• 关于

    关系型索引的使用

    的搜索结果

回答

一个索引是一个拥有一些相似特征的文档的集合(相当于关系型数据库中的一个数据库)。例如,您可以拥有一个客户数据的索引,一个商品目录的索引,以及一个订单数据的索引。一个索引通常使用一个名称(所有字母必须小写)来标识,当针对这个索引的文档执行索引、搜索、更新和删除操作的时候,这个名称被用来指向索引。

LiuWH 2020-03-23 09:45:04 0 浏览量 回答数 0

回答

嗯是的,Redis会受限于内存大小,而LevelDB却不会存在这个问题;其实这个问题标准确来说是 levelDB没有索引(官方文档有提到),但是Redis是有索引这个概念的,通过对一些关键字段建立索引,可以很快速的通过非key字段查询,我们的手游服务器使用的就是Redis数据库的,key就是玩家ID,然后里面存储一坨这个玩家的所有数据,要想使用其他字段去查询就得建立索引实现,索引的名称都是 _index_之类的。可能是levelDB和Redis的应用场景不太一样吧,Redis适用于数据量不会很大,但又要求高性能的情况;而LevelDB解决的是海量数据操作,还要进行排序的处理,如果有太多复杂操作反而会处理效率问题,不过这仅仅是本人的猜测而已Redis打破了我对关系型数据库的固有思想,昨晚看了LevelDB和HyperDex的介绍,顿时觉得技术宅称霸世界,不过平时仅仅接触过俩三万条的Redis,对这LevelDB和HyperDex没有具体的使用过,只能自己搭一个玩玩了

a123456678 2019-12-02 03:00:13 0 浏览量 回答数 0

问题

分析型数据库特色功能有什么?

nicenelly 2019-12-01 21:25:04 1106 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

分析型数据库特色功能有什么?

nicenelly 2019-12-01 21:10:23 1163 浏览量 回答数 0

问题

OpenSearch的字段类型和分词类型有哪些?

轩墨 2019-12-01 20:55:39 1138 浏览量 回答数 0

问题

在关系型数据库中频繁使用 JSON 格式来存储不需要索引的数据好么?

蛮大人123 2019-12-01 19:52:07 1171 浏览量 回答数 1

问题

解密 Redis 助力双十一背后的技术

云栖大讲堂 2019-12-01 21:20:36 896 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

问题

分析型数据库如何使用DMS创建和管理表?

nicenelly 2019-12-01 21:25:01 1004 浏览量 回答数 0

问题

分析型数据库如何使用DMS创建和管理表?

nicenelly 2019-12-01 21:09:57 1190 浏览量 回答数 0

问题

阿里云大数据专业认证所需具备的知识是什么?

nicenelly 2019-12-01 21:23:59 1428 浏览量 回答数 0

问题

SQL 与 NoSQL 的对比

云栖大讲堂 2019-12-01 20:54:13 1382 浏览量 回答数 0

问题

阿里云大数据专业认证所需具备的知识是什么?

nicenelly 2019-12-01 21:06:10 1432 浏览量 回答数 0

回答

索引,索引!!!为经常查询的字段建索引!! 但也不能过多地建索引。insert和delete等改变表记录的操作会导致索引重排,增加数据库负担。优化目标1.减少 IO 次数 IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先考虑,当然,也是收效最明显的优化手段。2.降低 CPU 计算 除了 IO 瓶颈之外,SQL优化中需要考虑的就是 CPU 运算量的优化了。order by, group by,distinct … 都是消耗 CPU 的大户(这些操作基本上都是 CPU 处理内存中的数据比较运算)。当我们的 IO 优化做到一定阶段之后,降低 CPU 计算也就成为了我们 SQL 优化的重要目标优化方法改变 SQL 执行计划 明确了优化目标之后,我们需要确定达到我们目标的方法。对于 SQL 语句来说,达到上述2个目标的方法其实只有一个,那就是改变 SQL 的执行计划,让他尽量“少走弯路”,尽量通过各种“捷径”来找到我们需要的数据,以达到 “减少 IO 次数” 和 “降低 CPU 计算” 的目标分析复杂的SQL语句explain 例如: mysql> explain select from (select from ( select * from t3 where id=3952602) a) b; id select_type table type possible_keys key key_len ref rows Extra 1 PRIMARY system NULL NULL NULL NULL 1 2 DERIVED system NULL NULL NULL NULL 1 3 DERIVED t3 const PRIMARY,idx_t3_id PRIMARY 4 1 很显然这条SQL是从里向外的执行,就是从id=3 向上执行.show show tables或show tables from database_name; // 显示当前数据库中所有表的名称 show databases; // 显示mysql中所有数据库的名称 show columns from table_name from database_name; 或MySQL show columns from database_name.table_name; // 显示表中列名称 show grants for user_name@localhost; // 显示一个用户的权限,显示结果类似于grant 命令 show index from table_name; // 显示表的索引 show status; // 显示一些系统特定资源的信息,例如,正在运行的线程数量 show variables; // 显示系统变量的名称和值show processlist; // 显示系统中正在运行的所有进程,也就是当前正在执行的查询。 show table status; // 显示当前使用或者指定的database中的每个表的信息。信息包括表类型和表的最新更新时间 show privileges; // 显示服务器所支持的不同权限 show create database database_name; // 显示create database 语句是否能够创建指定的数据库 show create table table_name; // 显示create database 语句是否能够创建指定的数据库 show engies; // 显示安装以后可用的存储引擎和默认引擎。 show innodb status; // 显示innoDB存储引擎的状态 show logs; // 显示BDB存储引擎的日志 show warnings; // 显示最后一个执行的语句所产生的错误、警告和通知 show errors; // 只显示最后一个执行语句所产生的错误关于enum 存在争议。 对于取值有限且固定的字段,推荐使用enum而非varchar。但是!!其他数据库可能不支持,导致了难于迁移的问题。开启缓存查询 对于完全相同的sql,使用已经存在的执行计划,从而跳过解析和生成执行计划的过程。 应用场景:有一个不经常变更的表,且服务器收到该表的大量相同查询。对于频繁更新的表,查询缓存是不适合的 Mysql 判断是否命中缓存的办法很简单,首先会将要缓存的结果放在引用表中,然后使用查询语句,数据库名称,客户端协议的版本等因素算出一个hash值,这个hash值与引用表中的结果相关联。如果在执行查询时,根据一些相关的条件算出的hash值能与引用表中的数据相关联,则表示查询命中 查询必须是完全相同的(逐字节相同)才能够被认为是相同的。另外,同样的查询字符串由于其它原因可能认为是不同的。使用不同的数据库、不同的协议版本或者不同 默认字符集的查询被认为是不同的查询并且分别进行缓存。 下面sql查询缓存认为是不同的: SELECT * FROM tbl_name Select * from tbl_name 缓存机制失效的场景 如果查询语句中包含一些不确定因素时(例如包含 函数Current()),该查询不会被缓存,不确定因素主要包含以下情况 · 引用了一些返回值不确定的函数 · 引用自定义函数(UDFs)。 · 引用自定义变量。 · 引用mysql系统数据库中的表。 · 下面方式中的任何一种: SELECT ...IN SHARE MODE SELECT ...FOR UPDATE SELECT ...INTO OUTFILE ... SELECT ...INTO DUMPFILE ... SELECT * FROM ...WHERE autoincrement_col IS NULL · 使用TEMPORARY表。 · 不使用任何表。 · 用户有某个表的列级别权限。额外的消耗 如果使用查询缓存,在进行读写操作时会带来额外的资源消耗,消耗主要体现在以下几个方面 · 查询的时候会检查是否命中缓存,这个消耗相对较小 · 如果没有命中查询缓存,MYSQL会判断该查询是否可以被缓存,而且系统中还没有对应的缓存,则会将其结果写入查询缓存 · 如果一个表被更改了,那么使用那个表的所有缓冲查询将不再有效,并且从缓冲区中移出。这包括那些映射到改变了的表的使用MERGE表的查询。一个表可以被许多类型的语句更改,例如INSERT、UPDATE、DELETE、TRUNCATE、ALTER TABLE、DROP TABLE或DROP DATABASE。 对于InnoDB而言,事物的一些特性还会限制查询缓存的使用。当在事物A中修改了B表时,因为在事物提交之前,对B表的修改对其他的事物而言是不可见的。为了保证缓存结果的正确性,InnoDB采取的措施让所有涉及到该B表的查询在事物A提交之前是不可缓存的。如果A事物长时间运行,会严重影响查询缓存的命中率 查询缓存的空间不要设置的太大。 因为查询缓存是靠一个全局锁操作保护的,如果查询缓存配置的内存比较大且里面存放了大量的查询结果,当查询缓存失效的时候,会长时间的持有这个全局锁。因为查询缓存的命中检测操作以及缓存失效检测也都依赖这个全局锁,所以可能会导致系统僵死的情况静态表速度更快定长类型和变长类型 CHAR(M)定义的列的长度为固定的,M取值可以为0~255之间,当保存CHAR值时,在它们的右边填充空格以达到指定的长度。当检索到CHAR值时,尾部的空格被删除掉。在存储或检索过程中不进行大小写转换。CHAR存储定长数据很方便,CHAR字段上的索引效率级高,比如定义char(10),那么不论你存储的数据是否达到了10个字节,都要占去10个字节的空间,不足的自动用空格填充。 VARCHAR(M)定义的列的长度为可变长字符串,M取值可以为0~65535之间,(VARCHAR的最大有效长度由最大行大小和使用的字符集确定。整体最大长度是65,532字节)。VARCHAR值保存时只保存需要的字符数,另加一个字节来记录长度(如果列声明的长度超过255,则使用两个字节)。VARCHAR值保存时不进行填充。当值保存和检索时尾部的空格仍保留,符合标准SQL。varchar存储变长数据,但存储效率没有CHAR高。 如果一个字段可能的值是不固定长度的,我们只知道它不可能超过10个字符,把它定义为 VARCHAR(10)是最合算的。VARCHAR类型的实际长度是它的值的实际长度+1。空间上考虑,用varchar合适;从效率上考虑,用char合适,关键是根据实际情况找到权衡点。VARCHAR和TEXT、BlOB类型 VARCHAR,BLOB和TEXT类型是变长类型,对于其存储需求取决于列值的实际长度(在前面的表格中用L表示),而不是取决于类型的最大可能尺寸。 BLOB和TEXT类型需要1,2,3或4个字节来记录列值的长度,这取决于类型的最大可能长度。VARCHAR需要定义大小,有65535字节的最大限制;TEXT则不需要。如果你把一个超过列类型最大长度的值赋给一个BLOB或TEXT列,值被截断以适合它。 一个BLOB是一个能保存可变数量的数据的二进制的大对象。4个BLOB类型TINYBLOB、BLOB、MEDIUMBLOB和LONGBLOB仅仅在他们能保存值的最大长度方面有所不同。 BLOB 可以储存图片,TEXT不行,TEXT只能储存纯文本文件。 在BLOB和TEXT类型之间的唯一差别是对BLOB值的排序和比较以大小写敏感方式执行,而对TEXT值是大小写不敏感的。换句话说,一个TEXT是一个大小写不敏感的BLOB。 效率来说基本是char>varchar>text,但是如果使用的是Innodb引擎的话,推荐使用varchar代替char char和varchar可以有默认值,text不能指定默认值静态表和动态表 静态表字段长度固定,自动填充,读写速度很快,便于缓存和修复,但比较占硬盘,动态表是字段长度不固定,节省硬盘,但更复杂,容易产生碎片,速度慢,出问题后不容易重建。当只需要一条数据的时候,使用limit 1 表记录中的一行尽量不要超过一个IO单元 区分in和exist select * from 表A where id in (select id from 表B)这句相当于select from 表A where exists(select from 表B where 表B.id=表A.id)对于表A的每一条数据,都执行select * from 表B where 表B.id=表A.id的存在性判断,如果表B中存在表A当前行相同的id,则exists为真,该行显示,否则不显示 区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。 所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况复杂多表尽量少用join MySQL 的优势在于简单,但这在某些方面其实也是其劣势。MySQL 优化器效率高,但是由于其统计信息的量有限,优化器工作过程出现偏差的可能性也就更多。对于复杂的多表 Join,一方面由于其优化器受限,再者在 Join 这方面所下的功夫还不够,所以性能表现离 Oracle 等关系型数据库前辈还是有一定距离。但如果是简单的单表查询,这一差距就会极小甚至在有些场景下要优于这些数据库前辈。尽量用join代替子查询 虽然 Join 性能并不佳,但是和 MySQL 的子查询比起来还是有非常大的性能优势。 MySQL需要为内层查询语句的查询结果建立一个临时表。然后外层查询语句在临时表中查询记录。查询完毕后,MySQL需要插销这些临时表。所以在MySQL中可以使用连接查询来代替子查询。连接查询不需要建立临时表,其速度比子查询要快。尽量少排序 排序操作会消耗较多的 CPU 资源,所以减少排序可以在缓存命中率高等 IO 能力足够的场景下会较大影响 SQL 的响应时间。 对于MySQL来说,减少排序有多种办法,比如: 上面误区中提到的通过利用索引来排序的方式进行优化 减少参与排序的记录条数 非必要不对数据进行排序尽量避免select * 大多数关系型数据库都是按照行(row)的方式存储,而数据存取操作都是以一个固定大小的IO单元(被称作 block 或者 page)为单位,一般为4KB,8KB… 大多数时候,每个IO单元中存储了多行,每行都是存储了该行的所有字段(lob等特殊类型字段除外)。 所以,我们是取一个字段还是多个字段,实际上数据库在表中需要访问的数据量其实是一样的。 也有例外情况,那就是我们的这个查询在索引中就可以完成,也就是说当只取 a,b两个字段的时候,不需要回表,而c这个字段不在使用的索引中,需要回表取得其数据。在这样的情况下,二者的IO量会有较大差异。尽量少or 当 where 子句中存在多个条件以“或”并存的时候,MySQL 的优化器并没有很好的解决其执行计划优化问题,再加上 MySQL 特有的 SQL 与 Storage 分层架构方式,造成了其性能比较低下,很多时候使用 union all 或者是union(必要的时候)的方式来代替“or”会得到更好的效果。尽量用 union all 代替 union union 和 union all 的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的 CPU 运算,加大资源消耗及延迟。所以当我们可以确认不可能出现重复结果集或者不在乎重复结果集的时候,尽量使用 union all 而不是 union。尽量早过滤 在 SQL 编写中同样可以使用这一原则来优化一些 Join 的 SQL。比如我们在多个表进行分页数据查询的时候,我们最好是能够在一个表上先过滤好数据分好页,然后再用分好页的结果集与另外的表 Join,这样可以尽可能多的减少不必要的 IO 操作,大大节省 IO 操作所消耗的时间。避免类型转换 这里所说的“类型转换”是指 where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换: 人为在column_name 上通过转换函数进行转换直接导致 MySQL(实际上其他数据库也会有同样的问题)无法使用索引,如果非要转换,应该在传入的参数上进行转换,由数据库自己进行转换, 如果我们传入的数据类型和字段类型不一致,同时我们又没有做任何类型转换处理,MySQL 可能会自己对我们的数据进行类型转换操作,也可能不进行处理而交由存储引擎去处理,这样一来,就会出现索引无法使用的情况而造成执行计划问题。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL 对于破坏性来说,高并发的 SQL 总是会比低频率的来得大,因为高并发的 SQL 一旦出现问题,甚至不会给我们任何喘息的机会就会将系统压跨。而对于一些虽然需要消耗大量 IO 而且响应很慢的 SQL,由于频率低,即使遇到,最多就是让整个系统响应慢一点,但至少可能撑一会儿,让我们有缓冲的机会。从全局出发优化,而不是片面调整 尤其是在通过调整索引优化 SQL 的执行计划的时候,千万不能顾此失彼,因小失大。尽可能对每一条运行在数据库中的SQL进行 explain 知道 SQL 的执行计划才能判断是否有优化余地,才能判断是否存在执行计划问题。在对数据库中运行的 SQL 进行了一段时间的优化之后,很明显的问题 SQL 可能已经很少了,大多都需要去发掘,这时候就需要进行大量的 explain 操作收集执行计划,并判断是否需要进行优化。尽量避免where子句中对字段进行null值的判断 会导致引擎放弃索引,进而进行全表扫描。 尽量不要给数据库留null值,尽可能地使用not null填充数据库。可以为每个null型的字段设置一个和null对应的实际内容表述。避免在where中使用!=, >, <操作符 否则引擎放弃使用索引,进行全表扫描。常用查询字段建索引避免在where中使用or imagein和not in关键词慎用,容易导致全表扫面 对连续的数值尽量用between通配符查询也容易导致全表扫描避免在where子句中使用局部变量 sql只有在运行时才解析局部变量。而优化程序必须在编译时访问执行计划,这时并不知道变量值,所以无法作为索引的输入项。 image避免在where子句中对字段进行表达式操作 会导致引擎放弃使用索引 image避免在where子句中对字段进行函数操作 image不要where子句的‘=’左边进行函数、算术运算或其他表达式运算 系统可能无法正确使用索引避免update全部字段 只update需要的字段。频繁调用会引起明显的性能消耗,同时带来大量日志。索引不是越多越好 一个表的索引数最好不要超过6个尽量使用数字型字段而非字符型 因为处理查询和连接时会逐个比较字符串的每个字符,而对于数字型而言只需要比较一次就够了。尽可能用varchar/nvarchar代替char/nchar 变长字段存储空间小,对于查询来说,在一个相对较小的字段内搜索效率更高。。。?避免频繁创建和删除临时表,减少系统表资源消耗select into和create table 新建临时表时,如果一次性插入数据量很大,使用select into代替create table,避免造成大量log,以提高速度。 如果数据量不大,为了缓和系统表的资源,先create table,再insert。 拆分大的DELETE和INSERT语句 因为这两个操作是会锁表的,对于高访问量的站点来说,锁表时间内积累的访问数、数据库连接、打开的文件数等等,可能不仅仅让WEB服务崩溃,还会让整台服务器马上挂了。 所以,一定要拆分,使用LIMIT条件休眠一段时间,批量处理。

wangccsy 2019-12-02 01:50:30 0 浏览量 回答数 0

问题

学术界关于HBase在物联网/车联网/互联网/金融/高能物理等八大场景的理论研究

pandacats 2019-12-18 16:06:18 1 浏览量 回答数 0

问题

Hbase日志存储——以便利店和无人超市业务为例

pandacats 2019-12-23 10:02:04 1 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

OceanBase 使用动画(持续更新)

mq4096 2019-12-01 21:53:07 288135 浏览量 回答数 6

回答

使用FIND_IN_SET搜索以逗号分隔的列表的东西。 SELECT i.MemberID, i.MemberName, GROUP_CONCAT(c.Course) AS CoursesInterested FROM CourseInterests AS i JOIN Course AS c ON FIND_IN_SET(c.CourseId, i.CoursesInterested) 但是,最好创建一个关系表,而不是将课程存储在单个列中。这种类型的联接无法使用索引进行优化,因此对于大型表而言将非常昂贵。来源:stack overflow

保持可爱mmm 2020-05-17 20:44:53 0 浏览量 回答数 0

问题

【每日一题】Java知识大测验 | 持续更新

游客ih62co2qqq5ww 2020-03-27 23:52:17 473 浏览量 回答数 1

回答

好。我会尽量清楚一点,不要被误解... 在Windows Batch文件中,变量名应以字母开头,并且可以包含任何有效字符,其中有效字符为:#$'()* +,-。?@ [] _`{}〜除字母和数字外。 这意味着从cmd.exe角度来看,与; SET NORMAL_NAME=123完全相同SET A#$'()*+,-.?@[]_{}~=123,也与SET VECTOR[1]=123; 相同。这三个都是正常变量。这样,由您决定以数组元素的形式编写变量名称: set elem[1]=First element set elem[2]=Second one set elem[3]=The third one 这样,echo %elem[2]%就会显示出来Second one。 如果要使用另一个变量作为索引,则必须知道,用百分号括起来的变量用其值替换是从左到右进行解析的;这意味着: set i=2 echo %elem[%i%]% 无法给出理想的结果,因为这意味着:显示elem[变量的值,然后显示i,然后显示变量的值]。 要解决此问题,必须使用Delayed Expansion,即setlocal EnableDelayedExpansion在开始处插入命令,将索引变量括在百分号中,并将数组元素括在感叹号中: setlocal EnableDelayedExpansion set elem[1]=First element set elem[2]=Second one set elem[3]=The third one set i=2 echo !elem[%i%]! 您也可以将FOR命令的参数用作索引:for /L %%i in (1,1,3) do echo !elem[%%i]!。您必须使用!index!当在FOR或IF:中更改索引时,将值存储在数组元素中set elem[!index!]=New value。要在FOR / IF内的索引更改时获取元素的值,请用双百分号将元素括起来,并在命令前加上call。例如,将一系列数组元素向左移动四个位置: for /L %%i in (%start%,1,%end%) do ( set /A j=%%i + 4 call set elem[%%i]=%%elem[!j!]%% ) 实现先前过程的另一种方法是使用附加的FOR命令通过等效的可替换参数更改索引的延迟扩展,然后将延迟扩展用于数组元素。此方法比以前的CALL运行得更快: for /L %%i in (%start%,1,%end%) do ( set /A j=%%i + 4 for %%j in (!j!) do set elem[%%i]=!elem[%%j]! ) 这样,批处理文件的行为就像管理数组一样。我认为这里的重点不是讨论Batch是否管理数组,而是您可以用与其他编程语言等效的方式来管理Batch文件中的数组这一事实。 @echo off setlocal EnableDelayedExpansion rem Create vector with names of days set i=0 for %%d in (Sunday Monday Tuesday Wednesday Thrusday Friday Saturday) do ( set /A i=i+1 set day[!i!]=%%d ) rem Get current date and calculate DayOfWeek for /F "tokens=1-3 delims=/" %%a in ("%date%") do ( set /A mm=10%%a %% 100, dd=10%%b %% 100, yy=%%c ) if %mm% lss 3 set /A mm=mm+12, yy=yy-1 set /A a=yy/100, b=a/4, c=2-a+b, e=36525*(yy+4716)/100, f=306*(mm+1)/10, jdn=c+dd+e+f-1523, dow=jdn %% 7 + 1 echo Today is !day[%dow%]!, %date% 请注意,索引值不限于数字,而是可以是包含有效字符的任何字符串。这一点允许定义其他编程语言中的什么称为关联数组。在此答案中,将详细说明用于使用关联数组解决问题的方法。还要注意,空格是变量名中的有效字符,因此必须注意不要在变量名中插入可能不被注意的空格。 我在这篇文章中详细说明了我必须在Batch文件中使用数组符号的原因。 在这篇文章中,有一个批处理文件,该文件读取文本文件并将行的索引存储在向量中,然后根据行内容对向量元素进行大量排序;等效的结果是对文件内容进行排序。 在这篇文章有基于存储在文件索引在批处理基本关系数据库应用程序。 在这篇文章中,Batch中有一个完整的多个链表应用程序,该应用程序组装了一个从子目录获取的大型数据结构,并以TREE命令的形式显示。

保持可爱mmm 2020-02-09 13:33:34 0 浏览量 回答数 0

回答

解决了吗?感觉是版本的问题 ######请问楼主解决了吗?我现在也遇到了相同的问题######这个是由于当时IK分词器还不支持solr5.3版本。现在百度已经能找到solr5.3版本下的ik分词器代码了。######https://github.com/EugenePig/ik-analyzer-solr5   下载这个 然后直接编译 按照reademe 的说明配置即可######基于微博数据检测的Solr实战开发 课程观看地址: http://www.xuetuwuyou.com/course/145 课程出自学途无忧网: http://www.xuetuwuyou.com solrcloud5.2.1+zookeeper一部精通 课程观看地址: http://www.xuetuwuyou.com/course/15 一、课程用到的软件 1.centos6.7 2.apache-tomcat-7.0.47 3.solr-5.5 4.zookeeper 3.4.6 5.eclipse-jee-neon-R-win32-x86_64  二、课程目标 在海量数据的情况下,传统的关系型数据库已经力不从心,快速检索已经成为了应用系统所必备的功能之一。本课程从实战角度出发,让学员能从实战中学习到: 搜索引擎的原理及架构。  掌握在大数据环境下经典检索算法。  掌握如何使用solr实现系统快速检索目标。  掌握solr在开发中常见的技术大坑与调优技术。 三、适用人群 开发人员、架构师、对分布式搜索引擎有兴趣的朋友。 四、课程内容介绍: 第1课、Solr简介与部署     知识点:Solr基本概念以及应用的介绍、Solr单机版的搭建 第2课、Solr建库实战     知识点:介绍managed-schame和solrConfig两大配置文件,并建立Solr库开始实操 第3课、Solr中文分词器与全量数据导入     知识点:对比中文分词器IK与MMSeg4j的特点、Solr配置MMSeg4j中文分词器、把Mysql中的数据导入到Solr索引库上 第4课、Solr增量数据导入及新管理UI实战     知识点:把Mysql的数据增量导入到Solr索引库上、对Solr5最新的UI进行全面介绍 第5课、Solr数据查询详解     知识点:基于UI管理界面,实战Solr q查询、fq查询以及分页、高亮、Facet等高级特性的使用 第6课、Solrj编程实战之索引增删改     知识点:基于Eclipse开发环境、搭建Solrj工程项目,对Solr的索引库的进行增、删、改的操作 第7课、Solrj编程实战之索引查询与分页     知识点:基于Solrj实现q查询、fq查询以及分页查询的操作 第8课、Solrj编程实战之高亮与Facet     知识点:基于Solrj实现高亮查询、Facet查询的操作 第9课、Solrj编程实战之设计模式     知识点:基于前阶段所写的代码,发现代码中的不足,并使用单例模式、模块方法、回调方法的设计模式进行仿Spring Data的开发 第10课、Solr缓存与预热机制剖析     知识点:从算法、应用场景以及实例的多个维度,剖析Solr中的四大缓存,并且站在SolrIndexSearcher的生命周期上解剖预热机制及其注意事项 第11课、Solr高级特性之近实时、实时检索     知识点:从概念、原理以及实例的多个维度,剖析Solr近实时、实时检索 第12课、Solr高级特性之原子更新     知识点:Solr在应用层面上对Lucene进行了封装,在Solr4之后提出了原子更新的新概念,从此在应用层面操作上方便我们进行索引更新 第13课、Solr高级特性之深度分页及性能调优     知识点:Solr4的又一大特性,在面临海量据的情况下,占用更低的资源进行数据检索正是深度分页的一大亮点、后半节结合讲师的实际开发经验,分享Solr性能调优的策略 第14课、SolrCloud部署运维之集群搭建     知识点:基于Centos、zookeeper环境下,搭建SolrCloud系统  第15课、SolrCloud部署运维之库管理     知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud库的管理,包括库的新增、删除以及动态更新  第16课、SolrCloud部署运维之副本与扩容     知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud分片的管理,包括分片的备份与库的扩容 第17课、中文分词器配置与使用Solrj操作SolrCloud     知识点:配置中文分词器以及使用Solrj操作SolrCloud来实现增、删、改、查  第18课、项目介绍与环境搭建     知识点:介绍项目的背景以及总体架构、突出Solr在实际项目中的角色。基于Maven搭建开发环境  第19课、框架代码开发之Spring集成Solrj之CRUD(maven版)     知识点:Spring是一个JavaEE企业级框架,它很多主流的主件都进行集成支持。本节学习Spring与Solrj的集成,进行增、删、改、查操作 第20课、框架代码开发之Spring集成Solrj之(maven版)     知识点:Spring是一个JavaEE企业级框架,它对很多主流的组件都进行集成支持。本节学习Spring与Solrj的集成,进行实时检索、高亮、深度分页、Facet查询操作 第21课、基于dom4j的导库组件开发(maven版)     知识点:基于dom4j解析XML文件,并将数据批量高效导入到SolrCloud分布式索引库上进行检索分析 第22课、高级检索组件开发一     知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第23课、高级检索组件开发二         知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第24课、相似匹配组件开发一     知识点:基于SolrCloud实现相似性检索操作 第25课、相似匹配组件开发二     知识点:基于SolrCloud实现相似性检索操作 第26课、课程总结与Solr6的展望     知识点:课程大总结,并对最新版的Solr6进行亮点分析以及未来的展望

kun坤 2020-06-01 09:57:39 0 浏览量 回答数 0

问题

SQL Server优化案例分享【精品问答集锦】

管理贝贝 2019-12-01 19:26:00 41377 浏览量 回答数 35

问题

OpenSearch如何创建应用?

轩墨 2019-12-01 20:55:43 998 浏览量 回答数 0

问题

试用关系型数据库SQLServer的个人感受

kazake 2019-12-01 21:05:44 8519 浏览量 回答数 1

问题

HBase高性能随机查询之道 – HFile原理解析

pandacats 2019-12-20 20:57:14 0 浏览量 回答数 0

回答

public synchronized void insert() {     ... } 试试这个。######您好,请问 如果我不用这种同步的方法, 只用事务隔离可以解决吗###### 加synchronized比较简单暴力,性价比最好。更优的方式是添加流水单号,根据流水单号进行同步或者异步添加。但是需要实现很多内容。######简单暴力、好处是 Java 端当掉了并发的压力,数据库还是一个个进出,压力不会落到数据库上。哈哈哈######  transactionl###### 两次插入请求和事务没太大关系,上面的加synchronize关键字在一台机器上的时候算是一个办法,但不是可行的办法,这相当于把所有任务都串行了,浪费服务器资源。这种情况可以有几种处理办法: 1. 数据库加唯一索引,如果有唯一列可以标识的话 2. 两行重复在事务完成之后做一个删除判断,将id比较小的(大的也OK,只要逻辑一致)几条删掉,只保留一条 3. 加分布式锁,这也需要唯一标识来加锁 4. 不完美的解决办法,前端保证短时间内只发一次请求(正常用户没有问题,容易被hack,但可以挡正常流量,这应该是必须要做的)###### 引用来自“52iSilence7”的评论 两次插入请求和事务没太大关系,上面的加synchronize关键字在一台机器上的时候算是一个办法,但不是可行的办法,这相当于把所有任务都串行了,浪费服务器资源。这种情况可以有几种处理办法: 1. 数据库加唯一索引,如果有唯一列可以标识的话 2. 两行重复在事务完成之后做一个删除判断,将id比较小的(大的也OK,只要逻辑一致)几条删掉,只保留一条 3. 加分布式锁,这也需要唯一标识来加锁 4. 不完美的解决办法,前端保证短时间内只发一次请求(正常用户没有问题,容易被hack,但可以挡正常流量,这应该是必须要做的) 增加分布式锁,注意释放锁死锁情况。 楼上说的比较ID大小的方法仅限于ID是自增情况,如果是UUID不适用。  ######  事务和并发问题 事务和并发,这两个并不是一个对等的概念。 先给出简单解决方案,具体的实现在下文会给出。   第一种方式(推荐):   给数据添加唯一索引,这种方式能解决,但是会影响效率。   第二种方式:   如果是分布式项目,可以使用分布式锁,具体可以通过redis或者zookeeper来实现,   如果是单点项目,可以使用同步代码块来实现。   第三种方式(推荐):   使用insert where not exists 语句来限制插入。   第四种方式:   使用redis的`SETNX`方法来实现。     在具体业务中,我们更推荐第一种方式和第三种方式相结合的形式,但是大多数业务场景中,往往只采用第一种方式即可。   具体解决方案和思路。   在关系型数据库中(如MySql),一个事务可以是一条SQL语句,或者一组SQL语句。 其展现形式大致如下:   ``` BEGIN; /*开启事务*/ SQL 1; SQL 2; SQL 3; COMMIT;/ROLLBACK; /*提交或回滚*/ ```   他的具体表现是,上面一组SQL(SQL 1/SQL 2/SQL 3)在执行时,他们同时生效或者同时失败。   并发场景重现   如题所诉,假设`报名表`由下列字段构成   ``` CREATE TABLE `sign_up` (   `user_id` varchar(32) NOT NULL COMMENT '用户ID',   `create_time` datetime NOT NULL COMMENT '用户报名时间' ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ```   题中目前的操作应该大致如下:   ``` BEGIN; /*step1:从数据库获取当前用户是否已经报名*/ SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = ''; /*step2:如果用户未报名,则在数据库中插入数据*/ INSERT INTO sign_up values('',NOW()); COMMIT; ``` 此时代码本身是有漏洞的,当请求并发时,可能触发下列场景。   请求A: `SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = '123';` 请求B: `SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = '123';` 请求A: `INSERT INTO sign_up values('123',NOW());` 请求B: `INSERT INTO sign_up values('123',NOW());`   数据库在未添加唯一索引的场景下会插入两条数据,添加唯一索引的场景下则会报错`唯一索引冲突`。   此时虽然开启了事务,但是在整个执行过程中,如果没有开启唯一索引,SQL都是执行成功的,不会触发`ROLLBACK`; 如果开启了唯一索引,此时应该也就没有这个疑问了。   解决方案 针对这种问题,其实可以采取几种常见的方式来解决。 第一种方式: 在单点部署的工程中,可以通过对核心代码部分添加同步来解决,比如使用`synchronized`或者`ReentrantLock`来实现, 限制部分代码的并发访问,但是这样必然会降低该接口的效率,而且,在分布式工程内,该解决方法并不适用 ,所以不建议使用。   第二种方式: 通过分布式一致性锁来实现 针对第一种方案,通过分布式一致性锁取代常规同步块,进而实现在分布式工程中将并发转为同步。 分布式一致锁的实现方案有很多种,常见的有基于redis实现和基于zookeeper实现。   第三种方式:给数据库字段添加唯一索引 `ALTER TABLE sign_up ADD UNIQUE INDEX `user_id`(`user_id`);` 或者 `CREATE UNIQUE INDEX user_id ON sign_up(user_id); ` 这种方式通过在数据库端来限制表中不得同时存在同一用户的多条数据,这种方式实现比较简单,推荐使用,但是通过抛异常的形式来实现功能,会损失部分效率。   第四种方式: 使用`insert where not exists` 类型的语句来实现 ``` INSERT INTO sign_up (user_id, create_time) SELECT     '123', NOW() FROM     DUAL WHERE     NOT EXISTS (         SELECT             user_id         FROM             sign_up         WHERE             user_id = '123'     ); ```   这种方式,实现上将select 语句和insert语句合并到一起执行,避免了题中描述的并发问题,因为从实现上`insert`语句的执行依赖于`select`语句的查询结果 ,从根本上就避免了题中涉及到的并发问题,使用这种方式调用端可以根据`SQL`执行影响的行数来判断是否插入成功,进而执行对应的业务逻辑 ,这种方式普适性较强,推荐使用。   第五种方式,借助`redis`的`SETNX`方法来实现 ``` SETNX 是 ‘SET if Not eXists’的简称,命令格式大致如下:SETNX [key] [value]. 作用是:将指定的[key]的值设为[value],如果给定的key已经存在,则SETNX不做任何操作。 设置成功,该方法返回1,设置失败,该方法返回0. ``` 借助`SETNX`命令,我们可以将题中的`select`语句改为该方式,根据`SETNX`的返回值来执行相应的业务逻辑。 tips: 该方法需要注意redis的key值失效时间。   上诉五种方式都可以解决该问题。   问题产生的本质原因   下面再简单聊一下,并发和事务的问题。   事务有四大特性:A(原子性),C(一致性),I(隔离性),D(持久性)。   其中   - 原子性表示:事务所包含的所有操作,要么全部成功,要么全部失败。   - 一致性表示:事务执行前后必须处于一致性状态。   - 隔离性:当多个用户并发访问数据库的时候,多个并发线程相互隔离。   - 持久性:事务一旦被提交,对数据库的改变是永久性的,即使数据库系统遭遇故障也不会丢失提交的事务。   出现题中的问题,应该是混淆了原子性和隔离性的概念,原子性只是保证了事务中包含的操作要么同时成功,要么同时失败。 他并不会帮助我们处理业务代码中产生的并发问题,同理隔离性要求处理的是数据库并发,而不是业务并发。   在题中,业务代码内的两条SQL在没有配置唯一索引的场景下,并发时,并不会产生SQL执行失败的场景,两条语句默认都是成功的 ,这也就意味着事务最终是提交(`COMMIT`)的,进而导致数据库出现两条数据。   为了解决这种问题,我们的思路往往可以放在如何在业务层面将会出现并发问题的代码原子化,比如本文给出的解决方案,均是基于此而实现的。  ###### 加锁处理、唯一索引、基于redis防止重复提交###### 1.数据库的唯一索引 2.如果不是分布式部署的话上java锁 3.如果是分布式的话上基于redis的分布式锁 4.最好用lock锁 锁代码就可 没必要锁整个方法

kun坤 2020-06-07 22:25:21 0 浏览量 回答数 0

回答

Apache Cassandra数据库的优缺点有哪些? TAG标签: 数据库 Apache 优缺点 Cassandra 本文将超越众所周知的一些细节,探讨与 Cassandra 相关的不太明显的细节。您将检查 Cassandra 数据模型、存储模式设计、架构,以及与 Cassandra 相关的潜在惊喜。 在数据库历史文章 “What Goes Around Comes Around”中,Michal Stonebraker 详细描述了存储技术是如何随着时间的推移而发展的。实现关系模型之前,开发人员曾尝试过其他模型,比如层次图和有向图。值得注意的是,基于 SQL 的关系模型(即使到现在也仍然是事实上的标准)已经盛行了大约 30 年。鉴于计算机科学的短暂历史及其快速发展的步伐,这是一项非凡的成就。关系模型建立已久,以至于许多年来,解决方案架构师很容易为应用程序选择数据存储。他们的选择总是关系数据库。 诸如增加系统、移动设备、扩展的用户在线状态、云计算和多核系统的用户群之类的开发已经导致产生越来越多的大型系统。Google 和 Amazon 之类的高科技公司都是首批触及规模问题的公司。他们很快就发现关系数据库并不足以支持大型系统。 为了避免这些挑战,Google 和 Amazon 提出了两个可供选择的解决方案:Big Table 和 Dynamo,他们可以由此放松关系数据模型提供的保证,从而实现更高的可扩展性。Eric Brewer 的 “CAP Theorem”后来官方化了这些观察结果。它宣称,对于可扩展性系统,一致性、可用性和分区容错性都是权衡因素,因为根本不可能构建包含所有这些属性的系统。不久之后,根据 Google 和 Amazon 早期的工作,以及所获得的对可扩展性系统的理解,计划创建一种新的存储系统。这些系统被命名为 “NoSQL” 系统。该名称最初的意思是 “如果想缩放就不要使用 SQL”,后来被重新定义为 “不只是 SQL”,意思是说,除了基于 SQL 的解决方案外,还有其他的解决方案。 有许多 NoSQL 系统,而且每一个系统都缓和或改变了关系模型的某些方面。值得注意的是,没有一个 NoSQL 解决方案适用于所有的场景。每一个解决方案都优于关系模型,且针对一些用例子集进行了缩放。我的早期文章 “在 Data Storage Haystack 中为您的应用程序寻找正确的数据解决方案” 讨论了如何使应用程序需求和 NoSQL 解决方案相匹配。 Apache Cassandra是其中一个最早也是最广泛使用的 NoSQL 解决方案。本文详细介绍了 Cassandra,并指出了一些首次使用 Cassandra 时不容易发现的细节和复杂之处。 Apache Cassandra Cassandra 是一个 NoSQL 列族 (column family) 实现,使用由 Amazon Dynamo 引入的架构方面的特性来支持 Big Table 数据模型。Cassandra 的一些优势如下所示: 高度可扩展性和高度可用性,没有单点故障 NoSQL 列族实现 非常高的写入吞吐量和良好的读取吞吐量 类似 SQL 的查询语言(从 0.8 起),并通过二级索引支持搜索 可调节的一致性和对复制的支持 灵活的模式 这些优点很容易让人们推荐使用 Cassandra,但是,对于开发人员来说,至关重要的一点是要深入探究 Cassandra 的细节和复杂之处,从而掌握该程序的复杂性。 答案来源于网络

养狐狸的猫 2019-12-02 02:19:37 0 浏览量 回答数 0

回答

OceanBase 1.4分区表用法 业务数据做水平拆分,有如下几种方案 分库分表:通过分布式数据库中间件做分库分表拆分和路由等。如DRDS,MyCat,TDSQL等。分区:Oracle 12c的sharding, OceanBase 1.0及以后的版本存储级别切片,对应用透明。如Google的Spanner,PingCap的TiDB 这里只演示OceanBase的分区用法。 OceanBase的分区策略支持hash/list/range,以及支持二级分区(hash+hash,hash+range,key+key,range+range等)。详细用法请参见 OceanBase官网 文档里 的 OB分区表用法 。 无论是分库分表,还是分区的方案,都会面临一个问题,就是当一个Query 要取不同机器(节点)上的数据的时候,如果保证取出来的数据是一致的(指来自于同一个时间点或版本)。 分库分表方案解决不了这个问题, OB1.4也不能解决这个问题。OB2.0 新增全局时间服务,能提供全局一致性快照读功能,所以解决了这个问题。 这里演示一下 OB1.4 里规避这个跨节点读的方案(弱一致读) SQL: SELECT @@version;drop table if exists t_parttable;create table t_parttable(    id bigint not null primary key,     name varchar(50) not NULL,      KEY name_ind(NAME) LOCAL ) DEFAULT CHARSET=utf8mb4 partition by hash(mod(id,1000)) partitions 8;insert into t_parttable(id, name) values(1,'a'),(2,'A'),(3,'b'),(4,'B'),(5,'c'),(6,'C'),(7,'d'),(8,'D');set session ob_query_timeout=1000000; select * from t_parttable where name='a';explain select * from t_parttable where name='a';select /*+read_consistency(weak)*/ * from t_parttable where name='a';select * from t_parttable partition(p1);select * from t_parttable partition(p2); 该问题,在OceanBase 2.0后版本已经解了 ------------------------- OB租户负载均衡历史查看 接楼上建的表,这里演示一下如何在租户里查看负载均衡的历史。 OB作为一个分布式数据库,至少包含3个节点。其负载均衡的原理跟传统负载均衡的原理大不一样。 传统负载均衡设备(F5)或软件(LVS,SLB等)都是通过在某一协议层作为流量入口然后分配流量给后端不同的节点,从而去改变后端节点的压力。 OceanBase的负载均衡是自己通过调整每个节点(ObServer)里的数据(Partition)分布,从而间接改变打到各个节点(ObServer)上的流量,从而改变各个节点的压力。 有关OceanBase负载均衡的原理详细,请查看 《 OceanBase负载均衡的魅力 》 示例演示:租户视角查看负载均衡历史。 这里是新建了一个分区表(8个分区),在插入数据后,触发了负载均衡机制,把8个分区分散到多个节点上。 SQL: # 查看分区表的数据SHOW CREATE TABLE db_bin.t_parttable;SELECT /*+read_consistency(weak)*/ * FROM db_bin.t_parttable ORDER BY id ;# 查看租户的资源单元(Unit)分布SELECT tenant_name, unit_id,zone,svr_ip,max_cpu,round(max_memory/1024/1024/1024) max_mem_gb FROM gv$unit;# 查看租户的负载均衡历史SELECT str_to_date(h.gmt_create,'%Y-%m-%d %h:%i:%s') gmt_create, h.zone, t.database_name, t.tablegroup_name, t.table_name, t.part_num,h.partition_id,h.data_size, h.data_src_ip,  h.dest_unit_id, h.dest_ip, h.result_code, h.COMMENT , h.rs_svr_ip FROM gv$unit_load_balance_event_history h JOIN gv$TABLE t ON (h.table_id=t.table_id)WHERE t.table_name NOT LIKE '%recycle%' AND t.database_name='db_bin'ORDER BY gmt_create DESC LIMIT 100; ------------------------- OB sys租户查看集群使用信息     OceanBase作为一款通用的分布式关系型数据库,跟其他同行产品相比,有一个独特的地方,就是支持多租户,即支持集群资源(CPU/MEM/DISK等)的做租户管理。 OceanBase集群,至少是三节点。OceanBase把三个节点的机器资源能力聚合成一个大的资源池,然后做二次资源管理和分配。为每个租户分配一个特定规格的小的资源池,并且随时可以动态调整。 租户对于业务开发来说就是一个体的实例,只是开发不需要关注这个实例在哪个节点上。租户的使用体验类似于 MySQL (默认,以后还支持Oracle兼容模式的租户)。     假设OceanBase集群已经搭建好了,在创建租户之前,先清点一下现有集群的资源使用状况。下面是示例     SQL: # 查看集群节点资源使用情况SELECT svr_ip, s.zone, s.cpu_total, s.cpu_assigned, s.cpu_assigned_percent, round(s.mem_total/1024/1024/1024) mem_total_gb, round(s.mem_assigned/1024/1024/1024) mem_ass_gb, s.mem_assigned_percentFROM __all_virtual_server_stat sORDER BY zone,svr_ip;# 查看资源单元规格定义SELECT NAME, max_cpu, min_cpu, round(max_memory/1024/1024/1024) max_mem_gb , round(min_memory/1024/1024/1024) min_mem_gb FROM __all_unit_config ORDER BY unit_config_id LIMIT 10;# 查看已有租户及其资源池信息SELECT t.tenant_name, p.name pool_name, c.name config_name, p.unit_count, p.zone_list, t.`locality`FROM __all_resource_pool p JOIN __all_unit_config c ON (p.unit_config_id=c.unit_config_Id)  LEFT JOIN __all_tenant t ON (p.tenant_id=t.tenant_id)WHERE p.NAME IN ('yq_Pool','app_pool')  ORDER BY p.resource_pool_id; ------------------------- OceanBase租户创建(很简单)     接楼上。     清点了OceanBase集群资源使用情况后,选定一个规格,就可以快速创建出一个租户(demo_t) 示例:OB1.4下创建租户(2步) SQL: # 清理已经创建的同名租户DROP tenant IF EXISTS demo_t;DROP resource pool demo_pool;# 创建新的资源池(Resource Pool)CREATE resource pool demo_pool unit='S0_unit_config', unit_num=2;# 创建租户 CREATE tenant IF NOT EXISTS demo_t resource_pool_list=('demo_pool') SET VARIABLES ob_tcp_invited_nodes='%';# 查看已有租户及其资源池信息SELECT now() cur_time, str_to_date(t.gmt_create,'%Y-%m-%d %h:%i:%s') gmt_create,  t.tenant_name, p.name pool_name, c.name config_name, p.unit_count, p.zone_list, t.`locality`FROM __all_resource_pool p JOIN __all_unit_config c ON (p.unit_config_id=c.unit_config_Id)  LEFT JOIN __all_tenant t ON (p.tenant_id=t.tenant_id)WHERE p.NAME IN ('demo_pool')  ORDER BY p.resource_pool_id;     退出当前sys租户,重新登录新建租户 ,用户名是:root@demo_t#集群名,密码默认是空。 登录后新建Database,并创建账户访问DB。 ------------------------- OceanBase里索引创建特征 OceanBase里创建索引稍微有点特殊,开发和运维需要留意一下。 如果是在create table里带上了索引(包括唯一索引,也就是唯一性约束),是立即生效的。OB 1.x 版本里在表存在的情况下新建的索引(包括唯一索引),命令立即返回,但是索引不是立即生效。需要等到OB集群发起大合并之后才会生效。其中唯一索引需要等待两次大合并。所以运维建索引后需要安排1-2次大合并操作。OB 2.x 版本里在表存在的情况下新建的索引(包括唯一索引),命令立即返回,索引也不是立即生效,但是索引开始后台异步创建,创建时间取决于数据量。 示例如下: 1. OB 1.x 版本的索引 2. OB 2.x版本的索引 ------------------------- 回 9楼(xcb296) 的帖子 有什么想了解的 可以先说一下。 这个主要是根据用户问题来做的。

mq4096 2019-12-02 00:56:00 0 浏览量 回答数 0

回答

OceanBase 1.4分区表用法 业务数据做水平拆分,有如下几种方案 分库分表:通过分布式数据库中间件做分库分表拆分和路由等。如DRDS,MyCat,TDSQL等。分区:Oracle 12c的sharding, OceanBase 1.0及以后的版本存储级别切片,对应用透明。如Google的Spanner,PingCap的TiDB 这里只演示OceanBase的分区用法。 OceanBase的分区策略支持hash/list/range,以及支持二级分区(hash+hash,hash+range,key+key,range+range等)。详细用法请参见 OceanBase官网 文档里 的 OB分区表用法 。 无论是分库分表,还是分区的方案,都会面临一个问题,就是当一个Query 要取不同机器(节点)上的数据的时候,如果保证取出来的数据是一致的(指来自于同一个时间点或版本)。 分库分表方案解决不了这个问题, OB1.4也不能解决这个问题。OB2.0 新增全局时间服务,能提供全局一致性快照读功能,所以解决了这个问题。 这里演示一下 OB1.4 里规避这个跨节点读的方案(弱一致读) SQL: SELECT @@version;drop table if exists t_parttable;create table t_parttable(    id bigint not null primary key,     name varchar(50) not NULL,      KEY name_ind(NAME) LOCAL ) DEFAULT CHARSET=utf8mb4 partition by hash(mod(id,1000)) partitions 8;insert into t_parttable(id, name) values(1,'a'),(2,'A'),(3,'b'),(4,'B'),(5,'c'),(6,'C'),(7,'d'),(8,'D');set session ob_query_timeout=1000000; select * from t_parttable where name='a';explain select * from t_parttable where name='a';select /*+read_consistency(weak)*/ * from t_parttable where name='a';select * from t_parttable partition(p1);select * from t_parttable partition(p2); 该问题,在OceanBase 2.0后版本已经解了 ------------------------- OB租户负载均衡历史查看 接楼上建的表,这里演示一下如何在租户里查看负载均衡的历史。 OB作为一个分布式数据库,至少包含3个节点。其负载均衡的原理跟传统负载均衡的原理大不一样。 传统负载均衡设备(F5)或软件(LVS,SLB等)都是通过在某一协议层作为流量入口然后分配流量给后端不同的节点,从而去改变后端节点的压力。 OceanBase的负载均衡是自己通过调整每个节点(ObServer)里的数据(Partition)分布,从而间接改变打到各个节点(ObServer)上的流量,从而改变各个节点的压力。 有关OceanBase负载均衡的原理详细,请查看 《 OceanBase负载均衡的魅力 》 示例演示:租户视角查看负载均衡历史。 这里是新建了一个分区表(8个分区),在插入数据后,触发了负载均衡机制,把8个分区分散到多个节点上。 SQL: # 查看分区表的数据SHOW CREATE TABLE db_bin.t_parttable;SELECT /*+read_consistency(weak)*/ * FROM db_bin.t_parttable ORDER BY id ;# 查看租户的资源单元(Unit)分布SELECT tenant_name, unit_id,zone,svr_ip,max_cpu,round(max_memory/1024/1024/1024) max_mem_gb FROM gv$unit;# 查看租户的负载均衡历史SELECT str_to_date(h.gmt_create,'%Y-%m-%d %h:%i:%s') gmt_create, h.zone, t.database_name, t.tablegroup_name, t.table_name, t.part_num,h.partition_id,h.data_size, h.data_src_ip,  h.dest_unit_id, h.dest_ip, h.result_code, h.COMMENT , h.rs_svr_ip FROM gv$unit_load_balance_event_history h JOIN gv$TABLE t ON (h.table_id=t.table_id)WHERE t.table_name NOT LIKE '%recycle%' AND t.database_name='db_bin'ORDER BY gmt_create DESC LIMIT 100; ------------------------- OB sys租户查看集群使用信息     OceanBase作为一款通用的分布式关系型数据库,跟其他同行产品相比,有一个独特的地方,就是支持多租户,即支持集群资源(CPU/MEM/DISK等)的做租户管理。 OceanBase集群,至少是三节点。OceanBase把三个节点的机器资源能力聚合成一个大的资源池,然后做二次资源管理和分配。为每个租户分配一个特定规格的小的资源池,并且随时可以动态调整。 租户对于业务开发来说就是一个体的实例,只是开发不需要关注这个实例在哪个节点上。租户的使用体验类似于 MySQL (默认,以后还支持Oracle兼容模式的租户)。     假设OceanBase集群已经搭建好了,在创建租户之前,先清点一下现有集群的资源使用状况。下面是示例     SQL: # 查看集群节点资源使用情况SELECT svr_ip, s.zone, s.cpu_total, s.cpu_assigned, s.cpu_assigned_percent, round(s.mem_total/1024/1024/1024) mem_total_gb, round(s.mem_assigned/1024/1024/1024) mem_ass_gb, s.mem_assigned_percentFROM __all_virtual_server_stat sORDER BY zone,svr_ip;# 查看资源单元规格定义SELECT NAME, max_cpu, min_cpu, round(max_memory/1024/1024/1024) max_mem_gb , round(min_memory/1024/1024/1024) min_mem_gb FROM __all_unit_config ORDER BY unit_config_id LIMIT 10;# 查看已有租户及其资源池信息SELECT t.tenant_name, p.name pool_name, c.name config_name, p.unit_count, p.zone_list, t.`locality`FROM __all_resource_pool p JOIN __all_unit_config c ON (p.unit_config_id=c.unit_config_Id)  LEFT JOIN __all_tenant t ON (p.tenant_id=t.tenant_id)WHERE p.NAME IN ('yq_Pool','app_pool')  ORDER BY p.resource_pool_id; ------------------------- OceanBase租户创建(很简单)     接楼上。     清点了OceanBase集群资源使用情况后,选定一个规格,就可以快速创建出一个租户(demo_t) 示例:OB1.4下创建租户(2步) SQL: # 清理已经创建的同名租户DROP tenant IF EXISTS demo_t;DROP resource pool demo_pool;# 创建新的资源池(Resource Pool)CREATE resource pool demo_pool unit='S0_unit_config', unit_num=2;# 创建租户 CREATE tenant IF NOT EXISTS demo_t resource_pool_list=('demo_pool') SET VARIABLES ob_tcp_invited_nodes='%';# 查看已有租户及其资源池信息SELECT now() cur_time, str_to_date(t.gmt_create,'%Y-%m-%d %h:%i:%s') gmt_create,  t.tenant_name, p.name pool_name, c.name config_name, p.unit_count, p.zone_list, t.`locality`FROM __all_resource_pool p JOIN __all_unit_config c ON (p.unit_config_id=c.unit_config_Id)  LEFT JOIN __all_tenant t ON (p.tenant_id=t.tenant_id)WHERE p.NAME IN ('demo_pool')  ORDER BY p.resource_pool_id;     退出当前sys租户,重新登录新建租户 ,用户名是:root@demo_t#集群名,密码默认是空。 登录后新建Database,并创建账户访问DB。 ------------------------- OceanBase里索引创建特征 OceanBase里创建索引稍微有点特殊,开发和运维需要留意一下。 如果是在create table里带上了索引(包括唯一索引,也就是唯一性约束),是立即生效的。OB 1.x 版本里在表存在的情况下新建的索引(包括唯一索引),命令立即返回,但是索引不是立即生效。需要等到OB集群发起大合并之后才会生效。其中唯一索引需要等待两次大合并。所以运维建索引后需要安排1-2次大合并操作。OB 2.x 版本里在表存在的情况下新建的索引(包括唯一索引),命令立即返回,索引也不是立即生效,但是索引开始后台异步创建,创建时间取决于数据量。 示例如下: 1. OB 1.x 版本的索引 2. OB 2.x版本的索引 ------------------------- 回 9楼(xcb296) 的帖子 有什么想了解的 可以先说一下。 这个主要是根据用户问题来做的。

mq4096 2019-12-02 00:56:01 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站