• 关于

    oracle与mysql区别

    的搜索结果

问题

MySQL/Oracle中,索引和约束的区别在哪里?

拿MySQL举例在MySQL中创建唯一约束就自动获取唯一索引,创建唯一索引也会有唯一约束的功能。那么索引和约束的区别到底在哪呢?仅仅是出发点不同吗?(索引维护表的查找与操作速度,约束维护表的完整性)希望了解的人不吝赐教...
a123456678 2019-12-01 20:16:35 1233 浏览量 回答数 1

回答

对于数据复制需求,很容易混淆数据迁移、同步、恢复这三个概念,本文介绍这三个概念的区别,方便您清楚认知自己的需求,并提供多种方案,可满足您的上云、迁云、同步、恢复等业务需求。 数据迁移/同步/恢复区别 数据迁移和恢复的异同 数据迁移和恢复都可以将数据复制到新实例,但是它们之间还有一定的区别: 数据迁移主要用于上云迁移,通过数据传输服务DTS将本地数据库/ECS上的自建数据库/第三方云数据库迁移至阿里云数据库,也可以从阿里云迁移至自建数据库。 数据恢复是通过数据备份和日志备份进行恢复,可以将某个备份集的数据恢复到实例,也可以通过备份集和日志备份将数据恢复到某个时间点。 数据迁移和恢复可以互补以实现更多功能,例如恢复数据到新实例后再通过DTS迁移回原实例,可以避免修改应用程序连接地址。 说明 控制台提供的恢复功能可以满足用户的大部分恢复需求,同时覆盖了部分迁移数据的需求(例如不要求增量迁移)。 数据迁移和同步的区别 数据迁移主要用于上云迁移,在勾选增量迁移时,可以实现数据同步的部分功能,但是不如数据同步灵活,例如不支持在线修改同步对象、不支持双向同步等。数据迁移属于一次性任务,迁移完成后即可释放实例。 数据同步主要用于两个数据源之间的数据实时同步,适用于异地多活、数据灾备、跨境数据同步、查询与报表分流、云BI及实时数据仓库等场景。它属于持续性任务,任务创建后会一直同步数据,保持数据源和数据目标的数据一致性。 数据迁移 适用场景 文档链接 (迁移上云)自建数据库迁移至RDS MySQL 从自建MySQL迁移至RDS MySQL 从通过专线/VPN网关/智能网关接入的自建MySQL迁移至RDS MySQL 从通过专线接入的自建MySQL迁移至其他云账号下的RDS MySQL 从自建DB2迁移至RDS MySQL 使用mysqldump迁移MySQL数据 从自建Oracle迁移至RDS MySQL RDS MySQL迁移至POLARDB 一键升级RDS MySQL到PolarDB MySQL 一键克隆RDS MySQL到POLARDB for MySQL 将第三方云数据库迁移至RDS MySQL 从Amazon RDS MySQL迁移至阿里云 从Amazon RDS Oracle迁移至阿里云RDS MySQL 从Amazon Aurora MySQL迁移至阿里云 从腾讯云MySQL迁移至阿里云 Google Cloud SQL的MySQL数据库迁移到阿里云 百度云MySQL数据库迁移到阿里云 华为云MySQL数据库迁移到阿里云 RDS实例间的数据库迁移 RDS实例间的数据迁移 不同RDS实例下库名不同的数据库之间的数据迁移 使用DTS跨阿里云账号迁移RDS数据 单个RDS实例内的数据迁移 RDS实例内不同数据库之间的数据迁移 将RDS MySQL数据迁移至自建MySQL数据库 从RDS MySQL迁移至自建MySQL 数据同步 适用场景 文档链接 MySQL间数据同步 RDS MySQL实例间的双向同步 RDS MySQL实例间的单向同步 从ECS上的自建MySQL同步至RDS MySQL 从通过专线/VPN网关/智能网关接入的自建MySQL同步至RDS MySQL 不同阿里云账号下RDS MySQL实例间的数据同步 从RDS MySQL同步至PolarDB MySQL 从RDS MySQL同步至通过专线/VPN网关/智能网关接入的自建MySQL MySQL数据同步至其他数据库 从RDS MySQL同步到AnalyticDB for MySQL 从RDS MySQL同步至AnalyticDB for PostgreSQL 从RDS MySQL同步至DataHub 从RDS MySQL同步至MaxCompute 从RDS MySQL同步至自建Kafka集群 数据恢复 适用场景 文档链接 RDS MySQL数据恢复至新实例/原实例 恢复MySQL数据 MySQL单库单表恢复 跨地域恢复 RDS MySQL数据恢复至自建数据库 RDS MySQL 物理备份文件恢复到自建数据库 RDS MySQL逻辑备份文件恢复到自建数据库 说明 如果实例还未释放或者对数据时间点没有要求,建议使用DTS从RDS MySQL迁移至自建MySQL。
游客yl2rjx5yxwcam 2020-03-09 10:46:05 0 浏览量 回答数 0

回答

如MySQL词汇表中所定义: 实际上,在MySQL中,模式与数据库是同义词。您可以用MySQL SQL语法SCHEMA代替关键字DATABASE,例如使用CREATE SCHEMA代替CREATE DATABASE。 其他一些数据库产品也有区别。例如,在Oracle数据库产品中,模式仅代表数据库的一部分:单个用户拥有的表和其他对象。来源:stack overflow
保持可爱mmm 2020-05-17 11:16:55 0 浏览量 回答数 0

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

建个炫酷的简历网页,制作一个浪漫的表白网页,打造个人专属网盘,多种动手场景应用免费学!!!

问题

超越 MySQL 热:报错

尽管 MySQL 是最受欢迎的程序之一,但是许多开发人员认为有必要将其拆分成其他项目,并且每个分支项目都有自己的专长。该需求,以及 Oracle 对核心产品增长缓慢的担忧,导致出现了许...
kun坤 2020-06-05 22:43:07 0 浏览量 回答数 1

问题

超越 MySQL 热,数据库报错

" 尽管 MySQL 是最受欢迎的程序之一,但是许多开发人员认为有必要将其拆分成其他项目,并且每个分支项目都有自己的专长。该需求,以及 Oracle 对核心产品增长缓慢的担忧,...
python小菜菜 2020-06-01 19:55:39 0 浏览量 回答数 1

问题

【精品问答】数据库面试总结50问

小编从社区收集了50道关于数据库面试时可能会遇到的问题,希望可以帮助到大家! (点击相应的问题可以得到答案): 1.内联接,外联接区别? 2.SQL语言包...
茶什i 2019-12-01 21:57:36 221 浏览量 回答数 0

问题

2018MySQL技术问答集锦,希望能给喜欢MySQL的同学一些帮助

小编发现问答专区中有很多人在问关于mysql的问题,小编把这些问题汇总一下,希望能给喜欢mysql的大家一些启示和帮助本帖不定期更新,喜欢的可以收藏哦如何搭建MySQL集群?https://yq.aliyun.com/ask/482768m...
技术小能手 2019-12-01 19:31:11 1856 浏览量 回答数 0

问题

Percona Server 5.7 安装教程

介绍 Percona Server for MySQL 由领先的数据库L咨询公司 Percona 发布。Percona Server for MySQL 是一款独立的数据库产品,其基于 Oracle MySQL 开发并...
妙正灰 2019-12-01 21:43:29 1204 浏览量 回答数 1

回答

这两款产品还有区别的:1、AnalyticDB是一款精通实时数据分析的产品,通过自己强大的并发运算能力,可以实时计算海量的数据。但使用这款产品,需要再购买RDS来作为数据存储配合使用;所以它不会关心你的数据存储的可靠性,可扩展性等,这些都是由RDS产品来提供保证;2、HybridDB是一款基于Greenplum开源数据库,并在此基础上进行了改造与优化,在具备了数据仓库的基础上,又具备了实时运算的能力,但运算能力有多强,没有和AnalyticDB做过横向对比,所以不太好确定。至于产品如何选择,要根据你实际情况来看,打个比方,如果你的数据都是用MySQL来存储的,需要实时分析,那么可以选AnalyticDB;如果你的数据是存在PG/oracle上,并且希望数据在一个产品里面实现存储与运算的话,那可以选HybridDB。
zzhshere 2019-12-01 23:36:37 0 浏览量 回答数 0

回答

据我所知,没有DBMS有任何“优化”可以使长度VARCHAR为a的2^n性能比max长度不是2的幂的性能更好。 我认为早期的SQL Server版本实际上将VARCHAR255的长度与最大长度较高的长度区别对待。我不知道是否仍然如此。 对于几乎所有的DBMS,所需的实际存储空间仅取决于您放入其中的字符数,而不取决于max您定义的长度。因此,从存储的角度(也可能是性能的角度),无论您将列声明为VARCHAR(100)还是都没有任何区别VARCHAR(500)。 您应该max将为VARCHAR列提供的长度看作是一种约束(或业务规则),而不是技术/实际的事物。 对于PostgreSQL来说,最好的设置是使用text不受长度限制CHECK CONSTRAINT的字符集,它将字符数限制为您的业务需求。 如果该要求发生变化,那么更改检查约束比更改表要快得多(因为不需要重写表) 可以对Oracle和其他对象应用相同的方法-在Oracle中,它VARCHAR(4000)不是,text而是。 我不知道SQL Server VARCHAR(max)和VARCHAR(500)SQL Server 之间是否存在物理存储差异。但是varchar(max)与相比,使用显然会对性能产生影响varchar(8000)。 看到此链接(由Erwin Brandstetter发表评论) 编辑2013-09-22 关于bigown的评论: 在9.2之前的Postgres版本中(我写初始答案时不可用),对列定义的更改确实重写了整个表,请参见例如此处。从9.2开始,情况不再如此,快速测试确认增加具有120万行的表的列大小实际上仅需0.5秒。 对于Oracle来说,从更改大表的varchar列所需的时间来看,这似乎也是正确的。但是我找不到任何参考。 对于MySQL,该手册会说 “ 在大多数情况下,ALTER TABLE为原始表创建一个临时副本 ”。我自己的测试证实了:ALTER TABLE在具有120万行的表上运行(与我对Postgres的测试相同)以增加列的大小需要1.5分钟。但是,在MySQL中,您不能使用“替代方法”来使用检查约束来限制列中的字符数。 对于SQL Server,我找不到明确的声明,但是执行增加varchar列大小的执行时间(同样是上表的120万行表)表明没有重写。 编辑2017-01-24 似乎我(至少部分地)对SQL Server错误。请参阅Aaron Bertrand的答案,该答案表明a nvarchar或varcharcolumn 的声明长度对性能有很大的影响。来源:stack overflow
保持可爱mmm 2020-05-17 20:49:47 0 浏览量 回答数 0

问题

免费开源的系统与商业收费的系统哪种有前途

        个人感觉免费开源的软件系统会比较有生命力,但如果真的彻底免费,开发的人员吃什么呢?!他们哪来的动力能开发出最优秀的产品,如果只是部分免费,有...
好好的 2019-12-01 21:21:31 7349 浏览量 回答数 8

问题

ODPS大讲堂之概述篇

1. 什么是Tunnel?     tunnel是用来上传,下载数据用的。用户可以使用tunnel提供的java sdk接口将mysql,oracle的数据导入odps。也可以将odps的数据再导回mysql。通...
halcyon 2019-12-01 21:51:22 21648 浏览量 回答数 19

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

各位亲爱的云友,               非常感谢大家踊跃参加DBA专家门诊一期:索引与sql优化,很多云友都提出了自己的问题,门诊主任医师玄惭对大家提的问题一一作了解答。现已整...
xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

问题

通过自动重连方式解决RDS闪断问题

RDS闪断解决方案 一RDS闪断的原因和影响: 1、    什么是闪断? 是指游戏APP与RDS之间的网络链路在短时间内(一般不超过三十秒) 发生了的中断。 2、 ...
nono20011908 2019-12-01 21:07:16 27529 浏览量 回答数 1

回答

SELECT a.id,a.name,a.date,a.price FROM del_check a INNER JOIN (SELECT MONTH(date) mon,MIN(price) minprice FROM del_check GROUP BY mon) b ON MONTH(a.date)=b.mon and a.price=b.minprice ORDER BY a.date————内链接 2这验证没有问题######mysql数据库比较简单: SELECT id,name,date,MIN(price) price FROM del_check GROUP BY SUBSTRING(date,6,2)######你这么写不对吧######给你几个关键点的参考:  最小价格 用 MIN(price) , 更具日期算得月份用 mouth(date),分组用Group By############也就是说,现在只有月份——min()是对应的,和日期、id都是不对应的。目前这样我觉得最好的加一个月份字段来完成这是最方便的,如果我其他的我会第一时间告诉你,同样您也是######回复 @Nehway : 也就是说,现在只有月份——min()是对应的,和日期、id都是不对应的。目前这样我觉得最好的加一个月份字段来完成这是最方便的,如果我其他的我会第一时间告诉你,同样您也是######回复 @treker : 是我出错了! group by对于非表中的字段,会让聚合函数min、max等的求值和原表的记录脱节,这也是mysql和orcle的一些区别的跳线######第一条数据就不对吧######order by price asc    limit 0,1  这不就行了吗######回复 @treker : 对不住 没看清题意 还以为只去最小的金额呢,这个必须的group by 分组 用我的排序就不行了######回复 @treker :######能否说的详细些###### 引用来自“Nehway”的评论 加个月份和原来的date一样吧######mysql中group by对于的字段和对应比如聚合函数min、max等的求值,与原表非分组字段没有关系(oracle直接查询不允许有非分组字段),这里我忽视了,现在只要直接2表联查就可以搞定了!############这次真的没有问题了,也方便分组聚合函数和原表的结合######回复 @Nehway : 非常感谢!######回复 @Nehway : 感觉逻辑上不太理解,不过结果是正确的######回复 @treker : 2表联查的话,这个很简单,可以改变连接方式就可以了,把left join改为自然连接或者内链接就可以了######回复 @Nehway : 相同月份相同最小价格不同name的无法区分,只能得到一条数据######回复 @treker : 哪里有问题?###### 引用来自“Nehway”的评论 你这个和下面的 https://www.oschina.net/question/2821148_2219037 差不多,没有区分开name
kun坤 2020-06-09 14:01:25 0 浏览量 回答数 0

