• 关于 个人使用数据分析型基本操作 的搜索结果

问题

【教程免费下载】大数据系统构建

玄学酱 2019-12-01 22:07:49 995 浏览量 回答数 1

回答

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。   大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。   在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。   大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。   在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。   大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。   导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。   大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。   统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。   大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。   整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。   大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。   当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。   目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。   在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。   在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。   在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。   在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。   在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。 答案来源于网络

养狐狸的猫 2019-12-02 02:15:59 0 浏览量 回答数 0

回答

数据库课程设计 “数据库课程设计”是数据库系统及应用课程的后续实验课,是进一步巩固学生的数据库知识,加强学生的实际动手能力和提高学生综合素质。 一、 课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。课程设计的目的: 1. 加深对数据库原理、程序设计语言的理论知识的理解和应用水平; 2. 在理论和实验教学基础上进一步巩固已学基本理论及应用知识并加以综合提高; 3. 学会将知识应用于实际的方法,提高分析和解决问题的能力,增强动手能力; 4. 为毕业设计和以后工作打下必要基础。 二、课程设计要求 运用数据库原理的基本理论与应用知识,在微机RDBMS(SQL Server)的环境上建立一个数据库应用系统。要求把现实世界的事物及事物之间的复杂关系抽象为信息世界的实体及实体之间联系的信息模型,再转换为机器世界的数据模型和数据文件,并对数据文件实施检索、更新和控制等操作。 1. 用E-R图设计选定题目的信息模型; 2. 设计相应的关系模型,确定数据库结构; 3. 分析关系模式各属于第几范式,阐明理由; 4. 设计应用系统的系统结构图,确定系统功能; 5. 通过设计关系的主码约束、外码约束和使用CHECK实现完整性控制; 6. 为参照关系设计插入、删除、修改触发器; 7. 实现应用程序设计、编程、优化功能; 8. 对系统的各个应用程序进行集成和调试,进一步优化系统功能、改善系统用户界面完成实验内容所指定的各项要求; 9. 分析遇到的问题,总结并写出课程设计报告; 10. 自我评价 三、实验环境 开发环境VC++、C#、ASP或JAVA;ODBC/JDBC;数据库SQL Server 四、上机实现内容 1. 创建数据库的结构 2. 创建各基本表的结构 3. 编制系统各功能模块,完成数据的管理(增、删、改)及统计查询。对于程序运行界面不做考核的重点。 五、课程设计考核 1.对学生到实验室的情况进行不定时统计; 2.出勤率+课程设计报告+课程设计所开发的应用系统+其他(上机抽查和提问)=综合评定成绩。 3.课程设计结束时请将下列资料上交: (1) 课程设计报告; (2) 所开发的应用系统的源程序、安装和使用说明; (3) 将(1)(2)中的资料压缩成一个压缩包,压缩包文件的命名规则:班级+学号(末2位)+姓名(例如:计科090101王鹏晓); (4) 班长将本班每人的(3)中的压缩包刻录成光盘连同打印的课程设计报告收齐,交给任课教师。 附录﹑课程设计题目 题目1:课程设计选题管理系统(1,24) 包括三大模块:  课程设计题目维护与查询:题目的添加、修改和删除;按题目类型、名称和关键字查询以及已选与未选题目的查询;  学生信息维护与查询;  学生选题维护与管理:学生选题及查询; 具体功能细化:  前台学生选题:学生上网登录系统进行选题;  前台教师出题:  教师添加、修改和删除题目;  教师确认学生的选题;  后台管理出题和选题  添加用户及权限 题目2:书店管理系统(23) 包括四大模块:  售书(图书销售管理及销售统计,查询)  进书(通过书目,向发行商下定单订购图书)  库存(图书库存,统计)  相关查询 题目3:图书馆管理系统(11) 包括四大模块:  图书的查询  借书  还书  图书的预约 题目4:库存管理系统(8) 包括四大模块:  商品目录建立  商品入库管理  商品出库管理  商品库存查询 题目5:工资管理系统(1 人)41 包括四大模块:  系统数据初始化  员工基本信息数据的输入、修改、删除;  员工个人信息及工资表的查询;  员工工资的计算; 参考数据如下:  员工基本状况:包括员工号、员工姓名、性别、所在部门、工资级别、工资等级等。  工资级别和工资金额:包括工资等级、工资额。  企业部门及工作岗位信息:包括部门名称、工作岗位名称、工作岗位工资等。  工龄和工资金额:包括工龄及对应工资额。  公司福利表:包括福利名称、福利值。  工资信息:包括员工号、员工姓名、员工基础工资、员工岗位工资、员工工龄工资、公司福利、员工实得工资。 题目6:酒店客房管理系统 (1 人)14,26 包括四大模块:  前台操作:包括开房登记、退房结账和房状态查看  预订管理:包括预订房间、预订入住和解除预订  信息查询:包括在住客人列表、预订客人列表和历史客人列表  报表统计:包括开房记录统计、退房结账和预订房间统计  员工基本信息数据的输入、修改、删除; 参考数据如下:  住店管理:客人姓名、证件号码、房号、入住时期、预计离开日期、结账离开日期、应付金额  客人信息:姓名、性别、证件类型、证件号码、联系电话  房间信息:房号、房类型、价格、押金、房状态 预订房间  客人姓名、性别、房类型、房号、价格、证件类型、证件号码、联系电话、入住日期、预计离开日期、历史信息 题目7:旅行社管理信息系统(1 人)3 包括如下模块:  旅游团队、团队团员及旅游路线相关信息的输入  旅游团队、团队团员及旅游路线相关信息的维护(修改、浏览、删除和撤销)  旅游团队管理信息的查询(如按团队编号)  团队团员基本情况的查询(可选多种方式)  旅游路线相关信息的查询(如按线路编号)  旅游路线排行榜发布。  数据备份,更改密码。 参考数据如下:  团员信息表(路线编号,团队编号,团员编号,姓名,性别,电话,通信地址,身份证号码, 团费交否,备注)  线路信息表(路线名称,团费,简介,图形,路线编号)  团队信息表(团队编号,路线编号,团员人数,出发日期,返程日期)  旅游团队信息表(团队编号,团队负责人,团员人数,建团时间,是否出发,团费,盈亏) 密码信息(操作员,密码) 题目8:报刊订阅管理系统 (1 人)25,35 包括如下模块:  登录功能:登录统为身份验证登录。分为管理员登录和一般用户登录。分别通过不 同的用户名和密码进入报刊订阅管理界面,新的用户需要注册。  录入新信息功能:对于管理员,包括新用户信息和新报刊信息的录入功能,信息一旦 提交就存入到后台数据库中;普通用户自行注册进行可以修改个人信息。  订阅功能:用户可以订阅报刊,系统自动计算所需金额,并显示在界面上;管理员不 可订阅报刊,必须以用户身份订阅报刊。  查询功能:用户可以查询并显示自己所订阅的信息;管理员可以按人员、报刊、部门 分类查询。查询出的信息显示在界面上,并且可以预览和打印出结果。  统计功能:管理员可以按用户、部门、报刊统计报刊的销售情况,并对一些重要的订 阅信息进行统计;普通用户可以统计出自己的订阅情况,并且可以预览和打印出结果。  系统维护功能:数据的安全管理,主要是依靠管理员对数据库里的信息进行备份和恢 复,数据库备份后,如果出了什么意外可以恢复数据库到当时备份的状态,这提高了系统和 数据的安全性,有利于系统的维护 参考数据如下:  管理员表(Adminuser) :管理员名、密码。  部门表(Department) :部门号,部门名。  用户表(Users) :用户账号、密码、真实姓名、身 份证号、联系电话,联系地址,部门号(和部门表有关)等。  报刊类别表(NewspaperClass) :分类编号、 分类名称。  报刊信息表(Newspaper) :报刊代号、报刊名称、出版 报社、出版周期、季度报价、内容介绍、分类编号(和报刊类别表有关)等。  订单表(Order) :订单编号、用户编号、报刊代号、订阅份数、订阅月数等。 题目9:计算机等级考试教务管理系统(2 人)32 包括四大模块:  用户设置:对考点代码,考点名称进行设置,设置用户与密码;系统复位:即清除上一次考试数据(在之前存入历史)  报名管理: 报各库录入(姓名不能不空,之间不能有空格) 增加、删除、修改、浏览  准考证管理:准考证生成规则:xxx+yy+zz+kk,其中 XXX 为考点代码;YY 为语言代码,XX 为考场号,KK 为座位号 同一级别、语言应根据报名初始库信息按随机数生成准考证,同一考点最多可有 99*30=2970 名考生;如已生成准考证号,再重新生成准考证号,应该给予提示。 准考证打印  考务管理:考生信息查询、浏览、打印  成绩管理:成绩数据录入、接收 成绩合成(总成绩=笔试成绩*0.6+上机成绩*0.4),按大于或等于 60 合格 参考数据如下:  初始报名表(准考证号(为空) ,报名号(主键) ,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  含准考证号的报名表(准考证号(为主键) ,报名号,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  成绩表(准考证号,笔试成绩,上机成绩,总成绩) 级别语言代码表(级别语言代码,级别+语言)  用户信息表(考点代码,考点名称,用户名,密码) 题目10:人事管理系统(1 人)21 包括四大模块:  登录管理:包括操作员管理,口令设置,权限管理  人员管理:包括人事数据维护、人事信息查询和人事信息统计  工资管理  部门管理:包括部门表,职称表和年份表  查询及报表打印 参考数据如下:  人事表(编号,姓名,性别,出生日期,工作日期,部门代码,职称,婚否,简历,相片)  工资表(基本工资,岗位津贴,奖励,应发工资,水电,保险,实发工资)  部门表(代码,部门名称)  职称表(职称代码,职称名称)  年份表(年份代码,年份名称)  操作员表(操作员代码,操作员姓名,口令,部门,电话) 系统日志表(操作员代号,操作员姓名,登录时间,离开时间) 题目11:商品销售管理系统(1 人)19 包括四大模块:  用户登录  基本信息管理:包括销售情况、商品信息、库存表、员工表等信息的录入、浏览、修改、撤销、删除和查询等  商品销售管理:包括商品售出、退回和入库  盘点:包括库存盘点、当日销售盘点 参考数据如下:  商品信息表(商品编号,商品名称,品牌,型号,销售单价) 商品编号=类别代码(1 位)+品名代码(1 位)+品牌代码(2 位)+型号代码(2 位)  销售情况表(成交编号,商品编号,销售数量,总金额,销售日期,员工编号)  库存表(商品编号,供货商编号,进货日期,进货价,库存数量)  员工表(员工编号,员工姓名,性别,基本工资,职务,密码)  供货商表(供货商编号,供货商名称,所在地,联系电话)  员工资料表(员工编号,员工姓名,是否党员,简历,照片) 题目12:学生成绩管理系统(1 人)29 包括四大模块:  基本数据管理:包括院系管理,专业管理(设置院系下面的专业),班级管理(设置专业下面的班级),课程管理(设置相应专业下面的课程)  学生信息管理:包括基本信息录入、基本信息修改  学生成绩管理:包括学生成绩录入、学生成绩修改  信息查询:包括基本信息查询、成绩信息查询、学校人数统计  系统管理:用户管理、数据备份和系统帮助 参考数据如下:  院系信息(院系代码,院系名称)  院系专业信息(班级、院系代码,专业)  学生基本信息(班号,学号,姓名,性别,出生年月,籍贯,政治面貌,身份证号,入学年月,家庭地址,邮政编码,图片信息,备注)  学生成绩表(学号,课号,成绩,备注)  课程表(课号,课程名称,学期,备注)  班表(班号,班级名称)  用户信息表(用户名,密码,用户标识) 题目13:火车售票管理系统(4 人)36 包括四大模块:  售票管理  订票管理  信息查询  系统维护 参考数据如下:  车次信息表(车次,始发站,终点站,发车时间,到达时间)  订票信息表(车次,座位号,发车时期,发车时间,座位等级,票价)  车次座位等级分配及座位占用表(车次,座位号,座位等级,票价,占用标志)  用户信息表(用户名,密码,用户标识) 题目14:小型物业管理系统(1 人) 包括四大模块:  房源管理:对原始资料的录入、修改、查询和刷新。一般用户可以查询与房间有关 的统计资料;物业主管可其进行增、删、改、插等操作  租房管理:对房产出租,退租以及租房面积调整。其中物业主管可对其进行房租金 额计算和收款操作,一般用户对其查询  水电处理:根据租房资料,结合当月水、电量进行分摊,完成应收水电费。其中物 业主管对其进行计算,其他查询  交款处理:提供收款和发票打印以及交款数据查询  查询处理:对租房资料、交款资料,发票资料进行查询 参考数据如下:  房源资料(名称,面积,月租,物业,仓库)  租房资料(名称,面积,单位,月租,物业,押金,仓库)  水电资料(单位,电量,水量,电费,水费)  交费资料(收费项目,应收日期,应收金额,已收金额,未收金额,本次收款)  发票资料(单位,房租,电费,水费,物业)  权限资料(用户,密码,房源管理,租房管理,水电管理,交费管理,发票管理,系统维护) 其中系统管理员,有权进行系统维护;单位内部物业主管,有权进行物业资源调配、单元出 租,退租和收款开票操作;物业管理员,有权进行水电处理和收款处理等操行;租户代表, 有权进行种类费的查询操作 题目15:机房收费管理系统(1 人)7,34 包括四大模块:  登录模块  上机管理模块 说明:上机登记时,余额不足 3 元或卡处于挂失状态,则拒绝登记 每位同学的一次上机形成一条记录,每 36S 遍历一次上机记录表,对表中所有正上机字段为 TRUE 的记录的上机用时增加 36S,同时从上机卡表的余额减少  上机卡管理模块  充值挂失模块  查找统计模块:统计某天上机的总时数、每次上机的平均时数和机房的收入;某学 生上机的次数、上机总时数、每次上机平均时间;挂失和查询余 参考数据如下:  上机卡(卡号,姓名,专业班级,余额,状态) 状态的取值有:正常(能自费上机)  挂失上机记录(卡号,上机日期,开始时间,上机用时,正上机,管理号代码),上机用时记录学生上机时间(S);正上机是一个布尔型,为 True 表示正上机,每 36 秒刷新 其上机用时并扣除上机费用,为 False 表示上机结束。上机记录表永久保存,用于事后查询 和统计 管理员(代码,姓名,口令)  题目16:高校药房管理(1 人)31 包括四大模块:  基础数据处理:包括医生和药剂师名单的录入,修改,删除及查询  营业数据处理:包括药品进货上柜,处理划价,配药,柜存药品查询,处方综合查 询,交接班结转清。 参考数据如下:  药品信息表(货号,货名,计量单位,进货数量,进货单价,出售单价,进货日期,收货人 和供应商)  处方信息(编号,患者姓名,医生姓名,药剂师姓名,处方日期,配药日期) 处方药品信息(处方编号,药品货号,计量单位,配药数量,销售单价,已配药否)  医生名单和药剂师名单表(姓名)  题目17:考勤管理系统(2 人)40 包括四大模块:  记录每个员工每天所有进入公司的时刻和离开公司的时刻。  每天结束时自动统计当天的工作时间  每天结束时自动统计当天迟到或早退的次数。  对于弹性工作制,每天结束时自动统计当月的工时,并自动算出当月欠缺或富余的 时间  每个月末统计该月的工作时间判断是束足够  每个月末统计该月的工作天数并判断是否足够  管理人员查询并修改工作时间(特殊情况下修改)  管理人员账户管理(如设置密码等)  管理人员设定早退及迟到的条件,每个月的工作时间  管理人员设定每个月的工作日期及放假日期 参考数据如下:  员工信息(工号,姓名,年龄,入职时间,职位,性别,密码)  配置信息(上班时间小时,上班时间分钟,下班时间小时,下班时间分钟,每天工作时间)  每月统计数据表(工号,姓名,剩余的时间,迟到的次数,早退的次数,工作天数)  每天统计信息表(工号,姓名,小时,分钟,动作,时间) 其中动作指的时入或离开公司  题目18:单位房产管理系统(2 人)33,10 包括四大模块:  系统模块:完成数据库维护、系统关闭功能  物业费用模块:完成本月物业的计费、历史资料查询和财务部门接口传送数据、物 业相关费用单价设置  房屋资源模块:对房屋资源进行添加、列表显示、查询  职工信息模块:对职工进行添加、列表显示、查询以及相应部门、职务进行维护  帮助模块:对用户使用本系统提供在线帮助 参考数据如下:  职工(编号,姓名,性别,参加工作时间,行政职务,专业技术职务,评上最高行政职务时 间,评上最高专业技术职务时间,双职工姓名,现居住房号,档案号,房产证号,所在部门 编号,是否为户主)  部门(编号,部门名称) 住房级别表(编号,级别,住房标准,控制标准,级别分类)  房产情况(编号,房号,使用面积,现居住人 id,上一个居住人 id,最早居住人 ID,阳台面积)  物业费用(编号,房号,水基数,水现在值,电基数,电现在值,燃气基数,燃气现在值, 当前年份,当前月份)  价格标准(编号,水单价,电单价,燃气单价) 题目19:标准化考试系统 (2 人)15,39 功能要求: 设计一个简单的标准化考试系统,仅有单项选择题、多项选择题和判断题功能即可。 包括四大模块:  题库管理:实现试题的录入、修改、删除功能;  考试子系统:能够实现考生做题、结果自动存入到数据库中,有时间提示;  选择身份(登录)功能:系统能够记录考生输入的登录信息及交卷信息;  自动评分功能:考生交卷后能自动评分;  查看成绩功能:能够查询考生相关信息(包含成绩等)。 参考数据如下: 其它可供选择的题目: 网上教务评教系统130,127,133 16 学生日常行为评分管理系统232,110,230 网上鲜花店 38 基于BS结构的工艺品销售系统12 基于BS结构的校园二手物品交易网站 37 大学生就业管理系统201,208,234 题库及试卷管理系统 数据库原理及应用 课程设计报告 题目: 课程设计选题管理系统 所在学院: 班 级: 学 号: 姓 名: 李四 指导教师: 2011年12月 日 目录 一、 概述 二、需求分析 三、概念设计 四、逻辑设计 五、系统实现 六、小结 一、概述

玄学酱 2019-12-02 01:22:25 0 浏览量 回答数 0

海外云虚拟主机包年25元/月起

海外独享虚拟主机全面上线,助力构建海外网站,提升公司国际形象;全球有效覆盖,超高性价比;建站入门首选,助力出口,适合跨境贸易企业。

回答

  算法,数据结构是关键,另外还有组合数学,特别是集合与图论,概率论也重要。推荐买一本《算法导论》,那本书行,看起来超爽。。。基本掌握语法还不行啊,语法的超熟练掌握,不然出了错误很难调试的。。。最重要的是超牛皮的头脑啦,分析能力,逻辑推理能力很重要。ACM很好玩啦,祝你成功。。。   acm是3人一组的,以学校为单位报名的,也就是说要得到学校同意,还要有2个一起搞的。其实可能是你不知道你们学校搞acm的地方,建议你好好询问下你们学校管科技创新方面的人。建议你找几个兴趣相同的一起做,互相探讨效果好多了,团队合作也是acm要求的3大能力之一。   数据结构远远不够的,建议你看算法导论,黑书,oj的话个人觉得还是poj好,有水题有好题,而且做的人多,要解题报告什么的也好找。我们就是一些做acm的学生一起搞,也没老师,这样肯定能行的。   基础的话是语言,然后数据结构,然后算法。   ACM有三个方向:算法,数学,实现   要求三种能力:英文,自学,团队协作   简单的说,你要能读懂英文的题意描述,要有一门acm能使用的编程语言,要会数据结构,有一点数学基础,一点编程方面天赋,要有兴趣和毅力(最重要),就具有做ACM的基本条件了。   做acm我推荐c,c++也可以,java在某些情况下好用,但是大多数情况的效率和代码量都不大好,所以建议主用c++,有些题目用java   还有什么问题,可以问我啊。   不好意思,没见过用java描述的acm书籍,大多数是用伪命令,其他有的用的c,c++,老一些的用pascal。java只是用来做高精度的一些题的,个人觉得不用专门看这方面的书,java的基本部分学好就够用了。所以我还是推荐主用c++,在高精度和个别题再用java。你可以找找java描述的算法设计与分析,这个好像有   数据结构:C语言版 清华大学出版社 严蔚敏 《数据结构》   算法:清华大学出版社 王晓东 《算法设计与分析》   麻省理工大学 中译本:机械工业出版社 《算法导论》   基本上这三本书就已经足够了,建议一般水平的人先不要看算法导论,待另外两本书看的差不多的时候,再看算法导论加深理解。   另外还有很多针对性更强的书籍,不过针对性太强,这里就不多介绍了。   以上一些都是些算法方面的书,最好的方式就是做题与看书相结合,很多在线做题的网站,PKU,ZOJ很多,推荐PKU,题目比较多,参与的人比较多。做一段时间的题,然后看书,研究算法,再做题,这样进步比较快。   还有关于ACM竞赛,我有自己的一点话说。   首先说下ACM/ICPC是个团队项目,最后的参赛名额是按照学校为单位的,所以找到志同道合的队友和学校的支持是很重要的。   刚刚接触信息学领域的同学往往存在很多困惑,不知道从何入手学习,在这篇文章里,我希望能将自己不多的经验与大家分享,希望对各位有所帮助。   一、语言是最重要的基本功   无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关。亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出了更高的要求,是相当不利的。其实,笔者并不主张大家在这种场合过多地运用面向对象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会降低程序的执行效率。   接着说C和C++。许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。   而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。   C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。   通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误:   在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由于一个带缓冲一个不带,所以输出一长就混乱了。只是因为当时judge team中负责F题的人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地方的。   现在我们转入第二个方面的讨论,基础学科知识的积累。   二、以数学为主的基础知识十分重要   虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧。下面我来谈谈在竞赛中应用的数学的主要分支。   1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支,其重中之重又在于图论和组合数学,尤其是图论。   图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。   竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。   2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。   3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。计算几何的题目难度不会很大,但也永远不会成为最弱的题。   4、线性代数——对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。   5、概率论——竞赛是以黑箱来判卷的,这就是说你几乎不能动使用概率算法的念头,但这也并不是说概率就没有用。关于这一点,只有通过一定的练习才能体会。   6、初等数学与解析几何——这主要就是中学的知识了,用的不多,但是至少比高等数学多,我觉得熟悉一下数学手册上的相关内容,至少要知道在哪儿能查到,还是必要的。   7、高等数学——纯粹运用高等数学来解决的题目我接触的只有一道,但是一些题目的叙述背景往往需要和这部分有一定联系,掌握得牢固一些总归没有坏处。   以上就是竞赛所涉及的数学领域,可以说范围是相当广的。我认识的许多人去搞信息学的竞赛就是为了逼着自己多学一点数学,因为数学是一切一切的基础。   三、数据结构与算法是真正的核心   虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。   先说说数据结构。掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等——这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。   接着说说算法。算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。   常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。这其中比较难于掌握的就是动态规划,如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。   四、团队配合   通过以上的介绍大家也可以看出,信息学竞赛对于知识面覆盖的非常广,想凭一己之力全部消化这些东西实在是相当困难的,这就要求我们尽可能地发挥团队协作的精神。同组成员之间的熟练配合和默契的形成需要时间,具体的情况因成员的组成不同而不同,这里我就不再多说了。   五、练习、练习、再练习   知识的积累固然重要,但是信息学终究不是看出来的,而是练出来的,这是多少前人最深的一点体会,只有通过具体题目的分析和实践,才能真正掌握数学的使用和算法的应用,并在不断的练习中增加编程经验和技巧,提高对时间复杂度的感性认识,优化时间的分配,加强团队的配合。总之,在这里光有纸上谈兵是绝对不行的,必须要通过实战来锻炼自己。   大家一定要问,我们去哪里找题做,又如何检验程序是否正确呢。这大可不必担心,现在已经有了很多网上做题的站点,这些站点提供了大量的题库并支持在线判卷,你只需要把程序源码提交上去,马上就可以知道自己的程序是否正确,运行所使用的时间以及消耗的内存等等状况。下面我给大家推荐几个站点,笔者不建议大家在所有这些站点上做题,选择一个就可以了,因为每个站点的题都有一定的难易比例,系统地做一套题库可以使你对各种难度、各种类型的题都有所认识。   1、Ural:   Ural是中国学生对俄罗斯的Ural州立大学的简称 ,那里设立了一个Ural Online Problem Set,并且支持Online Judge。Ural的不少题目算法性和趣闻性都很强,得到了国内广大学生的厚爱。根据“信息学初学者之家”网站的统计,Ural的题目类型大概呈如下的分布:   题型   搜索   动态规划   贪心   构造   图论   计算几何   纯数学问题   数据结构   其它   所占比例   约10%   约15%   约5%   约5%   约10%   约5%   约20%   约5%   约25%   这和实际比赛中的题型分布也是大体相当的。有兴趣的朋友可以去看看。   2、UVA:   UVA代表西班牙Valladolid大学(University de Valladolid)。该大学有一个那里设立了一个PROBLEM SET ARCHIVE with ONLINE JUDGE ,并且支持ONLINE JUDGE,形式和Ural大学的题库类似。不过和Ural不同的是,UVA题目多的多,而且比较杂,而且有些题目的测试数据比较刁钻。这使得刚到那里做题的朋友往往感觉到无所适从,要么难以找到合适的题目,要么Wrong Answer了很多次以后仍然不知道错在那里。 如果说做Ural题目主要是为了训练算法,那么UVA题目可以训练全方位的基本功和一些必要的编程素质。UVA和许多世界知名大学联合办有同步网上比赛,因此那里强人无数,不过你先要使自己具有听懂他们在说什么的素质:)   3、ZOJ:   ZOJ是浙江大学建立的ONLINE JUDGE,是中国大学建立的第一个同类站点,也是最好和人气最高的一个,笔者和许多班里的同学就是在这里练习。ZOJ虽然也定位为一个英文网站,但是这里的中国学生比较多,因此让人觉得很亲切。这里目前有500多道题目,难易分配适中,且涵盖了各大洲的题目类型并配有索引,除此之外,ZOJ的JUDGE系统是几个网站中表现得比较好的一个,很少出现Wrong Answer和Presentation error混淆的情况。这里每月也办有一次网上比赛,只要是注册的用户都可以参加。   说起中国的ONLINE JUDGE,去年才开始参加ACM竞赛的北京大学现在也建立了自己的提交系统;而我们学校也是去年开始参加比赛,现在也有可能推出自己的提交系统,如果能够做成,到时候大家就可以去上面做题了。同类网站的飞速发展标志着有越来越多的同学有兴趣进入信息学的领域探索,这是一件好事,同时也意味着更激烈的竞争。

小旋风柴进 2019-12-02 01:20:20 0 浏览量 回答数 0

回答

软件工程(Software Engineering,简称为SE)是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。 在现代社会中,软件应用于多个方面。典型的软件比如有电子邮件,嵌入式系统,人机界面,办公套件,操作系统,编译器,数据库,游戏等。同时,各个行业几乎都有计算机软件的应用,比如工业,农业,银行,航空,政府部门等。这些应用促进了经济和社会的发展,使得人们的工作更加高效,同时提高了生活质量。 软件工程师是对应用软件创造软件的人们的统称,软件工程师按照所处的领域不同可以分为系统分析员,软件设计师,系统架构师,程序员,测试员等等。人们也常常用程序员来泛指各种软件工程师。 软件工程(SoftWare Engineering)的框架可概括为:目标、过程和原则。 (1)软件工程目标:生产具有正确性、可用性以及开销合宜的产品。正确性指软件产品达到预期功能的程度。可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜是指软件开发、运行的整个开销满足用户要求的程度。这些目标的实现不论在理论上还是在实践中均存在很多待解决的问题,它们形成了对过程、过程模型及工程方法选取的约束。 (2)软件工程过程:生产一个最终能满足需求且达到工程目标的软件产品所需要的步骤。软件工程过程主要包括开发过程、运作过程、维护过程。它们覆盖了需求、设计、实现、确认以及维护等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。设计活动一般包括概要设计和详细设计。概要设计建立整个软件系统结构,包括子系统、模块以及相关层次的说明、每一模块的接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。维护活动包括使用过程中的扩充、修改与完善。伴随以上过程,还有管理过程、支持过程、培训过程等。 (3)软件工程的原则是指围绕工程设计、工程支持以及工程管理在软件开发过程中必须遵循的原则。 一、软件工程概述 概念:应需而生 软件工程是一类工程。工程是将理论和知识应用于实践的科学。就软件工程而言,它借鉴了传统工程的原则和方法,以求高效地开发高质量软件。其中应用了计算机科学、数学和管理科学。计算机科学和数学用于构造模型与算法,工程科学用于制定规范、设计范型、评估成本及确定权衡,管理科学用于计划、资源、质量和成本的管理。 软件工程这一概念,主要是针对20世纪60年代“软件危机”而提出的。它首次出现在1968年NATO(北大西洋公约组织)会议上。自这一概念提出以来,围绕软件项目,开展了有关开发模型、方法以及支持工具的研究。其主要成果有:提出了瀑布模型,开发了一些结构化程序设计语言(例如PASCAL语言,Ada语言)、结构化方法等。并且围绕项目管理提出了费用估算、文档复审等方法和工具。综观60年代末至80年代初,其主要特征是,前期着重研究系统实现技术,后期开始强调开发管理和软件质量。 70年代初,自“软件工厂”这一概念提出以来,主要围绕软件过程以及软件复用,开展了有关软件生产技术和软件生产管理的研究与实践。其主要成果有:提出了应用广泛的面向对象语言以及相关的面向对象方法,大力开展了计算机辅助软件工程的研究与实践。尤其是近几年来,针对软件复用及软件生产,软件构件技术以及软件质量控制技术、质量保证技术得到了广泛的应用。目前各个软件企业都十分重视资质认证,并想通过这些工作进行企业管理和技术的提升。软件工程所涉及的要素可概括如下: 根据这一框架,可以看出:软件工程涉及了软件工程的目标、软件工程原则和软件工程活动。 目标:我的眼里只有“产品” 软件工程的主要目标是:生产具有正确性、可用性以及开销合宜的产品。正确性意指软件产品达到预期功能的程度。可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜性是指软件开发、运行的整个开销满足用户要求的程度。这些目标的实现不论在理论上还是在实践中均存在很多问题有待解决,它们形成了对过程、过程模型及工程方法选取的约束。 软件工程活动是“生产一个最终满足需求且达到工程目标的软件产品所需要的步骤”。主要包括需求、设计、实现、确认以及支持等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。设计活动一般包括概要设计和详细设计。概要设计建立整个软件体系结构,包括子系统、模块以及相关层次的说明、每一模块接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。支持活动包括修改和完善。伴随以上活动,还有管理过程、支持过程、培训过程等。 框架:四项基本原则是基石 软件工程围绕工程设计、工程支持以及工程管理,提出了以下四项基本原则: 第一,选取适宜开发范型。该原则与系统设计有关。在系统设计中,软件需求、硬件需求以及其他因素之间是相互制约、相互影响的,经常需要权衡。因此,必须认识需求定义的易变性,采用适宜的开发范型予以控制,以保证软件产品满足用户的要求。 第二,采用合适的设计方法。在软件设计中,通常要考虑软件的模块化、抽象与信息隐蔽、局部化、一致性以及适应性等特征。合适的设计方法有助于这些特征的实现,以达到软件工程的目标。 第三,提供高质量的工程支持。“工欲善其事,必先利其器”。在软件工程中,软件工具与环境对软件过程的支持颇为重要。软件工程项目的质量与开销直接取决于对软件工程所提供的支撑质量和效用。 第四,重视开发过程的管理。软件工程的管理,直接影响可用资源的有效利用,生产满足目标的软件产品,提高软件组织的生产能力等问题。因此,仅当软件过程得以有效管理时,才能实现有效的软件工程。 这一软件工程框架告诉我们,软件工程的目标是可用性、正确性和合算性;实施一个软件工程要选取适宜的开发范型,要采用合适的设计方法,要提供高质量的工程支撑,要实行开发过程的有效管理;软件工程活动主要包括需求、设计、实现、确认和支持等活动,每一活动可根据特定的软件工程,采用合适的开发范型、设计方法、支持过程以及过程管理。根据软件工程这一框架,软件工程学科的研究内容主要包括:软件开发范型、软件开发方法、软件过程、软件工具、软件开发环境、计算机辅助软件工程(CASE) 及软件经济学等。 作用:高效开发高质量软件 自从软件工程概念提出以来,经过30多年的研究与实践,虽然“软件危机”没得到彻底解决,但在软件开发方法和技术方面已经有了很大的进步。尤其应该指出的是,自80年代中期,美国工业界和政府部门开始认识到,在软件开发中,最关键的问题是软件开发组织不能很好地定义和管理其软件过程,从而使一些好的开发方法和技术都起不到所期望的作用。也就是说,在没有很好定义和管理软件过程的软件开发中,开发组织不可能在好的软件方法和工具中获益。 根据调查,中国的现状几乎和美国10多年前的情况一样,软件开发过程没有明确规定,文档不完整,也不规范,软件项目的成功往往归功于软件开发组的一些杰出个人或小组的努力。这种依赖于个别人员上的成功并不能为全组织的软件生产率和质量的提高奠定有效的基础,只有通过建立全组织的过程改善,采用严格的软件工程方法和管理,并且坚持不懈地付诸实践,才能取得全组织的软件过程能力的不断提高。 这一事实告诉我们,只有坚持软件工程的四条基本原则,既重视软件技术的应用,又重视软件工程的支持和管理,并在实践中贯彻实施,才能高效地开发出高质量的软件。

云篆 2019-12-02 01:21:35 0 浏览量 回答数 0

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

回答

一、 Afinal官方介绍:Afinal是一个Android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。详情请通过以下网址查看。Afinal 是一个android的sqlite orm 和 ioc 框架。同时封装了android中的http框架,使其更加简单易用;使用finalBitmap,无需考虑bitmap在android中加载的时候oom的问题和快速滑动的时候图片加载位置错位等问题。Afinal的宗旨是简洁,快速。约定大于配置的方式。尽量一行代码完成所有事情。项目地址:https://github.com/yangfuhai/afinal功能:一个android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。优点:功能比较全面,文档完善,代码效率比较高。缺点:没有项目demo,框架的时间比较久,代码冗余比较多(这也是无可避免的),文档比较老跟不上代码更新进度。(这个评价是其他高人评的,他自己也有写了框架。我个人觉得以前Afinal算是经典了 用的人多)。二、 xUtilsGit地址:https://github.com/wyouflf/xUtilsxUtils:可以说是Afinal的升级版。xUtils 包含了很多实用的android工具。xUtils 支持大文件上传,更全面的http请求协议支持(10种谓词),拥有更加灵活的ORM,更多的事件注解支持且不受混淆影响...xUitls 最低兼容android 2.2 (api level 8)三、 ThinkAndroid项目地址:https://github.com/white-cat/ThinkAndroid官方介绍:ThinkAndroid是一个免费的开源的、简易的、遵循Apache2开源协议发布的Android开发框架,其开发宗旨是简单、快速的进行Android应用程序的开发,包含Android mvc、简易sqlite orm、ioc模块、封装Android httpclitent的http模块,具有快速构建文件缓存功能,无需考虑缓存文件的格式,都可以非常轻松的实现缓存,它还基于文件缓存模块实现了图片缓存功能,在android中加载的图片的时候,对oom的问题,和对加载图片错位的问题都轻易解决。他还包括了一个手机开发中经常应用的实用工具类,如日志管理,配置文件管理,android下载器模块,网络切换检测等等工具优点:功能看起来比较完善。个人觉得名字起的好。缺点:从2013年就停止维护了,没有项目文档。四、 LoonAndroid官方介绍:如果你想看ui方面的东西,这里没有,想要看牛逼的效果这里也没有。这只是纯实现功能的框架,它的目标是节省代码量,降低耦合,让代码层次看起来更清晰。整个框架一部分是网上的,一部分是我改的,为了适应我的编码习惯,还有一部分像orm完全是网上的组件。在此感谢那些朋友们。 整个框架式的初衷是为了偷懒,之前都是一个功能一个jar,做项目的时候拉进去,这样对于我来说依然还是比较麻烦。最后就导致我把所有的jar做成了一个工具集合包。 有很多框架都含有这个工具集合里的功能,这些不一定都好用,因为这是根据我个人使用喜欢来实现的,如果你们有自己的想法,可以自己把架包解压了以后,源码拉出来改动下。 目前很多框架都用到了注解,除了androidannotations没有入侵我们应用的代码以外,其他的基本上都有,要么是必须继承框架里面的activity,要么是必须在activity的oncreat里面调用某个方法。 整个框架式不同于androidannotations,Roboguice等ioc框架,这是一个类似spring的实现方式。在整应用的生命周期中找到切入点,然后对activity的生命周期进行拦截,然后插入自己的功能。开源地址:https://github.com/gdpancheng/LoonAndroid功能:1自动注入框架(只需要继承框架内的application既可)2图片加载框架(多重缓存,自动回收,最大限度保证内存的安全性)3网络请求模块(继承了基本上现在所有的http请求)4 eventbus(集成一个开源的框架)5验证框架(集成开源框架)6 json解析(支持解析成集合或者对象)7 数据库(不知道是哪位写的 忘记了)8 多线程断点下载(自动判断是否支持多线程,判断是否是重定向)9 自动更新模块10 一系列工具类有点:功能多缺点:文档方面五、 KJFrameForAndroid项目地址:https://github.com/kymjs/KJFrameForAndroid官方介绍:KJFrameForAndroid 又叫KJLibrary,是一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用;KJFrameForAndroid的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。我们提倡用最少的代码,完成最多的操作,用最高的效率,完成最复杂的功能。功能:一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用; KJFrameForAndroid开发框架的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。总共分为五大模块:UILibrary,UtilsLibrary,HttpLibrary,BitmapLibrary,DBLibrary。优点:功能比较全面,代码效率很高,文档完善,有项目demo,出来的比较晚借鉴了很多大型框架经验。缺点:项目文档是html页面,查看起来很不方便,项目交流平台没多少人说话(难道大神都是不说话的?)(这两个评价是KJFrameForAndroid的作者对自己的评价,个人觉得作者是个天才。他的评价可能刚写完网上发布后写的。我在给他更新评价。因为现在已经过去了几个月一直在时不时更新。功能很全,项目文档也很全面,而且代码里注释最多 这方面这个很难得。交流平台人很多挺热闹,作者希望更热闹这样框架越来越完善。对于初学者希望看到Demo更完善)六、 dhroid官方介绍:dhroid 是基于android 平台, 极速开发框架,其核心设计目标是开发迅速、代码量少、学习简单、功能强大、轻量级、易扩展.使你更快,更好的开发商业级别应用开源地址: http://git.oschina.net/tengzhinei/dhroid功能:1.Ioc容器: (用过spring的都知道)视图注入,对象注入,接口注入,解决类依赖关系2.Eventbus: android平台事件总线框架,独创延时事件,事件管理轻松3.Dhnet: 网络http请求的解决方案,使用简单,减少代码,自带多种网络访问缓存策略4.adapter模块: 数据绑定轻松,不用写多余的adapter,天生网络支持(一行代码搞定加载,刷新问题)5.DhDb: android中sqlite的最轻量orm框架(增删改查轻松搞定)6.Perference: android自带Perference 升级版,让你的Perference更强大,更方便工具集合 JSONUtil(安全处理json),ViewUtil(数据绑定更快) ThreadWorker(异步任务工具)...优点:功能全面,有demo,作者也是为公司开发的框架。缺点:文档方面现在不是很好,就eoe上的那些。七、 SmartAndroid项目地址:http://www.aplesson.com/smartAndroid/demos官方介绍:SmartAndroid是一套给 Android开发者使用的应用程序开发框架和工具包。它提供一套丰富的标准库以及简单的接口和逻辑结构,其目的是使开发人员更快速地进行项目开发。使用 SmartAndroid可以减少代码的编写量,并将你的精力投入到项目的创造性开发上。功能:SmartAndroid 拥有全范围的类库,可以完成大多数通常需要的APP开发任务,包括: 异步网络操作相关所有功能、强大的图片处理操作、轻量级ORM数据库Sqlite库、zip操作 、动画特效、Html等解析采集、事件总线EventBus/Otto、Gson(Json)、AQuery、主流所有UI控件(例如:ActionbarSherlock,SlidingMenu,BottomView,Actionbar,DragListView等10多种UI库)等。优点:功能非常全,超出你索要、文档完善(作者很全面,官方网站是web响应式网站,框架里功能有UI各种特效应该最全了,一直更新中)缺点:jar包大点?(功能多不可避免,不是问题),在线文档(随响应式的手机访问也方便,但是网速慢就不好了,页面打开不是很流畅)八、 andBase官方介绍:andbase是为Android开发者量身打造的一款开源类库产品开源地址:https://code.jd.com/zhaoqp2010_m/andbase功能:1.andbase中包含了大量的开发常用手段。如网络下载,多线程与线程池的管理,数据库ORM,图片缓存管理,图片文件下载上传,Http请求工具,常用工具类(字符串,日期,文件处理,图片处理工具类等),能够使您的应用在团队开发中减少冗余代码,很大的提高了代码的维护性与开发高效性,能很好的规避由于开发疏忽而导致常犯的错误。2.andbase封装了大量的常用控件。如list分页,下拉刷新,图片轮播,表格,多线程下载器,侧边栏,图片上传,轮子选择,图表,Tab滑动,日历选择器等。3.强大的AbActivity,您没有理由不继承它。继承它你能够获得一个简单强大可设置的操作栏,以及一系列的简单调用,如弹出框,提示框,进度框,副操作栏等。4.提供效率较高图片缓存管理策略,使内存大幅度节省,利用率提高,效率提高。程序中要管理大量的图片资源,andbase提供简单的方法,几步完成下载与显示,并支持缩放,裁剪,缓存功能。5.封装了大量常见工具类。包括日期,字符,文件,图片等各种处理函数,多而全。6.用andbase大量减少handler的使用,而采用回调函数,代码更整洁。handler会产生大量代码,并且不好维护,andbase对handler进行了封装。7.简单轻量支持注解自动建表的ORM框架(支持一/多对多的关联操作)。写sql,建表,工作量大,andbase提供更傻瓜异步增删改查工具类。8.异步请求http框架,网络请求标准化,支持文件上传下载,get,post,进度显示。包含了异步与http请求的工具类,实用。9.热情的支持群体。优点:功能很全,demo做的好 、API文档完善、接近完美缺点:希望文档更详细些。九、 AndroidAnnotations项目地址:https://github.com/excilys/androidannotations功能:完全注解框架,一切皆为注解:声明控件,绑定控件,设置监听,setcontentview,长按事件,异步线程,全部通过注解实现。优点:完全的注解,使开发起来更加便利,程序员写的代码也更少。缺点:文档是全英文的加上功能比较少没有具体研究,由于一切都是注解,感觉效率不高,不过根据官方介绍说并不是使用的反射加载,所以效率比一般注解高很多。十、 volley项目地址: https://github.com/smanikandan14/Volley-demo功能:Volley是Android平台上的网络通信库,能使网络通信更快,更简单,更健壮异步加载网络图片、网络数据优点:Google官方推荐,请看去年的开发者大会介绍。缺点:功能比较少,只有网络数据加载和网络图片加载十一、 android-async-http项目地址:https://github.com/loopj/android-async-http文档介绍:http://loopj.com/android-async-http/ (1) 在匿名回调中处理请求结果 (2) 在UI线程外进行http请求 (3) 文件断点上传 (4) 智能重试 (5) 默认gzip压缩 (6) 支持解析成Json格式 (7) 可将Cookies持久化到SharedPreferences 有点:很简单很实用缺点:功能比较少, (只是针对的功能不是什么缺点)最后来个总结吧: 以上的开发框架网上都可以下载源码,也有demo实例的。当然我没分析和对比框架的效率性能,但是都非常实用,其作者大部分是个人,都是些牛人或天才。你可以直接使用,也可以把有用跳出来用,至少有很多使用工具。如果有发现Bug,作者希望把bug交给他。 Afinal 和 xUtils简单实用但是demo和更新的问题。 KJFrameForAndroid 算是新出的,功能也多,效率也应该好,代码也注释多 用起来也很方便。Dhroid 作者自己公司的框架,也可以直接请教。SmartAndroid 强劲的框架功能俱全。andBase 出来早各个方面算是完整的吧。转自:http://blog.csdn.net/buddyuu/article/details/40503471

元芳啊 2019-12-02 00:55:54 0 浏览量 回答数 0

问题

性能优化总结:CPU和Load、NIO以及多线程:报错

kun坤 2020-06-07 21:31:24 0 浏览量 回答数 1

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

回答

如今前端市场一片混乱,典型的金字塔形状,前端从业人员很多,但高级开发及以上却非常稀缺。前端招聘也是所有猎头及 HR 的痛点所在,在这种混乱的环境中,如何让自己突出重围?需要实力,也需要技巧。这里的技巧指的就是如何写一份好的前端简历 **# 注意事项 ** 开发者最好像做项目一样维护一份自己的简历,需要的时候直接丢出去。很多同学跳槽一次,抓耳捞腮的写一次,简历质量可想而知。可以每做一个项目或者每有一段收获都整理一下,浓缩在简历里。实际写简历中可以按照以下方式写2-3家,项目经验也一样可以多写几个。不管工作经历还是项目经验都不需要过于冗余,多写精品。真正的一份好技术简历,不是在于内容有多少,而是你的内容到底是否有逼格!对于已经毕业 2 年以上的,学生时期的经历(学生会主席、拿过什么什么奖学金)就可以不用写了。 简历页数:2页最佳;文件格式:word和pdf,推荐pdf;文件名字:李四-高级前端开发-3年.pdf;简历照片:不要附加照片;文档字体:通常来说选用宋体5号字,正文行间距在1.2左右;联系方式:不要在简历中写自己的微信号、QQ号。联系方式只留下一个邮箱和手机号即可。邮箱最好是126、163、outlook或者gmail,不建议使用qq邮箱; # 注意用词 简历中对某项技术的描述一般有以下几个词语: 了解:理解基本概念,有过简单的使用经验 —— “用过” 熟悉:基本操作很熟练,有过密集的使用经验 ——“用得不少” 精通:深入理解其底层原理及各种实现方式,并有丰富的项目经验——“有研究” 切记准确用词,慎用“精通”!! # 标题 如:李四的个人简历 # 个人信息 姓名:李四 性别:男 毕业院校:xx学校/xxx专业 工作年限:3年 应聘职位:前端开发 GitHub地址:https://github.com/xxx(此处可选其他技术站点) 联系邮箱:xxx@163.com # 专业技能 3年web开发设计经验,具有多端(H5,Native App,微信小程序,Nodejs服务端)开发能力; 熟练原生JavaScript语言并有开发公用组件的经验,对于主流框架Vue.js及React.js有3个以上大型项目开发经验; 熟悉性能优化,对于webpack等前端工程化解决方案有较深的涉及; 熟悉产品设计研发上线以及版本迭代流程和项目管理流程; ..... 总之要多写自己的强项! # 工作经历 如: 2016/09 - 至今 XXX公司 | WEB高级前端 岗位职责: 负责前端项目需求分析,技术选型,项目架构搭建和整体业务流程把控; 负责项目中所以公用代码的封装及优化,制定规范的代码结构; 配合后端完成项目中测试环境及线上环境的数据完整性; 2014/09 - 2016/09 XXX公司 | WEB中级前端 岗位职责: 负责前端项目需求分析,技术选型,项目架构搭建和整体业务流程把控; 负责项目中所以公用代码的封装及优化,制定规范的代码结构; 配合后端完成项目中测试环境及线上环境的数据完整性; 2011/09 - 2014/09 XXX公司 | WEB初级前端 岗位职责: 负责前端项目需求分析,技术选型,项目架构搭建和整体业务流程把控; 负责项目中所以公用代码的封装及优化,制定规范的代码结构; 配合后端完成项目中测试环境及线上环境的数据完整性; # 自我评价 如:有三年的前端开发经验,能快速对接产品需求、前后端工作。对web前端有很大的兴趣并有独立自主学习的能力,具备独立分析并解决问题的能力。业余时间会自主钻研前端技术丰富自己的前端技能栈。代码强迫症患者,注重团队合作,具有良好的沟通能力。

小柯卡力多 2019-12-02 03:21:41 0 浏览量 回答数 0

回答

HTTPS基本原理 一、http为什么不安全。 http协议没有任何的加密以及身份验证的机制,非常容易遭遇窃听、劫持、篡改,因此会造成个人隐私泄露,恶意的流量劫持等严重的安全问题。 国外很多网站都支持了全站https,国内方面目前百度已经在年初完成了搜索的全站https,其他大型的网站也在跟进中,百度最先完成全站https的最大原因就是百度作为国内最大的流量入口,劫持也必然是首当其冲的,造成的有形的和无形的损失也就越大。关于流量劫持问题,我在另一篇文章中也有提到,基本上是互联网企业的共同难题,https也是目前公认的比较好的解决方法。但是https也会带来很多性能以及访问速度上的牺牲,很多互联网公司在做大的时候都会遇到这个问题:https成本高,速度又慢,规模小的时候在涉及到登录和交易用上就够了,做大以后遇到信息泄露和劫持,想整体换,代价又很高。 2、https如何保证安全 要解决上面的问题,就要引入加密以及身份验证的机制。 这时我们引入了非对称加密的概念,我们知道非对称加密如果是公钥加密的数据私钥才能解密,所以我只要把公钥发给你,你就可以用这个公钥来加密未来我们进行数据交换的秘钥,发给我时,即使中间的人截取了信息,也无法解密,因为私钥在我这里,只有我才能解密,我拿到你的信息后用私钥解密后拿到加密数据用的对称秘钥,通过这个对称密钥来进行后续的数据加密。除此之外,非对称加密可以很好的管理秘钥,保证每次数据加密的对称密钥都是不相同的。 但是这样似乎还不够,如果中间人在收到我的给你公钥后并没有发给你,而是自己伪造了一个公钥发给你,这是你把对称密钥用这个公钥加密发回经过中间人,他可以用私钥解密并拿到对称密钥,此时他在把此对称密钥用我的公钥加密发回给我,这样中间人就拿到了对称密钥,可以解密传输的数据了。为了解决此问题,我们引入了数字证书的概念。我首先生成公私钥,将公钥提供给相关机构(CA),CA将公钥放入数字证书并将数字证书颁布给我,此时我就不是简单的把公钥给你,而是给你一个数字证书,数字证书中加入了一些数字签名的机制,保证了数字证书一定是我给你的。 所以综合以上三点: 非对称加密算法(公钥和私钥)交换秘钥 + 数字证书验证身份(验证公钥是否是伪造的) + 利用秘钥对称加密算法加密数据 = 安全 3、https协议简介 为什么是协议简介呢。因为https涉及的东西实在太多了,尤其是一些加密算法,非常的复杂,对于这些算法面的东西就不去深入研究了,这部分仅仅是梳理一下一些关于https最基本的原理,为后面分解https的连接建立以及https优化等内容打下理论基础。 3.1 对称加密算法 对称加密是指加密和解密使用相同密钥的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信至关重要。 对称加密又分为两种模式:流加密和分组加密。 流加密是将消息作为位流对待,并且使用数学函数分别作用在每一个位上,使用流加密时,每加密一次,相同的明文位会转换成不同的密文位。流加密使用了密钥流生成器,它生成的位流与明文位进行异或,从而生成密文。现在常用的就是RC4,不过RC4已经不再安全,微软也建议网络尽量不要使用RC4流加密。 分组加密是将消息划分为若干位分组,这些分组随后会通过数学函数进行处理,每次一个分组。假设需要加密发生给对端的消息,并且使用的是64位的分组密码,此时如果消息长度为640位,就会被划分成10个64位的分组,每个分组都用一系列数学公式公式进行处理,最后得到10个加密文本分组。然后,将这条密文消息发送给对端。对端必须拥有相同的分组密码,以相反的顺序对10个密文分组使用前面的算法解密,最终得到明文的消息。比较常用的分组加密算法有DES、3DES、AES。其中DES是比较老的加密算法,现在已经被证明不安全。而3DES是一个过渡的加密算法,相当于在DES基础上进行三重运算来提高安全性,但其本质上还是和DES算法一致。而AES是DES算法的替代算法,是现在最安全的对称加密算法之一。分组加密算法除了算法本身外还存在很多种不同的运算方式,比如ECB、CBC、CFB、OFB、CTR等,这些不同的模式可能只针对特定功能的环境中有效,所以要了解各种不同的模式以及每种模式的用途。这个部分后面的文章中会详细讲。 对称加密算法的优、缺点: 优点:算法公开、计算量小、加密速度快、加密效率高。 缺点:(1)交易双方都使用同样钥匙,安全性得不到保证; (2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。 (3)能提供机密性,但是不能提供验证和不可否认性。 3.2 非对称加密算法 在非对称密钥交换算法出现以前,对称加密一个很大的问题就是不知道如何安全生成和保管密钥。非对称密钥交换过程主要就是为了解决这个问题,使得对称密钥的生成和使用更加安全。 密钥交换算法本身非常复杂,密钥交换过程涉及到随机数生成,模指数运算,空白补齐,加密,签名等操作。 常见的密钥交换算法有RSA,ECDHE,DH,DHE等算法。涉及到比较复杂的数学问题,下面就简单介绍下最经典的RSA算法。RSA:算法实现简单,诞生于1977年,历史悠久,经过了长时间的破解测试,安全性高。缺点就是需要比较大的素数也就是质数(目前常用的是2048位)来保证安全强度,很消耗CPU运算资源。RSA是目前唯一一个既能用于密钥交换又能用于证书签名的算法。我觉得RSA可以算是最经典的非对称加密算法了,虽然算法本身都是数学的东西,但是作为最经典的算法,我自己也花了点时间对算法进行了研究,后面会详细介绍。 非对称加密相比对称加密更加安全,但也存在两个明显缺点: 1,CPU计算资源消耗非常大。一次完全TLS握手,密钥交换时的非对称解密计算量占整个握手过程的90%以上。而对称加密的计算量只相当于非对称加密的0.1%,如果应用层数据也使用非对称加解密,性能开销太大,无法承受。 2,非对称加密算法对加密内容的长度有限制,不能超过公钥长度。比如现在常用的公钥长度是2048位,意味着待加密内容不能超过256个字节。 所以公钥加密(极端消耗CPU资源)目前只能用来作密钥交换或者内容签名,不适合用来做应用层传输内容的加解密。 3.3 身份认证 https协议中身份认证的部分是由数字证书来完成的,证书由公钥、证书主体、数字签名等内容组成,在客户端发起SSL请求后,服务端会将数字证书发给客户端,客户端会对证书进行验证(验证查看这张证书是否是伪造的。也就是公钥是否是伪造的),并获取用于秘钥交换的非对称密钥(获取公钥)。 数字证书有两个作用: 1,身份授权。确保浏览器访问的网站是经过CA验证的可信任的网站。 2,分发公钥。每个数字证书都包含了注册者生成的公钥(验证确保是合法的,非伪造的公钥)。在SSL握手时会通过certificate消息传输给客户端。 申请一个受信任的数字证书通常有如下流程: 1,终端实体(可以是一个终端硬件或者网站)生成公私钥和证书请求。 2,RA(证书注册及审核机构)检查实体的合法性。如果个人或者小网站,这一步不是必须的。 3,CA(证书签发机构)签发证书,发送给申请者。 4,证书更新到repository(负责数字证书及CRL内容存储和分发),终端后续从repository更新证书,查询证书状态等。 数字证书验证: 申请者拿到CA的证书并部署在网站服务器端,那浏览器发起握手接收到证书后,如何确认这个证书就是CA签发的呢。怎样避免第三方伪造这个证书。答案就是数字签名(digital signature)。数字签名是证书的防伪标签,目前使用最广泛的SHA-RSA(SHA用于哈希算法,RSA用于非对称加密算法)数字签名的制作和验证过程如下: 1,数字签名的签发。首先是使用哈希函数对待签名内容进行安全哈希,生成消息摘要,然后使用CA自己的私钥对消息摘要进行加密。 2,数字签名的校验。使用CA的公钥解密签名,然后使用相同的签名函数对待签名证书内容进行签名并和服务端数字签名里的签名内容进行比较,如果相同就认为校验成功。 需要注意的是: 1)数字签名签发和校验使用的密钥对是CA自己的公私密钥,跟证书申请者提交的公钥没有关系。 2)数字签名的签发过程跟公钥加密的过程刚好相反,即是用私钥加密,公钥解密。 3)现在大的CA都会有证书链,证书链的好处一是安全,保持根CA的私钥离线使用。第二个好处是方便部署和撤销,即如果证书出现问题,只需要撤销相应级别的证书,根证书依然安全。 4)根CA证书都是自签名,即用自己的公钥和私钥完成了签名的制作和验证。而证书链上的证书签名都是使用上一级证书的密钥对完成签名和验证的。 5)怎样获取根CA和多级CA的密钥对。它们是否可信。当然可信,因为这些厂商跟浏览器和操作系统都有合作,它们的公钥都默认装到了浏览器或者操作系统环境里。 3.4 数据完整性验证 数据传输过程中的完整性使用MAC算法来保证。为了避免网络中传输的数据被非法篡改,SSL利用基于MD5或SHA的MAC算法来保证消息的完整性。 MAC算法是在密钥参与下的数据摘要算法,能将密钥和任意长度的数据转换为固定长度的数据。发送者在密钥的参与下,利用MAC算法计算出消息的MAC值,并将其加在消息之后发送给接收者。接收者利用同样的密钥和MAC算法计算出消息的MAC值,并与接收到的MAC值比较。如果二者相同,则报文没有改变;否则,报文在传输过程中被修改,接收者将丢弃该报文。 由于MD5在实际应用中存在冲突的可能性比较大,所以尽量别采用MD5来验证内容一致性。SHA也不能使用SHA0和SHA1,中国山东大学的王小云教授在2005年就宣布破解了 SHA-1完整版算法。微软和google都已经宣布16年及17年之后不再支持sha1签名证书。MAC算法涉及到很多复杂的数学问题,这里就不多讲细节了。 专题二--【实际抓包分析】 抓包结果: fiddler: wireshark: 可以看到,百度和我们公司一样,也采用以下策略: (1)对于高版本浏览器,如果支持 https,且加解密算法在TLS1.0 以上的,都将所有 http请求重定向到 https请求 (2)对于https请求,则不变。 【以下只解读https请求】 1、TCP三次握手 可以看到,我们访问的是 http://www.baidu.com/ , 在初次建立 三次握手的时候, 用户是去 连接 8080端口的(因为公司办公网做了代理,因此,我们实际和代理机做的三次握手,公司代理机再帮我们去连接百度服务器的80端口) 2、CONNECT 建立 由于公司办公网访问非腾讯域名,会做代理,因此,在进行https访问的时候,我们的电脑需要和公司代理机做 " CONNECT " 连接(关于 " CONNECT " 连接, 可以理解为虽然后续的https请求都是公司代理机和百度服务器进行公私钥连接和对称秘钥通信,但是,有了 " CONNECT " 连接之后,可以认为我们也在直接和百度服务器进行公私钥连接和对称秘钥通信。 ) fiddler抓包结果: CONNECT之后, 后面所有的通信过程,可以看做是我们的机器和百度服务器在直接通信 3、 client hello 整个 Secure Socket Layer只包含了: TLS1.2 Record Layer内容 (1)随机数 在客户端问候中,有四个字节以Unix时间格式记录了客户端的协调世界时间(UTC)。协调世界时间是从1970年1月1日开始到当前时刻所经历的秒数。在这个例子中,0x2516b84b就是协调世界时间。在他后面有28字节的随机数( random_C ),在后面的过程中我们会用到这个随机数。 (2)SID(Session ID) 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 (3) 密文族(Cipher Suites): RFC2246中建议了很多中组合,一般写法是"密钥交换算法-对称加密算法-哈希算法,以“TLS_RSA_WITH_AES_256_CBC_SHA”为例: (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 浏览器支持的加密算法一般会比较多,而服务端会根据自身的业务情况选择比较适合的加密组合发给客户端。(比如综合安全性以及速度、性能等因素) (4) Server_name扩展:( 一般浏览器也支持 SNI(Server Name Indication)) 当我们去访问一个站点时,一定是先通过DNS解析出站点对应的ip地址,通过ip地址来访问站点,由于很多时候一个ip地址是给很多的站点公用,因此如果没有server_name这个字段,server是无法给与客户端相应的数字证书的,Server_name扩展则允许服务器对浏览器的请求授予相对应的证书。 还有一个很好的功能: SNI(Server Name Indication)。这个的功能比较好,为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。一句话简述它的工作原理就是,在连接到服务器建立SSL连接之前先发送要访问站点的域名(Hostname),这样服务器根据这个域名返回一个合适的CA证书。目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8已经内置这一功能,据说新版的nginx也支持SNI。) 4、 服务器回复(包括 Server Hello, Certificate, Certificate Status) 服务器在收到client hello后,会回复三个数据包,下面分别看一下: 1)Server Hello 1、我们得到了服务器的以Unix时间格式记录的UTC和28字节的随机数 (random_S)。 2、Seesion ID,服务端对于session ID一般会有三种选择 (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) : 1)恢复的session ID:我们之前在client hello里面已经提到,如果client hello里面的session ID在服务端有缓存,服务端会尝试恢复这个session; 2)新的session ID:这里又分两种情况,第一种是client hello里面的session ID是空值,此时服务端会给客户端一个新的session ID,第二种是client hello里面的session ID此服务器并没有找到对应的缓存,此时也会回一个新的session ID给客户端; 3)NULL:服务端不希望此session被恢复,因此session ID为空。 3、我们记得在client hello里面,客户端给出了21种加密族,而在我们所提供的21个加密族中,服务端挑选了“TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256”。 (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 这就意味着服务端会使用ECDHE-RSA算法进行密钥交换,通过AES_128_GCM对称加密算法来加密数据,利用SHA256哈希算法来确保数据完整性。这是百度综合了安全、性能、访问速度等多方面后选取的加密组合。 2)Certificate 在前面的https原理研究中,我们知道为了安全的将公钥发给客户端,服务端会把公钥放入数字证书中并发给客户端(数字证书可以自签发,但是一般为了保证安全会有一个专门的CA机构签发),所以这个报文就是数字证书,4097 bytes就是证书的长度。 我们打开这个证书,可以看到证书的具体信息,这个具体信息通过抓包报文的方式不是太直观,可以在浏览器上直接看。 (点击 chrome 浏览器 左上方的 绿色 锁型按钮) 3)Server Hello Done 我们抓的包是将 Server Hello Done 和 server key exchage 合并的包: 4)客户端验证证书真伪性 客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证包括如下: 证书链的可信性trusted certificate path,方法如前文所述; 证书是否吊销revocation,有两类方式离线CRL与在线OCSP,不同的客户端行为会不同; 有效期expiry date,证书是否在有效时间范围; 域名domain,核查证书域名是否与当前的访问域名匹配,匹配规则后续分析; 5)秘钥交换 这个过程非常复杂,大概总结一下: (1)首先,其利用非对称加密实现身份认证和密钥协商,利用非对称加密,协商好加解密数据的 对称秘钥(外加CA认证,防止中间人窃取 对称秘钥) (2)然后,对称加密算法采用协商的密钥对数据加密,客户端和服务器利用 对称秘钥 进行通信; (3)最后,基于散列函数验证信息的完整性,确保通信数据不会被中间人恶意篡改。 此时客户端已经获取全部的计算协商密钥需要的信息:两个明文随机数random_C和random_S与自己计算产生的Pre-master(由客户端和服务器的 pubkey生成的一串随机数),计算得到协商对称密钥; enc_key=Fuc(random_C, random_S, Pre-Master) 6)生成 session ticket 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 后续建立新的https会话,就可以利用 session ID 或者 session Tickets , 对称秘钥可以再次使用,从而免去了 https 公私钥交换、CA认证等等过程,极大地缩短 https 会话连接时间。 7) 利用对称秘钥传输数据 【半分钟后,再次访问百度】: 有这些大的不同: 由于服务器和浏览器缓存了 Session ID 和 Session Tickets,不需要再进行 公钥证书传递,CA认证,生成 对称秘钥等过程,直接利用半分钟前的 对称秘钥 加解密数据进行会话。 1)Client Hello 2)Server Hello

玄学酱 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

1,架构师是什么?要想往架构师的方向发展首先要知道架构师是什么?架构师是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。一个架构师得需要足够的想像力,能把各种目标需求进行不同维度的扩展,为目标客户提供更为全面的需求清单。架构师在软件开发的整个过程中起着很重要的作用。说的详细一些,架构师就是确认和评估系统需求,给出开发规范,搭建系统实现的核心构架,并澄清技术细节、扫清主要难点的技术人员。主要着眼于系统的“技术实现”。2,架构师的任务架构师的主要任务不是从事具体的软件程序的编写,而是从事更高层次的开发构架工作。他必须对开发技术非常了解,并且需要有良好的组织管理能力。可以这样说,一个架构师工作的好坏决定了整个软件开发项目的成败。在成为Java架构师之前,应当先成为Java工程师。熟练使用各种框架,并知道它们实现的原理。jvm虚拟机原理、调优,懂得jvm能让你写出性能更好的代码;池技术,什么对象池,连接池,线程池……Java反射技术,写框架必备的技术,遇到有严重的性能问题,替代方案java字节码技术;nio,没什么好说的,值得注意的是"直接内存"的特点,使用场景;java多线程同步异步;java各种集合对象的实现原理,了解这些可以让你在解决问题时选择合适的数据结构,高效的解决问题,比如hashmap的实现原理,好多五年以上经验的人都弄不清楚,还有为什扩容时有性能问题?不弄清楚这些原理,就写不出高效的代码,还会认为自己做的很对;总之一句话,越基础的东西越重要,很多人认为自己会用它们写代码了,其实仅仅是知道如何调用api而已,离会用还差的远。如果你立志做架构,首先打好基础,从最底层开始。然后发展到各种技术和语言,什么都要懂两点,要全面且不肤浅。为什么不是懂一点?你要看得透彻,必须尽量深入一些。别人懂一点,你要做架构师,必须再多懂一点。比如你发现golang很流行,别人可能写一个helloworld就说自己玩过golang,但你至少要尝试写一个完整的应用。不肯下苦功,如何高人一头?另外你要非常深入地了解至少一门语言,如果你的目标是java,就学到极致,作为敲门砖,先吃饱了才能谈理想。3,架构师都是从码农过来的而Java学到极致势必涉及到设计模式,算法和数据结构,多线程,文件及网络IO,数据库及ORM,不一而足。这些概念放之一切语言都适用。先精一门,为全面且不肤浅打基础。另外就是向有经验的架构师学习,和小伙伴们讨论辩论争论。其实最重要的能力就是不断学习。在思考新的技术是否能更好地解决你们遇到的问题之前,你首先得知道并了解新的技术。架构师都是从码农过来的,媳妇熬成婆。千万不要成为不写代码的架构师,有些公司专门产不写技术的架构师。所谓架构师,只是功底深厚的程序员而已。个人认为应该扎扎实实学习基础知识,学习各种规范,架构,需要广泛的知识面,懂的东西越多视野越开阔,设计的东西当然会越好越全面。成为架构师需要时间的积累的,不但要知其然还要知其所以然。平时的一点一滴你感觉不到特别用处,但某天你会发现所有东西都没有白学的。4,架构师知识体系下面是我总结多年经验开发的架构师知识体系一、分布式架构架构分布式的英文( Distributed computing 分布式计算技术)的应用和工具,成熟目前的技术包括 J2EE,CORBA 和 .NET(DCOM),这些技术牵扯的内容非常广,相关的书籍也非常多。本文不介绍这些技术的内容,也没有涉及这些技术的细节,只是从各种分布式系统平台产生的背景和在软件开发中应用的情况来探讨它们的主要异同。分布式系统是一个古老而宽泛的话题,而近几年因为“大数据”概念的兴起,又焕发出了新的青春与活力。除此之外,分布式系统也是一门理论模型与工程技法。并重的学科内容相比于机器学习这样的研究方向,学习分布式系统的同学往往会感觉:“入门容易,深入难”的确,学习分布式系统几乎不需要太多数学知识。分布式系统是一个复杂且宽泛的研究领域,学习一两门在线课程,看一两本书可能都是不能完全覆盖其所有内容的。总的来说,分布式系统要做的任务就是把多台机器有机的组合,连接起来,让其协同完成一件任务,可以是计算任务,也可以是存储任务。如果一定要给近些年的分布式系统研究做一个分类的话,我个人认为大概可以包括三大部分:分布式存储系统分布式计算系统分布式管理系统二、微服务当前微服务很热,大家都号称在使用微服务架构,但究竟什么是微服务架构?微服务架构是不是发展趋势?对于这些问题,我们都缺乏清楚的认识。为解决单体架构下的各种问题,微服务架构应运而生。与其构建一个臃肿庞大,难以驯服的怪兽,还不如及早将服务拆分。微服务的核心思想便是服务拆分与解耦,降低复杂性。微服务强调将功能合理拆解,尽可能保证每个服务的功能单一,按照单一责任原则(Single Responsibility Principle)明确角色。将各个服务做轻,从而做到灵活,可复用,亦可根据各个服务自身资源需求,单独布署,单独作横向扩展。微服务架构(Microservice Architecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。你可以将其看作是在架构层次而非获取服务的类上应用很多 SOLID 原则。微服务架构是个很有趣的概念,它的主要作用是将功能分解到离散的各个服务当中,从而降低系统的耦合性,并提供更加灵活的服务支持。概念:把一个大型的单个应用程序和服务拆分为数个甚至数十个的支持微服务,它可扩展单个组件而不是整个的应用程序堆栈,从而满足服务等级协议。定义:围绕业务领域组件来创建应用,这些应用可独立地进行开发,管理和迭代在分散的组件中使用云架构和平台式部署,管理和服务功能,使产品交付变得更加简单。本质:用一些功能比较明确,业务比较精练的服务去解决更大,更实际的问题。三、源码分析从字面意义上来讲,源文件的英文指一个文件,指源代码的集合。源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。源码分析是一种临界知识,掌握了这种临界知识,能不变应万变,源码分析对于很多人来说很枯燥,生涩难懂。源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心。我认为是阅读源码的最核心驱动力我见到绝大多数程序员,对学习的态度,基本上就是这几个层次(很偏激哦):1,只关注项目本身,不懂就百度一下。2,除了做好项目,还会阅读和项目有关的技术书籍,看维基百科。3,除了阅读和项目相关的书外,还会阅读IT行业的书,比如学的Java的时,还会去了解函数语言,如LISP。4,找一些开源项目看看,大量试用第三方框架,还会写写演示。5,阅读基础框架,J2EE 规范,调试服务器内核。大多数程序都是第1种,到第5种不光需要浓厚的兴趣,还需要勇气:?我能读懂吗其实,你能够读懂的耐心,真的很重要。因为你极少看到阅读源码的指导性文章或书籍,也没有人要求或建议你读。你读的过程中经常会卡住,而一卡主可能就陷进了迷宫这时,你需要做的,可能是暂时中断一下,再从外围看看它:如API结构,框架的设计图。四、工具使用工欲善其事必先利其器,工具对 Java 的的程序员的重要性不言而喻现在有很多库,实用工具和程序任的 Java 的开发人员选择。下图列出的工具都是程序员必不可少的工具五、性能优化不管是应付前端面试还是改进产品体验,性能优化都是躲不开的话题。优化的目的是让用户有“快”的感受,那如何让用户感受到快呢?加载速度真的很快,用户打开输入网址按下回车立即看到了页面加载速度并没有变快,但用户感觉你的网站很快性能优化取决于多个因素,包括垃圾收集,虚拟机和底层操作系统(OS)设置。有多个工具可供开发人员进行分析和优化时使用,你可以通过阅读爪哇工具的源代码优化和分析来学习和使用它们。必须要明白的是,没有两个应用程序可以使用相同的优化方式,也没有完美的优化的 Java 应用程序的参考路径。使用最佳实践并且坚持采用适当的方式处理性能优化。想要达到真正最高的性能优化,你作为一个 Java 的开发人员,需要对 Java 的虚拟机(JVM)和底层操作系统有正确的理解。性能优化,简而言之,就是在不影响系统运行正确性的前提下,使之运行地更快,完成特定功能所需的时间更短。性能问题永远是永恒的主题之一,而优化则更需要技巧。Java程序员如何学习才能快速入门并精通呢?当真正开始学习的时候难免不知道从哪入手,导致效率低下影响继续学习的信心。但最重要的是不知道哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以有一套实用的视频课程用来跟着学习是非常有必要的。为了让学习变得轻松、高效,今天给大家免费分享一套阿里架构师传授的一套教学资源。帮助大家在成为架构师的道路上披荆斩棘。这套视频课程详细讲解了(Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构)等这些成为架构师必备的内容!而且还把框架需要用到的各种程序进行了打包,根据基础视频可以让你轻松搭建分布式框架环境,像在企业生产环境一样进行学习和实践。

auto_answer 2019-12-02 01:51:27 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

问题

为什么使用消息队列?【Java问答学堂】17期

剑曼红尘 2020-05-13 20:39:29 1 浏览量 回答数 1

回答

面试官心理分析 其实面试官主要是想看看: 第一,你知不知道你们系统里为什么要用消息队列这个东西? 不少候选人,说自己项目里用了 Redis、MQ,但是其实他并不知道自己为什么要用这个东西。其实说白了,就是为了用而用,或者是别人设计的架构,他从头到尾都没思考过。 没有对自己的架构问过为什么的人,一定是平时没有思考的人,面试官对这类候选人印象通常很不好。因为面试官担心你进了团队之后只会木头木脑的干呆活儿,不会自己思考。 第二,你既然用了消息队列这个东西,你知不知道用了有什么好处&坏处? 你要是没考虑过这个,那你盲目弄个 MQ 进系统里,后面出了问题你是不是就自己溜了给公司留坑?你要是没考虑过引入一个技术可能存在的弊端和风险,面试官把这类候选人招进来了,基本可能就是挖坑型选手。就怕你干 1 年挖一堆坑,自己跳槽了,给公司留下无穷后患。 第三,既然你用了 MQ,可能是某一种 MQ,那么你当时做没做过调研? 你别傻乎乎的自己拍脑袋看个人喜好就瞎用了一个 MQ,比如 Kafka,甚至都从没调研过业界流行的 MQ 到底有哪几种。每一个 MQ 的优点和缺点是什么。每一个 MQ 没有绝对的好坏,但是就是看用在哪个场景可以扬长避短,利用其优势,规避其劣势。 如果是一个不考虑技术选型的候选人招进了团队,leader 交给他一个任务,去设计个什么系统,他在里面用一些技术,可能都没考虑过选型,最后选的技术可能并不一定合适,一样是留坑。 面试题剖析 为什么使用消息队列 其实就是问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么? 面试官问你这个问题,期望的一个回答是说,你们公司有个什么业务场景,这个业务场景有个什么技术挑战,如果不用 MQ 可能会很麻烦,但是你现在用了 MQ 之后带给了你很多的好处。 先说一下消息队列常见的使用场景吧,其实场景有很多,但是比较核心的有 3 个:解耦、异步、削峰。 解耦 看这么个场景。A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃...... mq-1 在这个场景中,A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。A 系统要时时刻刻考虑 BCDE 四个系统如果挂了该咋办?要不要重发,要不要把消息存起来?头发都白了啊! 如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。 mq-2 总结:通过一个 MQ,Pub/Sub 发布订阅消息这么一个模型,A 系统就跟其它系统彻底解耦了。 面试技巧:你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个 MQ 去进行系统的解耦。在简历中体现出来这块东西,用 MQ 作解耦。 异步 再来看一个场景,A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求,等待个 1s,这几乎是不可接受的。 mq-3 一般互联网类的企业,对于用户直接的操作,一般要求是每个请求都必须在 200 ms 以内完成,对用户几乎是无感知的。 如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms,对于用户而言,其实感觉上就是点个按钮,8ms 以后就直接返回了,爽!网站做得真好,真快! mq-4 削峰 每天 0:00 到 12:00,A 系统风平浪静,每秒并发请求数量就 50 个。结果每次一到 12:00 ~ 13:00 ,每秒并发请求数量突然会暴增到 5k+ 条。但是系统是直接基于 MySQL 的,大量的请求涌入 MySQL,每秒钟对 MySQL 执行约 5k 条 SQL。 一般的 MySQL,扛到每秒 2k 个请求就差不多了,如果每秒请求到 5k 的话,可能就直接把 MySQL 给打死了,导致系统崩溃,用户也就没法再使用系统了。 但是高峰期一过,到了下午的时候,就成了低峰期,可能也就 1w 的用户同时在网站上操作,每秒中的请求数量可能也就 50 个请求,对整个系统几乎没有任何的压力。 mq-5 如果使用 MQ,每秒 5k 个请求写入 MQ,A 系统每秒钟最多处理 2k 个请求,因为 MySQL 每秒钟最多处理 2k 个。A 系统从 MQ 中慢慢拉取请求,每秒钟就拉取 2k 个请求,不要超过自己每秒能处理的最大请求数量就 ok,这样下来,哪怕是高峰期的时候,A 系统也绝对不会挂掉。而 MQ 每秒钟 5k 个请求进来,就 2k 个请求出去,结果就导致在中午高峰期(1 个小时),可能有几十万甚至几百万的请求积压在 MQ 中。 mq-6 这个短暂的高峰期积压是 ok 的,因为高峰期过了之后,每秒钟就 50 个请求进 MQ,但是 A 系统依然会按照每秒 2k 个请求的速度在处理。所以说,只要高峰期一过,A 系统就会快速将积压的消息给解决掉。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少? 【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果? 【Java问答学堂】13期 redis 和 memcached 有什么区别? 【Java问答学堂】14期 redis 都有哪些数据类型?分别在哪些场景下使用比较合适? 【Java问答学堂】15期redis 的过期策略都有哪些?内存淘汰机制都有哪些? 【Java问答学堂】16期如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍

剑曼红尘 2020-05-13 20:39:42 0 浏览量 回答数 0

回答

作为一个javaer,我以前写过很多关于Linux的文章。但经过多年的观察,发现其实对于大部分人,有些东西压根就用不着。用的最多的,就是到线上排查个问题而已,这让人很是苦恼。那么,我们就将范围再缩小一下。 Linux生产环境上,最常用的一套“Sed“技巧 Linux生产环境上,最常用的一套“AWK“技巧 Linux生产环境上,最常用的一套“vim“技巧 Linux命令好像还真不少,根本原因就是软件多,也有像ag这样的命令想替代grep,但大多数命令古老而坚挺。不是因为这些软件设计的有多好,原因是一些软件最开始入驻了系统,时间久了,就变成了一种约定,这种习惯改变代价太大,就像把所有键盘的L和F换一下一样。 这片文章假定你已经了解大多数Linux命令,并了解操作系统的基本元素。如果你现在了解的命令还不足10个,下面的内容就不用看了。除了最基本的东西,本文列出一些对你的面试最常见的最能加分的地方,有些组合可能是你没见过的技巧。但本文仅仅是给出一个大致的轮廓和印象,为以后的专题性考察点作一个序。 本文中出现的所有命令,应该熟记并熟练使用。 几种比较典型的Linux系统 首先对目前的Linux版本有个大体的印象,大体分Desktop版和Server版,已经是百花齐放。 Ubuntu 最常见的Linux个人发行版,一位有情怀的南非富豪,有了钱你也可以这么做 CentOS 最常用Linux服务器发新版,RHEL的开放版本,因版权而生的轮子 Arch 滚动升级,海量二进制包,社区活跃,个人最爱 Gentoo 安装软件需要从源码开始编译,稳定,但用起来会很痛 LFS 从零构建Linux,跟着做一遍,Linux每根毛都看的清清楚楚 Kali 专做渗透用的,代表了发行版的一个发展路径,就是领域 首先要了解的概念 KISS Keep it Simple and Stupid,据说是哲学 一切皆文件 通常是文件的东西叫文件,进程、磁盘等也被抽象成了文件,比较离谱的管道、设备、socket等,也是文件。 这是Linux最重要的组织方式。 管道 | 分隔,前面命令的输出作为后面命令的输入,可以串联多个 重定向 < 将文件做为命令的输入 将命令的输出输出到文件 将命令的输出追加到文件 SHELL 首先确认你的shell,一般最常用的是bash,也有不少用csh,zsh等的,通过echo $SHELL可以看到当前用户的shell,对应的配置文件也要相应改变。 比如.zshrc,.bashrc 四大元素 进入linux,我们首先关注的是四个元素: 内存,cpu,存储,网络。 Linux提供了足够的命令,让你窥探它的每个角落。 接下来的命令都是些最常用的,不管精通不精通,想不起来要打屁股。 CPU 使用top查看cpu的load,使用shift+p按照cpu排序。 需要了解wa,us等都是什么意思 使用uptime查看系统启动时间和load,load是什么意思呢? 什么算是系统过载? 这是个高频问题,别怪我没告诉你 ps命令勃大茎深,除了查进程号外,你还需要知道R、S、D、T、Z、<、N状态位的含义 top和ps很多功能是相通的,比如watch "ps -mo %cpu,%mem,pid,ppid,command ax" 相当于top的进程列表; top -n 1 -bc 和ps -ef的结果相似。 有生就有死,可以用kill杀死进程。 对java来说,需要关注kill -9、kill -15、kill -3的含义,kill的信号太多了,可以用kill -l查看,搞懂大多数信号大有裨益。 如果暂时不想死,可以通过&符号在后台执行,比如tail -f a.log &。 jobs命令可以查看当前后台的列表,想恢复的话,使用fg回到幕前。 这都是终端作业,当你把term关了你的后台命令也会跟着消失,所以想让你的程序继续执行的话, 需要nohup命令,此命令需要牢记 mpstat 显示了系统中 CPU 的各种统计信 了解cpu亲和性 内存 free -m 命令,了解free、used、cached、swap各项的含义 cat /proc/meminfo 查看更详细的内存信息 细心的同学可能注意到,CPU和内存的信息,通过top等不同的命令显示的数值是一样的。 slabtop 用来显示内核缓存占用情况,比如遍历大量文件造成缓存目录项。 曾在生产环境中遇到因执行find /造成dentry_cache耗尽服务器内存。 vmstat 命令是我最喜欢也最常用的命令之一,可以以最快的速度了解系统的运行状况。 每个参数的意义都要搞懂。 swapon、swapoff 开启,关闭交换空间 sar 又一统计类轮子,一般用作采样工具 存储 使用df -h查看系统磁盘使用概况 lsblk 列出块设备信息 du 查看目录或者文件大小 网络 rsync 强大的同步工具,可以增量哦 netstat 查看Linux中网络系统状态信息,各种 ss 它能够显示更多更详细的有关TCP和连接状态的信息,而且比netstat更快速更高效。 curl、wget 模拟请求工具、下载工具。 如wget -r http://site 将下载整个站点 ab Apache服务器的性能测试工具 ifstat 统计网络接口流量状态 nslookup 查询域名DNS信息的工具,在内网根据ip查询域名是爽爆了 nc 网络工具中的瑞士军刀,不会用真是太可惜了 arp 可以显示和修改IP到MAC转换表 traceroute 显示数据包到主机间的路径,俗称几跳,跳的越少越快 tcpdump 不多说了,去下载wireshark了 wall 向当前所有打开的终端上输出信息。 使用who命令发现女神正在终端上,可以求爱 网络方面推荐安装体验一下kaliLinux,上面的工具会让你high到极点。 如何组织起来 linux的命令很有意思,除了各种stat来监控状态,也有各种trace来进行深入的跟踪,也有各种top来统计资源消耗者,也有各种ls来查看系统硬件如lsblk、lsusb、lscpi。基本上跟着你的感觉走,就能找到相应的工具,因为约定是系统中最强大的导向。 Linux有个比较另类的目录/proc,承载了每个命令的蹂躏。像sysctl命令,就是修改的/proc/sys目录下的映射项。不信看看find /proc/sys -type f | wc -l和sysctl -a| wc -l的结果是不是很像? /proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。只不过以文件系统的方式为访问系统内核数据的操作提供接口。系统的所有状态都逃不过它的火眼金睛。例如: cat /proc/vmstat 看一下,是不是和vmstat命令的输出很像? cat /proc/meminfo 是不是最全的内存信息 cat /proc/slabinfo 这不就是slabtop的信息么 cat /proc/devices 已经加载对设备们 cat /proc/loadavg load avg原来就躺在这里啊 cat /proc/stat 所有的CPU活动信息 ls /proc/$pid/fd 静静地躺着lsof的结果 一般排查问题的方法 一般排查问题也是围绕着内存cpu等几个元素去排查。下图是一张大体的排查故障或者性能问题的过程,看图,不多说。 应用场景举例 下面举例从具体应用场景来说明各种命令的组合应用,此类场景数不胜数,需要个人积累。但强烈建议将sed和awk练的熟练一些。 怎么查看某个Java进程里面占用CPU最高的一个线程具体信息? 获取进程中占用CPU最高的线程,计为n。 使用top top -H -p pid,肉眼观察之 使用ps ps -mo spid,lwp,stime,time,%cpu -p pid 将线程号转化成十六进制printf 0x%x n 使用jstack找到相应进程,打印线程后的100行信息 jstack -l pid| grep spid -A 100 统计每种网络状态的数量 netstat -ant | awk '{print $6}' | sort | uniq -c | sort -n -k 1 -r![5.jpg](https://ucc.alicdn.com/pic/developer-ecology/655b656daf0344d58dbfd798fe1460b8.jpg) 首先使用netstat查看列表,使用’awk’截取第六列,使用uniq进行统计,并对统计结果排序。当然,也可以这样。 netstat -ant | awk '{arr[$6]++}END{for(i in arr){print arr[i]" "i }}' | sort -n -k 1 -r 这和“分析apache日志,给出当日访问ip的降序列表”是一样的问题。 怎么查看哪个进程在用swap 首先要了解/proc/$pid/smaps里有我们所需要的各种信息,其中Swap字段即是我们所需要的。只要循环遍历一下即可。 for i in `cd /proc;ls |grep "^[0-9]"|awk ' $0 >100'` ;do awk '/Swap:/{a=a+$2}END{print '"$i"',a/1024"M"}' /proc/$i/smaps ;done |sort -k2nr End 软件领域有两种人才,一种是工程型的,一种是研究型的。在Linux领域里,相对于搞内核研究的来说,搞命令行的就属于工程型。工程型也有他自己的苦衷,比如,背诵命令就挺痛苦的,一般来说不太推荐背诵,第一覆盖的面不广,第二记的快忘的也快,浪费脑细胞。牛逼的记法就是用,用时间来冲淡烟云,见微知著,并体验其中的喜悦。爱她并天天抱她上床,真爱才成。 原创:小姐姐味道。

剑曼红尘 2020-04-01 11:01:13 0 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 448858 浏览量 回答数 12

问题

最大限度利用 JavaScript 和 Ajax 性能:报错

kun坤 2020-06-05 22:56:50 0 浏览量 回答数 1

回答

面试官心理分析 其实面试官主要是想看看: 第一,你知不知道你们系统里为什么要用消息队列这个东西? 不少候选人,说自己项目里用了 Redis、MQ,但是其实他并不知道自己为什么要用这个东西。其实说白了,就是为了用而用,或者是别人设计的架构,他从头到尾都没思考过。 没有对自己的架构问过为什么的人,一定是平时没有思考的人,面试官对这类候选人印象通常很不好。因为面试官担心你进了团队之后只会木头木脑的干呆活儿,不会自己思考。 第二,你既然用了消息队列这个东西,你知不知道用了有什么好处&坏处? 你要是没考虑过这个,那你盲目弄个 MQ 进系统里,后面出了问题你是不是就自己溜了给公司留坑?你要是没考虑过引入一个技术可能存在的弊端和风险,面试官把这类候选人招进来了,基本可能就是挖坑型选手。就怕你干 1 年挖一堆坑,自己跳槽了,给公司留下无穷后患。 第三,既然你用了 MQ,可能是某一种 MQ,那么你当时做没做过调研? 你别傻乎乎的自己拍脑袋看个人喜好就瞎用了一个 MQ,比如 Kafka,甚至都从没调研过业界流行的 MQ 到底有哪几种。每一个 MQ 的优点和缺点是什么。每一个 MQ 没有绝对的好坏,但是就是看用在哪个场景可以扬长避短,利用其优势,规避其劣势。 如果是一个不考虑技术选型的候选人招进了团队,leader 交给他一个任务,去设计个什么系统,他在里面用一些技术,可能都没考虑过选型,最后选的技术可能并不一定合适,一样是留坑。 面试题剖析 为什么使用消息队列 其实就是问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么? 面试官问你这个问题,期望的一个回答是说,你们公司有个什么业务场景,这个业务场景有个什么技术挑战,如果不用 MQ 可能会很麻烦,但是你现在用了 MQ 之后带给了你很多的好处。 先说一下消息队列常见的使用场景吧,其实场景有很多,但是比较核心的有 3 个:解耦、异步、削峰。 解耦 看这么个场景。A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃...... 在这个场景中,A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。A 系统要时时刻刻考虑 BCDE 四个系统如果挂了该咋办?要不要重发,要不要把消息存起来?头发都白了啊! 如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。 总结:通过一个 MQ,Pub/Sub 发布订阅消息这么一个模型,A 系统就跟其它系统彻底解耦了。 面试技巧:你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个 MQ 去进行系统的解耦。在简历中体现出来这块东西,用 MQ 作解耦。 异步 再来看一个场景,A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求,等待个 1s,这几乎是不可接受的。 一般互联网类的企业,对于用户直接的操作,一般要求是每个请求都必须在 200 ms 以内完成,对用户几乎是无感知的。 如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms,对于用户而言,其实感觉上就是点个按钮,8ms 以后就直接返回了,爽!网站做得真好,真快! 削峰 每天 0:00 到 12:00,A 系统风平浪静,每秒并发请求数量就 50 个。结果每次一到 12:00 ~ 13:00 ,每秒并发请求数量突然会暴增到 5k+ 条。但是系统是直接基于 MySQL 的,大量的请求涌入 MySQL,每秒钟对 MySQL 执行约 5k 条 SQL。 一般的 MySQL,扛到每秒 2k 个请求就差不多了,如果每秒请求到 5k 的话,可能就直接把 MySQL 给打死了,导致系统崩溃,用户也就没法再使用系统了。 但是高峰期一过,到了下午的时候,就成了低峰期,可能也就 1w 的用户同时在网站上操作,每秒中的请求数量可能也就 50 个请求,对整个系统几乎没有任何的压力。 如果使用 MQ,每秒 5k 个请求写入 MQ,A 系统每秒钟最多处理 2k 个请求,因为 MySQL 每秒钟最多处理 2k 个。A 系统从 MQ 中慢慢拉取请求,每秒钟就拉取 2k 个请求,不要超过自己每秒能处理的最大请求数量就 ok,这样下来,哪怕是高峰期的时候,A 系统也绝对不会挂掉。而 MQ 每秒钟 5k 个请求进来,就 2k 个请求出去,结果就导致在中午高峰期(1 个小时),可能有几十万甚至几百万的请求积压在 MQ 中。 这个短暂的高峰期积压是 ok 的,因为高峰期过了之后,每秒钟就 50 个请求进 MQ,但是 A 系统依然会按照每秒 2k 个请求的速度在处理。所以说,只要高峰期一过,A 系统就会快速将积压的消息给解决掉。 消息队列有什么优缺点 优点上面已经说了,就是在特殊场景下有其对应的好处,解耦、异步、削峰。 缺点有以下几个: 系统可用性降低 系统引入的外部依赖越多,越容易挂掉。本来你就是 A 系统调用 BCD 三个系统的接口就好了,ABCD 四个系统还好好的,没啥问题,你偏加个 MQ 进来,万一 MQ 挂了咋整?MQ 一挂,整套系统崩溃,你不就完了?如何保证消息队列的高可用,可以点击这里查看。 系统复杂度提高 硬生生加个 MQ 进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已。 一致性问题 A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,咋整?你这数据就不一致了。 所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了 10 倍。但是关键时刻,用,还是得用的。 综上,各种对比之后,有如下建议: 一般的业务系统要引入 MQ,最早大家都用 ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了; 后来大家开始用 RabbitMQ,但是确实 erlang 语言阻止了大量的 Java 工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高; 不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。 所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。 如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。

剑曼红尘 2020-04-16 16:34:44 0 浏览量 回答数 0

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播