• 关于 MYSQL概念及应用 的搜索结果

回答

对于数据复制需求,很容易混淆数据迁移、同步、恢复这三个概念,本文介绍这三个概念的区别,方便您清楚认知自己的需求,并提供多种方案,可满足您的上云、迁云、同步、恢复等业务需求。 数据迁移/同步/恢复区别 数据迁移和恢复的异同 数据迁移和恢复都可以将数据复制到新实例,但是它们之间还有一定的区别: 数据迁移主要用于上云迁移,通过数据传输服务DTS将本地数据库/ECS上的自建数据库/第三方云数据库迁移至阿里云数据库,也可以从阿里云迁移至自建数据库。 数据恢复是通过数据备份和日志备份进行恢复,可以将某个备份集的数据恢复到实例,也可以通过备份集和日志备份将数据恢复到某个时间点。 数据迁移和恢复可以互补以实现更多功能,例如恢复数据到新实例后再通过DTS迁移回原实例,可以避免修改应用程序连接地址。 说明 控制台提供的恢复功能可以满足用户的大部分恢复需求,同时覆盖了部分迁移数据的需求(例如不要求增量迁移)。 数据迁移和同步的区别 数据迁移主要用于上云迁移,在勾选增量迁移时,可以实现数据同步的部分功能,但是不如数据同步灵活,例如不支持在线修改同步对象、不支持双向同步等。数据迁移属于一次性任务,迁移完成后即可释放实例。 数据同步主要用于两个数据源之间的数据实时同步,适用于异地多活、数据灾备、跨境数据同步、查询与报表分流、云BI及实时数据仓库等场景。它属于持续性任务,任务创建后会一直同步数据,保持数据源和数据目标的数据一致性。 数据迁移 适用场景 文档链接 (迁移上云)自建数据库迁移至RDS MySQL 从自建MySQL迁移至RDS MySQL 从通过专线/VPN网关/智能网关接入的自建MySQL迁移至RDS MySQL 从通过专线接入的自建MySQL迁移至其他云账号下的RDS MySQL 从自建DB2迁移至RDS MySQL 使用mysqldump迁移MySQL数据 从自建Oracle迁移至RDS MySQL RDS MySQL迁移至POLARDB 一键升级RDS MySQL到PolarDB MySQL 一键克隆RDS MySQL到POLARDB for MySQL 将第三方云数据库迁移至RDS MySQL 从Amazon RDS MySQL迁移至阿里云 从Amazon RDS Oracle迁移至阿里云RDS MySQL 从Amazon Aurora MySQL迁移至阿里云 从腾讯云MySQL迁移至阿里云 Google Cloud SQL的MySQL数据库迁移到阿里云 百度云MySQL数据库迁移到阿里云 华为云MySQL数据库迁移到阿里云 RDS实例间的数据库迁移 RDS实例间的数据迁移 不同RDS实例下库名不同的数据库之间的数据迁移 使用DTS跨阿里云账号迁移RDS数据 单个RDS实例内的数据迁移 RDS实例内不同数据库之间的数据迁移 将RDS MySQL数据迁移至自建MySQL数据库 从RDS MySQL迁移至自建MySQL 数据同步 适用场景 文档链接 MySQL间数据同步 RDS MySQL实例间的双向同步 RDS MySQL实例间的单向同步 从ECS上的自建MySQL同步至RDS MySQL 从通过专线/VPN网关/智能网关接入的自建MySQL同步至RDS MySQL 不同阿里云账号下RDS MySQL实例间的数据同步 从RDS MySQL同步至PolarDB MySQL 从RDS MySQL同步至通过专线/VPN网关/智能网关接入的自建MySQL MySQL数据同步至其他数据库 从RDS MySQL同步到AnalyticDB for MySQL 从RDS MySQL同步至AnalyticDB for PostgreSQL 从RDS MySQL同步至DataHub 从RDS MySQL同步至MaxCompute 从RDS MySQL同步至自建Kafka集群 数据恢复 适用场景 文档链接 RDS MySQL数据恢复至新实例/原实例 恢复MySQL数据 MySQL单库单表恢复 跨地域恢复 RDS MySQL数据恢复至自建数据库 RDS MySQL 物理备份文件恢复到自建数据库 RDS MySQL逻辑备份文件恢复到自建数据库 说明 如果实例还未释放或者对数据时间点没有要求,建议使用DTS从RDS MySQL迁移至自建MySQL。

游客yl2rjx5yxwcam 2020-03-09 10:46:05 0 浏览量 回答数 0

回答

本文简单介绍RDS MySQL及相关概念。 概述 阿里云关系型数据库(Relational Database Service,简称 RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,RDS支持MySQL、SQL Server、PostgreSQL、PPAS(高度兼容 Oracle)和MariaDB引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。关于RDS的优势与价值,请参见产品优势。 如果您需要获取人工帮助,可以在RDS管理控制台的右上角选择工单 > 提交工单。如果业务复杂,您也可以购买支持计划,获取由IM企业群、技术服务经理(TAM)、服务经理等提供的专属支持。 有关阿里云关系型数据库RDS更多介绍信息,请查看产品详情 。 RDS MySQL RDS MySQL基于阿里巴巴的MySQL源码分支,经过双十一高并发、大数据量的考验,拥有优良的性能。RDS MySQL支持实例管理、账号管理、数据库管理、备份恢复、白名单、透明数据加密以及数据迁移等基本功能。除此之外还提供如下高级功能: 只读实例:在对数据库有少量写请求,但有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压力,您可以创建一个或多个只读实例,利用只读实例满足大量的数据库读取需求,增加应用的吞吐量。 读写分离:读写分离功能是在只读实例的基础上,额外提供了一个读写分离地址,联动主实例及其所有只读实例,创建自动的读写分离链路。应用程序只需连接读写分离地址进行数据读取及写入操作,读写分离程序会自动将写入请求发往主实例,而将读取请求按照权重发往各个只读实例。用户只需通过添加只读实例的个数,即可不断扩展系统的处理能力,应用程序上无需做任何修改。 数据库独享代理:数据库独享代理服务是使用独立代理计算资源为当前实例提供代理服务,提供更多高级功能,例如读写分离、短连接优化、事务拆分等。 主机组:主机组功能是以集群形式批量管理实例,一个地域创建多个主机组,一个主机组包含多个主机,一个主机包含多个实例。 CloudDBA数据库性能优化:针对SQL语句性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,会提供问题详情及相应的解决方案,为您维护实例带来极大的便利。 RDS MySQL支持的功能请参见MySQL功能概览。 声明 本文档中描述的部分产品特性或者服务可能不在您的购买或使用范围之内,请以实际商业合同和条款为准。本文档内容仅作为指导使用,文档中的所有内容不构成任何明示或暗示的担保。 基本概念 实例:一个独立占用物理内存的数据库服务进程,用户可以设置不同的内存大小、磁盘空间和数据库类型。其中内存的规格会决定该实例的性能。实例创建后可以变更配置和删除实例。 数据库:在一个实例下创建的逻辑单元,一个实例可以创建多个数据库,数据库在实例内的命名唯一。 地域和可用区:地域是指物理的数据中心。可用区是指在同一地域内,电力和网络互相独立的物理区域。更多信息请参考阿里云全球基础设施。 通用描述约定 描述 说明 本地数据库 指代部署在本地机房或者非阿里云RDS上的数据库。 RDS XX(XX 为 MySQL、SQL Server、PostgreSQL、PPAS或MariaDB) 指代某一数据库类型的RDS,如RDS MySQL是指在RDS上开通的数据库引擎为MySQL的实例。

