• 关于

    数据库种的timestamp

    的搜索结果

回答

详细解答可以参考官方帮助文档由于Oracle跟RDS For PPAS的数据类型不是一一对应的,所以数据传输服务在进行结构迁移时,会根据两种数据库类型的数据类型定义,进行类型映射,下表为数据传输服务定义的数据类型映射关系。 Oracle数据类型 PPAS数据类型 数据传输服务是否支持 varchar2(n [char/byte]) varchar2[(n)] 支持 nvarchar2[(n)] nvarchar2[(n)] 支持 char[(n [byte/char])] char[(n)] 支持 nchar[(n)]] nchar[(n)] 支持 number[(p[,s])] number[(p[,s])] 支持 float(p)] double precision 支持 long long 支持 date date 支持 binary_float real 支持 binary_double double precision 支持 timestamp[(fractional_seconds_precision)] timestamp[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with time zone timestamp[(fractional_seconds_precision)]with time zone 支持 timestamp[(fractional_seconds_precision)]with local time zone timestamp[(fractional_seconds_precision)]with time zone 支持 clob clob 支持 nclob nclob 支持 blob blob 支持 raw raw(size) 支持 long raw long raw 支持 bfile — 不支持 interval year(year_precision) to month interval year to month 不支持 interval day(day_precision) to second[(fractional_seconds_precision)] interval day to second[(fractional_seconds_precision)] 不支持 由于RDS For PPAS不支持数据类型timestamp[(fractional_seconds_precision)]with local time zone,所以数据传输服务在迁移这种类型的数据时,会将其转换成UTC时区后,存入RDS For PPAS的数据类型timestamp[(fractional_seconds_precision)]with time zone中。
2019-12-01 23:09:43 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档由于 Oracle 和 MySQL 的数据类型并不是一一对应的,所以 DTS 在进行结构迁移时,会根据两种数据库类型的数据类型定义,进行类型映射,下面是数据类型映射关系。 Oracle 数据类型 MySQL 数据类型 DTS 是否支持 varchar2(n [char/byte]) varchar(n) 支持 nvarchar2[(n)] national varchar[(n)] 支持 char[(n [byte/char])] char[(n)] 支持 nchar[(n)]] national char[(n)] 支持 number[(p[,s])] decimal[(p[,s])] 支持 float(p)] double 支持 long longtext 支持 date datetime 支持 binary_float decimal(65,8) 支持 binary_double double 支持 timestamp[(fractional_seconds_precision)] datetime[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with local time zone datetime[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with local time zone datetime[(fractional_seconds_precision)] 支持 clob longtext 支持 nclob longtext 支持 blob longblob 支持 raw varbinary(2000) 支持 long raw longblob 支持 bfile — 不支持 interval year(year_precision) to mongth — 不支持 interval day(day_precision) to second[(fractional_seconds_precision)] — 不支持 对于 char 类型,当 char(n) 的定义长度 n 超过 255 时,DTS 会自动将类型转换为 varchar(n)。由于 MySQL 本身不支持类似 Oracle 中的 bfile、interval year to month、interval day to second 这三种数据类型,所以 DTS 在进行结构迁移时,无法在 MySQL 中找到合适的数据类型进行映射,因此这三种类型不会进行转化。迁移时如果表中含有这三种类型,会导致结构迁移失败,用户可以在指定迁移对象的时候,对需要迁移的对象中这三种类型的列进行排除。由于 MySQL 的 timestamp 类型不包含时区,而 Oracle 的 timestamp with time zone 和 timestamp with local time zone 两种类型默认带有时区信息,所以 DTS 在迁移这两种类型的数据时,会将其转换成 UTC 时区后存入目标 RDS for MySQL 实例。
2019-12-01 23:09:40 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档使用 数据传输服务 DTS 可以将本地的 Oracle 数据库中的数据迁移至 RDS for MySQL 实例。数据传输 DTS (以下简称 DTS)可以实现结构迁移、全量数据迁移以及增量数据迁移。通过三种迁移方式的结合,可以在保持源 Oracle 数据库实例正常对外提供服务的情况下,实现 Oracle 数据库的不停服迁移。 注:当前 DTS 已经可以支持将本地的 Oracle 数据库中的数据迁移至 RDS for MySQL 实例时,数据的反向回流,帮助用户在应用按模块切换过程中,将 RDS for MySQL 实例中产生的数据变化同步回本地的 Oracle 数据库。如有需求,请提交工单咨询开通。 本小节简单介绍使用 DTS 进行 Oracle->RDS for MySQL 数据迁移的任务配置流程。 迁移步骤对于 Oracle->RDS for MySQL 的迁移,支持结构迁移、全量数据迁移以及增量数据迁移。各迁移类型的限制如下: 结构迁移DTS 会将迁移对象的结构定义迁移到目标实例。目前 DTS 支持结构迁移的对象包括:表。其他对象如视图、同义词、触发器、存储过程、存储函数、包、自定义类型等暂不支持。 全量数据迁移DTS 会将源数据库迁移对象的存量数据全部迁移到目标 RDS for MySQL 实例。如果仅做全量数据迁移,不做增量数据迁移,迁移过程中,如果源 Oracle 数据库有数据更新的话,那么这部分数据增量变化不一定能够被迁移到目标 RDS for MySQL 中。所以,如果仅做全量数据迁移,不做增量数据迁移,为保证迁移数据一致性,在数据迁移过程中,源端的 Oracle 实例需停止写入。 增量数据迁移增量迁移过程中,DTS 会轮询并捕获源 Oracle 实例由于数据变化产生的重做日志 redo log,然后将数据变化的增量实时同步到目标 RDS for MySQL 实例,通过增量数据迁移可以实现目标 RDS for MySQL 实例同源 Oracle 数据库实例的实时数据同步。 迁移权限要求 当使用 DTS 进行 Oracle->RDS for MySQL 迁移时,在不同迁移类型情况下,对源和目标数据库的迁移帐号权限要求如下: 迁移类型 结构迁移 全量迁移 增量数据迁移 本地 Oracle 实例 schema 的 owner schema 的 owner SYSDBA 目的 RDS for MySQL 实例 待迁入 db 的读写权限 待迁入 db 的读写权限 待迁入 db 的读写权限 迁移前置条件 待迁移 Oracle 数据库的版本为 10g,11g,12c。Oracle 数据库实例开启 supplemental log,且要求 supplemental_log_data_pk,supplemental_log_data_ui 开启。Oracle 数据库实例要求开启 archive log 归档模式,保证归档日志能够被访问并有一定的保存周期。 数据类型映射关系由于 Oracle 和 MySQL 的数据类型并不是一一对应的,所以 DTS 在进行结构迁移时,会根据两种数据库类型的数据类型定义,进行类型映射,下面是数据类型映射关系。 Oracle 数据类型 MySQL 数据类型 DTS 是否支持 varchar2(n [char/byte]) varchar(n) 支持 nvarchar2[(n)] national varchar[(n)] 支持 char[(n [byte/char])] char[(n)] 支持 nchar[(n)]] national char[(n)] 支持 number[(p[,s])] decimal[(p[,s])] 支持 float(p)] double 支持 long longtext 支持 date datetime 支持 binary_float decimal(65,8) 支持 binary_double double 支持 timestamp[(fractional_seconds_precision)] datetime[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with local time zone datetime[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with local time zone datetime[(fractional_seconds_precision)] 支持 clob longtext 支持 nclob longtext 支持 blob longblob 支持 raw varbinary(2000) 支持 long raw longblob 支持 bfile — 不支持 interval year(year_precision) to mongth — 不支持 interval day(day_precision) to second[(fractional_seconds_precision)] — 不支持 对于 char 类型,当 char(n) 的定义长度 n 超过 255 时,DTS 会自动将类型转换为 varchar(n)。由于 MySQL 本身不支持类似 Oracle 中的 bfile、interval year to month、interval day to second 这三种数据类型,所以 DTS 在进行结构迁移时,无法在 MySQL 中找到合适的数据类型进行映射,因此这三种类型不会进行转化。迁移时如果表中含有这三种类型,会导致结构迁移失败,用户可以在指定迁移对象的时候,对需要迁移的对象中这三种类型的列进行排除。由于 MySQL 的 timestamp 类型不包含时区,而 Oracle 的 timestamp with time zone 和 timestamp with local time zone 两种类型默认带有时区信息,所以 DTS 在迁移这两种类型的数据时,会将其转换成 UTC 时区后存入目标 RDS for MySQL 实例。 迁移步骤下面详细介绍下使用 DTS 将本地 Oracle 数据库中的数据迁移到 RDS for MySQL 实例的任务配置流程。 创建 RDS for MySQL 实例在数据迁移过程中,如果待迁移的数据库在目标 RDS for MySQL 实例中不存在,那么 DTS 会自动创建。但是对于如下两种情况,用户需要在配置迁移任务之前,手动创建数据库。 数据库名称不符合 RDS 定义规范(由小写字母、数字、下划线、中划线组成,字母开头,字母或数字结尾,最长 64 个字符)。待迁移数据库,在源 Oracle 与目标 RDS for MySQL 实例中名称不同。 对于这两种情况,用户需要在配置迁移任务之前,先在 RDS 控制台完成数据库创建。具体参考 RDS 数据库创建流程 RDS 使用手册。 创建迁移帐号迁移任务配置,需要提供 Oracle 数据库及目标 RDS 实例的迁移账号。迁移账号所需权限详见上文的 迁移权限要求。 如果您的源 Oracle 实例的迁移账号尚未创建,那么您可以参考 Oracle Grant 语法说明,创建满足要求的迁移账号。 RDS for MySQL 迁移账号的创建及授权操作详见 RDS 使用手册。 迁移任务配置当上面的所有前置条件都配置完成后,就可以开始迁移任务配置。下面详细介绍下具体的迁移步骤。 进入数据传输服务 DTS 控制台,单击右上角的创建迁移任务,正式开始任务配置。本地 Oracle 数据库实例及目标 RDS for MySQL 实例的连接信息配置。 这个步骤主要配置迁移任务名称,Oracle 数据库实例连接信息及目标 RDS for MySQL 实例连接信息。其中: 任务名称 DTS 为每个任务自动生成一个任务名称,任务名称没有唯一性要求。您可以根据需要修改任务名称,建议为任务配置具有业务意义的名称,便于后续的任务识别。 源实例信息 实例类型:选择 有公网 IP 的自建数据库数据库类型: 选择 Oracle主机名或IP地址: 配置 Oracle 访问地址,这个地址必须为公网访问方式端口:Oracle 数据库实例的监听端口SID:Oracle 数据库实例的 SID账号:Oracle 数据库实例的连接账号密码:上面指定的 Oracle 数据库实例的连接账号对应的密码 目标实例信息 实例类型:选择 RDS 实例RDS 实例 ID: 配置迁移的目标 RDS for MySQL 实例的实例 ID。 DTS 支持经典网络和 VPC 网络的 RDS实例账号:RDS for MySQL 实例的连接账号密码:上面指定的 RDS for MySQL 实例连接账号对应的密码 当配置完连接信息后,单击右下角 授权白名单并进入下一步 进行白名单授权。这个步骤 DTS 会将 DTS 服务器的 IP 地址添加到目标 RDS for MySQL 实例的白名单中,避免因为 RDS 实例设置了白名单,导致 DTS 服务器连接不上 RDS for MySQL 实例导致迁移失败。 迁移对象及迁移类型配置。 迁移类型包括:结构迁移、全量数据迁移、增量数据迁移。默认选择 结构迁移+全量数据迁移。 迁移对象,需要选择您要迁移的对象。迁移对象选择的粒度可以为:库、表、列三个粒度。 默认情况下,对象迁移到 RDS for MySQL 实例后,对象名与源 Oracle 数据库中一致。如果您迁移的对象在源实例与目标实例上名称不同,那么需要使用 DTS 提供的对象名映射功能,详细使用方式可以参考 库表列映射。 当配置完迁移对象及迁移类型后,即进入任务启动前的预检查步骤。 任务预检查。 在迁移任务正式启动之前,会先进行前置预检查,只有预检查通过后,才能成功启动迁移。 如果预检查失败,那么可以点击具体检查项后的按钮,查看具体的失败详情,并根据失败原因修复后,重新进行预检查。 启动迁移任务。 当预检查通过后,我们可以启动迁移任务,任务启动后,可以到任务列表中查看任务具体的迁移状态及进度。 当任务进入增量数据迁移阶段,任务不会自动停止,且一旦源 Oracle 数据库实例有增量写入,增量数据就会自动同步到目标 RDS for MySQL 实例。增量数据迁移是个动态同步的过程,建议在增量迁移达到无延迟状态时,在目标数据库上进行业务验证。如果验证成功,那么可以停掉迁移任务,将业务切换到目标数据库。 至此,完成将本地 Oracle 数据库到 RDS for MySQL 实例的数据迁移任务配置。
2019-12-01 23:09:40 0 浏览量 回答数 0

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

详细解答可以参考官方帮助文档使用 数据传输服务 DTS 可以将本地的 Oracle 数据库中的数据迁移至 RDS for MySQL 实例。数据传输 DTS (以下简称 DTS)可以实现结构迁移、全量数据迁移以及增量数据迁移。通过三种迁移方式的结合,可以在保持源 Oracle 数据库实例正常对外提供服务的情况下,实现 Oracle 数据库的不停服迁移。 注:当前 DTS 已经可以支持将本地的 Oracle 数据库中的数据迁移至 RDS for MySQL 实例时,数据的反向回流,帮助用户在应用按模块切换过程中,将 RDS for MySQL 实例中产生的数据变化同步回本地的 Oracle 数据库。如有需求,请提交工单咨询开通。 本小节简单介绍使用 DTS 进行 Oracle->RDS for MySQL 数据迁移的任务配置流程。 迁移步骤对于 Oracle->RDS for MySQL 的迁移,支持结构迁移、全量数据迁移以及增量数据迁移。各迁移类型的限制如下: 结构迁移DTS 会将迁移对象的结构定义迁移到目标实例。目前 DTS 支持结构迁移的对象包括:表。其他对象如视图、同义词、触发器、存储过程、存储函数、包、自定义类型等暂不支持。 全量数据迁移DTS 会将源数据库迁移对象的存量数据全部迁移到目标 RDS for MySQL 实例。如果仅做全量数据迁移,不做增量数据迁移,迁移过程中,如果源 Oracle 数据库有数据更新的话,那么这部分数据增量变化不一定能够被迁移到目标 RDS for MySQL 中。所以,如果仅做全量数据迁移,不做增量数据迁移,为保证迁移数据一致性,在数据迁移过程中,源端的 Oracle 实例需停止写入。 增量数据迁移增量迁移过程中,DTS 会轮询并捕获源 Oracle 实例由于数据变化产生的重做日志 redo log,然后将数据变化的增量实时同步到目标 RDS for MySQL 实例,通过增量数据迁移可以实现目标 RDS for MySQL 实例同源 Oracle 数据库实例的实时数据同步。 迁移权限要求 当使用 DTS 进行 Oracle->RDS for MySQL 迁移时,在不同迁移类型情况下,对源和目标数据库的迁移帐号权限要求如下: 迁移类型 结构迁移 全量迁移 增量数据迁移 本地 Oracle 实例 schema 的 owner schema 的 owner SYSDBA 目的 RDS for MySQL 实例 待迁入 db 的读写权限 待迁入 db 的读写权限 待迁入 db 的读写权限 迁移前置条件 待迁移 Oracle 数据库的版本为 10g,11g,12c。Oracle 数据库实例开启 supplemental log,且要求 supplemental_log_data_pk,supplemental_log_data_ui 开启。Oracle 数据库实例要求开启 archive log 归档模式,保证归档日志能够被访问并有一定的保存周期。 数据类型映射关系由于 Oracle 和 MySQL 的数据类型并不是一一对应的,所以 DTS 在进行结构迁移时,会根据两种数据库类型的数据类型定义,进行类型映射,下面是数据类型映射关系。 Oracle 数据类型 MySQL 数据类型 DTS 是否支持 varchar2(n [char/byte]) varchar(n) 支持 nvarchar2[(n)] national varchar[(n)] 支持 char[(n [byte/char])] char[(n)] 支持 nchar[(n)]] national char[(n)] 支持 number[(p[,s])] decimal[(p[,s])] 支持 float(p)] double 支持 long longtext 支持 date datetime 支持 binary_float decimal(65,8) 支持 binary_double double 支持 timestamp[(fractional_seconds_precision)] datetime[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with local time zone datetime[(fractional_seconds_precision)] 支持 timestamp[(fractional_seconds_precision)]with local time zone datetime[(fractional_seconds_precision)] 支持 clob longtext 支持 nclob longtext 支持 blob longblob 支持 raw varbinary(2000) 支持 long raw longblob 支持 bfile — 不支持 interval year(year_precision) to mongth — 不支持 interval day(day_precision) to second[(fractional_seconds_precision)] — 不支持 对于 char 类型,当 char(n) 的定义长度 n 超过 255 时,DTS 会自动将类型转换为 varchar(n)。由于 MySQL 本身不支持类似 Oracle 中的 bfile、interval year to month、interval day to second 这三种数据类型,所以 DTS 在进行结构迁移时,无法在 MySQL 中找到合适的数据类型进行映射,因此这三种类型不会进行转化。迁移时如果表中含有这三种类型,会导致结构迁移失败,用户可以在指定迁移对象的时候,对需要迁移的对象中这三种类型的列进行排除。由于 MySQL 的 timestamp 类型不包含时区,而 Oracle 的 timestamp with time zone 和 timestamp with local time zone 两种类型默认带有时区信息,所以 DTS 在迁移这两种类型的数据时,会将其转换成 UTC 时区后存入目标 RDS for MySQL 实例。 迁移步骤下面详细介绍下使用 DTS 将本地 Oracle 数据库中的数据迁移到 RDS for MySQL 实例的任务配置流程。 创建 RDS for MySQL 实例在数据迁移过程中,如果待迁移的数据库在目标 RDS for MySQL 实例中不存在,那么 DTS 会自动创建。但是对于如下两种情况,用户需要在配置迁移任务之前,手动创建数据库。 数据库名称不符合 RDS 定义规范(由小写字母、数字、下划线、中划线组成,字母开头,字母或数字结尾,最长 64 个字符)。待迁移数据库,在源 Oracle 与目标 RDS for MySQL 实例中名称不同。 对于这两种情况,用户需要在配置迁移任务之前,先在 RDS 控制台完成数据库创建。具体参考 RDS 数据库创建流程 RDS 使用手册。 创建迁移帐号迁移任务配置,需要提供 Oracle 数据库及目标 RDS 实例的迁移账号。迁移账号所需权限详见上文的 迁移权限要求。 如果您的源 Oracle 实例的迁移账号尚未创建,那么您可以参考 Oracle Grant 语法说明,创建满足要求的迁移账号。 RDS for MySQL 迁移账号的创建及授权操作详见 RDS 使用手册。 迁移任务配置当上面的所有前置条件都配置完成后,就可以开始迁移任务配置。下面详细介绍下具体的迁移步骤。 进入数据传输服务 DTS 控制台,单击右上角的创建迁移任务,正式开始任务配置。本地 Oracle 数据库实例及目标 RDS for MySQL 实例的连接信息配置。 这个步骤主要配置迁移任务名称,Oracle 数据库实例连接信息及目标 RDS for MySQL 实例连接信息。其中: 任务名称 DTS 为每个任务自动生成一个任务名称,任务名称没有唯一性要求。您可以根据需要修改任务名称,建议为任务配置具有业务意义的名称,便于后续的任务识别。 源实例信息 实例类型:选择 有公网 IP 的自建数据库数据库类型: 选择 Oracle主机名或IP地址: 配置 Oracle 访问地址,这个地址必须为公网访问方式端口:Oracle 数据库实例的监听端口SID:Oracle 数据库实例的 SID账号:Oracle 数据库实例的连接账号密码:上面指定的 Oracle 数据库实例的连接账号对应的密码 目标实例信息 实例类型:选择 RDS 实例RDS 实例 ID: 配置迁移的目标 RDS for MySQL 实例的实例 ID。 DTS 支持经典网络和 VPC 网络的 RDS实例账号:RDS for MySQL 实例的连接账号密码:上面指定的 RDS for MySQL 实例连接账号对应的密码 当配置完连接信息后,单击右下角 授权白名单并进入下一步 进行白名单授权。这个步骤 DTS 会将 DTS 服务器的 IP 地址添加到目标 RDS for MySQL 实例的白名单中,避免因为 RDS 实例设置了白名单,导致 DTS 服务器连接不上 RDS for MySQL 实例导致迁移失败。 迁移对象及迁移类型配置。 迁移类型包括:结构迁移、全量数据迁移、增量数据迁移。默认选择 结构迁移+全量数据迁移。 迁移对象,需要选择您要迁移的对象。迁移对象选择的粒度可以为:库、表、列三个粒度。 默认情况下,对象迁移到 RDS for MySQL 实例后,对象名与源 Oracle 数据库中一致。如果您迁移的对象在源实例与目标实例上名称不同,那么需要使用 DTS 提供的对象名映射功能,详细使用方式可以参考 库表列映射。 当配置完迁移对象及迁移类型后,即进入任务启动前的预检查步骤。 任务预检查。 在迁移任务正式启动之前,会先进行前置预检查,只有预检查通过后,才能成功启动迁移。 如果预检查失败,那么可以点击具体检查项后的按钮,查看具体的失败详情,并根据失败原因修复后,重新进行预检查。 启动迁移任务。 当预检查通过后,我们可以启动迁移任务,任务启动后,可以到任务列表中查看任务具体的迁移状态及进度。 当任务进入增量数据迁移阶段,任务不会自动停止,且一旦源 Oracle 数据库实例有增量写入,增量数据就会自动同步到目标 RDS for MySQL 实例。增量数据迁移是个动态同步的过程,建议在增量迁移达到无延迟状态时,在目标数据库上进行业务验证。如果验证成功,那么可以停掉迁移任务,将业务切换到目标数据库。 至此,完成将本地 Oracle 数据库到 RDS for MySQL 实例的数据迁移任务配置。
2019-12-01 23:09:40 0 浏览量 回答数 0

回答

定时将Expire的数据删除,这个时间是多久?Sorted Set,带有排序、定期删除、比较删除,你用Sorted Set实现应该就可以了,主要是你提到timestamp不够精确,你可以自己为它添加年月日吗?命令可以看http://redisdoc.com/sorted_set/zadd.htmlSorted Set的结构可以这么设计key score(日期时间索引值) valuedevID timestamp的long数值我讲一个例子出来,有一批设备,几分种就要上报一些值,那么用Sorted Set,key就是设备id,score用日期的数值形态,value就是上报的值,它支持设置数据的过期时间,还支持你给日期删除这之前的所有数据,自带排序不过对于你的case可能有2个问题点1.timestamp如果只是时分秒,而过期的数据是以天为单位的话,就会造成重复的score,这样数据就脏了,所以需要一个完整的日期时间2.Sorted Set有个小缺点,就是vlaue不能重复!还有个问题就是你确定更换redis后的硬件可以支持吗?redis可是内存数据库,不要指望它的持久化到硬盘,哪怕你重启了,它每次也会在启动时把数据load到内存里
蛮大人123 2019-12-02 01:45:50 0 浏览量 回答数 0

问题

【Java开发手册】不允许在程序任何地方中使用:1)java.sql.Date 2)java.sq

不允许用 java.sql.Timestamp,那数据库的timestamp类型应该对应哪种类型呢?...
naruduo 2020-05-01 10:45:18 8 浏览量 回答数 2

问题

Redis应该如何存储带时间戳的分类实时数据?

一个物联网项目,最初选用了Linux + Twisted + MySQL + Python来构建。看重的是Twisted的扩展性。但是MySQL成为性能瓶颈。系统架构是:大量设备每隔0.5秒以TCP长连接方式连接Twisted Socket...
蛮大人123 2019-12-01 19:52:11 3317 浏览量 回答数 1

回答

悲观锁 悲观锁(Pessimistic Lock),顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。 悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。 Java synchronized 就属于悲观锁的一种实现,每次线程要修改数据时都先获得锁,保证同一时刻只有一个线程能操作数据,其他线程则会被block。 乐观锁 乐观锁(Optimistic Lock),顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在提交更新的时候会判断一下在此期间别人有没有去更新这个数据。乐观锁适用于读多写少的应用场景,这样可以提高吞吐量。 乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。 乐观锁一般来说有以下2种方式: 使用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式。何谓数据版本?即为数据增加一个版本标识,一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新,否则认为是过期数据。 使用时间戳(timestamp)。乐观锁定的第二种实现方式和第一种差不多,同样是在需要乐观锁控制的table中增加一个字段,名称无所谓,字段类型使用时间戳(timestamp), 和上面的version类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。 Java JUC中的atomic包就是乐观锁的一种实现,AtomicInteger 通过CAS(Compare And Set)操作实现线程安全的自增。 作者:FX_SKY 链接:https://www.jianshu.com/p/f5ff017db62a 来源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
徐刘根 2020-03-31 11:23:57 0 浏览量 回答数 0

问题

播放框架和Python

我正在玩Play Framework 2.0,而我正在做的是一个简单的网络应用程序,该应用程序执行以下操作:要求用户输入一条消息,该消息将存储到数据库并显示在屏幕上(这是...
祖安文状元 2020-02-21 17:29:43 0 浏览量 回答数 1

问题

删除数据库中除最后日期外的所有项目

我有一个看起来很简单的MySQL表: CREATE TABLE `logging` ( `id` bigint(20) NOT NULL, `time` timesta...
几许相思几点泪 2019-12-29 20:44:55 1 浏览量 回答数 1

问题

云数据库OceanBase的时间日期类型

日期和时间类型格式范围大小(字节)DATEYYYY-MM-DD‘1000-01-01’到‘9999-12-31’3DATETIMEYYYY-MM-DD HH:MM:SS‘1000-01-01 00:00:00’到...
云栖大讲堂 2019-12-01 21:28:35 1513 浏览量 回答数 0

问题

MySQL 数据类型,数据库报错

"   1.数值类型 MYSQL支持所有标准SQL,这其中包括: 精确数值数据类型:INTERGER/INT,SMALLINT,DECIMAL/DEC,NUMERIC近似数值数据类型:FLOAT,REAL,DOCULE PR...
python小菜菜 2020-06-01 16:05:21 1 浏览量 回答数 1

问题

HBase数据模型解析和基本的表设计分析

转载自:http://www.hbase.group/article/37 HBase是一个开源可伸缩的针对海量数据存储的分布式nosql数据库,它根据Google Bigtable数据模型来建模并构建在had...
pandacats 2019-12-20 21:05:54 0 浏览量 回答数 0

问题

RDS的数据源如何配置?

云数据库(Relational Database Service,即关系型数据库服务,简称RDS)是阿里云对外提供的一种即开即用、稳定可靠、可弹性伸缩的在线数据库服务( ...
轩墨 2019-12-01 20:55:59 839 浏览量 回答数 0

问题

创建数据库和账号

若要使用云数据库RDS,您需要在实例中创建数据库和账号。对于PPAS类型的实例,您需要通过RDS控制台创建一个初始账号,然后可以通过数据管理(DMS)控制台创建和管理数据...
云栖大讲堂 2019-12-01 21:37:47 912 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

HBase Shell最基本的使用命令有什么

HBase Shell 入门 本篇会介绍最基本的HBase Shell的使用命令。 连接到HBase请参考HBase Shell的配置来进行基本环境的配置。运行HBase目录下bin下的如下命令进入HBase shell $ ./bin...
云栖大讲堂 2019-12-01 21:31:16 1126 浏览量 回答数 0

问题

如何快速开始

[backcolor=transparent]快速上手案例:用 DataV 查看春节前后空气质量的全国分布变化 背景信息 制作大屏时,您可能需要用到以下几种功能: 空间插值等值面组...
反向一觉 2019-12-01 20:56:22 1071 浏览量 回答数 0

问题

表格存储Table Store-建表时的注意事项

建表时需要指定属性列吗? 不需要。Table Store支持半结构化的表,即建表时只需要指定主键列(1至4列),不需要在创建表的时候指定具有哪些属性列。Table St...
云栖大讲堂 2019-12-01 21:04:32 1535 浏览量 回答数 0

问题

HBase高性能随机查询之道 – HFile原理解析

在各色数据库系统百花齐放的今天,能让大家铭记的,往往是一个数据库所能带给大家的差异化能力。正如梁宁老师的产品思维课程中所讲到的,这是一个数据库系统所能带给产品使用者的”确定性”。 差异化能力通常需要...
pandacats 2019-12-20 20:57:14 0 浏览量 回答数 0

问题

【每日一题】Java知识大测验 | 持续更新

每天更新一题 让大家在休息时间可以轻松学习! 下面是关于JAVA的题目,每日更新~ (PS:大家要看清题号,需要答案的同学可以看下方留言) 1-24题链接 93--题链接 92...
游客ih62co2qqq5ww 2020-03-27 23:52:17 473 浏览量 回答数 1

问题

全球级的分布式数据库 Google Spanner原理 热:报错

Google Spanner简介 Spanner 是Google的全球级的分布式数据库 (Globally-Distributed Database) 。Spanner的扩展性达到了令人咋舌的全球级,可以扩展到数百万的机器&#...
kun坤 2020-06-09 15:26:35 4 浏览量 回答数 1

回答

请求结构 智能云相册的API服务接入地址见:服务地域 公共参数 公共请求参数是指每一个接口都需要使用到的参数: 名称 类型 必填项 描述 Format String 否 返回值的类型,支持JSON与XML,默认为XML。 Version String 是 API版本号,为日期形式:YYYY-MM-DD,本版本对应为2017-07-11。 AccessKeyId String 是 阿里云颁发给用户的访问服务所用的密钥ID,或者从您的业务服务器获取到的临时访问凭证中的临时密钥ID。 Signature String 是 签名结果串,关于签名的计算方法,请参见签名机制。 SignatureMethod String 是 签名方式,目前支持HMAC-SHA1。 Timestamp String 是 请求的时间戳。日期格式按照ISO8601标准表示,并需要使用UTC时间。格式为:YYYY-MM-DDThh:mm:ssZ 例如,2014-7-29T12:00:00Z(为北京时间2014年7月29日的20点0分0秒。 SignatureVersion String 是 签名算法版本,目前版本是1.0。 SignatureNonce String 是 唯一随机数,用于防止网络重放攻击。用户在不同请求间要使用不同的随机数值。 SecurityToken String 是(特定情况) STS凭证,如果客户端从业务服务器获取STS凭证后访问智能云相册服务,该参数为必选。 LibraryId String 是(特定情况) 照片库的Id,如果使用AK认证的方式来对照片库进行操作,该参数为必选。如果使用STS认证的方式,LibraryId是通过SecurityToken中的RoleSessionName来进行传递,此时该参数为可选,如果提供了该参数,那么其值需要和RoleSessionName一致。 签名机制 智能云相册服务会对每个访问的请求进行身份验证,因此,需要在请求中包含签名(Signature)信息。智能云相册服务通过使用Access Key ID和Access Key Secret进行对称加密的方法来验证请求的发送者身份。Access Key ID和Access Key Secret由阿里云官方颁发给访问者(可以通过阿里云官方网站申请和管理),其中Access Key ID用于标识访问者身份;Access Key Secret是用于加密签名字符串和服务器端验证签名字符串的密钥,必须严格保密,只有阿里云和用户知道。 返回结果 调用API服务后返回数据采用统一格式: 返回的HTTP状态码为2xx,代表调用成功; 返回4xx或5xx的HTTP状态码代表调用失败。 调用成功返回的数据格式主要有XML和JSON两种,外部系统可以在请求时传入参数来制定返回的数据格式,默认为XML格式。本文档中的返回示例为了便于用户查看,做了格式化处理,实际返回结果是没有进行换行、缩进等处理的
1934890530796658 2020-03-31 13:29:29 0 浏览量 回答数 0

回答

首先“缓存”Cache这个东西是干什么的,我们应该先有些基本的了解。要是不太明白的可以看看网上的解释:http://baike.baidu.com/view/907.htm 简单讲,阿里云OCS提供的功能就是提供对热点数据的高速访问。在使用OCS之前(或者在使用任何一种缓存服务之前),我们都应该明白关于缓存的这么几点: 缓存里的数据不是持久化保存的,也就是说它像是电脑里的内存,而不像硬盘;我们不能指望OCS里的数据一直保存不丢失。如果你真的需要存储持久化的数据,也许你应该出门左转找阿里云OSS(开发存储服务); 缓存里存的应该是“热点”数据。遵循常常出现的“20-80法则”,通常程序应用中都有一定比例的数据常常被请求访问,这就是所谓的热点数据,OCS正是为这种数据设计存在的。假定我们的程序中有100个数据,每次访问这些数据的概率完全是均匀分布的1/100,那么使用缓存的效果就不会太好,因为这其中不存在热点数据。 数据逐出。我们可以决定哪些数据是热点数据被放到缓存当中,但是如果我们的缓存容量不够大,这些热点数据中某些最近较少被用到的数据还是会被“挤出去”,这种行为叫做数据逐出。如果想减少出现这种情况,我们可以购买更高容量的OCS。 -------------------------         在开始使用之前,关于阿里云OCS,我们还需要知道以下这些事: 阿里云OCS仅支持阿里云内网访问,不支持公网访问。也就是说,我们用办公室或者家里的电脑(都属于公网)是无法连上阿里云OCS的。为什么会这样呢?因为缓存服务的根本目标是要提供低延迟的高速访问,而从公网电脑来连接OCS服务器的场景下,公网的网络环境是不可控的,可能出现延迟很高甚至断连接的情况,这使得缓存服务无法保证“高速、低延迟”的基本特性,所以阿里云OCS是不支持公网直接访问的。如果觉得高延迟的情况对于我们的应用也能接受,那么我们应该去选择阿里云其他的产品(比如OSS开放存储服务),而不应该选择OCS缓存服务。 阿里云OCS需要与ECS(阿里云服务器)配合使用,而且只能与本地区节点的ECS连通。这一点与上一条相关。OCS只能从阿里云内网访问,也就是说我们只能从阿里云ECS上才能访问并使用OCS服务。所以我们在官网购买OCS的时候,会看到提示信息说需要至少有一台ECS才能买OCS。另外,阿里云ECS是分地区节点的,比如北京、杭州、青岛等,我们在购买OCS缓存的时候也要选相应的地区节点。北京的ECS只能访问北京的OCS,而不能访问杭州或青岛的OCS。 阿里云OCS是按购买量收费的,而不是按使用量收费。这点需要提醒新同学们注意,在我们购买了OCS缓存之后,计费就已经开始了,即使我们还没有真正使用缓存。也就是说,我们买了1G的OCS缓存后,即使目前使用量为0,系统也会按照1G的标准来计费。所以我们在购买OCS的时候,要选取适合我们业务数据需要的缓存档位。当然了,阿里云OCS也提供在线升降缓存容量的功能。也就是说,如果我们在使用了一段时间之后,发现购买的OCS缓存不够用了(或者缓存使用量太低),我们可以在线的对已有的OCS实例进行升档(或者降档),而OCS缓存服务不会被中断。 阿里云OCS对于存贮的对象大小是有限制的。缓存通常对其内部存储的数据尺寸是有限制的,阿里云OCS也一样。目前OCS支持存储的数据对象的上限是1,000,000Byte。如果要存的值超过这个限制,我们应该考虑把数据压缩,或从逻辑上分成不同键存储的几个值。 ------------------------- 现在我们开始在阿里云官网上购买OCS实例  http://buy.aliyun.com/ocs  首先我们需要已经有了一台阿里云ECS,否则我们无法在这个页面成功购买OCS。购买的第一步,我们先要确定选择买哪个地区的OCS;这个很重要,如上面所说,如果我们的ECS是属于北京,而我们在这里购买了杭州的OCS,那么这两者是无法配合协同工作的。所以,在购买OCS的时候一定要选择应用服务器ECS所在地区的OCS。下一步是要选择OCS缓存容量。我们要购买多大的缓存,这个取决于我们对自身业务应用中热点数据总量大小的判断。如果一时难以准确判断数据量,也不用担心:我们可以先买一个大致容量的OCS(比如1GB),随后在使用过程中,通过OCS控制台提供的监控功能,我们可以了解到目前OCS缓存的使用量等数据,然后可以自主的调整所需的缓存量,购买更大的缓存(比如升到5GB)或者减少已购的缓存量(比如降到512MB),阿里云会根据我们选择的新配置来调整对应的收费。此外在选择缓存容量的时候,要知道不同容量的缓存档位对应着不同的性能配额,具体来说包括两个指标:吞吐量带宽与每秒请求处理数(QPS)。比如以现在的配额标准,1GB的OCS缓存对应5MB/sec的吞吐量带宽和3000次/sec的请求处理峰值。当我们使用OCS的时候,如果数据量传输的带宽超过了5MB/s, 或者每秒的请求数超过了3000次,都会触发性能配额控制机制,导致某些请求无法返回正常结果。在确定了地区和缓存容量之后,我们就可以直接下单购买OCS了。 ------------------------- 在成功购买OCS之后,我们的联系邮箱和手机都会收到OCS创建成功的通知,里面会包括OCS的实例ID和初始密码(关于密码的用处后面会讲到)。我们现在登录OCS控制台, http://ocs.console.aliyun.com/ 就可以看到已经购买到的OCS实例列表。在列表页面上对应OCS实例的后面点击“管理”,就可以进入该OCS实例的详情页,看到更多的详细信息。 ------------------------- 我们现在已经有了一个OCS缓存实例,现在是时候试玩OCS了。要使用OCS就要写一点程序代码,不过不用担心,我们在这里采用“Happy-Path”的方法,从最简单的操作开始,让新上手的菜鸟们能马上就有一个能调用OCS缓存服务的程序。OCS提供缓存服务,它并不要求我们的程序是哪种语言来写的。我们这里先以Java程序为例,写一个最简单的“Hello World”。(其他编程语言的例子,我们随后附上。)第一步,登录你的阿里云ECS服务器,在上面安装Java JDK和你常用的IDE(比如Eclipse)。一定要记得我们之前说过的,只有在阿里云内网的ECS服务器上,才能访问我们的OCS实例。所以,用家里或是公司的电脑执行下面的代码示例是看不到结果的。 Java JDK和Eclipse都很容易从网上找到下载,比如 http://download.eclipse.org/ 或者 http://www.onlinedown.net/soft/32289.htm 第二步,在把Java开发环境准备好了之后,下载第一个代码示例(Sample-Code-1第三步,在Eclipse里面打开刚下载的OcsSample1.java,我们要根据自己的OCS实例信息修改几个地方。        我们每个人买到的OCS实例的ID都是不重复的,其对应的阿里云内网地址也是独一无二的,这些信息都在OCS控制台上显示出来。我们在同自己的OCS实例建立连接的时候,需要根据这些信息修改OcsSample1.java中的对应地方。         public static void main(String[] args) {                                        final String host = "b2fd2f89f49f11e3.m.cnqdalicm9pub001.ocs.aliyuncs.com"; //控制台上的“内网地址”                   final String port ="11211";       //默认端口 11211,不用改                   final String username = "b2fd2f89f49f11e3"; //控制台上的“访问账号”                   final String password = "my_password"; //邮件或短信中提供的“密码”                   …… …… ……       信息修改完毕,我们可以运行自己的程序了。运行main函数,我们会在Eclipse下面的console窗口看到下面这样的结果(请忽略可能出现的红色INFO调试信息): OCS Sample CodeSet操作完成!Get操作: Open Cache Service,  from www.Aliyun.com     OK,搞定!我们已经成功的连接上了阿里云的OCS并且调用缓存服务成功,就这么简单。-------------------------我们已经成功运行了第一个调用阿里云OCS缓存服务的Sample程序OcsSample1.java,现在我们看看这个程序里都做了什么。                                  …… …… ……                            System.out.println("OCS Sample Code");                                                        //向OCS中存一个key为"ocs"的数据,便于后面验证读取数据,                             //这个数据对应的value是字符串 Open Cache Service,  from www.Aliyun.com                            OperationFuture future = cache.set("ocs", 1000," Open Cache Service,  from www.Aliyun.com");                            //向OCS中存若干个数据,随后可以在OCS控制台监控上看到统计信息                            for(int i=0;i<100;i++){                                String key="key-"+i;                                String value="value-"+i;                                 //执行set操作,向缓存中存数据                                cache.set(key, 1000, value);                            }                             System.out.println("Set操作完成!");                             future.get();  //  确保之前(cache.set())操作已经结束                         //执行get操作,从缓存中读数据,读取key为"ocs"的数据                            System.out.println("Get操作:"+cache.get("ocs"));                            …… …… …… 从这些代码中可以看出: 1. 我们在建立与OCS缓存服务器的连接后,先是向缓存中存(set)了一个“key-value”(键值对)形式的数据,这个数据的key是字符串“ocs”,其对应的value也是字符串;2. 接着我们继续向缓存中存(set)了100个其他简单的“key-value”数据。3. 最后我们进行功能验证。根据之前给定的key,从缓存中获取(get)其对应的value:也就是输入字符串“ocs”,缓存给我们返回value对应的字符串。 以上的步骤中,1与3是相对应的,我们只有先向缓存中set了某个数据,后面才能从缓存中get到这个数据。步骤2中程序向缓存set了100个数据,是为了从另一个方面进行验证。我们回到阿里云OCS控制台,打开“实例详情”页,在“实例监控”的部分点击刷新,会看到其中一些监控项的值已经发生了变化(注:监控信息的刷新可能存在数秒的延迟), 其中的“Key的个数”已经变成了101,也就是说我们程序已经成功地向OCS缓存中存放了101个数据。-------------------------在写下一篇技术贴之前,列一些OCS用户在入门时问到的问题,方便其他刚认识OCS的同学:Question:买了1G的OCS,那就相当于这个1G是专门缓存用的,与ECS服务器的内存没关系是吧~Answer:是的,OCS的缓存容量与您ECS的内存容量是没关系的。Question:OCS 外网测试,怎么连接?有没有外网连接地址哦?Answer:OCS是不能从外网访问的。参照上面的文章。Question:我之前那个OCS可以正常使用,但现在换了一个OCS就不行了,怎么回事?Answer:经核实您的主机是属于杭州节点的,而现在这个OCS是青岛节点的,不同地域之间的产品内网不互通。Question:在设置一个value时,如果指定过期时间为0,会永久保留吗?Answer:指定过期时间为0,OCS就认为此数据不根据过期时间发生淘汰;但是,此数据仍有可能基于LRU被其他数据淘汰,或者由内存清理造成丢失 ,因此不能认为这个value会永久保留。 Question:对OCS的访问是否需要负载均衡? Answer:不需要。对访问请求的负载均衡都是在OCS服务器端来进行的,用户直接使用缓存服务即可,不用考虑负载均衡的事情。 Question:OCS是否会主动关闭闲置的连接? 如果会,请问连接闲置多久会被关闭?Answer:OCS不会主动关闭闲置的用户连接。但是用户的环境如果使用了SLB,则需要参考SLB连接关闭时间。Question:如何设置数据在OCS缓存中的过期时间 ?Answer:关于设置缓存数据的过期时间,可以参考Memcached官方说明: https://code.google.com/p/memcached/wiki/NewCommands An expiration time, in seconds. Can be up to 30 days. After 30 days, is treated as a unix timestamp of an exact date. 翻译过来就是:0~2592000表示从当前时刻算起的时间长度(以秒计算,最长2592000即30天);大于2592000表示UNIX时间戳。 此值设置为0表明此数据不会主动过期。------------------------- 回 12楼(村里一把手) 的帖子 谢谢,要让大家用得好才算数。 -------------------------缓存与数据库相结合使用,是常见的一种应用搭配场景。现在我们再看一个例子,是用OCS搭配MySQL数据库使用。Java示例代码在此(这个示例代码中,大部分与前几个例子类似。因为要与数据库结合,所以程序需要依赖一个JDBC的jar包才能运行。支持MySQL的JDBC jar包在此(在程序中添加MySQL数据库的连接信息:     …… …… ……            // JDBC driver name and database URL    static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";    static final String DB_URL = "jdbc:mysql://xxxxxxx.mysql.rds.aliyuncs.com/testdb"; //MySQL数据库URL        //  Database用户名及密码    static final String DB_USER = "xxxxxx";    static final String DB_PASS = "xxxxxx";            我们设想这样一个场景:我们需要从数据库的tableone表中查找区域不属于北京的记录总数,用SQL表示就是:SELECT count(*)  FROM testdb.tableone where region != 'beijing'假定这个表中的数据如下,则这条SQL查询返回的结果就是7:如果这个查询被调用到的频率很高,多个用户反复不断的在数据库中查这个数据,我们就可以把这个查询结果放到OCS缓存中去。看下面的代码片段,我们用for循环模拟用户连续20次在数据库中查询上述SQL语句:              for (int i = 1; i <= 20; i++) {                String sql = "SELECT count(*)  FROM testdb.tableone where region != 'beijing'";                String key ="non-beijing"; //给SQL语句自定义一个key                //在OCS缓存里按key查找               String value =  (String) cache.get(key);                                if (value == null) {                    // 在OCS缓存里没有命中                    // step 1:从My SQL数据库中查询                    //Load MySQL Driver                      Class.forName(JDBC_DRIVER);                     con = DriverManager.getConnection(DB_URL, DB_USER, DB_PASS);                    ps = con.prepareStatement(sql);                    ResultSet result = ps.executeQuery(sql);                    result.next();                                        value=result.getString(1);                    System.out.println("从MySQL中查询数据.  Key= "+key+" Value="+value);                                       // step 2: 把数据库返回的数据作为value存放到OCS缓存中去                    cache.set(key, EXPIRE_TIME, value);                                    } else {                    // 在OCS缓存里命中                    System.out.println("从OCS中读取数据.     Key= "+key+" Value="+value);                }                            }// end of for在这段代码中我们可以看到,我们给这条SQL语句标记了一个key,当有用户要执行这条SQL的时候,我们首先按照key在OCS缓存中查找:如果没有对应的缓存数据,则连接MySQL数据库执行SQL查询,把结果返回给用户,并把这个查询结果存到OCS缓存中去;如果OCS中已经有了对应的缓存数据,则直接把缓存数据返回给用户。运行结果如下: 从MySQL中查询数据.  Key= non-beijing, Value=7从OCS中读取数据.     Key= non-beijing, Value=7从OCS中读取数据.     Key= non-beijing, Value=7从OCS中读取数据.     Key= non-beijing, Value=7…… …… 从结果可以看出,程序第1次是从MySQL数据库当中查询数据,后面的19次都是从OCS缓存中获取key对应的value直接返回。也就是说,OCS降低了程序去连接MySQL数据库执行SQL查询的次数,减轻了对数据库的负载压力。用户对热点数据访问的频率越高,OCS的这种优势就越明显。
唐翰 2019-12-01 23:41:23 0 浏览量 回答数 0

问题

订阅日志服务数据的用户手册

LogHub Shipper for TableStore(以下简称传送服务)将用户在日志服务中的数据经简单清洗、转换后写入用户在表格存储中的表。 它由表格存储官方提供,以 Docker 镜像的方式...
云栖大讲堂 2019-12-01 20:56:31 1339 浏览量 回答数 0

问题

如何使用CREATE TABLE数据定义语言

该语句用于在OceanBase数据库中创建新表。 格式 CREATE TABLE [IF NOT EXIST] tblname (create_definition,...)[table_options] [partition_option...
云栖大讲堂 2019-12-01 21:28:42 1357 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失
问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

问题

HybridDB for MySQL中支持的MySQL函数有什么

HybridDB for MySQL目前支持在SELECT查询语句中使用如下的SQL函数: 注:1.若无特殊说明,以下函数均为 MySQL v5.6中的函数定义) 注:2...
云栖大讲堂 2019-12-01 21:27:41 1433 浏览量 回答数 0

问题

PCDN API接口的调用方式

对PCDN API接口调用是通过向PCDN API的服务端地址发送HTTP GET请求,并按照接口说明在请求中加入相应请求参数来完成的;根据请求的处理情况,系统会返回处理结果。 请求结构 ...
云栖大讲堂 2019-12-01 21:17:47 1771 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT