高斯模糊,各种渐变,各种图片滤镜处理,其他并没有什么。支付,地图,统计这些东西。 嗯。2 需要技能:环境【Xcode】基础【数据结构,Object,计算机网络】组件【IM,地图,支付,拍照,视频,音频,统计,分享,手势密码】
行者武松 2019-12-02 01:21:45 0 浏览量 回答数 0

问题

UI自动化体系建设的创新实践

在云效持续集成持续交付专场直播中,阿里资深研发工程师开风为大家带来了《分层自动化之UI自动化体系建设》分享,他主要从UI自动化之痛和UI自动化体系建设之创新实践两部分,详细讲解了云效团队在UI自动化...
云效平台 2019-12-01 20:57:08 2984 浏览量 回答数 0

问题

云效使用指南:持续交付:(待迁移)应用构建与发布

创建个人开发分支 企业中的开发者,需要开发新需求时,可申请新分支开发,在RDC称之为“申请变更”(change request)。入口:应用-“新建变更...
行者武松 2019-12-01 22:00:28 1443 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

回答

毫无疑问,Java 8是Java自Java 5(发布于2004年)之后的最重要的版本。这个版本包含语言、编译器、库、工具和JVM等方面的十多个新特性。在本文中我们将学习这些新特性,并用实际的例子说明在什么场景下适合使用。 这个教程包含Java开发者经常面对的几类问题: 语言 编译器 库 工具 运行时(JVM) 2. Java语言的新特性 Java 8是Java的一个重大版本,有人认为,虽然这些新特性领Java开发人员十分期待,但同时也需要花不少精力去学习。在这一小节中,我们将介绍Java 8的大部分新特性。 2.1 Lambda表达式和函数式接口 Lambda表达式(也称为闭包)是Java 8中最大和最令人期待的语言改变。它允许我们将函数当成参数传递给某个方法,或者把代码本身当作数据处理:函数式开发者非常熟悉这些概念。很多JVM平台上的语言(Groovy、Scala等)从诞生之日就支持Lambda表达式,但是Java开发者没有选择,只能使用匿名内部类代替Lambda表达式。 Lambda的设计耗费了很多时间和很大的社区力量,最终找到一种折中的实现方案,可以实现简洁而紧凑的语言结构。最简单的Lambda表达式可由逗号分隔的参数列表、->符号和语句块组成,例如: Arrays.asList( "a", "b", "d" ).forEach( e -> System.out.println( e ) ); 在上面这个代码中的参数e的类型是由编译器推理得出的,你也可以显式指定该参数的类型,例如: Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.println( e ) ); 如果Lambda表达式需要更复杂的语句块,则可以使用花括号将该语句块括起来,类似于Java中的函数体,例如: Arrays.asList( "a", "b", "d" ).forEach( e -> { System.out.print( e ); System.out.print( e ); } ); Lambda表达式可以引用类成员和局部变量(会将这些变量隐式得转换成final的),例如下列两个代码块的效果完全相同: String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) ); 和 final String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) ); Lambda表达式有返回值,返回值的类型也由编译器推理得出。如果Lambda表达式中的语句块只有一行,则可以不用使用return语句,下列两个代码片段效果相同: Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> e1.compareTo( e2 ) ); 和 Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> { int result = e1.compareTo( e2 ); return result; } ); Lambda的设计者们为了让现有的功能与Lambda表达式良好兼容,考虑了很多方法,于是产生了函数接口这个概念。函数接口指的是只有一个函数的接口,这样的接口可以隐式转换为Lambda表达式。java.lang.Runnable和java.util.concurrent.Callable是函数式接口的最佳例子。在实践中,函数式接口非常脆弱:只要某个开发者在该接口中添加一个函数,则该接口就不再是函数式接口进而导致编译失败。为了克服这种代码层面的脆弱性,并显式说明某个接口是函数式接口,Java 8 提供了一个特殊的注解@FunctionalInterface(Java 库中的所有相关接口都已经带有这个注解了),举个简单的函数式接口的定义: @FunctionalInterface public interface Functional { void method(); } 不过有一点需要注意,默认方法和静态方法不会破坏函数式接口的定义,因此如下的代码是合法的。 @FunctionalInterface public interface FunctionalDefaultMethods { void method(); default void defaultMethod() { } } Lambda表达式作为Java 8的最大卖点,它有潜力吸引更多的开发者加入到JVM平台,并在纯Java编程中使用函数式编程的概念。如果你需要了解更多Lambda表达式的细节,可以参考官方文档。 2.2 接口的默认方法和静态方法 Java 8使用两个新概念扩展了接口的含义:默认方法和静态方法。默认方法使得接口有点类似traits,不过要实现的目标不一样。默认方法使得开发者可以在 不破坏二进制兼容性的前提下,往现存接口中添加新的方法,即不强制那些实现了该接口的类也同时实现这个新加的方法。 默认方法和抽象方法之间的区别在于抽象方法需要实现,而默认方法不需要。接口提供的默认方法会被接口的实现类继承或者覆写,例子代码如下: private interface Defaulable { // Interfaces now allow default methods, the implementer may or // may not implement (override) them. default String notRequired() { return "Default implementation"; } } private static class DefaultableImpl implements Defaulable { } private static class OverridableImpl implements Defaulable { @Override public String notRequired() { return "Overridden implementation"; } } Defaulable接口使用关键字default定义了一个默认方法notRequired()。DefaultableImpl类实现了这个接口,同时默认继承了这个接口中的默认方法;OverridableImpl类也实现了这个接口,但覆写了该接口的默认方法,并提供了一个不同的实现。 