游客yl2rjx5yxwcam 2020-03-09 10:46:43 0 浏览量 回答数 0

回答

本文简单介绍RDS MySQL及相关概念。 概述 阿里云关系型数据库(Relational Database Service,简称 RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,RDS支持MySQL、SQL Server、PostgreSQL、PPAS(高度兼容 Oracle)和MariaDB引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。关于RDS的优势与价值,请参见产品优势。 如果您需要获取人工帮助,可以在RDS管理控制台的右上角选择工单 > 提交工单。如果业务复杂,您也可以购买支持计划,获取由IM企业群、技术服务经理(TAM)、服务经理等提供的专属支持。 有关阿里云关系型数据库RDS更多介绍信息,请查看产品详情 。 RDS MySQL RDS MySQL基于阿里巴巴的MySQL源码分支,经过双十一高并发、大数据量的考验,拥有优良的性能。RDS MySQL支持实例管理、账号管理、数据库管理、备份恢复、白名单、透明数据加密以及数据迁移等基本功能。除此之外还提供如下高级功能: 只读实例:在对数据库有少量写请求,但有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压力,您可以创建一个或多个只读实例,利用只读实例满足大量的数据库读取需求,增加应用的吞吐量。 读写分离:读写分离功能是在只读实例的基础上,额外提供了一个读写分离地址,联动主实例及其所有只读实例,创建自动的读写分离链路。应用程序只需连接读写分离地址进行数据读取及写入操作,读写分离程序会自动将写入请求发往主实例,而将读取请求按照权重发往各个只读实例。用户只需通过添加只读实例的个数,即可不断扩展系统的处理能力,应用程序上无需做任何修改。 数据库独享代理:数据库独享代理服务是使用独立代理计算资源为当前实例提供代理服务,提供更多高级功能,例如读写分离、短连接优化、事务拆分等。 主机组:主机组功能是以集群形式批量管理实例,一个地域创建多个主机组,一个主机组包含多个主机,一个主机包含多个实例。 CloudDBA数据库性能优化:针对SQL语句性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,会提供问题详情及相应的解决方案,为您维护实例带来极大的便利。 RDS MySQL支持的功能请参见MySQL功能概览。 声明 本文档中描述的部分产品特性或者服务可能不在您的购买或使用范围之内,请以实际商业合同和条款为准。本文档内容仅作为指导使用,文档中的所有内容不构成任何明示或暗示的担保。 基本概念 实例:一个独立占用物理内存的数据库服务进程,用户可以设置不同的内存大小、磁盘空间和数据库类型。其中内存的规格会决定该实例的性能。实例创建后可以变更配置和删除实例。 数据库:在一个实例下创建的逻辑单元,一个实例可以创建多个数据库,数据库在实例内的命名唯一。 地域和可用区:地域是指物理的数据中心。可用区是指在同一地域内,电力和网络互相独立的物理区域。更多信息请参考阿里云全球基础设施。 通用描述约定 描述 说明 本地数据库 指代部署在本地机房或者非阿里云RDS上的数据库。 RDS XX(XX 为 MySQL、SQL Server、PostgreSQL、PPAS或MariaDB) 指代某一数据库类型的RDS,如RDS MySQL是指在RDS上开通的数据库引擎为MySQL的实例。

游客yl2rjx5yxwcam 2020-03-09 10:46:39 0 浏览量 回答数 0

回答

本文档介绍 Helm 的基本概念和使用方式,演示在阿里云的 Kubernetes 集群上利用 Helm 来部署示例应用 WordPress 和 Spark。 前提条件 通过 Helm 部署应用之前,利用阿里云容器服务来创建 Kubernetes 集群。参见创建Kubernetes集群。 在 Kubernetes 集群创建的同时,Tiller 将会被自动部署到集群之中,并且在所有的 master 节点上自动安装 Helm CLI 以及配置指向阿里云的 Chart 存储库。 查看您集群中 Kubernetes 的版本。 仅支持 Kubernetes 版本 1.8.4 及以上的集群。对于 1.8.1 版本的集群,您可以在集群列表中进行集群升级操作。 背景信息 在 Kubernetes 中,应用管理是需求最多、挑战最大的领域。Helm 项目提供了一个统一软件打包方式,支持版本控制,简化 Kubernetes 应用分发与部署中的复杂性。阿里云容器服务在应用目录管理功能中集成了 Helm 工具,并进行了功能扩展,支持官方 Repository,让您快速部署应用。您可以通过命令行或容器服务控制台界面两种方式进行部署。 本文档介绍 Helm 的基本概念和使用方式,演示在阿里云的 Kubernetes 集群上利用 Helm 来部署示例应用 WordPress 和 Spark。 Helm 基本概念 Helm 是由 Deis 发起的一个开源工具,有助于简化部署和管理 Kubernetes 应用。 Helm 可以理解为 Kubernetes 的包管理工具,可以方便地发现、共享和使用 Kubernetes 构建的应用,它包含以下几个基本概念。 Chart:一个 Helm 包,其中包含了运行一个应用所需要的镜像、依赖和资源定义等,还可能包含 Kubernetes 集群中的服务定义,类似 Homebrew 中的 formula、APT 的 dpkg 或者 Yum 的 rpm 文件。 Release:在 Kubernetes 集群上运行的 Chart 的一个实例。在同一个集群上,一个 Chart 可以安装很多次。每次安装都会创建一个新的 release。例如一个 MySQL Chart,如果想在服务器上运行两个数据库,就可以把这个 Chart 安装两次。每次安装都会生成自己的 Release,会有自己的 Release 名称。 Repository:用于发布和存储 Chart 的存储库。 Helm 组件 Helm 采用客户端/服务器架构,由如下组件组成: Helm CLI 是 Helm 客户端,可以在 Kubernetes 集群的 master 节点或者本地执行。 Tiller 是服务器端组件,在 Kubernetes 集群上运行,并管理 Kubernetes 应用程序的生命周期。 Repository 是 Chart 存储库,Helm 客户端通过 HTTP 协议来访问存储库中 Chart 的索引文件和压缩包。 通过控制台界面部署应用 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的市场 > 应用目录,进入应用目录列表页面。 选择一个 chart(本示例选择 WordPress),单击该 chart,进入 chart 详情页面。 chart详情 在页面右侧,填写部署的基本信息。 集群:应用要部署到的集群。 命名空间:选择命名空间。默认为 default。 发布名称:填写应用发布的名称。 部署基本信息 单击参数,对配置进行修改。 本示例中使用云盘的动态数据卷绑定一个PVC,参见云盘存储卷使用说明。 说明 您需要预先创建一个云盘存储卷(PV),并且存储卷的容量不能小于PVC定义的数值。 修改参数配置 配置完成后,单击创建,部署成功后,默认进入该应用的发布页面。 创建应用 单击左侧导航栏中的路由与负载均衡 > 服务,选择所需的集群和命名空间,找到对应的服务,您可获取 http/https 外部端点的地址。 服务 单击上面的访问地址,进入 WordPress 博客发布页面。 通过命令行部署应用 通过命令行部署应用时,您可以 SSH 登录 Kubernetes 集群的 master 节点 (Helm CLI 已自动安装并已配置Repository)进行操作,参见SSH 访问 Kubernetes 集群。您也可以在本地安装配置 kubectl 和 Helm CLI。 本示例以在本地安装配置 kubectl 和 Helm CLI 并部署 WordPress 和 Spark 应用为例进行说明。 安装配置 kubectl 和 Helm CLI。 在本地计算机上安装和配置 kubectl。 参见通过kubectl连接Kubernetes集群。 若要查看 Kubernetes 目标集群的信息,键入命令 kubectl cluster-info。 在本地计算机上安装 Helm。 安装方法,参见 Install Helm。 部署 WordPress。 下面我们将利用 Helm,来部署一个 WordPress 博客网站。 输入以下命令。 helm install --name wordpress-test stable/wordpress 说明 阿里云 Kubernetes 服务提供块存储(云盘)的动态存储卷支持,您需要预先创建一个云盘存储卷。 得到以下的结果。 NAME: wordpress-test LAST DEPLOYED: Mon Nov 20 19:01:55 2017 NAMESPACE: default STATUS: DEPLOYED ... 利用如下命令查看 WordPress 的 release 和 service。 helm list kubectl get svc 利用以下命令查看 WordPress 相关的 Pod,并等待其状态变为 Running。 kubectl get pod 利用以下命令获得 WordPress 的访问地址。 echo http://$(kubectl get svc wordpress-test-wordpress -o jsonpath='{.status.loadBalancer.ingress[0].ip}') 通过上面的 URL,可以在浏览器上看到熟悉的 WordPress 站点。 也可以根据 Charts 的说明,利用如下命令获得 WordPress 站点的管理员用户和密码。 echo Username: user echo Password: $(kubectl get secret --namespace default wordpress-test-wordpress -o jsonpath="{.data.wordpress-password}" | base64 --decode) 如需彻底删除 WordPress 应用,可输入如下命令。 helm delete --purge wordpress-test 使用第三方的 Chart 存储库 您除了可以使用预置的阿里云的 Chart 存储库,也可以使用第三方的 Chart 存储库(前提是网络是可达的)。使用如下命令格式添加第三方 Chart 存储库。 helm repo add 存储库名 存储库URL helm repo update 关于 Helm 相关命令的说明,您可以参见 Helm 文档。 参考信息 Helm 催生了社区的发展壮大,越来越多的软件提供商,如 Bitnami 等公司,开始提供高质量的 Charts。您可以在 https://kubeapps.com/ 中寻找和发现已有的 Charts。