回答

两个凡是: 1: LDAP只用于 用户认证(authentication),除非业务系统中的业务关系,和人事关系完全一致.这种情况很少. -------以下是授权部分(Authorization) 2: 业务系统 Profile(简档)定义 ACL(Action control list), 也就是CRUD系统当中所谓"角色" 3: (Role)角色定义树状组织. 4: BOSR(business object sharing rules) 根据ACL,联合Role形成三个维度,进行精确的 可见性,访问性控制. 以上 3-4,是所有的 Open source软件都无法做到的. 而且用Mysql这种"非"数据库是不可能实现的. 增加一个流程控制,就可以实现任意的业务方面的权限控制.######回复 @jackstraw : mysql糟糕也就算了.那些搞mysql的人,更糟糕.哈哈######建议@宏哥有空发个帖子,标题叫:mysql做不了的哪些事儿 : )######  @mark35 select * from v_content where ( role_id in (select id from (select * from connectby('cms_role','id','pid','id','0',0,';') as t(id int, pid int, level int, branch text, pos int) where level >=1) utree) or owner_id='10000') 给你一个例子. 上面的SQL表示, 查询出v_content当中, 属于自己以及在自己管理的组织下的所有记录. 你也可以用括号把它变成一个结果集,再进行group sharing 的并操作,再对business rules 进行集成运算. ######@mark35 , FYI###### 数据一般分为 Public/Private 和 Read, Write, Authorization(数据上的再授权) 组成6个组合 通过 组织构架图, 实现 近似 无限种组合,  数据基准, 是以数据属主, 在 策略/组织数, 上进行递归运算, 自动向上级授权实现. 这是其中一个维度, 也是最复杂的维度,  另外 可以设定组, 在组内 互相 public/private/auth 进行交叉共享, 这个共享仍然在组织树上递归授权 第三维度, 在于业务维度, 通过比如审批价格产生的数据授权, 再进行 组,组织树的 再运算, 又产生数据访问控制. 这个就非常复杂了. 你仔细理解这几句话, 相信你对所有系统的数据访问授权都能找到答案. ######嗯 如果把操作 save/delete/update/get 包含在url中,你认为还是这么复杂吗?######统一认证我就不说了。 组织结构你要放在你们系统,因为你是人员信息权威源,第三方系统如果有需要可以同步组织结构数据。 授权信息可以不放。 一般简单意义上的统一授权都是基于角色。用户和角色的关系放在ldap中,由第三方系统配置到ldap。达到统一权限的目的。(一般软件都支持ldap人员数据) 授权信息不放你这里的主要原因的第三方系统你改不起。######有道理! 有一个疑惑的地方,你的意思是角色、角色与用户的关系也存在ldap吗? 但是不同的系统需要定义的角色是不一样的, 每个系统的角色都先定义到ldap也不现实啊...######看一个例子,不代表这个例子就是对的。包括IBM堆出来的。项目本身有非技术的原因,成功的实施项目不代表是合理的项目。特别是非定制开发的,只是产品化实施出来的东西。(话又回来,定制开发的东西,也未必是合理的东西,哈,受甲方猪头影响更大)。 权限系统和公司自身管理方式关联很大。没谁对谁错的。不能拿一个理论上完美的东西,去让甲方套。设计者也要着重关注甲方的业务特点,组织特点,和管理状态。这些是设计权限系统的重要参考信息,而不是理论本身。###### 引用来自“中山野鬼”的答案 看一个例子,不代表这个例子就是对的。包括IBM堆出来的。项目本身有非技术的原因,成功的实施项目不代表是合理的项目。特别是非定制开发的,只是产品化实施出来的东西。(话又回来,定制开发的东西,也未必是合理的东西,哈,受甲方猪头影响更大)。 权限系统和公司自身管理方式关联很大。没谁对谁错的。不能拿一个理论上完美的东西,去让甲方套。设计者也要着重关注甲方的业务特点,组织特点,和管理状态。这些是设计权限系统的重要参考信息,而不是理论本身。 目前在设计一个东西的时候,先看有没有一个标准性的东西, 别人是怎么实现的,他们都有些什么最佳实践。 反正尽量避免闭门造车。 总的来说还是见闻太少,缺少对一个大型的成功的系统的学习和分析, 还是有点迷信典型。 我十分赞同 @宏哥 的建议: 1: LDAP只用于 用户认证 2: 业务系统 Profile(简档)定义 ACL 3: (Role)角色定义树状组织. ###### 引用来自“中山野鬼”的答案 看一个例子,不代表这个例子就是对的。包括IBM堆出来的。项目本身有非技术的原因,成功的实施项目不代表是合理的项目。特别是非定制开发的,只是产品化实施出来的东西。(话又回来,定制开发的东西,也未必是合理的东西,哈,受甲方猪头影响更大)。 权限系统和公司自身管理方式关联很大。没谁对谁错的。不能拿一个理论上完美的东西,去让甲方套。设计者也要着重关注甲方的业务特点,组织特点,和管理状态。这些是设计权限系统的重要参考信息,而不是理论本身。 不得不说你,太不专业了. 权限系统全部都是这样设计的. 只有最后一个Business Object Sharing Rules是不一样的. 这是业务规则. 主数据,可以控制所有访问控制. 连业务规则都是根据配置数据进行设定. ###### 引用来自“宏哥”的答案 两个凡是: 1: LDAP只用于 用户认证(authentication),除非业务系统中的业务关系,和人事关系完全一致.这种情况很少. -------以下是授权部分(Authorization) 2: 业务系统 Profile(简档)定义 ACL(Action control list), 也就是CRUD系统当中所谓"角色" 3: (Role)角色定义树状组织. 4: BOSR(business object sharing rules) 根据ACL,联合Role形成三个维度,进行精确的 可见性,访问性控制. 以上 3-4,是所有的 Open source软件都无法做到的. 而且用Mysql这种"非"数据库是不可能实现的. 增加一个流程控制,就可以实现任意的业务方面的权限控制. 宏哥, 多谢指教。 前两点我都明白了。 对第3,4点, 还有点问题: 3.   (Role)角色定义树状组织        (1) 和 一个企业的组织结构(Organization Structure)  有联系和区别吗?       (3) Role 是存在 ldap中吗? 各个业务系统要求的Role是不一样的, 统一存难度有点大。。 4.  BOSR(business object sharing rules)      我理解的就类似 oracle 的账户可以把自己的权限grant给其信任的账户, 是这样的吗? ######很值得讨论的一个东西······我也是不知道怎么做,自己随便搞……###### 引用来自“一千年前的人”的答案 引用来自“宏哥”的答案 两个凡是: 1: LDAP只用于 用户认证(authentication),除非业务系统中的业务关系,和人事关系完全一致.这种情况很少. -------以下是授权部分(Authorization) 2: 业务系统 Profile(简档)定义 ACL(Action control list), 也就是CRUD系统当中所谓"角色" 3: (Role)角色定义树状组织. 4: BOSR(business object sharing rules) 根据ACL,联合Role形成三个维度,进行精确的 可见性,访问性控制. 以上 3-4,是所有的 Open source软件都无法做到的. 而且用Mysql这种"非"数据库是不可能实现的. 增加一个流程控制,就可以实现任意的业务方面的权限控制. 宏哥, 多谢指教。 前两点我都明白了。 对第3,4点, 还有点问题: 3.   (Role)角色定义树状组织        (1) 和 一个企业的组织结构(Organization Structure)  有联系和区别吗?       (3) Role 是存在 ldap中吗? 各个业务系统要求的Role是不一样的, 统一存难度有点大。。 4.  BOSR(business object sharing rules)      我理解的就类似 oracle 的账户可以把自己的权限grant给其信任的账户, 是这样的吗? 具体实现很复杂. 角色定义,各个系统都可以自定义,不是人事上的组织定义,而是递归授权的基础. Role基本上和ldap没有关系.Ldap只回答who are you的问题,就是authentication, Role 可以回答在具体事件当中,where are you的问题, 所有维度统一起来,才能回答what can you do 可以定义group,进行交叉授权. BOSR ,更复杂. 同样一个东西,比如销售数据,财务报销数据,会对应不同的rule,如果增加一个流程,就意味着,不同阶段,对应不同rule. 和oracle那玩意类似,但是复杂很多. 这个东西,如果用 垃圾java的那个spring security来实现,需要100000000000000000万个xml配置才能实现. ######脑残,华为的内部系统是java实现的,全球500强的企业,多少组织结结构,多少权限细分,认证也是使用的ldap,你见过后台权限控制的表结构吗?
kun坤 2020-06-04 18:08:28 0 浏览量 回答数 0

问题

大数据时代——数据存储技术百问

如今计算机已经渗透到企业运作的各个角落,企业依靠所存放的这些业务数据进行决策,因此企业如何存放数据成为企业信息系统的重中之重,这也掀起了如今的存储热潮。根据不同的应用环境通过采取合理、安全、有效的方式将数据保存并能保证有效的访问需要更高要求...
yq传送门 2019-12-01 20:27:42 31965 浏览量 回答数 35

回答

共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 锁的类别有两种分法: 1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 MS-SQL Server 使用以下资源锁模式。 锁模式 描述 共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 共享锁 共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 更新锁 更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 排它锁 排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 意向锁 意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 锁模式 描述 意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外。MySQL数据库由于其自身架构的特点,存在多种数据存储引擎,每种存储引擎所针对的应用场景特点都不太一样,为了满足各自特定应用场景的需求,每种存储引擎的锁定机制都是为各自所面对的特定场景而优化设计,所以各存储引擎的锁定机制也有较大区别。MySQL各存储引擎使用了三种类型(级别)的锁定机制:表级锁定,行级锁定和页级锁定。 1.表级锁定(table-level) 表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。 当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。 使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。 2.行级锁定(row-level) 行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。 虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。 使用行级锁定的主要是InnoDB存储引擎。 3.页级锁定(page-level) 页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。 在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。 使用页级锁定的主要是BerkeleyDB存储引擎。 总的来说,MySQL这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低; 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高; 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 适用:从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。 -------------MYSQL处理------------------ 表级锁定 由于MyISAM存储引擎使用的锁定机制完全是由MySQL提供的表级锁定实现,所以下面我们将以MyISAM存储引擎作为示例存储引擎。 1.MySQL表级锁的锁模式 MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性: 对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求; 对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作; MyISAM表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。 2.如何加表锁 MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。 3.MyISAM表锁优化建议 对于MyISAM存储引擎,虽然使用表级锁定在锁定实现的过程中比实现行级锁定或者页级锁所带来的附加成本都要小,锁定本身所消耗的资源也是最少。但是由于锁定的颗粒度比较到,所以造成锁定资源的争用情况也会比其他的锁定级别都要多,从而在较大程度上会降低并发处理能力。所以,在优化MyISAM存储引擎锁定问题的时候,最关键的就是如何让其提高并发度。由于锁定级别是不可能改变的了,所以我们首先需要尽可能让锁定的时间变短,然后就是让可能并发进行的操作尽可能的并发。 (1)查询表级锁争用情况 MySQL内部有两组专门的状态变量记录系统内部锁资源争用情况: mysql> show status like 'table%'; +----------------------------+---------+ | Variable_name | Value | +----------------------------+---------+ | Table_locks_immediate | 100 | | Table_locks_waited | 10 | +----------------------------+---------+ 这里有两个状态变量记录MySQL内部表级锁定的情况,两个变量说明如下: Table_locks_immediate:产生表级锁定的次数; Table_locks_waited:出现表级锁定争用而发生等待的次数; 两个状态值都是从系统启动后开始记录,出现一次对应的事件则数量加1。如果这里的Table_locks_waited状态值比较高,那么说明系统中表级锁定争用现象比较严重,就需要进一步分析为什么会有较多的锁定资源争用了。 (2)缩短锁定时间 如何让锁定时间尽可能的短呢?唯一的办法就是让我们的Query执行时间尽可能的短。 a)尽两减少大的复杂Query,将复杂Query分拆成几个小的Query分布进行; b)尽可能的建立足够高效的索引,让数据检索更迅速; c)尽量让MyISAM存储引擎的表只存放必要的信息,控制字段类型; d)利用合适的机会优化MyISAM表数据文件。 (3)分离能并行的操作 说到MyISAM的表锁,而且是读写互相阻塞的表锁,可能有些人会认为在MyISAM存储引擎的表上就只能是完全的串行化,没办法再并行了。大家不要忘记了,MyISAM的存储引擎还有一个非常有用的特性,那就是ConcurrentInsert(并发插入)的特性。 MyISAM存储引擎有一个控制是否打开Concurrent Insert功能的参数选项:concurrent_insert,可以设置为0,1或者2。三个值的具体说明如下: concurrent_insert=2,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录; concurrent_insert=1,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置; concurrent_insert=0,不允许并发插入。 可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。 (4)合理利用读写优先级 MyISAM存储引擎的是读写互相阻塞的,那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢? 答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前。 这是因为MySQL的表级锁定对于读和写是有不同优先级设定的,默认情况下是写优先级要大于读优先级。 所以,如果我们可以根据各自系统环境的差异决定读与写的优先级: 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接读比写的优先级高。如果我们的系统是一个以读为主,可以设置此参数,如果以写为主,则不用设置; 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。 虽然上面方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”,因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行 三、行级锁定 行级锁定不是MySQL自己实现的锁定方式,而是由其他存储引擎自己所实现的,如广为大家所知的InnoDB存储引擎,以及MySQL的分布式存储引擎NDBCluster等都是实现了行级锁定。考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 1.InnoDB锁定模式及实现机制 考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 总的来说,InnoDB的锁定机制和Oracle数据库有不少相似之处。InnoDB的行级锁定同样分为两种类型,共享锁和排他锁,而在锁定机制的实现过程中为了让行级锁定和表级锁定共存,InnoDB也同样使用了意向锁(表级锁定)的概念,也就有了意向共享锁和意向排他锁这两种。 当一个事务需要给自己需要的某个资源加锁的时候,如果遇到一个共享锁正锁定着自己需要的资源的时候,自己可以再加一个共享锁,不过不能加排他锁。但是,如果遇到自己需要锁定的资源已经被一个排他锁占有之后,则只能等待该锁定释放资源之后自己才能获取锁定资源并添加自己的锁定。而意向锁的作用就是当一个事务在需要获取资源锁定的时候,如果遇到自己需要的资源已经被排他锁占用的时候,该事务可以需要锁定行的表上面添加一个合适的意向锁。如果自己需要一个共享锁,那么就在表上面添加一个意向共享锁。而如果自己需要的是某行(或者某些行)上面添加一个排他锁的话,则先在表上面添加一个意向排他锁。意向共享锁可以同时并存多个,但是意向排他锁同时只能有一个存在。所以,可以说InnoDB的锁定模式实际上可以分为四种:共享锁(S),排他锁(X),意向共享锁(IS)和意向排他锁(IX),我们可以通过以下表格来总结上面这四种所的共存逻辑关系 如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。 但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。 2.InnoDB行锁实现方式 InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁 在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。 (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。 (2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。 (3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。 (4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。 3.间隙锁(Next-Key锁) 当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁; 对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 例: 假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL: mysql> select * from emp where empid > 100 for update; 是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。 InnoDB使用间隙锁的目的: (1)防止幻读,以满足相关隔离级别的要求。对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读; (2)为了满足其恢复和复制的需要。 很显然,在使用范围条件检索并锁定记录时,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。 除了间隙锁给InnoDB带来性能的负面影响之外,通过索引实现锁定的方式还存在其他几个较大的性能隐患: (1)当Query无法利用索引的时候,InnoDB会放弃使用行级别锁定而改用表级别的锁定,造成并发性能的降低; (2)当Query使用的索引并不包含所有过滤条件的时候,数据检索使用到的索引键所只想的数据可能有部分并不属于该Query的结果集的行列,但是也会被锁定,因为间隙锁锁定的是一个范围,而不是具体的索引键; (3)当Query在使用索引定位数据的时候,如果使用的索引键一样但访问的数据行不同的时候(索引只是过滤条件的一部分),一样会被锁定。 因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。 还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁。 4.死锁 MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,当两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。 在InnoDB的事务管理和锁定机制中,有专门检测死锁的机制,会在系统中产生死锁之后的很短时间内就检测到该死锁的存在。当InnoDB检测到系统中产生了死锁之后,InnoDB会通过相应的判断来选这产生死锁的两个事务中较小的事务来回滚,而让另外一个较大的事务成功完成。 那InnoDB是以什么来为标准判定事务的大小的呢?MySQL官方手册中也提到了这个问题,实际上在InnoDB发现死锁之后,会计算出两个事务各自插入、更新或者删除的数据量来判定两个事务的大小。也就是说哪个事务所改变的记录条数越多,在死锁中就越不会被回滚掉。 但是有一点需要注意的就是,当产生死锁的场景中涉及到不止InnoDB存储引擎的时候,InnoDB是没办法检测到该死锁的,这时候就只能通过锁定超时限制参数InnoDB_lock_wait_timeout来解决。 需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。 通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法: (1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。 (2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。 (3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。 (4)在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。 (5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁。这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。 5.什么时候使用表锁 对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁: (1)事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。 (2)事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。 应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。 在InnoDB下,使用表锁要注意以下两点。 (1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、InnoDB_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁,否则,InnoDB将无法自动检测并处理这种死锁。 (2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。
1006541099824509 2019-12-02 03:14:39 0 浏览量 回答数 0

问题

dubbo 的 spi 思想是什么?【Java问答学堂】50期

面试题 dubbo 的 spi 思想是什么? 面试官心理分析 继续深入问呗,前面一些基础性的东西问完了,确定你应该都 ok,了解 dubbo 的一些基本东西,那么问...
剑曼红尘 2020-07-07 09:48:29 25 浏览量 回答数 1

问题

基础语言百问-Python

基础语言百问-Python 软件界最近非常流行一句话“人生苦短,快用Python”,这就展示出了Python的特点,那就是快,当然这个快并不是指的Python运行快,毕竟是脚本语言,再怎样也快不过C语言和C++这样的底层语言,这里的快指的是...
薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

回答

Linux这么多命令,通常会让初学者望而生畏。下面是我结合日常工作,以及在公司的内部培训中,针对对Linux不是很熟悉的同学,精选的一批必须要搞懂的命令集合。 任何一个命令其实都是可以深入的,比如tail -f和tail -F的区别。我们不去关心,只使用最常见的示例来说明。本文不会教你具体的用法,那是抢man命令的饭碗。这只是个引导篇,力求简洁。 学习方式:多敲多打,用条件反射替代大脑记忆—如果你将来或者现在要用它来吃饭的话。其中,也有一些难啃的骨头,关注小姐姐味道微信公众号,我们一起用锋利的牙齿,来把它嚼碎。 内容: ✔ 目录操作 ✔ 文本处理 ✔ 压缩 ✔ 日常运维 ✔ 系统状态概览 ✔ 工作常用 目录操作 工作中,最常打交道的就是对目录和文件的操作。linux提供了相应的命令去操作他,并将这些命令抽象、缩写。 基本操作 可能是这些命令太常用了,多打一个字符都是罪过。所以它们都很短,不用阿拉伯数字,一个剪刀手就能数过来。 看命令。 mkdir 创建目录 make dir cp 拷贝文件 copy mv 移动文件 move rm 删除文件 remove 例子: # 创建目录和父目录a,b,c,d mkdir -p a/b/c/d # 拷贝文件夹a到/tmp目录 cp -rvf a/ /tmp/ # 移动文件a到/tmp目录,并重命名为b mv -vf a /tmp/b # 删除机器上的所有文件 rm -rvf / 漫游 linux上是黑漆漆的命令行,依然要面临人生三问:我是谁?我在哪?我要去何方? ls 命令能够看到当前目录的所有内容。ls -l能够看到更多信息,判断你是谁。 pwd 命令能够看到当前终端所在的目录。告诉你你在哪。 cd 假如你去错了地方,cd命令能够切换到对的目录。 find find命令通过筛选一些条件,能够找到已经被遗忘的文件。 至于要去何方,可能就是主宰者的意志了。 文本处理 这是是非常非常加分的技能。get到之后,也能节省更多时间来研究面向对象。 查看文件 cat 最常用的就是cat命令了,注意,如果文件很大的话,cat命令的输出结果会疯狂在终端上输出,可以多次按ctrl+c终止。 # 查看文件大小 du -h file # 查看文件内容 cat file less 既然cat有这个问题,针对比较大的文件,我们就可以使用less命令打开某个文件。 类似vim,less可以在输入/后进入查找模式,然后按n(N)向下(上)查找。 有许多操作,都和vim类似,你可以类比看下。 tail 大多数做服务端开发的同学,都了解这么命令。比如,查看nginx的滚动日志。 tail -f access.log tail命令可以静态的查看某个文件的最后n行,与之对应的,head命令查看文件头n行。但head没有滚动功能,就像尾巴是往外长的,不会反着往里长。 tail -n100 access.log head -n100 access.log 统计 sort和uniq经常配对使用。 sort可以使用-t指定分隔符,使用-k指定要排序的列。 下面这个命令输出nginx日志的ip和每个ip的pv,pv最高的前10 #2019-06-26T10:01:57+08:00|nginx001.server.ops.pro.dc|100.116.222.80|10.31.150.232:41021|0.014|0.011|0.000|200|200|273|-|/visit|sign=91CD1988CE8B313B8A0454A4BBE930DF|-|-|http|POST|112.4.238.213 awk -F"|" '{print $3}' access.log | sort | uniq -c | sort -nk1 -r | head -n10 其他 grep grep用来对内容进行过滤,带上--color参数,可以在支持的终端可以打印彩色,参数n则输出具体的行数,用来快速定位。 比如:查看nginx日志中的POST请求。 grep -rn --color POST access.log 推荐每次都使用这样的参数。 如果我想要看某个异常前后相关的内容,就可以使用ABC参数。它们是几个单词的缩写,经常被使用。 A after 内容后n行 B before 内容前n行 C count? 内容前后n行 就像是这样: grep -rn --color Exception -A10 -B2 error.log diff diff命令用来比较两个文件是否的差异。当然,在ide中都提供了这个功能,diff只是命令行下的原始折衷。对了,diff和patch还是一些平台源码的打补丁方式,你要是不用,就pass吧。 压缩 为了减小传输文件的大小,一般都开启压缩。linux下常见的压缩文件有tar、bzip2、zip、rar等,7z这种用的相对较少。 .tar 使用tar命令压缩或解压 .bz2 使用bzip2命令操作 .gz 使用gzip命令操作 .zip 使用unzip命令解压 .rar 使用unrar命令解压 最常用的就是.tar.gz文件格式了。其实是经过了tar打包后,再使用gzip压缩。 创建压缩文件 tar cvfz archive.tar.gz dir/ 解压 tar xvfz. archive.tar.gz 日常运维 开机是按一下启动按钮,关机总不至于是长按启动按钮吧。对了,是shutdown命令,不过一般也没权限-.-!。passwd命令可以用来修改密码,这个权限还是可以有的。 mount mount命令可以挂在一些外接设备,比如u盘,比如iso,比如刚申请的ssd。可以放心的看小电影了。 mount /dev/sdb1 /xiaodianying chown chown 用来改变文件的所属用户和所属组。 chmod 用来改变文件的访问权限。 这两个命令,都和linux的文件权限777有关。 示例: # 毁灭性的命令 chmod 000 -R / # 修改a目录的用户和组为 xjj chown -R xjj:xjj a # 给a.sh文件增加执行权限(这个太常用了) chmod a+x a.sh yum 假定你用的是centos,则包管理工具就是yum。如果你的系统没有wget命令,就可以使用如下命令进行安装。 yum install wget -y systemctl 当然,centos管理后台服务也有一些套路。service命令就是。systemctl兼容了service命令,我们看一下怎么重启mysql服务。 推荐用下面这个。 service mysql restart systemctl restart mysqld 对于普通的进程,就要使用kill命令进行更加详细的控制了。kill命令有很多信号,如果你在用kill -9,你一定想要了解kill -15以及kill -3的区别和用途。 su su用来切换用户。比如你现在是root,想要用xjj用户做一些勾当,就可以使用su切换。 su xjj su - xjj -可以让你干净纯洁的降临另一个账号,不出意外,推荐。 系统状态概览 登陆一台linux机器,有些命令能够帮助你快速找到问题。这些命令涵盖内存、cpu、网络、io、磁盘等。 uname uname命令可以输出当前的内核信息,让你了解到用的是什么机器。 uname -a ps ps命令能够看到进程/线程状态。和top有些内容重叠,常用。 找到java进程 ps -ef|grep java top 系统状态一览,主要查看。cpu load负载、cpu占用率。使用内存或者cpu最高的一些进程。下面这个命令可以查看某个进程中的线程状态。 top -H -p pid free top也能看内存,但不友好,free是专门用来查看内存的。包括物理内存和虚拟内存swap。 df df命令用来查看系统中磁盘的使用量,用来查看磁盘是否已经到达上限。参数h可以以友好的方式进行展示。 df -h ifconfig 查看ip地址,不啰嗦,替代品是ip addr命令。 ping 至于网络通不通,可以使用ping来探测。(不包括那些禁ping的网站) netstat 虽然ss命令可以替代netstat了,但现实中netstat仍然用的更广泛一些。比如,查看当前的所有tcp连接。 netstat -ant 此命令,在找一些本地起了什么端口之类的问题上,作用很大。 工作常用 还有一些在工作中经常会用到的命令,它们的出现频率是非常高的 ,都是些熟面孔。 export 很多安装了jdk的同学找不到java命令,export就可以帮你办到它。export用来设定一些环境变量,env命令能看到当前系统中所有的环境变量。比如,下面设置的就是jdk的。 export PATH=$PATH:/home/xjj/jdk/bin 有时候,你想要知道所执行命令的具体路径。那么就可以使用whereis命令,我是假定了你装了多个版本的jdk。 crontab 这就是linux本地的job工具。不是分布式的,你要不是运维,就不要用了。比如,每10分钟提醒喝茶上厕所。 */10 * * * * /home/xjj/wc10min date date命令用来输出当前的系统时间,可以使用-s参数指定输出格式。但设置时间涉及到设置硬件,所以有另外一个命令叫做hwclock。 xargs xargs读取输入源,然后逐行处理。这个命令非常有用。举个栗子,删除目录中的所有class文件。 find . | grep .class$ | xargs rm -rvf #把所有的rmvb文件拷贝到目录 ls *.rmvb | xargs -n1 -i cp {} /mount/xiaodianying 网络 linux是一个多作业的网络操作系统,所以网络命令有很多很多。工作中,最常和这些打交道。 ssh 这个,就不啰嗦了。你一定希望了解ssh隧道是什么。你要是想要详细的输出过程,记得加参数-v。 scp scp用来进行文件传输。也可以用来传输目录。也有更高级的sftp命令。 scp a.txt 192.168.0.12:/tmp/a.txt scp -r a_dir 192.168.0.12:/tmp/ wget 你想要在服务器上安装jdk,不会先在本地下载下来,然后使用scp传到服务器上吧(有时候不得不这样)。wget命令可以让你直接使用命令行下载文件,并支持断点续传。 wget -c http://oracle.fuck/jdk2019.bin mysql mysql应用广泛,并不是每个人都有条件用上navicat的。你需要了解mysql的连接方式和基本的操作,在异常情况下才能游刃有余。 mysql -u root -p -h 192.168.1.2
问问小秘 2020-04-01 10:52:50 0 浏览量 回答数 0

回答

第一讲:云计算带来的技术变革 6月9日打卡,今日学习《第一讲:云计算带来的技术变革》,通过乔帮主本次的领读,学到了云平台、云产品的选型以及软件技术的选项 完成的作业见如下: 1. B 2. 区别是:云平台相对传统的虚拟化容器来讲,有强大的技术支持,同时尽量满足大多数业务需要,能够一键开启服务器环境,进行管理、操作相关软件应用 3.区别是: SaaS、PaaS、IaaS简单的说都属于云计算服务,也就是云计算+服务 IaaS(Infrastructure as a service – 基础设施即服务):用户可以在云服务提供商提供的基础设施上部署和运行任何软件,包括操作系统和应用软件 PaaS(Platform as a service – 平台即服务):PaaS给用户提供的能力是使用由云服务提供商支持的编程语言、库、服务以及开发工具来创建、开发应用程序并部署在相关的基础设施上 SaaS(Software as a Service – 软件即服务):SaaS给用户提供的能力是使用在云基础架构上运行的云服务提供商的应用程序。 4. 云端最火的语言是Java 第二讲:云端系统热门技术选型及配置容量规划实战 2020年6月20日打卡,今日学习《第二讲:云端系统热门技术选型及配置容量规划实战》,通过乔帮主本次的领读,学到了云端系统技术选型:云端网络、云端web服务器、云端负载均衡、云端存储、云端缓存和云端数据库六个方面,以及云端配置选型。 作业1:不收取流量费用,因为是入口流量;作业2:Nginx可以作为Web服务器、或者负载均衡,优势如下:稳定性好,云端架构中LNMP(Linux+Nginx+MySQL+PHP)应用很广泛;性能高,高并发,系统资源占用少;支持四层、七层的负载均衡、反向代理的功能;前端静态数据缓存; 支持插件和灵活的二次开发;作业3:可以,因为LVS(Linux Virtual Server)在四层和二层,不能识别封装在七层中的数据包内容。作业4:一次连接:LVS的DR模式、NAT模式对数据包的处理都做一次连接,负载均衡对数据包仅做转发;二次连接:Ngnix/HAProxy四层的二次连接是客户端和负载均衡进行TCP三次握手后,负载均衡和后端服务器会进行新的TCP连接; Nginx/HAProxy七层的二次连接是客户端和负载均衡进行TCP三次握手后,还需要等客户端Pushdata传输数据后,负载均衡和后端服务器会进行新的TCP连接;作业5:I/O 5分钟法则:如果一天记录频繁被访问,就应该考虑放到缓存里。否则的话,客户端就按需要直接去访问数据源,这个临界点就是5分钟。作业6:数据库的三大分类:关系型数据库(ACID模型)、BASE模型、非关系型数据库。热门关系型数据库:Oracle、MySQL、SQL Server;热门非关系型数据库:Redis;作业7:2台 核16G,10Mb 第三讲:云端五大类热门技术实践 2020年6月25日打卡,今日学习《第三讲:云端五大类热门技术实践》,通过乔帮主本次的领读,学到了云端实践中的主机、负载均衡、存储、缓存和数据库实践。 作业1 分布式架构对服务器单机的性能依赖不高,通过大量云资源进行分布式快速部署,满足业务的需求和发展。 作业2 DNS+跨地域+Docker分布式架构,通过智能解析把不同地域的请求引流到各自地域部署的节点中,节点中部署的业务用Docker进行部署,业务代码对平台没有依赖,又可以接入各大云运营商。 作业3 前端建议使用四层; 部署Web类后端的注意事项:需要配置https证书,虚拟主机,Rewrite等功能,可放在后端中用Nginx配置; 作业4: 系统数据:Rsync,快照 文件数据:NFS,OSS 数据库数据:主从复制 作业5:读写分离属于垂直分区,主要是为了解决数据库读写的压力; Sharing技术属于水平分区,为了解决海量数据的压力; 第四讲:云端运维/监控/容器及DevOps实践 2020年6月30日打卡,今日学习《第四讲:云端运维/监控/容器及DevOps实践》,通过乔帮主本次的领读,学到了云端实践篇中的云端运维实践、云端监控实践和云端容器/DevOps实践。 作业1 一:云端配置选型 二:云端网络架构 三:云端负载均衡的选择 四:云端静态资源访问 五:云端运维管理 作业2 Zabbix的Server端数据是以MySQL为主的关系型数据库,存在性能问题,对云容器支持不太好; Prometheus属于容器监控体系技术,对云产品、站点、日志、代码监控问题无法解决; 作业3 云监控会成为未来监控的主要趋势,云平台把常见的开源环境,Web、缓存、数据库等进行封装产品化。 作业4 基于Docker镜像的CI/CD与传统基于代码仓库的CI/CD有以下优势: 实现容器启动在秒级完成发布; 对ECS没有依赖; Docker容器资源自定义配置,最大化提升资源利用率; 可以结合JIRA+Confluence做项目管理及知识库管理; 作业5 使用Docker+K8S+DNS+Rancher 第五讲:云时代安全防护面临的挑战和机遇 2020年7月7日打卡,今日学习《第五讲:云时代安全防护面临的挑战和机遇》,通过乔帮主的领读,学习到了云端安全面临的挑战和机遇,云端黑客常见攻击和云端安全最佳防御方案。 作业1 Redis漏洞不能用WAF防御,要用安骑士来检测,WAF针对OSI七层模型中HTTP层的防御,也就是Web漏洞的防御;安骑士是解决操作系统级别的漏洞、木马、病毒。 作业2 在CDN上配置证书,一般把证书存放在流量入口处。 作业3 DDoS+WAF结合起来防御。 作业4 采用安全类云产品,替代单机低配服务器; 安全架构进行优化,采用分布式架构; 在运维层次进行安全保障,调优PHP进行数、Tomcat连接数等,调优操作系统内核参数;
爱吃鱼的程序员 2020-06-09 21:43:01 0 浏览量 回答数 0

问题

【MaxCompute】的产品概述

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 为您提供了完善的数据导入方案以及多种经典的分布式计算模型&#...
玄学酱 2019-12-01 21:55:03 1428 浏览量 回答数 0

回答

既然不知道什么是标准做法,因为这通常是不清楚和主观的,因此您可以尝试向模块本身寻求指导。通常,将with关键字用作其他用户的建议是一个不错的主意,但是在这种特定情况下,它可能无法提供预期的功能。 从模块的1.2.5版本开始,使用以下代码(github)MySQLdb.Connection实现上下文管理器协议: def enter(self): if self.get_autocommit(): self.query("BEGIN") return self.cursor() def exit(self, exc, value, tb): if exc: self.rollback() else: self.commit() 已经有一些现有的问答with,或者您可以阅读了解Python的“ with”语句,但是实质上发生的是__enter__在with块的开头__exit__执行,并在离开with块时执行。如果打算以后引用该对象,则可以使用可选的语法with EXPR as VAR将by返回的对象绑定 __enter__到名称。因此,在上述实现的基础上,这是查询数据库的一种简单方法: connection = MySQLdb.connect(...) with connection as cursor: # connection.enter executes at this line cursor.execute('select 1;') result = cursor.fetchall() # connection.exit executes after this line print result # prints "((1L,),)" 现在的问题是,退出with块后连接和游标的状态是什么?__exit__上面显示的方法仅调用self.rollback()或self.commit(),而这些方法都没有继续调用该close()方法。游标本身没有__exit__定义方法,也没有关系,因为with它只管理连接。因此,退出with块后,连接和游标都保持打开状态。通过在上面的示例中添加以下代码,可以很容易地确认这一点: try: cursor.execute('select 1;') print 'cursor is open;', except MySQLdb.ProgrammingError: print 'cursor is closed;', if connection.open: print 'connection is open' else: print 'connection is closed' 您应该看到输出到标准输出的“光标已打开;连接已打开”输出。 我相信您需要在提交连接之前关闭游标。 为什么?正如模块文档中所隐含的那样,作为基础的MySQL C APIMySQLdb没有实现任何游标对象:“ MySQL不支持游标;但是,游标易于仿真。” 实际上,MySQLdb.cursors.BaseCursor该类直接继承object于游标,并且对提交/回滚没有任何限制。Oracle开发人员曾这样说: 在cur.close()之前的cnx.commit()对我来说最合乎逻辑。也许您可以遵循以下规则:“如果不再需要,请关闭光标。” 因此,在关闭游标之前,先执行commit()。最后,对于Connector / Python而言,它并没有多大区别,但是对于其他数据库而言,则可能没有什么不同。 我希望这与您达到该主题的“标准实践”一样近。 查找不需要中间提交的事务集是否有任何显着的优势,这样您就不必为每个事务获取新的游标? 我对此非常怀疑,在尝试这样做时,您可能会引入其他人为错误。最好决定约定并坚持执行。 获取新的游标是否有很多开销,还是不重要? 开销可以忽略不计,完全不涉及数据库服务器;它完全在MySQLdb的实现中。如果您真的想知道创建新游标时发生了什么,可以在BaseCursor.__init__github上查看。 回到前面的讨论中with,也许现在您可以理解为什么MySQLdb.Connection类__enter__和__exit__方法在每个with块中为您提供了一个全新的游标对象,而不必理会它或在块末尾将其关闭。它相当轻巧,纯粹是为了您的方便而存在。 如果对微管理光标对象确实很重要,则可以使用contextlib.closing来弥补光标对象没有定义__exit__方法的事实。为此,还可以使用它强制连接对象在退出with块时自行关闭。这应该输出“ my_curs已关闭; my_conn已关闭”: from contextlib import closing import MySQLdb with closing(MySQLdb.connect(...)) as my_conn: with closing(my_conn.cursor()) as my_curs: my_curs.execute('select 1;') result = my_curs.fetchall() try: my_curs.execute('select 1;') print 'my_curs is open;', except MySQLdb.ProgrammingError: print 'my_curs is closed;', if my_conn.open: print 'my_conn is open' else: print 'my_conn is closed' 注意,with closing(arg_obj)不会调用参数对象的__enter__和__exit__方法。它只会close在with块的末尾调用参数对象的方法。(要查看实际情况,只需Foo使用__enter__,__exit__和close包含简单print语句的方法定义一个类,然后将执行时的操作with Foo(): pass与执行时的操作进行比较with closing(Foo()): pass。)这有两个重要的含义: 首先,如果启用了自动提交模式,则BEGIN当您with connection在块末尾使用并提交或回滚事务时,MySQLdb将在服务器上进行显式事务。这些是MySQLdb的默认行为,旨在保护您免受MySQL的立即提交任何DML语句的默认行为的影响。MySQLdb假定在使用上下文管理器时需要事务,并使用显式BEGIN绕过服务器上的自动提交设置。如果您习惯于使用with connection,您可能会认为自动提交实际上只是被绕过了而被禁用了。如果添加,可能会给您带来不愉快的惊喜closing您的代码并失去交易完整性;您将无法回滚更改,您可能会开始看到并发性错误,并且可能并不清楚为什么。 第二,with closing(MySQLdb.connect(user, pass)) as VAR结合的连接对象到VAR,在对比with MySQLdb.connect(user, pass) as VAR,其结合一个新的光标对象到VAR。在后一种情况下,您将无法直接访问连接对象!相反,您将必须使用游标的connection属性,该属性提供对原始连接的代理访问。关闭游标时,其connection属性设置为None。这将导致废弃的连接一直存在,直到发生以下情况之一: 删除所有对光标的引用 光标超出范围 连接超时 通过服务器管理工​​具手动关闭连接 您可以通过监视打开的连接(在Workbench中或使用SHOW PROCESSLIST)进行测试,同时一步一步地执行以下几行: with MySQLdb.connect(...) as my_curs: pass my_curs.close() my_curs.connection # None my_curs.connection.close() # throws AttributeError, but connection still open del my_curs # connection will close here来源:stack overflow
保持可爱mmm 2020-05-17 13:35:00 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 21:57:43 46087 浏览量 回答数 16

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失
问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

回答

在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。但在电商等场景中,对于数据一致性的解决方法和常见的互联网系统(如 MySQL 主从同步)又有一定区别,分成以下 6 种解决方案。(一)规避分布式事务——业务整合业务整合方案主要采用将接口整合到本地执行的方法。拿问题场景来说,则可以将服务 A、B、C 整合为一个服务 D 给业务,这个服务 D 再通过转换为本地事务的方式,比如服务 D 包含本地服务和服务 E,而服务 E 是本地服务 A ~ C 的整合。优点:解决(规避)了分布式事务。缺点:显而易见,把本来规划拆分好的业务,又耦合到了一起,业务职责不清晰,不利于维护。由于这个方法存在明显缺点,通常不建议使用。(二)经典方案 - eBay 模式此方案的核心是将需要分布式处理的任务通过消息日志的方式来异步执行。消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试。人工重试更多的是应用于支付场景,通过对账系统对事后问题的处理。消息日志方案的核心是保证服务接口的幂等性。考虑到网络通讯失败、数据丢包等原因,如果接口不能保证幂等性,数据的唯一性将很难保证。eBay 方式的主要思路如下。Base:一种 Acid 的替代方案此方案是 eBay 的架构师 Dan Pritchett 在 2008 年发表给 ACM 的文章,是一篇解释 BASE 原则,或者说最终一致性的经典文章。文中讨论了 BASE 与 ACID 原则在保证数据一致性的基本差异。如果 ACID 为分区的数据库提供一致性的选择,那么如何实现可用性呢?答案是BASE (basically available, soft state, eventually consistent)BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。文章中描述了一个最常见的场景,如果产生了一笔交易,需要在交易表增加记录,同时还要修改用户表的金额。这两个表属于不同的远程服务,所以就涉及到分布式事务一致性的问题。文中提出了一个经典的解决方法,将主要修改操作以及更新用户表的消息放在一个本地事务来完成。同时为了避免重复消费用户表消息带来的问题,达到多次重试的幂等性,增加一个更新记录表 updates_applied 来记录已经处理过的消息。基于以上方法,在第一阶段,通过本地的数据库的事务保障,增加了 transaction 表及消息队列 。在第二阶段,分别读出消息队列(但不删除),通过判断更新记录表 updates_applied 来检测相关记录是否被执行,未被执行的记录会修改 user 表,然后增加一条操作记录到 updates_applied,事务执行成功之后再删除队列。通过以上方法,达到了分布式系统的最终一致性。进一步了解 eBay 的方案可以参考文末链接。(三)去哪儿网分布式事务方案随着业务规模不断地扩大,电商网站一般都要面临拆分之路。就是将原来一个单体应用拆分成多个不同职责的子系统。比如以前可能将面向用户、客户和运营的功能都放在一个系统里,现在拆分为订单中心、代理商管理、运营系统、报价中心、库存管理等多个子系统。拆分首先要面临的是什么呢?最开始的单体应用所有功能都在一起,存储也在一起。比如运营要取消某个订单,那直接去更新订单表状态,然后更新库存表就 ok 了。因为是单体应用,库在一起,这些都可以在一个事务里,由关系数据库来保证一致性。但拆分之后就不同了,不同的子系统都有自己的存储。比如订单中心就只管理自己的订单库,而库存管理也有自己的库。那么运营系统取消订单的时候就是通过接口调用等方式来调用订单中心和库存管理的服务了,而不是直接去操作库。这就涉及一个『分布式事务』的问题。分布式事务有两种解决方式优先使用异步消息。上文已经说过,使用异步消息 Consumer 端需要实现幂等。幂等有两种方式,一种方式是业务逻辑保证幂等。比如接到支付成功的消息订单状态变成支付完成,如果当前状态是支付完成,则再收到一个支付成功的消息则说明消息重复了,直接作为消息成功处理。另外一种方式如果业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现。对于 producer 端在业务数据库的同实例上放一个消息库,发消息和业务操作在同一个本地事务里。发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除,如果遇到消息队列服务异常或网络问题,消息没有成功发出那么消息就留在这里了,会有另外一个服务不断地将这些消息扫出重新发送。有的业务不适合异步消息的方式,事务的各个参与方都需要同步的得到结果。这种情况的实现方式其实和上面类似,每个参与方的本地业务库的同实例上面放一个事务记录库。比如 A 同步调用 B,C。A 本地事务成功的时候更新本地事务记录状态,B 和 C 同样。如果有一次 A 调用 B 失败了,这个失败可能是 B 真的失败了,也可能是调用超时,实际 B 成功。则由一个中心服务对比三方的事务记录表,做一个最终决定。假设现在三方的事务记录是 A 成功,B 失败,C 成功。那么最终决定有两种方式,根据具体场景:重试 B,直到 B 成功,事务记录表里记录了各项调用参数等信息;执行 A 和 B 的补偿操作(一种可行的补偿方式是回滚)。对 b 场景做一个特殊说明:比如 B 是扣库存服务,在第一次调用的时候因为某种原因失败了,但是重试的时候库存已经变为 0,无法重试成功,这个时候只有回滚 A 和 C 了。那么可能有人觉得在业务库的同实例里放消息库或事务记录库,会对业务侵入,业务还要关心这个库,是否一个合理的设计?实际上可以依靠运维的手段来简化开发的侵入,我们的方法是让 DBA 在公司所有 MySQL 实例上预初始化这个库,通过框架层(消息的客户端或事务 RPC 框架)透明的在背后操作这个库,业务开发人员只需要关心自己的业务逻辑,不需要直接访问这个库。总结起来,其实两种方式的根本原理是类似的,也就是将分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性。(四)蘑菇街交易创建过程中的分布式一致性方案交易创建的一般性流程我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。面临的问题每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?方案选型服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。(五)支付宝及蚂蚁金融云的分布式服务 DTS 方案业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。分布式事务服务简介分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。核心特性传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。简单的说,DTS 框架有如下特性:最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。与 RPC 服务协议无关:在 SOA 架构下,一个或多个 DB 操作往往被包装成一个一个的 Service,Service 与 Service 之间通过 RPC 协议通信。DTS 框架构建在 SOA 架构上,与底层协议无关。与底层事务实现无关: DTS 是一个抽象的基于 Service 层的概念,与底层事务实现无关,也就是说在 DTS 的范围内,无论是关系型数据库 MySQL,Oracle,还是 KV 存储 MemCache,或者列存数据库 HBase,只要将对其的操作包装成 DTS 的参与者,就可以接入到 DTS 事务范围内。一个完整的业务活动由一个主业务服务与若干从业务服务组成。主业务服务负责发起并完成整个业务活动。从业务服务提供 TCC 型业务操作。业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”与 2PC 协议比较,没有单独的 Prepare 阶段,降低协议成本。系统故障容忍度高,恢复简单(六)农信网数据一致性方案电商业务公司的支付部门,通过接入其它第三方支付系统来提供支付服务给业务部门,支付服务是一个基于 Dubbo 的 RPC 服务。对于业务部门来说,电商部门的订单支付,需要调用支付平台的支付接口来处理订单;同时需要调用积分中心的接口,按照业务规则,给用户增加积分。从业务规则上需要同时保证业务数据的实时性和一致性,也就是支付成功必须加积分。我们采用的方式是同步调用,首先处理本地事务业务。考虑到积分业务比较单一且业务影响低于支付,由积分平台提供增加与回撤接口。具体的流程是先调用积分平台增加用户积分,再调用支付平台进行支付处理,如果处理失败,catch 方法调用积分平台的回撤方法,将本次处理的积分订单回撤。用户信息变更公司的用户信息,统一由用户中心维护,而用户信息的变更需要同步给各业务子系统,业务子系统再根据变更内容,处理各自业务。用户中心作为 MQ 的 producer,添加通知给 MQ。APP Server 订阅该消息,同步本地数据信息,再处理相关业务比如 APP 退出下线等。我们采用异步消息通知机制,目前主要使用 ActiveMQ,基于 Virtual Topic 的订阅方式,保证单个业务集群订阅的单次消费。总结分布式服务对衍生的配套系统要求比较多,特别是我们基于消息、日志的最终一致性方案,需要考虑消息的积压、消费情况、监控、报警等。
小川游鱼 2019-12-02 01:46:40 0 浏览量 回答数 0

问题

为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗?【Java问答学堂】46期

面试题 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗? 面试官心理分析 从这个问题开始就进行分布式系统环节了,现在出去面试分布式都成标配了,...
剑曼红尘 2020-06-29 16:39:00 6 浏览量 回答数 1

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)
小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)
小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT