• 关于 开发数据库扩展解决方案 的搜索结果

回答

阿里云分布式数据库解决方案围绕分布式数据库,从开发、运维、数据库迁移及扩展方面提供了统一的综合解决方案,为分部署数据库应用降低门槛提高效率。

剑曼红尘 2020-03-23 14:03:19 0 浏览量 回答数 0

回答

Apache Cassandra数据库的优缺点有哪些? TAG标签: 数据库 Apache 优缺点 Cassandra 本文将超越众所周知的一些细节,探讨与 Cassandra 相关的不太明显的细节。您将检查 Cassandra 数据模型、存储模式设计、架构,以及与 Cassandra 相关的潜在惊喜。 在数据库历史文章 “What Goes Around Comes Around”中,Michal Stonebraker 详细描述了存储技术是如何随着时间的推移而发展的。实现关系模型之前,开发人员曾尝试过其他模型,比如层次图和有向图。值得注意的是,基于 SQL 的关系模型(即使到现在也仍然是事实上的标准)已经盛行了大约 30 年。鉴于计算机科学的短暂历史及其快速发展的步伐,这是一项非凡的成就。关系模型建立已久,以至于许多年来,解决方案架构师很容易为应用程序选择数据存储。他们的选择总是关系数据库。 诸如增加系统、移动设备、扩展的用户在线状态、云计算和多核系统的用户群之类的开发已经导致产生越来越多的大型系统。Google 和 Amazon 之类的高科技公司都是首批触及规模问题的公司。他们很快就发现关系数据库并不足以支持大型系统。 为了避免这些挑战,Google 和 Amazon 提出了两个可供选择的解决方案:Big Table 和 Dynamo,他们可以由此放松关系数据模型提供的保证,从而实现更高的可扩展性。Eric Brewer 的 “CAP Theorem”后来官方化了这些观察结果。它宣称,对于可扩展性系统,一致性、可用性和分区容错性都是权衡因素,因为根本不可能构建包含所有这些属性的系统。不久之后,根据 Google 和 Amazon 早期的工作,以及所获得的对可扩展性系统的理解,计划创建一种新的存储系统。这些系统被命名为 “NoSQL” 系统。该名称最初的意思是 “如果想缩放就不要使用 SQL”,后来被重新定义为 “不只是 SQL”,意思是说,除了基于 SQL 的解决方案外,还有其他的解决方案。 有许多 NoSQL 系统,而且每一个系统都缓和或改变了关系模型的某些方面。值得注意的是,没有一个 NoSQL 解决方案适用于所有的场景。每一个解决方案都优于关系模型,且针对一些用例子集进行了缩放。我的早期文章 “在 Data Storage Haystack 中为您的应用程序寻找正确的数据解决方案” 讨论了如何使应用程序需求和 NoSQL 解决方案相匹配。 Apache Cassandra是其中一个最早也是最广泛使用的 NoSQL 解决方案。本文详细介绍了 Cassandra,并指出了一些首次使用 Cassandra 时不容易发现的细节和复杂之处。 Apache Cassandra Cassandra 是一个 NoSQL 列族 (column family) 实现,使用由 Amazon Dynamo 引入的架构方面的特性来支持 Big Table 数据模型。Cassandra 的一些优势如下所示: 高度可扩展性和高度可用性,没有单点故障 NoSQL 列族实现 非常高的写入吞吐量和良好的读取吞吐量 类似 SQL 的查询语言(从 0.8 起),并通过二级索引支持搜索 可调节的一致性和对复制的支持 灵活的模式 这些优点很容易让人们推荐使用 Cassandra,但是,对于开发人员来说,至关重要的一点是要深入探究 Cassandra 的细节和复杂之处,从而掌握该程序的复杂性。 答案来源于网络

养狐狸的猫 2019-12-02 02:19:37 0 浏览量 回答数 0

回答

阿里为双11做了大量的优化工作,包括自己研发扩展的中间件、JDK、数据库、缓存等技术方案。阿里巴巴可以说是国内Java技术最好的公司,目前是JCP委员会唯一的中国公司。1、阿里自己有优化的JDK版本2、阿里为了电商服务器专门优化开发了JVM虚拟机,包括内存分配和垃圾回收3、除了大规模的服务器集群,阿里还自己还定制了MySQL数据库、缓存、MQ等4、阿里自己研发的数据库中间件,分库分表工具,也开源了。都是一步一步解决实际问题积累的技术实力,遇到问题,解决问题,积累研发扩展升级。

徐雷frank 2019-12-02 01:47:30 0 浏览量 回答数 0

海外云虚拟主机包年25元/月起

海外独享虚拟主机全面上线,助力构建海外网站,提升公司国际形象;全球有效覆盖,超高性价比;建站入门首选,助力出口,适合跨境贸易企业。

问题

围绕着内存数据库的4个流言

doudou1 2019-12-01 21:17:05 9279 浏览量 回答数 0

问题

围绕着内存数据库的4个流言

sunny夏筱 2019-12-01 21:46:19 7513 浏览量 回答数 3

回答

如果你仅仅是开发一个小网站,这些都可以交给数据库去处理,这也是典型的 PHPer 们的做法。如果你的目标不仅仅是一个小网站,那么应该考虑一些可测试性、扩展性、分布式……的问题,选择适合自己项目规模的解决方案。而且,在很多时候,我们并不直接从数据库中取数据,而是从缓存中取数据,而缓存中的数据就需要我们用代码来处理了。还有一个需要考虑的问题,当你的数据分布在了 N 个数据库里面时,如何筛选,如何排序。

蛮大人123 2019-12-02 01:45:24 0 浏览量 回答数 0

回答

云数据RDS是关系型数据库服务(Relational Database Service)的简称,是一种即开即用、稳定可靠、可弹性伸缩的在线数据库服务。具有多重安全防护措施和完善的性能监控体系,并提供专业的数据库备份、恢复及优化方案,使您能专注于应用开发和业务发展。 关系模型就是指二维表格模型,因而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织。 当前主流的关系型数据库有Oracle、DB2、PostgreSQL、Microsoft SQL Server、Microsoft Access、MySQL等。 云关系型数据库(RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务,支持MySQL、SQL Server、PostgreSQL、PPAS(Postgre Plus Advanced Server,高度兼容Oracle数据库)、MariaDB等引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案。 云数据库的特性有:实例创建快速、支持只读实例、读写分离、故障自动切换、数据备份、Binlog备份、SQL审计、访问白名单、监控与消息通知等。 扩展资料: 云数据库RDS优势 1、轻松部署。用户能够在RDS控制台轻松的完成数据库申请和创建,RDS实例在几分钟内就可以准备就绪并投入使用。用户通过RDS提供的功能完善的控制台,对所有实例进行统一管理。 2、高可靠。云数据库具有故障自动单点切换、数据库自动备份等功能,保证实例高可用和数据安全。免费提供7天数据备份,可恢复或回滚至7天内任意备份点。 3、低成本。DS支付的费用远低于自建数据库所需的成本,用户可以根据自己的需求选择不同套餐,使用很低的价格得到一整套专业的数据库支持服务。 参考资料来源:百度百科—云数据库

养狐狸的猫 2019-12-02 02:18:38 0 浏览量 回答数 0

回答

开发对比开发速度Hibernate的真正掌握要比Mybatis来得难些。Mybatis框架相对简单很容易上手,但也相对简陋些。个人觉得要用好Mybatis还是首先要先理解好Hibernate。 Hibernate 是完整的对象/关系映射解决方案,它提供了对象状态管理(state management)的功能,使开发者不再需要理会底层数据库系统的细节。也就是说,相对于常见的 JDBC/SQL 持久层方案中需要管理 SQL 语句,Hibernate采用了更自然的面向对象的视角来持久化 Java 应用中的数据。换句话说,使用 Hibernate 的开发者应该总是关注对象的状态(state),不必考虑 SQL 语句的执行。这部分细节已经由 Hibernate 掌管妥当,只有开发者在进行系统性能调优的时候才需要进行了解。而MyBatis在这一块没有文档说明,用户需要对对象自己进行详细的管理。先从大多数的大型工程会选择mybatis,在灵活度和扩展性方面会更胜一筹

__梦 2019-12-02 01:59:03 0 浏览量 回答数 0

回答

云数据RDS是关系型数据库服务(Relational Database Service)的简称,是一种即开即用、稳定可靠、可弹性伸缩的在线数据库服务。具有多重安全防护措施和完善的性能监控体系,并提供专业的数据库备份、恢复及优化方案,使您能专注于应用开发和业务发展。 关系模型就是指二维表格模型,因而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织。 当前主流的关系型数据库有Oracle、DB2、PostgreSQL、Microsoft SQL Server、Microsoft Access、MySQL等。 云关系型数据库(RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务,支持MySQL、SQL Server、PostgreSQL、PPAS(Postgre Plus Advanced Server,高度兼容Oracle数据库)、MariaDB等引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案。 云数据库的特性有:实例创建快速、支持只读实例、读写分离、故障自动切换、数据备份、Binlog备份、SQL审计、访问白名单、监控与消息通知等。 扩展资料: 云数据库RDS优势 1、轻松部署。用户能够在RDS控制台轻松的完成数据库申请和创建,RDS实例在几分钟内就可以准备就绪并投入使用。用户通过RDS提供的功能完善的控制台,对所有实例进行统一管理。 2、高可靠。云数据库具有故障自动单点切换、数据库自动备份等功能,保证实例高可用和数据安全。免费提供7天数据备份,可恢复或回滚至7天内任意备份点。 3、低成本。DS支付的费用远低于自建数据库所需的成本,用户可以根据自己的需求选择不同套餐,使用很低的价格得到一整套专业的数据库支持服务。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:37 0 浏览量 回答数 0

回答

CubicWebCubicWeb的最重要的支柱就是代码的可重用性。CubicWeb宣扬自己不仅是一个Web开发框架,而且还是一款语义Web开发框架。CubicWeb使用关系查询语言(RQL Relation Query Language)与数据库之间进行通信。Zope2Zope 2是一款基于Python的Web应用框架,是所有Python Web应用程序、工具的鼻祖,是Python家族一个强有力的分支。Zope 2的“对象发布”系统非常适合面向对象开发方法,并且可以减轻开发者的学习曲线,还可以帮助你发现应用程序里一些不好的功能。Web2pyWeb2py是一个用Python语言编写的免费的开源Web框架,旨在敏捷快速的开发Web应用,具有快速、可扩展、安全以及可移植的数据库驱动的应用,遵循LGPLv3开源协议。Web2py提供一站式的解决方案,整个开发过程都可以在浏览器上进行,提供了Web版的在线开发,HTML模版编写,静态文件的上传,数据库的编写的功能。其它的还有日志功能,以及一个自动化的admin接口。TurboGearsTurboGears 开发人员称这个项目是一个 “大框架(megaframework)”,这是因为它是由现有的子项目构成的。TurboGears 可以帮助将很多主要组件集成在一起。PylonsPylons是一个开放源代码的Web应用框架,使用python语言编写。它对WSGI标准进行了扩展应用,提升了重用性且将功能分割到独立的模块中。GrokGrok 是一个为 Python 开发者提供的Web应用开发框架,Grok 的重点是敏捷开发,是一个易用而且功能强大的开发框架,基于 Zope 3 技术。Web.pyWeb.py是一个轻量级的开源Python Web框架,小巧灵活、简单并且非常强大,在使用时没有任何限制。目前Web.py被广泛运用在许多大型网站,如西班牙的社交网站Frinki、主页日平均访问量达7000万次的Yandex等。PyramidPyramid也是一款轻量级的开源Python Web框架,是Pylons项目的一部分。Pyramid只能运行在Python 2.x或2.4以后的版本上。在使用后端数据库时无需声明,在开发时也不会强制使用一些特定的模板系统。CherryPyCherryPy是一个基于Python的Web使用程序开发框架,它极大地简化了运用 Python 的web开发人员的工作。它为Python开发人员提供了友好的HTTP协议接口。FlaskFlask是一个轻量级的Web应用框架, 使用Python编写。基于 WerkzeugWSGI工具箱和 Jinja2模板引擎,使用 BSD 授权。

小六码奴 2019-12-02 01:05:57 0 浏览量 回答数 0

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送

巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

回答

首先,我们先来聊聊各类数据模型。下列相关信息参考自Emil Eifrem的博文及NoSQL数据库说明。文档类数据库传承:受Lotus Notes启发而来。数据模型:文档汇总,包括键-值汇总。实例: CouchDB, MongoDB优势: 数据建模自然、程序员易于上手、开发流程短、兼容网页模式、便于达成CRUD(即添加、查询、更新及删除的简称)。图形类数据库传承:来自 Euler 及图形理论。数据模型:节点及关系,二者结合能够保持键-值间的成对状态实例: AllegroGraph, InfoGrid, Neo4j优势:轻松玩转复杂的图形问题、处理速度快关系类数据库传承:源自 E. F. Codd在大型共享数据库中所提出的数据关系模型理论数据模型:以关系组为基础实例: VoltDB, Clustrix, MySQL优势:性能强大、联机事务处理系统扩展性好、支持SQL访问、视图直观、擅长处理交易关系、与程序员间的交互效果优异面向对象类数据库传承:源自图形数据库方面的研究成果数据模型: 对象实例: Objectivity, Gemstone优势:擅长处理复杂的对象模型、快速的键-值访问及键-功能访问并且兼具图形数据库的各类功能键-值存储传承: Amazon Dynamo中的paper概念及分布式hash表数据模型:对成对键-值的全局化汇总实例: Membase, Riak优势:尺寸掌控得当、擅长处理持续的小规模读写需求、速度快、程序员易于上手BigTable Clones传承自:谷歌BigTable中的paper概念数据模型:纵列群,即在某个表格模型中,每行在理论上至少可以有一套单独的纵列配置实例: HBase, Hypertable, Cassandra优势:尺寸掌控得当、擅长应对大规模写入负载、可用性高、支持多数据中心、支持映射简化数据结构类服务传承: 不明实例: Redis数据模型: 执行过程基于索引、列表、集合及字符串值优势:为数据库应用引入前所未有的新鲜血液网格类数据库传承:源自数据网格及元组空间研究数据模型:基于空间的构架实例: GigaSpaces, Coherence优势:优良的性能表现及上佳的交易处理扩展性我们该为自己的应用程序选择哪套方案?选择的关键在于重新思考我们的应用程序如何依据不同数据模型及不同产品进行有针对性的协同工作。即用正确的数据模型处理对应的现实任务、用正确的产品解决对应的现实问题。要探究哪类数据模型能够切实为我们的应用程序提供帮助,可以参考“到底NoSQL能在我们的工作中发挥什么作用?”一文。在这篇文章中,我试着将各种不同特性、不同功能的常用创建系统中的那些非常规的应用实例综合起来。将应用实例中的客观需求与我们的选择联系起来。这样大家就能够逆向分析出我们的基础架构中适合引入哪些产品。至于具体结论是NoSQL还是SQL,这已经不重要了。关注数据模型、产品特性以及自身需要。产品总是将各种不同的功能集中起来,因此我们很难单纯从某一类数据模型构成方式的角度直接找到最合用的那款。对功能及特性的需求存在优先级,只要对这种优先级具备较为清晰的了解,我们就能够做出最佳选择。如果我们的应用程序需要…复杂的交易:因为没人愿意承受数据丢失,或者大家更倾向于一套简单易用的交易编程模式,那么请考虑使用关系类或网格类数据库。例如:一套库存系统可能需要完整的ACID(即数据库事务执行四要素:原子性、一致性、隔离性及持久性)。顾客选中了一件产品却被告知没有库存了,这类情况显然容易引起麻烦。因为大多数时候,我们想要的并不是额外补偿、而只是选中的那件货品。若是以扩展性为优先,那么NoSQL或SQL都能应对自如。这种情况下我们需要关注那些支持向外扩展、分类处理、实时添加及移除设备、负载平衡、自动分类及整理并且容错率较高的系统。要求持续保有数据库写入功能,则需要较高的可用性。在这种情况下不妨关注BigTable类产品,其在一致性方面表现出众。如有大量的小规模持续读写要求,也就是说工作负载处于波动状态,可以关注文档类、键-值类或是那些提供快速内存访问功能的数据库。引入固态硬盘作为存储媒介也是不错的选择。以社交网络为实施重点的话,我们首先想到的就是图形类数据库;其次则是Riak这种关系类数据库。具备简单SQL功能的常驻内存式关系数据库基本上就可以满足小型数据集合的需求。Redis的集合及列表操作也能发挥作用。如果我们的应用程序需要…在访问模式及数据类型多种多样的情况下,文档类数据库比较值得考虑。这类数据库不仅灵活性好,性能表现也可圈可点。需要完备的脱机报告与大型数据集的话,首选产品是Hadoop,其次则是支持映射简化的其它产品。不过仅仅支持映射简化还不足以提供如Hadoop一样上佳的处理能力。如果业务跨越数个数据中心,Bigtable Clone及其它提供分布式选项的产品能够应对由地域距离引起的延迟现象,并具备较好的分区兼容性。要建立CRUD应用程序,首选文档类数据库。这类产品简化了从外部访问复杂数据的过程。需要内置搜索功能的话,推荐Riak。要对数据结构中的诸如列表、集合、队列及发布/订阅信息进行操作,Redis是不二之选。其具备的分布式锁定、覆盖式日志及其它各种功能都会在这类应用状态下大放异彩。将数据以便于处理的形式反馈给程序员(例如以JSON、HTTP、REST、Javascript这类形式),文档类数据库能够满足这类诉求,键-值类数据库效果次之。如果我们的应用程序需要…以直观视图的形式进行同步交易,并且具备实时数据反馈功能,VoltDB算得上一把好手。其数据汇总以及时间窗口化的表现都非常抢眼。若是需要企业级的支持及服务水平协议,我们需要着眼于特殊市场。Membase就是这样一个例子。要记录持续的数据流,却找不到必要的一致性保障?BigTable Clone交出了令人满意的答卷,因为其工作基于分布式文件系统,所以可以应对大量的写入操作。要让操作过程变得尽可能简单,答案一定在托管或平台即服务类方案之中。它们存在的目的正是处理这类要求。要向企业级客户做出推荐?不妨考虑关系类数据库,因为它们的长项就是具备解决繁杂关系问题的技术。如果需要利用动态方式建立对象之间的关系以使其具有动态特性,图形类数据库能帮上大忙。这类产品往往不需要特定的模式及模型,因此可以通过编程逐步建立。S3这类存储服务则是为支持大型媒体信息而生。相比之下NoSQL系统则往往无法处理大型二进制数据块,尽管MongoDB本身具备文件服务功能。如果我们的应用程序需要…有高效批量上传大量数据的需求?我们还是得找点有对应功能的产品。大多数产品都无法胜任,因为它们不支持批量操作。文档类数据库或是键-值类数据库能够利用流畅的模式化系统提供便捷的上传途径,因为这两类产品不仅支持可选区域、添加区域及删除区域,而且无需建立完整的模式迁移框架。要实现完整性限制,就得选择一款支持SQL DLL的产品,并在存储过程或是应用程序代码中加以运行。对于协同工作极为依赖的时候就要选择图形类数据库,因为这类产品支持在不同实体间的迅速切换。数据的移动距离较短且不必经过网络时,可以在预存程序中做出选择。预存程序在关系类、网格类、文档类甚至是键-值类数据库中都能找到。如果我们的应用程序需要…键-值存储体系擅长处理BLOB类数据的缓存及存储问题。缓存可以用于应对网页或复杂对象的存储,这种方案能够降低延迟、并且比起使用关系类数据库来说成本也较低。对于数据安全及工作状态要求较高的话可以尝试使用定制产品,并且在普遍的工作范畴(例如向上扩展、调整、分布式缓存、分区及反规范化等等)之外一定要为扩展性(或其它方面)准备解决方案。多样化的数据类型意味着我们的数据不能简单用表格来管理或是用纵列来划分,其复杂的结构及用户组成(也可能还有其它各种因素)只有文档类、键-值类以及Bigtable Clone这些数据库才能应付。上述各类数据库都具备极为灵活的数据类型处理能力。有时其它业务部门会需要进行快速关系查询,引入这种查询方式可以使我们不必为了偶尔的查看而重建一切信息。任何支持SQL的数据库都能实现这类查询。至于在云平台上运行并自动充分利用云平台的功能——这种美好的愿望目前还只能是愿望。如果我们的应用程序需要…支持辅助索引,以便通过不同的关键词查找数据,这要由关系类数据库及Cassandra推出的新辅助索引系统共同支持才能实现。创建一套处于不断增长中的数据集合(真正天文数量级的数据)然而访问量却并不大,那么Bigtable Clone是最佳选择,因为它会将数据妥善安排在分布式文件系统当中。需要整合其它类型的服务并确保数据库提供延后写入同步功能?那最好的实现方式是捕捉数据库的各种变化并将其反馈到其它系统中以保障运作的一致性。通过容错性检查了解系统对供电中断、隔离及其它故障情况的适应程度。若是当前的某项技术尚无人问津、自己却感觉大有潜力可挖,不妨在这条路上坚持走下去。这种情况有时会带来意料之外的美好前景。尝试在移动平台上工作并关注CouchDB及移动版couchbase。哪种方案更好?25%的状态改善尚不足以让我们下决心选择NoSQL。选择标准是否恰当取决于实际情况。这类标准对你的方案有指导意义吗?如果你的公司尚处于起步阶段,并且需要尽快推出自己的产品,这时不要再犹豫不决了。无论是SQL还是NoSQL都可以作为参考。

a123456678 2019-12-02 03:00:14 0 浏览量 回答数 0

问题

大型网站数据库解决方案

rds-pd 2019-12-01 21:53:32 17567 浏览量 回答数 8

回答

 1. 更加人性化的设计  Python的设计更加人性化,具有快速、坚固、可移植性、可扩展性的特点,十分适合人工智能;开源免费,而且学习简单,很容易实现普及;内置强大的库,可以轻松实现更大强大的功能。  2. 总体的AI库  AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法;  pyDatalog:Python中的逻辑编程引擎;  SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法,它专注于提供一个易于使用,有良好文档和测试的库;  EasyAI:一个双人AI游戏的python引擎。  3. 机器学习库  PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库,它也提供了多种预定义好的环境来测试和比较你的算法;  PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法,它支持Linux和Mac OS X;  scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具,它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包紧密联系在一起的;  MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法,流型学习方法,集中分类,概率方法,数据预处理方法等等。  4. 自然语言和文本处理库  NLTK开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析,有windows、Mac OSX和Linux版本。  Python具有丰富而强大的库,能够将其他语言制作的各种模块很轻松的联结在一起,对于性能要求高的功能,可以用C/C++进行重写,而后封装成Python可以调用的扩展类库,这是人工智能必备功能,因此,Python编程对人工智能是一门非常有用的语言。

世事皆空 2019-12-02 01:07:33 0 浏览量 回答数 0

问题

数据存储应该选择什么产品

学渣王 2019-12-01 19:41:38 1282 浏览量 回答数 1

问题

达达O2O后台架构演进实践:从0到4000高并发请求背后的努力:报错

kun坤 2020-06-09 15:20:48 4 浏览量 回答数 1

问题

学术界关于HBase在物联网/车联网/互联网/金融/高能物理等八大场景的理论研究

pandacats 2019-12-18 16:06:18 1 浏览量 回答数 0

问题

600万女生的共同选择的《暖暖环游世界》

nono20011908 2019-12-01 21:08:19 8494 浏览量 回答数 0

回答

Redis常见的几种主要使用方式: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster(集群) Redis 自研 Redis各种使用方式的优缺点: 1 Redis单副本 Redis各种使用方式的优缺点: Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 2 Redis多副本(主从) Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 3 Redis Sentinel(哨兵) Redis Sentinel是社区版本推出的原生高可用解决方案,Redis Sentinel部署架构主要包括两部分:Redis Sentinel集群和Redis数据集群,其中Redis Sentinel集群是由若干Sentinel节点组成的分布式集群。可以实现故障发现、故障自动转移、配置中心和客户端通知。Redis Sentinel的节点数量要满足2n+1(n>=1)的奇数个。 优点: 1、Redis Sentinel集群部署简单 2、能够解决Redis主从模式下的高可用切换问题 3、很方便实现Redis数据节点的线形扩展,轻松突破Redis自身单线程瓶颈,可极大满足对Redis大容量或高性能的业务需求。 4、可以实现一套Sentinel监控一组Redis数据节点或多组数据节点 缺点: 1、部署相对Redis 主从模式要复杂一些,原理理解更繁琐 2、资源浪费,Redis数据节点中slave节点作为备份节点不提供服务 3、Redis Sentinel主要是针对Redis数据节点中的主节点的高可用切换,对Redis的数据节点做失败判定分为主观下线和客观下线两种,对于Redis的从节点有对节点做主观下线操作,并不执行故障转移。 4、不能解决读写分离问题,实现起来相对复杂 建议: 1、如果监控同一业务,可以选择一套Sentinel集群监控多组Redis数据节点的方案,反之选择一套Sentinel监控一组Redis数据节点的方案 2、sentinel monitor 配置中的 建议设置成Sentinel节点的一半加1,当Sentinel部署在多个IDC的时候,单个IDC部署的Sentinel数量不建议超过(Sentinel数量 – quorum)。 3、合理设置参数,防止误切,控制切换灵敏度控制 quorum down-after-milliseconds 30000 failover-timeout 180000 maxclient timeout 4、部署的各个节点服务器时间尽量要同步,否则日志的时序性会混乱 5、Redis建议使用pipeline和multi-keys操作,减少RTT次数,提高请求效率 6、自行搞定配置中心(zookeeper),方便客户端对实例的链接访问 4 Redis Cluster(集群) Redis Cluster是社区版推出的Redis分布式集群解决方案,主要解决Redis分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster能起到很好的负载均衡的目的。Redis Cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。Redis Cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所印映射的键值数据。 优点: 1、无中心架构 2、数据按照slot存储分布在多个节点,节点间数据共享,可动态调整数据分布。 3、可扩展性,可线性扩展到1000多个节点,节点可动态添加或删除。 4、高可用性,部分节点不可用时,集群仍可用。通过增加Slave做standby数据副本,能够实现故障自动failover,节点之间通过gossip协议交换状态信息,用投票机制完成Slave到Master的角色提升。 5、降低运维成本,提高系统的扩展性和可用性。 缺点: 1、Client实现复杂,驱动要求实现Smart Client,缓存slots mapping信息并及时更新,提高了开发难度,客户端的不成熟影响业务的稳定性。目前仅JedisCluster相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。 2、节点会因为某些原因发生阻塞(阻塞时间大于clutser-node-timeout),被判断下线,这种failover是没有必要的。 3、数据通过异步复制,不保证数据的强一致性。 4、多个业务使用同一套集群时,无法根据统计区分冷热数据,资源隔离性较差,容易出现相互影响的情况。 5、Slave在集群中充当“冷备”,不能缓解读压力,当然可以通过SDK的合理设计来提高Slave资源的利用率。 6、key批量操作限制,如使用mset、mget目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于keys 不支持跨slot查询,所以执行mset、mget、sunion等操作支持不友好。 7、key事务操作支持有限,只支持多key在同一节点上的事务操作,当多个key分布于不同的节点上时无法使用事务功能。 8、key作为数据分区的最小粒度,因此不能将一个很大的键值对象如hash、list等映射到不同的节点。 9、不支持多数据库空间,单机下的redis可以支持到16个数据库,集群模式下只能使用1个数据库空间,即db 0。 10、复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。 11、避免产生hot-key,导致主库节点成为系统的短板。 12、避免产生big-key,导致网卡撑爆、慢查询等。 13、重试时间应该大于cluster-node-time时间 14、Redis Cluster不建议使用pipeline和multi-keys操作,减少max redirect产生的场景。 使用场景 数据量较大 Redis 集群版可以有效的扩展数据规模,相比标准版支持存储量更大的64、128、256 GB 集群版,可以有效的满足数据扩展需求。 QPS 压力较大 标准版 Redis 无法支撑较大的 QPS,需要采用多节点的部署方式来冲破 Redis 单线程的性能瓶颈。 吞吐密集型应用 相比标准版,Redis 集群版的内网吞吐限制相对较低,针对热点数据读取、大吞吐类型的业务可以友好的支持。 对 Redis 协议不敏感的应用 由于集群版的架构引入了多个组件,在 Redis 协议支持上相比标准版有一定限制。

剑曼红尘 2020-04-27 14:41:57 0 浏览量 回答数 0

回答

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。;读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读;缓存: 使用MySQL的缓存,另外对重量级、更新少的数据可以考虑使用应用级别的缓存; 还有就是通过分库分表的方式进行优化,主要有垂直分表和水平分表 垂直分区: 根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。 简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。 如下图所示,这样来说大家应该就更容易理解了。 垂直拆分的优点: 可以使得行数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂; 垂直分表 把主键和一些列放在一个表,然后把主键和另外的列放在另一个表中 适用场景 1、如果一个表中某些列常用,另外一些列不常用 2、可以使数据行变小,一个数据页能存储更多数据,查询时减少I/O次数 缺点 有些分表的策略基于应用层的逻辑算法,一旦逻辑算法改变,整个分表逻辑都会改变,扩展性较差 对于应用层来说,逻辑算法增加开发成本 管理冗余列,查询所有数据需要join操作 水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。 水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。 水品拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库 。 水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨界点Join性能较差,逻辑复杂。 《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。 水平分表: 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询次数 适用场景 1、表中的数据本身就有独立性,例如表中分表记录各个地区的数据或者不同时期的数据,特别是有些数据常用,有些不常用。 2、需要把数据存放在多个介质上。 水平切分的缺点 1、给应用增加复杂度,通常查询时需要多个表名,查询所有数据都需UNION操作 2、在许多数据库应用中,这种复杂度会超过它带来的优点,查询时会增加读一个索引层的磁盘次数 下面补充一下数据库分片的两种常见方案: 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。 分库分表后面临的问题 事务支持 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。 跨库join 只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 分库分表方案产品 跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。 数据迁移,容量规划,扩容等问题 来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。 ID问题 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由. 一些常见的主键生成策略

剑曼红尘 2020-03-31 11:34:39 0 浏览量 回答数 0

回答

数据转换服务(DTS)在数据库管理和开发的多种领域都有会涉及DTS: 数据仓库-将数据从原始的处理系统和表格中提取出来以供报表使用 建立OLAP 将大量数据从文本文件或其它非数据库格式的文件中拷贝到数据库 生成Microsoft Office文档报表 使用 Distributed Transaction Coordinator (DTC)实现多数据库操作 在客户的桌面程序或网站上,经常需要允许用户按需执行DTS包。在这种情况下,在部署DTS包时,你应该决定将DTS包安置在何处,以及通过何种手段调用它。 你的选择 要建立一个按需执行的DTS包,可以有多种选择。下面就对这些选择进行逐一说明。 SQL Server job 你可以在SQL Server里建立一个job,并调用sp_start_job存储过程。使用sp_start_job的不足之处在于它是一个异步过程。由于它不能返回成功或失败指示,你必须强制使用sp_help_job系统存储过程查询job的结果。除非不关心job调用后的结果,否则异步的job将使桌面程序或Web程序变得很复杂。一个job可以被设置成非管理员(sa)模式,但需要一些额外的步骤。 在客户端桌面使用DTS DLLs 第二种方法是用户电脑载入Enterprise Manager或DTS DLLs,在用户的电脑上调用DTS包。虽然用户电脑执行DTS包有一定可行性,但也有不足:必须考虑到升级DTS包带来的分发和安装问题。 在服务器上使用sp_OA 扩展存储过程 第三种选择,也就是本文所介绍的核心内容,就是使用sp_OA系统存储过程族并有计划的调用DTS包。这种方案可以有效的避免上两种方案的弊端。 使用 VBScript调用DTS包 实现一个可以运行DTS包的存储过程的第一步是,编写一段VBScript代码。因为sp_OA存储过程使用起来有些麻烦,因此在利用sp_OA存储过程实现目标之前,要用VBScript编写你希望实现的代码。一般倾向于使用Visual Basic进行简单的脚本开发工作。如图A所示,通过在项目引用窗口中加入DTS包对象库,就可以在脚本中引用DTS包对象了。 图A:DTS对象库 在代码中使用了LoadFromStorageFile函数。一般说,开发工作应该在一个测试环境进行。了解DTS格式的结构化,对将测试产品变为实际产品时很有帮助。 Sp_OA 实现 写好了VBScript代码,就可用sp_OA扩展存储过程实现代码。和VBScript类似,sp_OA系统存储过程允许与对象库的COM+ API进行交互。 Sp_OACreate和在VB或VBScript中调用的CreateObject函数类似。Sp_OAGetProperty、sp_OASetProperty以及sp_OAMethod用来连接对象库中的特性和函数。和VB或 VBScript不同的是,sp_OA存储过程导致的COM+错误不会令SQL语句失败,因此必须手动检查每个使用sp_OA的函数是否工作正常。 同时,很多sp_OA存储过程都会引用参数,因此必须在sp_OA存储过程中的适当参数后加入OUTPUT语句。如果省略了OUTPUT 语句,T-SQL也不会发出警告信息。因此在运行时状态,虽然存储过程运行正常但也不会返回正确值。列表B是一个详细的实现代码。 解决方案中包括可以重命名DTS包的表格以及实现的过程。其中sp_AdRunDTSPackageOnServer存储过程接收一个ID参数。在继续执行前,程序会从T_AdDTSPackageSetup表中,查找到达DTS包的SQL Server路径。 安全性 详细的安全性问题不在本文的讨论范围,这里要说的是一些必须考虑到的基本问题: 在主数据库的sp_OA扩展系统存储过程中,实现sp_AdRunDTSPackageOnServer存储过程需要EXECUTE权限。为了防止一些恶意用户通过sp_OA过程实现某种目的,可以针对应用程序修改SQL Server规则,以加强安全性。 T-SQL的CURRENT_USER函数对系统安全会有稍许帮助。使用CURRENT_USER和T_AdDTSPackageSetup表格中的区域,可以查询某个用户是否被设为:使用给定的DTS包。 DTS包在SQL Server上执行时,会受到SQL Server Agent服务的帐户设置影响,如果从文件系统中读取ASCII文件,应该确定SQL Server Agent的帐户设置对该文件有通过许可。 扩展范例 可以使用sp_OA系统存储过程与其他COM+库进行交互。同时在其他使用ODBC和ActiveX数据对象(ADO)的非SQL Server系统上,sp_OA也可以有效的调用存储过程。一个仅10行左右的VBScript脚本根本没有实用价值,而最后合成的T-SQL代码会变得非常冗长。网上的SQL Server 2000 Books 包括详细的COM+对象库的支持说明,并包含了sp_OA系统存储过程的相关文档。当用户再需要按需运行DTS包时,不妨考虑使用sp_OA系统存储过程来实现。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:17:30 0 浏览量 回答数 0

回答

应该说是缓存吧?###### 那位大哥用过内存数据库,或者搞过的指导一下。###### 来的好快。###### 一些内存数据库并不适合做大负载的应用。我觉得你说的应该是缓存系统或者是 NoSQL###### 汉了,缓存系统,没听过。 NoSQL听过一点。 学习一下,再来发言。###### 有开源的,我整过H2,你搜搜 另外,貌似我们这边有人自己开发了内存数据库。###### 工业上有实时数据库 ,做大节点大数据量采集###### 你打算缓存多长时间段的数据(1个小时,1天)? 在此时间内能产生多少数据(10G,100G)? 查询是否会查询超出缓存时间段内的数据? 缓存的数据是否要持久化存储? 先分析分析,再根据实际情况去做折衷###### 建议你使用著名的开发memcached的公司新发布的membase. http://www.membase.org/ embase 是 NoSQL 家族的一个新的重量级的成员。 Membase是开源项目,源代码采用了Apache2.0的使用许可。该项目托管在GitHub.Source tarballs上,目前可以 下载beta版本的Linux二进制包。 Membase容易安装、操作,可以从单节点方便的扩展到集群,而且为memcached(有线协议的兼容性)实现了即插即用功能,在应用方面为开 发者和经营者提供了一个比较低的门槛。做为缓存解决方案,Memcached已经在不同类型的领域(特别是大容量的Web应用)有了广泛的使用,其中 Memcached的部分基础代码被直接应用到了Membase服务器的前端。 通过兼容多种编程语言和框架,Membase具备了很好的复用性。在安装和配置方面,Membase提供了有效的图形化界面和编程接口,包括可配置 的告警信息。 Membase的目标是提供对外的线性扩展能力,包括为了增加集群容量,可以针对统一的节点进行复制。 另外,对存储的数据进行再分配仍然是必要的。 这方面的一个有趣的特性是NoSQL解决方案所承诺的可预测的性能,类准确性的延迟和吞吐量。通过如下方式可以获得上面提到的特性: 自动将在线数据迁移到低延迟的存储介质的技术(内存,固态硬盘,磁盘) 可选的写操作一一异步,同步(基于复制,持久化) 反向通道再平衡[未来考虑支持] 多线程低锁争用 尽可能使用异步处理 自动实现重复数据删除 动态再平衡现有集群 通过把数据复制到多个集群单元和支持快速失败转移来提供系统的高可用性。 ###### 我以前很多项目都是用memcached,现在都已换成membase了,membase是著名的函数式编程语言Erlang编写的,经过实践,membase确实很好很强大.

kun坤 2020-06-07 20:13:38 0 浏览量 回答数 0

问题

通过自动重连方式解决RDS闪断问题

nono20011908 2019-12-01 21:07:16 27529 浏览量 回答数 1

回答

在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。但在电商等场景中,对于数据一致性的解决方法和常见的互联网系统(如 MySQL 主从同步)又有一定区别,分成以下 6 种解决方案。(一)规避分布式事务——业务整合业务整合方案主要采用将接口整合到本地执行的方法。拿问题场景来说,则可以将服务 A、B、C 整合为一个服务 D 给业务,这个服务 D 再通过转换为本地事务的方式,比如服务 D 包含本地服务和服务 E,而服务 E 是本地服务 A ~ C 的整合。优点:解决(规避)了分布式事务。缺点:显而易见,把本来规划拆分好的业务,又耦合到了一起,业务职责不清晰,不利于维护。由于这个方法存在明显缺点,通常不建议使用。(二)经典方案 - eBay 模式此方案的核心是将需要分布式处理的任务通过消息日志的方式来异步执行。消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试。人工重试更多的是应用于支付场景,通过对账系统对事后问题的处理。消息日志方案的核心是保证服务接口的幂等性。考虑到网络通讯失败、数据丢包等原因,如果接口不能保证幂等性,数据的唯一性将很难保证。eBay 方式的主要思路如下。Base:一种 Acid 的替代方案此方案是 eBay 的架构师 Dan Pritchett 在 2008 年发表给 ACM 的文章,是一篇解释 BASE 原则,或者说最终一致性的经典文章。文中讨论了 BASE 与 ACID 原则在保证数据一致性的基本差异。如果 ACID 为分区的数据库提供一致性的选择,那么如何实现可用性呢?答案是BASE (basically available, soft state, eventually consistent)BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。文章中描述了一个最常见的场景,如果产生了一笔交易,需要在交易表增加记录,同时还要修改用户表的金额。这两个表属于不同的远程服务,所以就涉及到分布式事务一致性的问题。文中提出了一个经典的解决方法,将主要修改操作以及更新用户表的消息放在一个本地事务来完成。同时为了避免重复消费用户表消息带来的问题,达到多次重试的幂等性,增加一个更新记录表 updates_applied 来记录已经处理过的消息。基于以上方法,在第一阶段,通过本地的数据库的事务保障,增加了 transaction 表及消息队列 。在第二阶段,分别读出消息队列(但不删除),通过判断更新记录表 updates_applied 来检测相关记录是否被执行,未被执行的记录会修改 user 表,然后增加一条操作记录到 updates_applied,事务执行成功之后再删除队列。通过以上方法,达到了分布式系统的最终一致性。进一步了解 eBay 的方案可以参考文末链接。(三)去哪儿网分布式事务方案随着业务规模不断地扩大,电商网站一般都要面临拆分之路。就是将原来一个单体应用拆分成多个不同职责的子系统。比如以前可能将面向用户、客户和运营的功能都放在一个系统里,现在拆分为订单中心、代理商管理、运营系统、报价中心、库存管理等多个子系统。拆分首先要面临的是什么呢?最开始的单体应用所有功能都在一起,存储也在一起。比如运营要取消某个订单,那直接去更新订单表状态,然后更新库存表就 ok 了。因为是单体应用,库在一起,这些都可以在一个事务里,由关系数据库来保证一致性。但拆分之后就不同了,不同的子系统都有自己的存储。比如订单中心就只管理自己的订单库,而库存管理也有自己的库。那么运营系统取消订单的时候就是通过接口调用等方式来调用订单中心和库存管理的服务了,而不是直接去操作库。这就涉及一个『分布式事务』的问题。分布式事务有两种解决方式优先使用异步消息。上文已经说过,使用异步消息 Consumer 端需要实现幂等。幂等有两种方式,一种方式是业务逻辑保证幂等。比如接到支付成功的消息订单状态变成支付完成,如果当前状态是支付完成,则再收到一个支付成功的消息则说明消息重复了,直接作为消息成功处理。另外一种方式如果业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现。对于 producer 端在业务数据库的同实例上放一个消息库,发消息和业务操作在同一个本地事务里。发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除,如果遇到消息队列服务异常或网络问题,消息没有成功发出那么消息就留在这里了,会有另外一个服务不断地将这些消息扫出重新发送。有的业务不适合异步消息的方式,事务的各个参与方都需要同步的得到结果。这种情况的实现方式其实和上面类似,每个参与方的本地业务库的同实例上面放一个事务记录库。比如 A 同步调用 B,C。A 本地事务成功的时候更新本地事务记录状态,B 和 C 同样。如果有一次 A 调用 B 失败了,这个失败可能是 B 真的失败了,也可能是调用超时,实际 B 成功。则由一个中心服务对比三方的事务记录表,做一个最终决定。假设现在三方的事务记录是 A 成功,B 失败,C 成功。那么最终决定有两种方式,根据具体场景:重试 B,直到 B 成功,事务记录表里记录了各项调用参数等信息;执行 A 和 B 的补偿操作(一种可行的补偿方式是回滚)。对 b 场景做一个特殊说明:比如 B 是扣库存服务,在第一次调用的时候因为某种原因失败了,但是重试的时候库存已经变为 0,无法重试成功,这个时候只有回滚 A 和 C 了。那么可能有人觉得在业务库的同实例里放消息库或事务记录库,会对业务侵入,业务还要关心这个库,是否一个合理的设计?实际上可以依靠运维的手段来简化开发的侵入,我们的方法是让 DBA 在公司所有 MySQL 实例上预初始化这个库,通过框架层(消息的客户端或事务 RPC 框架)透明的在背后操作这个库,业务开发人员只需要关心自己的业务逻辑,不需要直接访问这个库。总结起来,其实两种方式的根本原理是类似的,也就是将分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性。(四)蘑菇街交易创建过程中的分布式一致性方案交易创建的一般性流程我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。面临的问题每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?方案选型服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。(五)支付宝及蚂蚁金融云的分布式服务 DTS 方案业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。分布式事务服务简介分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。核心特性传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。简单的说,DTS 框架有如下特性:最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。与 RPC 服务协议无关:在 SOA 架构下,一个或多个 DB 操作往往被包装成一个一个的 Service,Service 与 Service 之间通过 RPC 协议通信。DTS 框架构建在 SOA 架构上,与底层协议无关。与底层事务实现无关: DTS 是一个抽象的基于 Service 层的概念,与底层事务实现无关,也就是说在 DTS 的范围内,无论是关系型数据库 MySQL,Oracle,还是 KV 存储 MemCache,或者列存数据库 HBase,只要将对其的操作包装成 DTS 的参与者,就可以接入到 DTS 事务范围内。一个完整的业务活动由一个主业务服务与若干从业务服务组成。主业务服务负责发起并完成整个业务活动。从业务服务提供 TCC 型业务操作。业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”与 2PC 协议比较,没有单独的 Prepare 阶段,降低协议成本。系统故障容忍度高,恢复简单(六)农信网数据一致性方案电商业务公司的支付部门,通过接入其它第三方支付系统来提供支付服务给业务部门,支付服务是一个基于 Dubbo 的 RPC 服务。对于业务部门来说,电商部门的订单支付,需要调用支付平台的支付接口来处理订单;同时需要调用积分中心的接口,按照业务规则,给用户增加积分。从业务规则上需要同时保证业务数据的实时性和一致性,也就是支付成功必须加积分。我们采用的方式是同步调用,首先处理本地事务业务。考虑到积分业务比较单一且业务影响低于支付,由积分平台提供增加与回撤接口。具体的流程是先调用积分平台增加用户积分,再调用支付平台进行支付处理,如果处理失败,catch 方法调用积分平台的回撤方法,将本次处理的积分订单回撤。用户信息变更公司的用户信息,统一由用户中心维护,而用户信息的变更需要同步给各业务子系统,业务子系统再根据变更内容,处理各自业务。用户中心作为 MQ 的 producer,添加通知给 MQ。APP Server 订阅该消息,同步本地数据信息,再处理相关业务比如 APP 退出下线等。我们采用异步消息通知机制,目前主要使用 ActiveMQ,基于 Virtual Topic 的订阅方式,保证单个业务集群订阅的单次消费。总结分布式服务对衍生的配套系统要求比较多,特别是我们基于消息、日志的最终一致性方案,需要考虑消息的积压、消费情况、监控、报警等。

小川游鱼 2019-12-02 01:46:40 0 浏览量 回答数 0

问题

600万女生的共同选择——阿里云助暖暖环球之旅畅通无阻

nono20011908 2019-12-01 20:56:43 24927 浏览量 回答数 18

问题

DB-Engines 2020年1月全球数据库排行榜

茶什i 2020-01-07 14:04:00 297 浏览量 回答数 1

问题

Node.js应用性能优化的五个技巧

忆远0711 2019-12-01 21:50:58 8422 浏览量 回答数 1

问题

超越 MySQL 热,数据库报错

python小菜菜 2020-06-01 19:55:39 0 浏览量 回答数 1

问题

超越 MySQL 热:报错

kun坤 2020-06-05 22:43:07 0 浏览量 回答数 1

问题

区块链交易系统开发源中瑞从技术角度看区块链开发

2685473087q 2019-12-01 21:14:51 1561 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播