1934890530796658 2020-03-31 15:46:51 0 浏览量 回答数 0

回答

首先,我们先来聊聊各类数据模型。下列相关信息参考自Emil Eifrem的博文及NoSQL数据库说明。文档类数据库传承:受Lotus Notes启发而来。数据模型:文档汇总,包括键-值汇总。实例: CouchDB, MongoDB优势: 数据建模自然、程序员易于上手、开发流程短、兼容网页模式、便于达成CRUD(即添加、查询、更新及删除的简称)。图形类数据库传承:来自 Euler 及图形理论。数据模型:节点及关系,二者结合能够保持键-值间的成对状态实例: AllegroGraph, InfoGrid, Neo4j优势:轻松玩转复杂的图形问题、处理速度快关系类数据库传承:源自 E. F. Codd在大型共享数据库中所提出的数据关系模型理论数据模型:以关系组为基础实例: VoltDB, Clustrix, MySQL优势:性能强大、联机事务处理系统扩展性好、支持SQL访问、视图直观、擅长处理交易关系、与程序员间的交互效果优异面向对象类数据库传承:源自图形数据库方面的研究成果数据模型: 对象实例: Objectivity, Gemstone优势:擅长处理复杂的对象模型、快速的键-值访问及键-功能访问并且兼具图形数据库的各类功能键-值存储传承: Amazon Dynamo中的paper概念及分布式hash表数据模型:对成对键-值的全局化汇总实例: Membase, Riak优势:尺寸掌控得当、擅长处理持续的小规模读写需求、速度快、程序员易于上手BigTable Clones传承自:谷歌BigTable中的paper概念数据模型:纵列群,即在某个表格模型中,每行在理论上至少可以有一套单独的纵列配置实例: HBase, Hypertable, Cassandra优势:尺寸掌控得当、擅长应对大规模写入负载、可用性高、支持多数据中心、支持映射简化数据结构类服务传承: 不明实例: Redis数据模型: 执行过程基于索引、列表、集合及字符串值优势:为数据库应用引入前所未有的新鲜血液网格类数据库传承:源自数据网格及元组空间研究数据模型:基于空间的构架实例: GigaSpaces, Coherence优势:优良的性能表现及上佳的交易处理扩展性我们该为自己的应用程序选择哪套方案?选择的关键在于重新思考我们的应用程序如何依据不同数据模型及不同产品进行有针对性的协同工作。即用正确的数据模型处理对应的现实任务、用正确的产品解决对应的现实问题。要探究哪类数据模型能够切实为我们的应用程序提供帮助,可以参考“到底NoSQL能在我们的工作中发挥什么作用?”一文。在这篇文章中,我试着将各种不同特性、不同功能的常用创建系统中的那些非常规的应用实例综合起来。将应用实例中的客观需求与我们的选择联系起来。这样大家就能够逆向分析出我们的基础架构中适合引入哪些产品。至于具体结论是NoSQL还是SQL,这已经不重要了。关注数据模型、产品特性以及自身需要。产品总是将各种不同的功能集中起来,因此我们很难单纯从某一类数据模型构成方式的角度直接找到最合用的那款。对功能及特性的需求存在优先级,只要对这种优先级具备较为清晰的了解,我们就能够做出最佳选择。如果我们的应用程序需要…复杂的交易:因为没人愿意承受数据丢失,或者大家更倾向于一套简单易用的交易编程模式,那么请考虑使用关系类或网格类数据库。例如:一套库存系统可能需要完整的ACID(即数据库事务执行四要素:原子性、一致性、隔离性及持久性)。顾客选中了一件产品却被告知没有库存了,这类情况显然容易引起麻烦。因为大多数时候,我们想要的并不是额外补偿、而只是选中的那件货品。若是以扩展性为优先,那么NoSQL或SQL都能应对自如。这种情况下我们需要关注那些支持向外扩展、分类处理、实时添加及移除设备、负载平衡、自动分类及整理并且容错率较高的系统。要求持续保有数据库写入功能,则需要较高的可用性。在这种情况下不妨关注BigTable类产品,其在一致性方面表现出众。如有大量的小规模持续读写要求,也就是说工作负载处于波动状态,可以关注文档类、键-值类或是那些提供快速内存访问功能的数据库。引入固态硬盘作为存储媒介也是不错的选择。以社交网络为实施重点的话,我们首先想到的就是图形类数据库;其次则是Riak这种关系类数据库。具备简单SQL功能的常驻内存式关系数据库基本上就可以满足小型数据集合的需求。Redis的集合及列表操作也能发挥作用。如果我们的应用程序需要…在访问模式及数据类型多种多样的情况下,文档类数据库比较值得考虑。这类数据库不仅灵活性好,性能表现也可圈可点。需要完备的脱机报告与大型数据集的话,首选产品是Hadoop,其次则是支持映射简化的其它产品。不过仅仅支持映射简化还不足以提供如Hadoop一样上佳的处理能力。如果业务跨越数个数据中心,Bigtable Clone及其它提供分布式选项的产品能够应对由地域距离引起的延迟现象,并具备较好的分区兼容性。要建立CRUD应用程序,首选文档类数据库。这类产品简化了从外部访问复杂数据的过程。需要内置搜索功能的话,推荐Riak。要对数据结构中的诸如列表、集合、队列及发布/订阅信息进行操作,Redis是不二之选。其具备的分布式锁定、覆盖式日志及其它各种功能都会在这类应用状态下大放异彩。将数据以便于处理的形式反馈给程序员(例如以JSON、HTTP、REST、Javascript这类形式),文档类数据库能够满足这类诉求,键-值类数据库效果次之。如果我们的应用程序需要…以直观视图的形式进行同步交易,并且具备实时数据反馈功能,VoltDB算得上一把好手。其数据汇总以及时间窗口化的表现都非常抢眼。若是需要企业级的支持及服务水平协议,我们需要着眼于特殊市场。Membase就是这样一个例子。要记录持续的数据流,却找不到必要的一致性保障?BigTable Clone交出了令人满意的答卷,因为其工作基于分布式文件系统,所以可以应对大量的写入操作。要让操作过程变得尽可能简单,答案一定在托管或平台即服务类方案之中。它们存在的目的正是处理这类要求。要向企业级客户做出推荐?不妨考虑关系类数据库,因为它们的长项就是具备解决繁杂关系问题的技术。如果需要利用动态方式建立对象之间的关系以使其具有动态特性,图形类数据库能帮上大忙。这类产品往往不需要特定的模式及模型,因此可以通过编程逐步建立。S3这类存储服务则是为支持大型媒体信息而生。相比之下NoSQL系统则往往无法处理大型二进制数据块,尽管MongoDB本身具备文件服务功能。如果我们的应用程序需要…有高效批量上传大量数据的需求?我们还是得找点有对应功能的产品。大多数产品都无法胜任,因为它们不支持批量操作。文档类数据库或是键-值类数据库能够利用流畅的模式化系统提供便捷的上传途径,因为这两类产品不仅支持可选区域、添加区域及删除区域,而且无需建立完整的模式迁移框架。要实现完整性限制,就得选择一款支持SQL DLL的产品,并在存储过程或是应用程序代码中加以运行。对于协同工作极为依赖的时候就要选择图形类数据库,因为这类产品支持在不同实体间的迅速切换。数据的移动距离较短且不必经过网络时,可以在预存程序中做出选择。预存程序在关系类、网格类、文档类甚至是键-值类数据库中都能找到。如果我们的应用程序需要…键-值存储体系擅长处理BLOB类数据的缓存及存储问题。缓存可以用于应对网页或复杂对象的存储,这种方案能够降低延迟、并且比起使用关系类数据库来说成本也较低。对于数据安全及工作状态要求较高的话可以尝试使用定制产品,并且在普遍的工作范畴(例如向上扩展、调整、分布式缓存、分区及反规范化等等)之外一定要为扩展性(或其它方面)准备解决方案。多样化的数据类型意味着我们的数据不能简单用表格来管理或是用纵列来划分,其复杂的结构及用户组成(也可能还有其它各种因素)只有文档类、键-值类以及Bigtable Clone这些数据库才能应付。上述各类数据库都具备极为灵活的数据类型处理能力。有时其它业务部门会需要进行快速关系查询,引入这种查询方式可以使我们不必为了偶尔的查看而重建一切信息。任何支持SQL的数据库都能实现这类查询。至于在云平台上运行并自动充分利用云平台的功能——这种美好的愿望目前还只能是愿望。如果我们的应用程序需要…支持辅助索引,以便通过不同的关键词查找数据,这要由关系类数据库及Cassandra推出的新辅助索引系统共同支持才能实现。创建一套处于不断增长中的数据集合(真正天文数量级的数据)然而访问量却并不大,那么Bigtable Clone是最佳选择,因为它会将数据妥善安排在分布式文件系统当中。需要整合其它类型的服务并确保数据库提供延后写入同步功能?那最好的实现方式是捕捉数据库的各种变化并将其反馈到其它系统中以保障运作的一致性。通过容错性检查了解系统对供电中断、隔离及其它故障情况的适应程度。若是当前的某项技术尚无人问津、自己却感觉大有潜力可挖,不妨在这条路上坚持走下去。这种情况有时会带来意料之外的美好前景。尝试在移动平台上工作并关注CouchDB及移动版couchbase。哪种方案更好?25%的状态改善尚不足以让我们下决心选择NoSQL。选择标准是否恰当取决于实际情况。这类标准对你的方案有指导意义吗?如果你的公司尚处于起步阶段,并且需要尽快推出自己的产品,这时不要再犹豫不决了。无论是SQL还是NoSQL都可以作为参考。

a123456678 2019-12-02 03:00:14 0 浏览量 回答数 0

回答

解决了吗?感觉是版本的问题 ######请问楼主解决了吗?我现在也遇到了相同的问题######这个是由于当时IK分词器还不支持solr5.3版本。现在百度已经能找到solr5.3版本下的ik分词器代码了。######https://github.com/EugenePig/ik-analyzer-solr5   下载这个 然后直接编译 按照reademe 的说明配置即可######基于微博数据检测的Solr实战开发 课程观看地址: http://www.xuetuwuyou.com/course/145 课程出自学途无忧网: http://www.xuetuwuyou.com solrcloud5.2.1+zookeeper一部精通 课程观看地址: http://www.xuetuwuyou.com/course/15 一、课程用到的软件 1.centos6.7 2.apache-tomcat-7.0.47 3.solr-5.5 4.zookeeper 3.4.6 5.eclipse-jee-neon-R-win32-x86_64  二、课程目标 在海量数据的情况下,传统的关系型数据库已经力不从心,快速检索已经成为了应用系统所必备的功能之一。本课程从实战角度出发,让学员能从实战中学习到: 搜索引擎的原理及架构。  掌握在大数据环境下经典检索算法。  掌握如何使用solr实现系统快速检索目标。  掌握solr在开发中常见的技术大坑与调优技术。 三、适用人群 开发人员、架构师、对分布式搜索引擎有兴趣的朋友。 四、课程内容介绍: 第1课、Solr简介与部署     知识点:Solr基本概念以及应用的介绍、Solr单机版的搭建 第2课、Solr建库实战     知识点:介绍managed-schame和solrConfig两大配置文件,并建立Solr库开始实操 第3课、Solr中文分词器与全量数据导入     知识点:对比中文分词器IK与MMSeg4j的特点、Solr配置MMSeg4j中文分词器、把Mysql中的数据导入到Solr索引库上 第4课、Solr增量数据导入及新管理UI实战     知识点:把Mysql的数据增量导入到Solr索引库上、对Solr5最新的UI进行全面介绍 第5课、Solr数据查询详解     知识点:基于UI管理界面,实战Solr q查询、fq查询以及分页、高亮、Facet等高级特性的使用 第6课、Solrj编程实战之索引增删改     知识点:基于Eclipse开发环境、搭建Solrj工程项目,对Solr的索引库的进行增、删、改的操作 第7课、Solrj编程实战之索引查询与分页     知识点:基于Solrj实现q查询、fq查询以及分页查询的操作 第8课、Solrj编程实战之高亮与Facet     知识点:基于Solrj实现高亮查询、Facet查询的操作 第9课、Solrj编程实战之设计模式     知识点:基于前阶段所写的代码,发现代码中的不足,并使用单例模式、模块方法、回调方法的设计模式进行仿Spring Data的开发 第10课、Solr缓存与预热机制剖析     知识点:从算法、应用场景以及实例的多个维度,剖析Solr中的四大缓存,并且站在SolrIndexSearcher的生命周期上解剖预热机制及其注意事项 第11课、Solr高级特性之近实时、实时检索     知识点:从概念、原理以及实例的多个维度,剖析Solr近实时、实时检索 第12课、Solr高级特性之原子更新     知识点:Solr在应用层面上对Lucene进行了封装,在Solr4之后提出了原子更新的新概念,从此在应用层面操作上方便我们进行索引更新 第13课、Solr高级特性之深度分页及性能调优     知识点:Solr4的又一大特性,在面临海量据的情况下,占用更低的资源进行数据检索正是深度分页的一大亮点、后半节结合讲师的实际开发经验,分享Solr性能调优的策略 第14课、SolrCloud部署运维之集群搭建     知识点:基于Centos、zookeeper环境下,搭建SolrCloud系统  第15课、SolrCloud部署运维之库管理     知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud库的管理,包括库的新增、删除以及动态更新  第16课、SolrCloud部署运维之副本与扩容     知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud分片的管理,包括分片的备份与库的扩容 第17课、中文分词器配置与使用Solrj操作SolrCloud     知识点:配置中文分词器以及使用Solrj操作SolrCloud来实现增、删、改、查  第18课、项目介绍与环境搭建     知识点:介绍项目的背景以及总体架构、突出Solr在实际项目中的角色。基于Maven搭建开发环境  第19课、框架代码开发之Spring集成Solrj之CRUD(maven版)     知识点:Spring是一个JavaEE企业级框架,它很多主流的主件都进行集成支持。本节学习Spring与Solrj的集成,进行增、删、改、查操作 第20课、框架代码开发之Spring集成Solrj之(maven版)     知识点:Spring是一个JavaEE企业级框架,它对很多主流的组件都进行集成支持。本节学习Spring与Solrj的集成,进行实时检索、高亮、深度分页、Facet查询操作 第21课、基于dom4j的导库组件开发(maven版)     知识点:基于dom4j解析XML文件,并将数据批量高效导入到SolrCloud分布式索引库上进行检索分析 第22课、高级检索组件开发一     知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第23课、高级检索组件开发二         知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第24课、相似匹配组件开发一     知识点:基于SolrCloud实现相似性检索操作 第25课、相似匹配组件开发二     知识点:基于SolrCloud实现相似性检索操作 第26课、课程总结与Solr6的展望     知识点:课程大总结,并对最新版的Solr6进行亮点分析以及未来的展望