Java 8带来的另一个有趣的特性是在接口中可以定义静态方法,例子代码如下: private interface DefaulableFactory { // Interfaces now allow static methods static Defaulable create( Supplier< Defaulable > supplier ) { return supplier.get(); } } 下面的代码片段整合了默认方法和静态方法的使用场景: public static void main( String[] args ) { Defaulable defaulable = DefaulableFactory.create( DefaultableImpl::new ); System.out.println( defaulable.notRequired() ); defaulable = DefaulableFactory.create( OverridableImpl::new ); System.out.println( defaulable.notRequired() ); } 这段代码的输出结果如下: Default implementation Overridden implementation 由于JVM上的默认方法的实现在字节码层面提供了支持,因此效率非常高。默认方法允许在不打破现有继承体系的基础上改进接口。该特性在官方库中的应用是:给java.util.Collection接口添加新方法,如stream()、parallelStream()、forEach()和removeIf()等等。 尽管默认方法有这么多好处,但在实际开发中应该谨慎使用:在复杂的继承体系中,默认方法可能引起歧义和编译错误。如果你想了解更多细节,可以参考官方文档。 2.3 方法引用 方法引用使得开发者可以直接引用现存的方法、Java类的构造方法或者实例对象。方法引用和Lambda表达式配合使用,使得java类的构造方法看起来紧凑而简洁,没有很多复杂的模板代码。 西门的例子中,Car类是不同方法引用的例子,可以帮助读者区分四种类型的方法引用。 public static class Car { public static Car create( final Supplier< Car > supplier ) { return supplier.get(); } public static void collide( final Car car ) { System.out.println( "Collided " + car.toString() ); } public void follow( final Car another ) { System.out.println( "Following the " + another.toString() ); } public void repair() { System.out.println( "Repaired " + this.toString() ); } } 第一种方法引用的类型是构造器引用,语法是Class::new,或者更一般的形式:Class ::new。注意:这个构造器没有参数。 final Car car = Car.create( Car::new ); final List< Car > cars = Arrays.asList( car ); 第二种方法引用的类型是静态方法引用,语法是Class::static_method。注意:这个方法接受一个Car类型的参数。 cars.forEach( Car::collide ); 第三种方法引用的类型是某个类的成员方法的引用,语法是Class::method,注意,这个方法没有定义入参: cars.forEach( Car::repair ); 第四种方法引用的类型是某个实例对象的成员方法的引用,语法是instance::method。注意:这个方法接受一个Car类型的参数: final Car police = Car.create( Car::new ); cars.forEach( police::follow ); 运行上述例子,可以在控制台看到如下输出(Car实例可能不同): Collided com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d Repaired com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d Following the com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d 如果想了解和学习更详细的内容,可以参考官方文档 2.4 重复注解 自从Java 5中引入注解以来,这个特性开始变得非常流行,并在各个框架和项目中被广泛使用。不过,注解有一个很大的限制是:在同一个地方不能多次使用同一个注解。Java 8打破了这个限制,引入了重复注解的概念,允许在同一个地方多次使用同一个注解。 在Java 8中使用@Repeatable注解定义重复注解,实际上,这并不是语言层面的改进,而是编译器做的一个trick,底层的技术仍然相同。可以利用下面的代码说明: package com.javacodegeeks.java8.repeatable.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Repeatable; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; public class RepeatingAnnotations { @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) public @interface Filters { Filter[] value(); } @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) @Repeatable( Filters.class ) public @interface Filter { String value(); }; @Filter( "filter1" ) @Filter( "filter2" ) public interface Filterable { } public static void main(String[] args) { for( Filter filter: Filterable.class.getAnnotationsByType( Filter.class ) ) { System.out.println( filter.value() ); } } } 正如我们所见,这里的Filter类使用@Repeatable(Filters.class)注解修饰,而Filters是存放Filter注解的容器,编译器尽量对开发者屏蔽这些细节。这样,Filterable接口可以用两个Filter注解注释(这里并没有提到任何关于Filters的信息)。 另外,反射API提供了一个新的方法:getAnnotationsByType(),可以返回某个类型的重复注解,例如Filterable.class.getAnnoation(Filters.class)将返回两个Filter实例,输出到控制台的内容如下所示: filter1 filter2 如果你希望了解更多内容,可以参考官方文档。 2.5 更好的类型推断 Java 8编译器在类型推断方面有很大的提升,在很多场景下编译器可以推导出某个参数的数据类型,从而使得代码更为简洁。例子代码如下: package com.javacodegeeks.java8.type.inference; public class Value< T > { public static< T > T defaultValue() { return null; } public T getOrDefault( T value, T defaultValue ) { return ( value != null ) ? value : defaultValue; } } 下列代码是Value 类型的应用: package com.javacodegeeks.java8.type.inference; public class TypeInference { public static void main(String[] args) { final Value< String > value = new Value<>(); value.getOrDefault( "22", Value.defaultValue() ); } } 参数Value.defaultValue()的类型由编译器推导得出,不需要显式指明。在Java 7中这段代码会有编译错误,除非使用Value. defaultValue()。 2.6 拓宽注解的应用场景 Java 8拓宽了注解的应用场景。现在,注解几乎可以使用在任何元素上:局部变量、接口类型、超类和接口实现类,甚至可以用在函数的异常定义上。下面是一些例子: package com.javacodegeeks.java8.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; import java.util.ArrayList; import java.util.Collection; public class Annotations { @Retention( RetentionPolicy.RUNTIME ) @Target( { ElementType.TYPE_USE, ElementType.TYPE_PARAMETER } ) public @interface NonEmpty { } public static class Holder< @NonEmpty T > extends @NonEmpty Object { public void method() throws @NonEmpty Exception { } } @SuppressWarnings( "unused" ) public static void main(String[] args) { final Holder< String > holder = new @NonEmpty Holder< String >(); @NonEmpty Collection< @NonEmpty String > strings = new ArrayList<>(); } } ElementType.TYPE_USER和ElementType.TYPE_PARAMETER是Java 8新增的两个注解,用于描述注解的使用场景。Java 语言也做了对应的改变,以识别这些新增的注解。 Java编译器的新特性 3.1 参数名称 为了在运行时获得Java程序中方法的参数名称,老一辈的Java程序员必须使用不同方法,例如Paranamer liberary。Java 8终于将这个特性规范化,在语言层面(使用反射API和Parameter.getName()方法)和字节码层面(使用新的javac编译器以及-parameters参数)提供支持。 package com.javacodegeeks.java8.parameter.names; import java.lang.reflect.Method; import java.lang.reflect.Parameter; public class ParameterNames { public static void main(String[] args) throws Exception { Method method = ParameterNames.class.getMethod( "main", String[].class ); for( final Parameter parameter: method.getParameters() ) { System.out.println( "Parameter: " + parameter.getName() ); } } } 在Java 8中这个特性是默认关闭的,因此如果不带-parameters参数编译上述代码并运行,则会输出如下结果: Parameter: arg0 如果带-parameters参数,则会输出如下结果(正确的结果): Parameter: args 如果你使用Maven进行项目管理,则可以在maven-compiler-plugin编译器的配置项中配置-parameters参数: org.apache.maven.plugins maven-compiler-plugin 3.1 -parameters 1.8 1.8 4. Java官方库的新特性 Java 8增加了很多新的工具类(date/time类),并扩展了现存的工具类,以支持现代的并发编程、函数式编程等。 4.1 Optional Java应用中最常见的bug就是空值异常。在Java 8之前,Google Guava引入了Optionals类来解决NullPointerException,从而避免源码被各种null检查污染,以便开发者写出更加整洁的代码。Java 8也将Optional加入了官方库。 Optional仅仅是一个容易:存放T类型的值或者null。它提供了一些有用的接口来避免显式的null检查,可以参考Java 8官方文档了解更多细节。 接下来看一点使用Optional的例子:可能为空的值或者某个类型的值: Optional< String > fullName = Optional.ofNullable( null ); System.out.println( "Full Name is set? " + fullName.isPresent() ); System.out.println( "Full Name: " + fullName.orElseGet( () -> "[none]" ) ); System.out.println( fullName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) ); 如果Optional实例持有一个非空值,则isPresent()方法返回true,否则返回false;orElseGet()方法,Optional实例持有null,则可以接受一个lambda表达式生成的默认值;map()方法可以将现有的Opetional实例的值转换成新的值;orElse()方法与orElseGet()方法类似,但是在持有null的时候返回传入的默认值。 上述代码的输出结果如下: Full Name is set? false Full Name: [none] Hey Stranger! 再看下另一个简单的例子: Optional< String > firstName = Optional.of( "Tom" ); System.out.println( "First Name is set? " + firstName.isPresent() ); System.out.println( "First Name: " + firstName.orElseGet( () -> "[none]" ) ); System.out.println( firstName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) ); System.out.println(); 这个例子的输出是: First Name is set? true First Name: Tom Hey Tom! 如果想了解更多的细节,请参考官方文档。 4.2 Streams 新增的Stream API(java.util.stream)将生成环境的函数式编程引入了Java库中。这是目前为止最大的一次对Java库的完善,以便开发者能够写出更加有效、更加简洁和紧凑的代码。 Steam API极大得简化了集合操作(后面我们会看到不止是集合),首先看下这个叫Task的类: public class Streams { private enum Status { OPEN, CLOSED }; private static final class Task { private final Status status; private final Integer points; Task( final Status status, final Integer points ) { this.status = status; this.points = points; } public Integer getPoints() { return points; } public Status getStatus() { return status; } @Override public String toString() { return String.format( "[%s, %d]", status, points ); } } } Task类有一个分数(或伪复杂度)的概念,另外还有两种状态:OPEN或者CLOSED。现在假设有一个task集合: final Collection< Task > tasks = Arrays.asList( new Task( Status.OPEN, 5 ), new Task( Status.OPEN, 13 ), new Task( Status.CLOSED, 8 ) ); 首先看一个问题:在这个task集合中一共有多少个OPEN状态的点?在Java 8之前,要解决这个问题,则需要使用foreach循环遍历task集合;但是在Java 8中可以利用steams解决:包括一系列元素的列表,并且支持顺序和并行处理。 // Calculate total points of all active tasks using sum() final long totalPointsOfOpenTasks = tasks .stream() .filter( task -> task.getStatus() == Status.OPEN ) .mapToInt( Task::getPoints ) .sum(); System.out.println( "Total points: " + totalPointsOfOpenTasks ); 运行这个方法的控制台输出是: Total points: 18 这里有很多知识点值得说。首先,tasks集合被转换成steam表示;其次,在steam上的filter操作会过滤掉所有CLOSED的task;第三,mapToInt操作基于每个task实例的Task::getPoints方法将task流转换成Integer集合;最后,通过sum方法计算总和,得出最后的结果。 在学习下一个例子之前,还需要记住一些steams(点此更多细节)的知识点。Steam之上的操作可分为中间操作和晚期操作。 中间操作会返回一个新的steam——执行一个中间操作(例如filter)并不会执行实际的过滤操作,而是创建一个新的steam,并将原steam中符合条件的元素放入新创建的steam。 晚期操作(例如forEach或者sum),会遍历steam并得出结果或者附带结果;在执行晚期操作之后,steam处理线已经处理完毕,就不能使用了。在几乎所有情况下,晚期操作都是立刻对steam进行遍历。 steam的另一个价值是创造性地支持并行处理(parallel processing)。对于上述的tasks集合,我们可以用下面的代码计算所有任务的点数之和: // Calculate total points of all tasks final double totalPoints = tasks .stream() .parallel() .map( task -> task.getPoints() ) // or map( Task::getPoints ) .reduce( 0, Integer::sum ); System.out.println( "Total points (all tasks): " + totalPoints ); 这里我们使用parallel方法并行处理所有的task,并使用reduce方法计算最终的结果。控制台输出如下: Total points(all tasks): 26.0 对于一个集合,经常需要根据某些条件对其中的元素分组。利用steam提供的API可以很快完成这类任务,代码如下: // Group tasks by their status final Map< Status, List< Task > > map = tasks .stream() .collect( Collectors.groupingBy( Task::getStatus ) ); System.out.println( map ); 控制台的输出如下: {CLOSED=[[CLOSED, 8]], OPEN=[[OPEN, 5], [OPEN, 13]]} 最后一个关于tasks集合的例子问题是:如何计算集合中每个任务的点数在集合中所占的比重,具体处理的代码如下: // Calculate the weight of each tasks (as percent of total points) final Collection< String > result = tasks .stream() // Stream< String > .mapToInt( Task::getPoints ) // IntStream .asLongStream() // LongStream .mapToDouble( points -> points / totalPoints ) // DoubleStream .boxed() // Stream< Double > .mapToLong( weigth -> ( long )( weigth * 100 ) ) // LongStream .mapToObj( percentage -> percentage + "%" ) // Stream< String> .collect( Collectors.toList() ); // List< String > System.out.println( result ); 控制台输出结果如下: [19%, 50%, 30%] 最后,正如之前所说,Steam API不仅可以作用于Java集合,传统的IO操作(从文件或者网络一行一行得读取数据)可以受益于steam处理,这里有一个小例子: final Path path = new File( filename ).toPath(); try( Stream< String > lines = Files.lines( path, StandardCharsets.UTF_8 ) ) { lines.onClose( () -> System.out.println("Done!") ).forEach( System.out::println ); } Stream的方法onClose 返回一个等价的有额外句柄的Stream,当Stream的close()方法被调用的时候这个句柄会被执行。Stream API、Lambda表达式还有接口默认方法和静态方法支持的方法引用,是Java 8对软件开发的现代范式的响应。 4.3 Date/Time API(JSR 310) Java 8引入了新的Date-Time API(JSR 310)来改进时间、日期的处理。时间和日期的管理一直是最令Java开发者痛苦的问题。java.util.Date和后来的java.util.Calendar一直没有解决这个问题(甚至令开发者更加迷茫)。 因为上面这些原因,诞生了第三方库Joda-Time,可以替代Java的时间管理API。Java 8中新的时间和日期管理API深受Joda-Time影响,并吸收了很多Joda-Time的精华。新的java.time包包含了所有关于日期、时间、时区、Instant(跟日期类似但是精确到纳秒)、duration(持续时间)和时钟操作的类。新设计的API认真考虑了这些类的不变性(从java.util.Calendar吸取的教训),如果某个实例需要修改,则返回一个新的对象。 我们接下来看看java.time包中的关键类和各自的使用例子。首先,Clock类使用时区来返回当前的纳秒时间和日期。Clock可以替代System.currentTimeMillis()和TimeZone.getDefault()。 // Get the system clock as UTC offset final Clock clock = Clock.systemUTC(); System.out.println( clock.instant() ); System.out.println( clock.millis() ); 这个例子的输出结果是: 2014-04-12T15:19:29.282Z 1397315969360 第二,关注下LocalDate和LocalTime类。LocalDate仅仅包含ISO-8601日历系统中的日期部分;LocalTime则仅仅包含该日历系统中的时间部分。这两个类的对象都可以使用Clock对象构建得到。 // Get the local date and local time final LocalDate date = LocalDate.now(); final LocalDate dateFromClock = LocalDate.now( clock ); System.out.println( date ); System.out.println( dateFromClock ); // Get the local date and local time final LocalTime time = LocalTime.now(); final LocalTime timeFromClock = LocalTime.now( clock ); System.out.println( time ); System.out.println( timeFromClock ); 上述例子的输出结果如下: 2014-04-12 2014-04-12 11:25:54.568 15:25:54.568 LocalDateTime类包含了LocalDate和LocalTime的信息,但是不包含ISO-8601日历系统中的时区信息。这里有一些关于LocalDate和LocalTime的例子: // Get the local date/time final LocalDateTime datetime = LocalDateTime.now(); final LocalDateTime datetimeFromClock = LocalDateTime.now( clock ); System.out.println( datetime ); System.out.println( datetimeFromClock ); 上述这个例子的输出结果如下: 2014-04-12T11:37:52.309 2014-04-12T15:37:52.309 如果你需要特定时区的data/time信息,则可以使用ZoneDateTime,它保存有ISO-8601日期系统的日期和时间,而且有时区信息。下面是一些使用不同时区的例子: // Get the zoned date/time final ZonedDateTime zonedDatetime = ZonedDateTime.now(); final ZonedDateTime zonedDatetimeFromClock = ZonedDateTime.now( clock ); final ZonedDateTime zonedDatetimeFromZone = ZonedDateTime.now( ZoneId.of( "America/Los_Angeles" ) ); System.out.println( zonedDatetime ); System.out.println( zonedDatetimeFromClock ); System.out.println( zonedDatetimeFromZone ); 这个例子的输出结果是: 2014-04-12T11:47:01.017-04:00[America/New_York] 2014-04-12T15:47:01.017Z 2014-04-12T08:47:01.017-07:00[America/Los_Angeles] 最后看下Duration类,它持有的时间精确到秒和纳秒。这使得我们可以很容易得计算两个日期之间的不同,例子代码如下: // Get duration between two dates final LocalDateTime from = LocalDateTime.of( 2014, Month.APRIL, 16, 0, 0, 0 ); final LocalDateTime to = LocalDateTime.of( 2015, Month.APRIL, 16, 23, 59, 59 ); final Duration duration = Duration.between( from, to ); System.out.println( "Duration in days: " + duration.toDays() ); System.out.println( "Duration in hours: " + duration.toHours() ); 这个例子用于计算2014年4月16日和2015年4月16日之间的天数和小时数,输出结果如下: Duration in days: 365 Duration in hours: 8783 对于Java 8的新日期时间的总体印象还是比较积极的,一部分是因为Joda-Time的积极影响,另一部分是因为官方终于听取了开发人员的需求。如果希望了解更多细节,可以参考官方文档。 4.4 Nashorn JavaScript引擎 Java 8提供了新的Nashorn JavaScript引擎,使得我们可以在JVM上开发和运行JS应用。Nashorn JavaScript引擎是javax.script.ScriptEngine的另一个实现版本,这类Script引擎遵循相同的规则,允许Java和JavaScript交互使用,例子代码如下: ScriptEngineManager manager = new ScriptEngineManager(); ScriptEngine engine = manager.getEngineByName( "JavaScript" ); System.out.println( engine.getClass().getName() ); System.out.println( "Result:" + engine.eval( "function f() { return 1; }; f() + 1;" ) ); 这个代码的输出结果如下: jdk.nashorn.api.scripting.NashornScriptEngine Result: 2 4.5 Base64 对Base64编码的支持已经被加入到Java 8官方库中,这样不需要使用第三方库就可以进行Base64编码,例子代码如下: package com.javacodegeeks.java8.base64; import java.nio.charset.StandardCharsets; import java.util.Base64; public class Base64s { public static void main(String[] args) { final String text = "Base64 finally in Java 8!"; final String encoded = Base64 .getEncoder() .encodeToString( text.getBytes( StandardCharsets.UTF_8 ) ); System.out.println( encoded ); final String decoded = new String( Base64.getDecoder().decode( encoded ), StandardCharsets.UTF_8 ); System.out.println( decoded ); } } 这个例子的输出结果如下: QmFzZTY0IGZpbmFsbHkgaW4gSmF2YSA4IQ== Base64 finally in Java 8! 新的Base64API也支持URL和MINE的编码解码。 (Base64.getUrlEncoder() / Base64.getUrlDecoder(), Base64.getMimeEncoder() / Base64.getMimeDecoder())。 4.6 并行数组 Java8版本新增了很多新的方法,用于支持并行数组处理。最重要的方法是parallelSort(),可以显著加快多核机器上的数组排序。下面的例子论证了parallexXxx系列的方法: package com.javacodegeeks.java8.parallel.arrays; import java.util.Arrays; import java.util.concurrent.ThreadLocalRandom; public class ParallelArrays { public static void main( String[] args ) { long[] arrayOfLong = new long [ 20000 ]; Arrays.parallelSetAll( arrayOfLong, index -> ThreadLocalRandom.current().nextInt( 1000000 ) ); Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); Arrays.parallelSort( arrayOfLong ); Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); } } 上述这些代码使用parallelSetAll()方法生成20000个随机数,然后使用parallelSort()方法进行排序。这个程序会输出乱序数组和排序数组的前10个元素。上述例子的代码输出的结果是: Unsorted: 591217 891976 443951 424479 766825 351964 242997 642839 119108 552378 Sorted: 39 220 263 268 325 607 655 678 723 793 4.7 并发性 基于新增的lambda表达式和steam特性,为Java 8中为java.util.concurrent.ConcurrentHashMap类添加了新的方法来支持聚焦操作;另外,也为java.util.concurrentForkJoinPool类添加了新的方法来支持通用线程池操作(更多内容可以参考我们的并发编程课程)。 Java 8还添加了新的java.util.concurrent.locks.StampedLock类,用于支持基于容量的锁——该锁有三个模型用于支持读写操作(可以把这个锁当做是java.util.concurrent.locks.ReadWriteLock的替代者)。 在java.util.concurrent.atomic包中也新增了不少工具类,列举如下: DoubleAccumulator DoubleAdder LongAccumulator LongAdder 5. 新的Java工具 Java 8提供了一些新的命令行工具,这部分会讲解一些对开发者最有用的工具。 5.1 Nashorn引擎:jjs jjs是一个基于标准Nashorn引擎的命令行工具,可以接受js源码并执行。例如,我们写一个func.js文件,内容如下: function f() { return 1; }; print( f() + 1 ); 可以在命令行中执行这个命令:jjs func.js,控制台输出结果是: 2 如果需要了解细节,可以参考官方文档。 5.2 类依赖分析器:jdeps jdeps是一个相当棒的命令行工具,它可以展示包层级和类层级的Java类依赖关系,它以.class文件、目录或者Jar文件为输入,然后会把依赖关系输出到控制台。 我们可以利用jedps分析下Spring Framework库,为了让结果少一点,仅仅分析一个JAR文件:org.springframework.core-3.0.5.RELEASE.jar。 jdeps org.springframework.core-3.0.5.RELEASE.jar 这个命令会输出很多结果,我们仅看下其中的一部分:依赖关系按照包分组,如果在classpath上找不到依赖,则显示"not found". org.springframework.core-3.0.5.RELEASE.jar -> C:\Program Files\Java\jdk1.8.0\jre\lib\rt.jar org.springframework.core (org.springframework.core-3.0.5.RELEASE.jar) -> java.io -> java.lang -> java.lang.annotation -> java.lang.ref -> java.lang.reflect -> java.util -> java.util.concurrent -> org.apache.commons.logging not found -> org.springframework.asm not found -> org.springframework.asm.commons not found org.springframework.core.annotation (org.springframework.core-3.0.5.RELEASE.jar) -> java.lang -> java.lang.annotation -> java.lang.reflect -> java.util 更多的细节可以参考官方文档。 JVM的新特性 使用Metaspace(JEP 122)代替持久代(PermGen space)。在JVM参数方面,使用-XX:MetaSpaceSize和-XX:MaxMetaspaceSize代替原来的-XX:PermSize和-XX:MaxPermSize。 结论 通过为开发者提供很多能够提高生产力的特性,Java 8使得Java平台前进了一大步。现在还不太适合将Java 8应用在生产系统中,但是在之后的几个月中Java 8的应用率一定会逐步提高(PS:原文时间是2014年5月9日,现在在很多公司Java 8已经成为主流,我司由于体量太大,现在也在一点点上Java 8,虽然慢但是好歹在升级了)。作为开发者,现在应该学习一些Java 8的知识,为升级做好准备。 关于Spring:对于企业级开发,我们也应该关注Spring社区对Java 8的支持,可以参考这篇文章——Spring 4支持的Java 8新特性一览 参考资料 What’s New in JDK 8 The Java Tutorials WildFly 8, JDK 8, NetBeans 8, Java EE Java 8 Tutorial JDK 8 Command-line Static Dependency Checker The Illuminating Javadoc of JDK The Dark Side of Java 8 Installing Java™ 8 Support in Eclipse Kepler SR2 Java 8 Oracle Nashorn. A Next-Generation JavaScript Engine for the JVM 举报
游客2q7uranxketok 2021-02-08 10:54:06 0 浏览量 回答数 0

回答

转自:阿里云官网 — 知乎 写好代码,阿里专家沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家,相信同样的方法论可以复制到大部分复杂业务场景。 一文教会你如何写复杂业务代码 了解我的人都知道,我一直在致力于应用架构和代码复杂度的治理。 这两天在看零售通商品域的代码。面对零售通如此复杂的业务场景,如何在架构和代码层面进行应对,是一个新课题。针对该命题,我进行了比较细致的思考和研究。结合实际的业务场景,我沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家。 我相信,同样的方法论可以复制到大部分复杂业务场景。 一个复杂业务的处理过程 业务背景 简单的介绍下业务背景,零售通是给线下小店供货的B2B模式,我们希望通过数字化重构传统供应链渠道,提升供应链效率,为新零售助力。阿里在中间是一个平台角色,提供的是Bsbc中的service的功能。 在商品域,运营会操作一个“上架”动作,上架之后,商品就能在零售通上面对小店进行销售了。是零售通业务非常关键的业务操作之一,因此涉及很多的数据校验和关联操作。 针对上架,一个简化的业务流程如下所示: 过程分解 像这么复杂的业务,我想应该没有人会写在一个service方法中吧。一个类解决不了,那就分治吧。 说实话,能想到分而治之的工程师,已经做的不错了,至少比没有分治思维要好很多。我也见过复杂程度相当的业务,连分解都没有,就是一堆方法和类的堆砌。 不过,这里存在一个问题:即很多同学过度的依赖工具或是辅助手段来实现分解。比如在我们的商品域中,类似的分解手段至少有3套以上,有自制的流程引擎,有依赖于数据库配置的流程处理: 本质上来讲,这些辅助手段做的都是一个pipeline的处理流程,没有其它。因此,我建议此处最好保持KISS(Keep It Simple and Stupid),即最好是什么工具都不要用,次之是用一个极简的Pipeline模式,最差是使用像流程引擎这样的重方法。 除非你的应用有极强的流程可视化和编排的诉求,否则我非常不推荐使用流程引擎等工具。第一,它会引入额外的复杂度,特别是那些需要持久化状态的流程引擎;第二,它会割裂代码,导致阅读代码的不顺畅。大胆断言一下,全天下估计80%对流程引擎的使用都是得不偿失的。 回到商品上架的问题,这里问题核心是工具吗?是设计模式带来的代码灵活性吗?显然不是,问题的核心应该是如何分解问题和抽象问题,知道金字塔原理的应该知道,此处,我们可以使用结构化分解将问题解构成一个有层级的金字塔结构: 按照这种分解写的代码,就像一本书,目录和内容清晰明了。以商品上架为例,程序的入口是一个上架命令(OnSaleCommand), 它由三个阶段(Phase)组成。 @Command public class OnSaleNormalItemCmdExe { @Resource private OnSaleContextInitPhase onSaleContextInitPhase; @Resource private OnSaleDataCheckPhase onSaleDataCheckPhase; @Resource private OnSaleProcessPhase onSaleProcessPhase; @Override public Response execute(OnSaleNormalItemCmd cmd) { OnSaleContext onSaleContext = init(cmd); checkData(onSaleContext); process(onSaleContext); return Response.buildSuccess(); } private OnSaleContext init(OnSaleNormalItemCmd cmd) { return onSaleContextInitPhase.init(cmd); } private void checkData(OnSaleContext onSaleContext) { onSaleDataCheckPhase.check(onSaleContext); } private void process(OnSaleContext onSaleContext) { onSaleProcessPhase.process(onSaleContext); } } 每个Phase又可以拆解成多个步骤(Step),以OnSaleProcessPhase为例,它是由一系列Step组成的: @Phase public class OnSaleProcessPhase { @Resource private PublishOfferStep publishOfferStep; @Resource private BackOfferBindStep backOfferBindStep; //省略其它step public void process(OnSaleContext onSaleContext){ SupplierItem supplierItem = onSaleContext.getSupplierItem(); // 生成OfferGroupNo generateOfferGroupNo(supplierItem); // 发布商品 publishOffer(supplierItem); // 前后端库存绑定 backoffer域 bindBackOfferStock(supplierItem); // 同步库存路由 backoffer域 syncStockRoute(supplierItem); // 设置虚拟商品拓展字段 setVirtualProductExtension(supplierItem); // 发货保障打标 offer域 markSendProtection(supplierItem); // 记录变更内容ChangeDetail recordChangeDetail(supplierItem); // 同步供货价到BackOffer syncSupplyPriceToBackOffer(supplierItem); // 如果是组合商品打标,写扩展信息 setCombineProductExtension(supplierItem); // 去售罄标 removeSellOutTag(offerId); // 发送领域事件 fireDomainEvent(supplierItem); // 关闭关联的待办事项 closeIssues(supplierItem); } } 看到了吗,这就是商品上架这个复杂业务的业务流程。需要流程引擎吗?不需要,需要设计模式支撑吗?也不需要。对于这种业务流程的表达,简单朴素的组合方法模式(Composed Method)是再合适不过的了。 因此,在做过程分解的时候,我建议工程师不要把太多精力放在工具上,放在设计模式带来的灵活性上。而是应该多花时间在对问题分析,结构化分解,最后通过合理的抽象,形成合适的阶段(Phase)和步骤(Step)上。 过程分解后的两个问题的确,使用过程分解之后的代码,已经比以前的代码更清晰、更容易维护了。不过,还有两个问题值得我们去关注一下: 1、领域知识被割裂肢解什么叫被肢解? 因为我们到目前为止做的都是过程化拆解,导致没有一个聚合领域知识的地方。每个Use Case的代码只关心自己的处理流程,知识没有沉淀。相同的业务逻辑会在多个Use Case中被重复实现,导致代码重复度高,即使有复用,最多也就是抽取一个util,代码对业务语义的表达能力很弱,从而影响代码的可读性和可理解性。 2、代码的业务表达能力缺失 试想下,在过程式的代码中,所做的事情无外乎就是取数据--做计算--存数据,在这种情况下,要如何通过代码显性化的表达我们的业务呢? 说实话,很难做到,因为我们缺失了模型,以及模型之间的关系。脱离模型的业务表达,是缺少韵律和灵魂的。 举个例子,在上架过程中,有一个校验是检查库存的,其中对于组合品(CombineBackOffer)其库存的处理会和普通品不一样。原来的代码是这么写的: boolean isCombineProduct = supplierItem.getSign().isCombProductQuote(); // supplier.usc warehouse needn't check if (WarehouseTypeEnum.isAliWarehouse(supplierItem.getWarehouseType())) { // quote warehosue check if (CollectionUtil.isEmpty(supplierItem.getWarehouseIdList()) && !isCombineProduct) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } // inventory amount check Long sellableAmount = 0L; if (!isCombineProduct) { sellableAmount = normalBiz.acquireSellableAmount(supplierItem.getBackOfferId(), supplierItem.getWarehouseIdList()); } else { //组套商品 OfferModel backOffer = backOfferQueryService.getBackOffer(supplierItem.getBackOfferId()); if (backOffer != null) { sellableAmount = backOffer.getOffer().getTradeModel().getTradeCondition().getAmountOnSale(); } } if (sellableAmount < 1) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + supplierItem.getId() + "]"); } } 然而,如果我们在系统中引入领域模型之后,其代码会简化为如下: if(backOffer.isCloudWarehouse()){ return; } if (backOffer.isNonInWarehouse()){ throw new BizException("亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } if (backOffer.getStockAmount() < 1){ throw new BizException("亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + backOffer.getSupplierItem().getCspuCode() + "]"); } 有没有发现,使用模型的表达要清晰易懂很多,而且也不需要做关于组合品的判断了,因为我们在系统中引入了更加贴近现实的对象模型(CombineBackOffer继承BackOffer),通过对象的多态可以消除我们代码中的大部分的if-else。 过程分解+对象模型 通过上面的案例,我们可以看到有过程分解要好于没有分解,过程分解+对象模型要好于仅仅是过程分解。对于商品上架这个case,如果采用过程分解+对象模型的方式,最终我们会得到一个如下的系统结构: 写复杂业务的方法论 通过上面案例的讲解,我想说,我已经交代了复杂业务代码要怎么写:即自上而下的结构化分解+自下而上的面向对象分析。 接下来,让我们把上面的案例进行进一步的提炼,形成一个可落地的方法论,从而可以泛化到更多的复杂业务场景。 上下结合 所谓上下结合,是指我们要结合自上而下的过程分解和自下而上的对象建模,螺旋式的构建我们的应用系统。这是一个动态的过程,两个步骤可以交替进行、也可以同时进行。这两个步骤是相辅相成的,上面的分析可以帮助我们更好的理清模型之间的关系,而下面的模型表达可以提升我们代码的复用度和业务语义表达能力。其过程如下图所示: 使用这种上下结合的方式,我们就有可能在面对任何复杂的业务场景,都能写出干净整洁、易维护的代码。 能力下沉 一般来说实践DDD有两个过程: 1. 套概念阶段 了解了一些DDD的概念,然后在代码中“使用”Aggregation Root,Bonded Context,Repository等等这些概念。更进一步,也会使用一定的分层策略。然而这种做法一般对复杂度的治理并没有多大作用。 2. 融会贯通阶段 术语已经不再重要,理解DDD的本质是统一语言、边界划分和面向对象分析的方法。 大体上而言,我大概是在1.7的阶段,因为有一个问题一直在困扰我,就是哪些能力应该放在Domain层,是不是按照传统的做法,将所有的业务都收拢到Domain上,这样做合理吗?说实话,这个问题我一直没有想清楚。 因为在现实业务中,很多的功能都是用例特有的(Use case specific)的,如果“盲目”的使用Domain收拢业务并不见得能带来多大的益处。相反,这种收拢会导致Domain层的膨胀过厚,不够纯粹,反而会影响复用性和表达能力。 鉴于此,我最近的思考是我们应该采用能力下沉的策略。 所谓的能力下沉,是指我们不强求一次就能设计出Domain的能力,也不需要强制要求把所有的业务功能都放到Domain层,而是采用实用主义的态度,即只对那些需要在多个场景中需要被复用的能力进行抽象下沉,而不需要复用的,就暂时放在App层的Use Case里就好了。 注:Use Case是《架构整洁之道》里面的术语,简单理解就是响应一个Request的处理过程 通过实践,我发现这种循序渐进的能力下沉策略,应该是一种更符合实际、更敏捷的方法。因为我们承认模型不是一次性设计出来的,而是迭代演化出来的。 下沉的过程如下图所示,假设两个use case中,我们发现uc1的step3和uc2的step1有类似的功能,我们就可以考虑让其下沉到Domain层,从而增加代码的复用性。 指导下沉有两个关键指标:代码的复用性和内聚性。 复用性是告诉我们When(什么时候该下沉了),即有重复代码的时候。 内聚性是告诉我们How(要下沉到哪里),功能有没有内聚到恰当的实体上,有没有放到合适的层次上(因为Domain层的能力也是有两个层次的,一个是Domain Service这是相对比较粗的粒度,另一个是Domain的Model这个是最细粒度的复用)。 比如,在我们的商品域,经常需要判断一个商品是不是最小单位,是不是中包商品。像这种能力就非常有必要直接挂载在Model上。 public class CSPU { private String code; private String baseCode; //省略其它属性 /** * 单品是否为最小单位。 * */ public boolean isMinimumUnit(){ return StringUtils.equals(code, baseCode); } /** * 针对中包的特殊处理 * */ public boolean isMidPackage(){ return StringUtils.equals(code, midPackageCode); } } 之前,因为老系统中没有领域模型,没有CSPU这个实体。你会发现像判断单品是否为最小单位的逻辑是以StringUtils.equals(code, baseCode)的形式散落在代码的各个角落。这种代码的可理解性是可想而知的,至少我在第一眼看到这个代码的时候,是完全不知道什么意思。 业务技术要怎么做 写到这里,我想顺便回答一下很多业务技术同学的困惑,也是我之前的困惑:即业务技术到底是在做业务,还是做技术?业务技术的技术性体现在哪里? 通过上面的案例,我们可以看到业务所面临的复杂性并不亚于底层技术,要想写好业务代码也不是一件容易的事情。 业务技术和底层技术人员唯一的区别是他们所面临的问题域不一样。业务技术面对的问题域变化更多、面对的人更加庞杂。而底层技术面对的问题域更加稳定、但对技术的要求更加深。比如,如果你需要去开发Pandora,你就要对Classloader有更加深入的了解才行。 但是,不管是业务技术还是底层技术人员,有一些思维和能力都是共通的。比如,分解问题的能力,抽象思维,结构化思维等等。 用我的话说就是:“做不好业务开发的,也做不好技术底层开发,反之亦然。业务开发一点都不简单,只是我们很多人把它做“简单”了因此,如果从变化的角度来看,业务技术的难度一点不逊色于底层技术,其面临的挑战甚至更大。 因此,我想对广大的从事业务技术开发的同学说:沉下心来,夯实自己的基础技术能力、OO能力、建模能力... 不断提升抽象思维、结构化思维、思辨思维... 持续学习精进,写好代码。我们可以在业务技术岗做的很”技术“!。
茶什i 2020-01-10 11:53:44 0 浏览量 回答数 0

问题

在 berserkJS 中无缝使用 Wind.js:报错

在 berserkJS 中无缝使用 Wind.js 收拢异步执行流程 一、Wind.js 是怎么实现的异步流程控制。 二、$await 为什么是个函数而不是作为一个简单的语法标记存在? 三、为什么要用 eval 并且还没有封装它? 四、为什...
kun坤 2020-06-07 14:00:40 0 浏览量 回答数 1

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT 阿里云科技驱动中小企业数字化