kun坤 2020-06-01 09:57:39 0 浏览量 回答数 0

回答

一、基础篇 1.1、Java基础 面向对象的特征:继承、封装和多态 final, finally, finalize 的区别 Exception、Error、运行时异常与一般异常有何异同 请写出5种常见到的runtime exception int 和 Integer 有什么区别,Integer的值缓存范围 包装类,装箱和拆箱 String、StringBuilder、StringBuffer 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自定义注解的场景及实现 HTTP请求的GET与POST方式的区别 Session与Cookie区别 列出自己常用的JDK包 MVC设计思想 equals与==的区别 hashCode和equals方法的区别与联系 什么是Java序列化和反序列化,如何实现Java序列化?或者请解释Serializable 接口的作用 Object类中常见的方法,为什么wait notify会放在Object里边? Java的平台无关性如何体现出来的 JDK和JRE的区别 Java 8有哪些新特性 1.2、Java常见集合 List 和 Set 区别 Set和hashCode以及equals方法的联系 List 和 Map 区别 Arraylist 与 LinkedList 区别 ArrayList 与 Vector 区别 HashMap 和 Hashtable 的区别 HashSet 和 HashMap 区别 HashMap 和 ConcurrentHashMap 的区别 HashMap 的工作原理及代码实现,什么时候用到红黑树 多线程情况下HashMap死循环的问题 HashMap出现Hash DOS攻击的问题 ConcurrentHashMap 的工作原理及代码实现,如何统计所有的元素个数 手写简单的HashMap 看过那些Java集合类的源码 1.3、进程和线程 线程和进程的概念、并行和并发的概念 创建线程的方式及实现 进程间通信的方式 说说 CountDownLatch、CyclicBarrier 原理和区别 说说 Semaphore 原理 说说 Exchanger 原理 ThreadLocal 原理分析,ThreadLocal为什么会出现OOM,出现的深层次原理 讲讲线程池的实现原理 线程池的几种实现方式 线程的生命周期,状态是如何转移的 可参考:《Java多线程编程核心技术》 1.4、锁机制 说说线程安全问题,什么是线程安全,如何保证线程安全 重入锁的概念,重入锁为什么可以防止死锁 产生死锁的四个条件(互斥、请求与保持、不剥夺、循环等待) 如何检查死锁(通过jConsole检查死锁) volatile 实现原理(禁止指令重排、刷新内存) synchronized 实现原理(对象监视器) synchronized 与 lock 的区别 AQS同步队列 CAS无锁的概念、乐观锁和悲观锁 常见的原子操作类 什么是ABA问题,出现ABA问题JDK是如何解决的 乐观锁的业务场景及实现方式 Java 8并法包下常见的并发类 偏向锁、轻量级锁、重量级锁、自旋锁的概念 可参考:《Java多线程编程核心技术》 1.5、JVM JVM运行时内存区域划分 内存溢出OOM和堆栈溢出SOE的示例及原因、如何排查与解决 如何判断对象是否可以回收或存活 常见的GC回收算法及其含义 常见的JVM性能监控和故障处理工具类:jps、jstat、jmap、jinfo、jconsole等 JVM如何设置参数 JVM性能调优 类加载器、双亲委派模型、一个类的生命周期、类是如何加载到JVM中的 类加载的过程:加载、验证、准备、解析、初始化 强引用、软引用、弱引用、虚引用 Java内存模型JMM 1.6、设计模式 常见的设计模式 设计模式的的六大原则及其含义 常见的单例模式以及各种实现方式的优缺点,哪一种最好,手写常见的单利模式 设计模式在实际场景中的应用 Spring中用到了哪些设计模式 MyBatis中用到了哪些设计模式 你项目中有使用哪些设计模式 说说常用开源框架中设计模式使用分析 动态代理很重要!!! 1.7、数据结构 树(二叉查找树、平衡二叉树、红黑树、B树、B+树) 深度有限算法、广度优先算法 克鲁斯卡尔算法、普林母算法、迪克拉斯算法 什么是一致性Hash及其原理、Hash环问题 常见的排序算法和查找算法:快排、折半查找、堆排序等 1.8、网络/IO基础 BIO、NIO、AIO的概念 什么是长连接和短连接 Http1.0和2.0相比有什么区别,可参考《Http 2.0》 Https的基本概念 三次握手和四次挥手、为什么挥手需要四次 从游览器中输入URL到页面加载的发生了什么?可参考《从输入URL到页面加载发生了什么》 二、数据存储和消息队列 2.1、数据库 MySQL 索引使用的注意事项 DDL、DML、DCL分别指什么 explain命令 left join,right join,inner join 数据库事物ACID(原子性、一致性、隔离性、持久性) 事物的隔离级别(读未提交、读以提交、可重复读、可序列化读) 脏读、幻读、不可重复读 数据库的几大范式 数据库常见的命令 说说分库与分表设计 分库与分表带来的分布式困境与应对之策(如何解决分布式下的分库分表,全局表?) 说说 SQL 优化之道 MySQL遇到的死锁问题、如何排查与解决 存储引擎的 InnoDB与MyISAM区别,优缺点,使用场景 索引类别(B+树索引、全文索引、哈希索引)、索引的原理 什么是自适应哈希索引(AHI) 为什么要用 B+tree作为MySQL索引的数据结构 聚集索引与非聚集索引的区别 遇到过索引失效的情况没,什么时候可能会出现,如何解决 limit 20000 加载很慢怎么解决 如何选择合适的分布式主键方案 选择合适的数据存储方案 常见的几种分布式ID的设计方案 常见的数据库优化方案,在你的项目中数据库如何进行优化的 2.2、Redis Redis 有哪些数据类型,可参考《Redis常见的5种不同的数据类型详解》 Redis 内部结构 Redis 使用场景 Redis 持久化机制,可参考《使用快照和AOF将Redis数据持久化到硬盘中》 Redis 集群方案与实现 Redis 为什么是单线程的? 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级 使用缓存的合理性问题 Redis常见的回收策略 2.3、消息队列 消息队列的使用场景 消息的重发补偿解决思路 消息的幂等性解决思路 消息的堆积解决思路 自己如何实现消息队列 如何保证消息的有序性 三、开源框架和容器 3.1、SSM/Servlet Servlet的生命周期 转发与重定向的区别 BeanFactory 和 ApplicationContext 有什么区别 Spring Bean 的生命周期 Spring IOC 如何实现 Spring中Bean的作用域,默认的是哪一个 说说 Spring AOP、Spring AOP 实现原理 动态代理(CGLib 与 JDK)、优缺点、性能对比、如何选择 Spring 事务实现方式、事务的传播机制、默认的事务类别 Spring 事务底层原理 Spring事务失效(事务嵌套),JDK动态代理给Spring事务埋下的坑,可参考《JDK动态代理给Spring事务埋下的坑!》 如何自定义注解实现功能 Spring MVC 运行流程 Spring MVC 启动流程 Spring 的单例实现原理 Spring 框架中用到了哪些设计模式 Spring 其他产品(Srping Boot、Spring Cloud、Spring Secuirity、Spring Data、Spring AMQP 等) 有没有用到Spring Boot,Spring Boot的认识、原理 MyBatis的原理 可参考《为什么会有Spring》 可参考《为什么会有Spring AOP》 3.2、Netty 为什么选择 Netty 说说业务中,Netty 的使用场景 原生的 NIO 在 JDK 1.7 版本存在 epoll bug 什么是TCP 粘包/拆包 TCP粘包/拆包的解决办法 Netty 线程模型 说说 Netty 的零拷贝 Netty 内部执行流程 Netty 重连实现 3.3、Tomcat Tomcat的基础架构(Server、Service、Connector、Container) Tomcat如何加载Servlet的 Pipeline-Valve机制 可参考:《四张图带你了解Tomcat系统架构!》 四、分布式 4.1、Nginx 请解释什么是C10K问题或者知道什么是C10K问题吗? Nginx简介,可参考《Nginx简介》 正向代理和反向代理. Nginx几种常见的负载均衡策略 Nginx服务器上的Master和Worker进程分别是什么 使用“反向代理服务器”的优点是什么? 4.2、分布式其他 谈谈业务中使用分布式的场景 Session 分布式方案 Session 分布式处理 分布式锁的应用场景、分布式锁的产生原因、基本概念 分布是锁的常见解决方案 分布式事务的常见解决方案 集群与负载均衡的算法与实现 说说分库与分表设计,可参考《数据库分库分表策略的具体实现方案》 分库与分表带来的分布式困境与应对之策 4.3、Dubbo 什么是Dubbo,可参考《Dubbo入门》 什么是RPC、如何实现RPC、RPC 的实现原理,可参考《基于HTTP的RPC实现》 Dubbo中的SPI是什么概念 Dubbo的基本原理、执行流程 五、微服务 5.1、微服务 前后端分离是如何做的? 微服务哪些框架 Spring Could的常见组件有哪些?可参考《Spring Cloud概述》 领域驱动有了解吗?什么是领域驱动模型?充血模型、贫血模型 JWT有了解吗,什么是JWT,可参考《前后端分离利器之JWT》 你怎么理解 RESTful 说说如何设计一个良好的 API 如何理解 RESTful API 的幂等性 如何保证接口的幂等性 说说 CAP 定理、BASE 理论 怎么考虑数据一致性问题 说说最终一致性的实现方案 微服务的优缺点,可参考《微服务批判》 微服务与 SOA 的区别 如何拆分服务、水平分割、垂直分割 如何应对微服务的链式调用异常 如何快速追踪与定位问题 如何保证微服务的安全、认证 5.2、安全问题 如何防范常见的Web攻击、如何方式SQL注入 服务端通信安全攻防 HTTPS原理剖析、降级攻击、HTTP与HTTPS的对比 5.3、性能优化 性能指标有哪些 如何发现性能瓶颈 性能调优的常见手段 说说你在项目中如何进行性能调优 六、其他 6.1、设计能力 说说你在项目中使用过的UML图 你如何考虑组件化、服务化、系统拆分 秒杀场景如何设计 可参考:《秒杀系统的技术挑战、应对策略以及架构设计总结一二!》 6.2、业务工程 说说你的开发流程、如何进行自动化部署的 你和团队是如何沟通的 你如何进行代码评审 说说你对技术与业务的理解 说说你在项目中遇到感觉最难Bug,是如何解决的 介绍一下工作中的一个你认为最有价值的项目,以及在这个过程中的角色、解决的问题、你觉得你们项目还有哪些不足的地方 6.3、软实力 说说你的优缺点、亮点 说说你最近在看什么书、什么博客、在研究什么新技术、再看那些开源项目的源代码 说说你觉得最有意义的技术书籍 工作之余做什么事情、平时是如何学习的,怎样提升自己的能力 说说个人发展方向方面的思考 说说你认为的服务端开发工程师应该具备哪些能力 说说你认为的架构师是什么样的,架构师主要做什么 如何看待加班的问题

徐刘根 2020-03-31 11:22:08 0 浏览量 回答数 0

问题

名词解释都有哪些?

猫饭先生 2019-12-01 21:19:24 915 浏览量 回答数 0

问题

表格存储Table Store-建表时的注意事项

云栖大讲堂 2019-12-01 21:04:32 1535 浏览量 回答数 0

回答

共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 锁的类别有两种分法: 1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 MS-SQL Server 使用以下资源锁模式。 锁模式 描述 共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 共享锁 共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 更新锁 更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 排它锁 排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 意向锁 意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 锁模式 描述 意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外。MySQL数据库由于其自身架构的特点,存在多种数据存储引擎,每种存储引擎所针对的应用场景特点都不太一样,为了满足各自特定应用场景的需求,每种存储引擎的锁定机制都是为各自所面对的特定场景而优化设计,所以各存储引擎的锁定机制也有较大区别。MySQL各存储引擎使用了三种类型(级别)的锁定机制:表级锁定,行级锁定和页级锁定。 1.表级锁定(table-level) 表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。 当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。 使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。 2.行级锁定(row-level) 行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。 虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。 使用行级锁定的主要是InnoDB存储引擎。 3.页级锁定(page-level) 页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。 在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。 使用页级锁定的主要是BerkeleyDB存储引擎。 总的来说,MySQL这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低; 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高; 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 适用:从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。 -------------MYSQL处理------------------ 表级锁定 由于MyISAM存储引擎使用的锁定机制完全是由MySQL提供的表级锁定实现,所以下面我们将以MyISAM存储引擎作为示例存储引擎。 1.MySQL表级锁的锁模式 MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性: 对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求; 对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作; MyISAM表的读操作与写操作之间,以及写操作之间是串行的。当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。 2.如何加表锁 MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。 3.MyISAM表锁优化建议 对于MyISAM存储引擎,虽然使用表级锁定在锁定实现的过程中比实现行级锁定或者页级锁所带来的附加成本都要小,锁定本身所消耗的资源也是最少。但是由于锁定的颗粒度比较到,所以造成锁定资源的争用情况也会比其他的锁定级别都要多,从而在较大程度上会降低并发处理能力。所以,在优化MyISAM存储引擎锁定问题的时候,最关键的就是如何让其提高并发度。由于锁定级别是不可能改变的了,所以我们首先需要尽可能让锁定的时间变短,然后就是让可能并发进行的操作尽可能的并发。 (1)查询表级锁争用情况 MySQL内部有两组专门的状态变量记录系统内部锁资源争用情况: mysql> show status like 'table%'; +----------------------------+---------+ | Variable_name | Value | +----------------------------+---------+ | Table_locks_immediate | 100 | | Table_locks_waited | 10 | +----------------------------+---------+ 这里有两个状态变量记录MySQL内部表级锁定的情况,两个变量说明如下: Table_locks_immediate:产生表级锁定的次数; Table_locks_waited:出现表级锁定争用而发生等待的次数; 两个状态值都是从系统启动后开始记录,出现一次对应的事件则数量加1。如果这里的Table_locks_waited状态值比较高,那么说明系统中表级锁定争用现象比较严重,就需要进一步分析为什么会有较多的锁定资源争用了。 (2)缩短锁定时间 如何让锁定时间尽可能的短呢?唯一的办法就是让我们的Query执行时间尽可能的短。 a)尽两减少大的复杂Query,将复杂Query分拆成几个小的Query分布进行; b)尽可能的建立足够高效的索引,让数据检索更迅速; c)尽量让MyISAM存储引擎的表只存放必要的信息,控制字段类型; d)利用合适的机会优化MyISAM表数据文件。 (3)分离能并行的操作 说到MyISAM的表锁,而且是读写互相阻塞的表锁,可能有些人会认为在MyISAM存储引擎的表上就只能是完全的串行化,没办法再并行了。大家不要忘记了,MyISAM的存储引擎还有一个非常有用的特性,那就是ConcurrentInsert(并发插入)的特性。 MyISAM存储引擎有一个控制是否打开Concurrent Insert功能的参数选项:concurrent_insert,可以设置为0,1或者2。三个值的具体说明如下: concurrent_insert=2,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录; concurrent_insert=1,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置; concurrent_insert=0,不允许并发插入。 可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。 (4)合理利用读写优先级 MyISAM存储引擎的是读写互相阻塞的,那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢? 答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前。 这是因为MySQL的表级锁定对于读和写是有不同优先级设定的,默认情况下是写优先级要大于读优先级。 所以,如果我们可以根据各自系统环境的差异决定读与写的优先级: 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接读比写的优先级高。如果我们的系统是一个以读为主,可以设置此参数,如果以写为主,则不用设置; 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。 虽然上面方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”,因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行 三、行级锁定 行级锁定不是MySQL自己实现的锁定方式,而是由其他存储引擎自己所实现的,如广为大家所知的InnoDB存储引擎,以及MySQL的分布式存储引擎NDBCluster等都是实现了行级锁定。考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 1.InnoDB锁定模式及实现机制 考虑到行级锁定君由各个存储引擎自行实现,而且具体实现也各有差别,而InnoDB是目前事务型存储引擎中使用最为广泛的存储引擎,所以这里我们就主要分析一下InnoDB的锁定特性。 总的来说,InnoDB的锁定机制和Oracle数据库有不少相似之处。InnoDB的行级锁定同样分为两种类型,共享锁和排他锁,而在锁定机制的实现过程中为了让行级锁定和表级锁定共存,InnoDB也同样使用了意向锁(表级锁定)的概念,也就有了意向共享锁和意向排他锁这两种。 当一个事务需要给自己需要的某个资源加锁的时候,如果遇到一个共享锁正锁定着自己需要的资源的时候,自己可以再加一个共享锁,不过不能加排他锁。但是,如果遇到自己需要锁定的资源已经被一个排他锁占有之后,则只能等待该锁定释放资源之后自己才能获取锁定资源并添加自己的锁定。而意向锁的作用就是当一个事务在需要获取资源锁定的时候,如果遇到自己需要的资源已经被排他锁占用的时候,该事务可以需要锁定行的表上面添加一个合适的意向锁。如果自己需要一个共享锁,那么就在表上面添加一个意向共享锁。而如果自己需要的是某行(或者某些行)上面添加一个排他锁的话,则先在表上面添加一个意向排他锁。意向共享锁可以同时并存多个,但是意向排他锁同时只能有一个存在。所以,可以说InnoDB的锁定模式实际上可以分为四种:共享锁(S),排他锁(X),意向共享锁(IS)和意向排他锁(IX),我们可以通过以下表格来总结上面这四种所的共存逻辑关系 如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE 用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。 但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。 2.InnoDB行锁实现方式 InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁 在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。 (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。 (2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。 (3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。 (4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。 3.间隙锁(Next-Key锁) 当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁; 对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 例: 假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL: mysql> select * from emp where empid > 100 for update; 是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。 InnoDB使用间隙锁的目的: (1)防止幻读,以满足相关隔离级别的要求。对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读; (2)为了满足其恢复和复制的需要。 很显然,在使用范围条件检索并锁定记录时,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害。 除了间隙锁给InnoDB带来性能的负面影响之外,通过索引实现锁定的方式还存在其他几个较大的性能隐患: (1)当Query无法利用索引的时候,InnoDB会放弃使用行级别锁定而改用表级别的锁定,造成并发性能的降低; (2)当Query使用的索引并不包含所有过滤条件的时候,数据检索使用到的索引键所只想的数据可能有部分并不属于该Query的结果集的行列,但是也会被锁定,因为间隙锁锁定的是一个范围,而不是具体的索引键; (3)当Query在使用索引定位数据的时候,如果使用的索引键一样但访问的数据行不同的时候(索引只是过滤条件的一部分),一样会被锁定。 因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。 还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁。 4.死锁 MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,当两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。 在InnoDB的事务管理和锁定机制中,有专门检测死锁的机制,会在系统中产生死锁之后的很短时间内就检测到该死锁的存在。当InnoDB检测到系统中产生了死锁之后,InnoDB会通过相应的判断来选这产生死锁的两个事务中较小的事务来回滚,而让另外一个较大的事务成功完成。 那InnoDB是以什么来为标准判定事务的大小的呢?MySQL官方手册中也提到了这个问题,实际上在InnoDB发现死锁之后,会计算出两个事务各自插入、更新或者删除的数据量来判定两个事务的大小。也就是说哪个事务所改变的记录条数越多,在死锁中就越不会被回滚掉。 但是有一点需要注意的就是,当产生死锁的场景中涉及到不止InnoDB存储引擎的时候,InnoDB是没办法检测到该死锁的,这时候就只能通过锁定超时限制参数InnoDB_lock_wait_timeout来解决。 需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。 通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法: (1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。 (2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。 (3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。 (4)在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题。 (5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁。这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。 5.什么时候使用表锁 对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁: (1)事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。 (2)事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。 应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。 在InnoDB下,使用表锁要注意以下两点。 (1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、InnoDB_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁,否则,InnoDB将无法自动检测并处理这种死锁。 (2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。

1006541099824509 2019-12-02 03:14:39 0 浏览量 回答数 0

回答

数据通道 批量历史数据通道 Tunnel是MaxCompute为您提供的数据传输服务,提供高并发的离线数据上传下载服务。支持每天TB/PB级别的数据导入导出,特别适合于全量数据或历史数据的批量导入。Tunnel为您提供Java编程接口,并且在MaxCompute的客户端工具中,提供对应的命令实现本地文件与服务数据的互通。 实时增量数据通道 针对实时数据上传的场景,MaxCompute提供了延迟低、使用方便的DataHub服务,特别适用于增量数据的导入。DataHub还支持多种数据传输插件,例如Logstash、Flume、Fluentd、Sqoop等,同时支持日志服务Log Service中的投递日志到MaxCompute,进而使用DataWorks进行日志分析和挖掘。 计算及分析任务 MaxCompute支持多种计算模型,详情如下: SQL:MaxCompute以表的形式存储数据,支持多种数据类型,并对外提供SQL查询功能。您可以将MaxCompute作为传统的数据库软件操作,但其却能处理TB、PB级别的海量数据。 说明 MaxCompute SQL不支持事务、索引,也不支持Update或Delete操作。 MaxCompute的SQL语法与Oracle、MySQL有一定差别,您无法将其他数据库中的SQL语句无缝迁移至MaxCompute中。详情请参见与其他SQL语法的差异。 MaxCompute主要用于100GB以上规模的数据计算,因此MaxCompute SQL最快支持在分钟或秒钟级别完成查询返回结果,但无法在毫秒级别返回结果。 MaxCompute SQL的优点是学习成本低,您不需要了解复杂的分布式计算概念。如果您具备数据库操作经验,便可快速熟悉MaxCompute SQL的使用。 UDF:即用户自定义函数。 MaxCompute提供了很多内建函数来满足您的计算需求,同时您还可以通过创建自定义函数来满足不同的计算需求。 MapReduce:MaxCompute MapReduce是MaxCompute提供的Java MapReduce编程模型,它可以简化开发流程,更为高效。使用MaxCompute MapReduce,需要对分布式计算概念有基本了解,并有相对应的编程经验。MaxCompute MapReduce为您提供Java编程接口。 Graph:MaxCompute提供的Graph功能是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点 (Vertex)和边(Edge)组成,点和边包含权值(Value)。通过迭代对图进行编辑、演化,最终求解出结果,典型应用:PageRank、单源最短距离算法 、K-均值聚类算法等。 Spark on MaxCompute:Spark on MaxCompute是阿里云开发的大数据分析引擎,为您提供大数据处理能力。详情请参见Spark概述。 SDK SDK是MaxCompute提供给开发者的工具包,当前支持Java SDK及Python SDK。 安全 MaxCompute提供了功能强大的安全服务,为您的数据安全提供保护,详情请参见安全指南。

LiuWH 2020-03-18 18:45:12 0 浏览量 回答数 0

回答

你的JDK是错的把,直接用的Eclipse自带的,你换一下试试回复<aclass='referer'target='_blank'>@朋也:Causedby:java.lang.NoSuchMethodError:org.apache.commons.codec.binary.Base64.<init>(I)V这个报错通常是使用的ECLIPSE自带的JDK导致的,应该重新配置成自己的JDK。回复<aclass='referer'target='_blank'>@首席撸出血:配置了的,是jdk1.8,开发工具是idea或者你本地的JDK环境有没有配置缺jar包啊,<spanstyle="color:#444444;font-family:'MicrosoftYaHei',Verdana,sans-serif,宋体;font-size:14px;line-height:normal;background-color:#FFFFFF;">apache.commons.codec这个包估计所使用的jar版本过低了;如果有多个,可删除低版本的试试这个包有的Base64是commons-codec1.0才加入的类,确认下本地的版本是不是不对,另外也确认下是不是存在两个不同版本的jar包冲突<divclass='ref'> 引用来自“逝水fox”的评论Base64是commons-codec1.0才加入的类,确认下本地的版本是不是不对,另外也确认下是不是存在两个不同版本的jar包冲突 基于微博数据检测的Solr实战开发 课程观看地址:<atarget="_blank"rel="nofollow">http://www.xuetuwuyou.com/course/145 课程出自学途无忧网:<atarget="_blank"rel="nofollow">http://www.xuetuwuyou.com solrcloud5.2.1+zookeeper一部精通 课程观看地址:<atarget="_blank"rel="nofollow">http://www.xuetuwuyou.com/course/15 一、课程用到的软件 1.centos6.7 2.apache-tomcat-7.0.47 3.solr-5.5 4.zookeeper3.4.6 5.eclipse-jee-neon-R-win32-x86_64  二、课程目标 在海量数据的情况下,传统的关系型数据库已经力不从心,快速检索已经成为了应用系统所必备的功能之一。本课程从实战角度出发,让学员能从实战中学习到: 1.搜索引擎的原理及架构。  2.掌握在大数据环境下经典检索算法。  3.掌握如何使用solr实现系统快速检索目标。  4.掌握solr在开发中常见的技术大坑与调优技术。 三、适用人群 开发人员、架构师、对分布式搜索引擎有兴趣的朋友。 四、课程内容介绍: 第1课、Solr简介与部署   知识点:Solr基本概念以及应用的介绍、Solr单机版的搭建 第2课、Solr建库实战   知识点:介绍managed-schame和solrConfig两大配置文件,并建立Solr库开始实操 第3课、Solr中文分词器与全量数据导入   知识点:对比中文分词器IK与MMSeg4j的特点、Solr配置MMSeg4j中文分词器、把Mysql中的数据导入到Solr索引库上 第4课、Solr增量数据导入及新管理UI实战   知识点:把Mysql的数据增量导入到Solr索引库上、对Solr5最新的UI进行全面介绍 第5课、Solr数据查询详解   知识点:基于UI管理界面,实战Solrq查询、fq查询以及分页、高亮、Facet等高级特性的使用 第6课、Solrj编程实战之索引增删改   知识点:基于Eclipse开发环境、搭建Solrj工程项目,对Solr的索引库的进行增、删、改的操作 第7课、Solrj编程实战之索引查询与分页   知识点:基于Solrj实现q查询、fq查询以及分页查询的操作 第8课、Solrj编程实战之高亮与Facet   知识点:基于Solrj实现高亮查询、Facet查询的操作 第9课、Solrj编程实战之设计模式   知识点:基于前阶段所写的代码,发现代码中的不足,并使用单例模式、模块方法、回调方法的设计模式进行仿SpringData的开发 第10课、Solr缓存与预热机制剖析   知识点:从算法、应用场景以及实例的多个维度,剖析Solr中的四大缓存,并且站在SolrIndexSearcher的生命周期上解剖预热机制及其注意事项 第11课、Solr高级特性之近实时、实时检索   知识点:从概念、原理以及实例的多个维度,剖析Solr近实时、实时检索 第12课、Solr高级特性之原子更新   知识点:Solr在应用层面上对Lucene进行了封装,在Solr4之后提出了原子更新的新概念,从此在应用层面操作上方便我们进行索引更新 第13课、Solr高级特性之深度分页及性能调优   知识点:Solr4的又一大特性,在面临海量据的情况下,占用更低的资源进行数据检索正是深度分页的一大亮点、后半节结合讲师的实际开发经验,分享Solr性能调优的策略 第14课、SolrCloud部署运维之集群搭建   知识点:基于Centos、zookeeper环境下,搭建SolrCloud系统  第15课、SolrCloud部署运维之库管理   知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud库的管理,包括库的新增、删除以及动态更新  第16课、SolrCloud部署运维之副本与扩容   知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud分片的管理,包括分片的备份与库的扩容 第17课、中文分词器配置与使用Solrj操作SolrCloud   知识点:配置中文分词器以及使用Solrj操作SolrCloud来实现增、删、改、查  第18课、项目介绍与环境搭建   知识点:介绍项目的背景以及总体架构、突出Solr在实际项目中的角色。基于Maven搭建开发环境  第19课、框架代码开发之Spring集成Solrj之CRUD(maven版)   知识点:Spring是一个JavaEE企业级框架,它很多主流的主件都进行集成支持。本节学习Spring与Solrj的集成,进行增、删、改、查操作 第20课、框架代码开发之Spring集成Solrj之(maven版)   知识点:Spring是一个JavaEE企业级框架,它对很多主流的组件都进行集成支持。本节学习Spring与Solrj的集成,进行实时检索、高亮、深度分页、Facet查询操作 第21课、基于dom4j的导库组件开发(maven版)   知识点:基于dom4j解析XML文件,并将数据批量高效导入到SolrCloud分布式索引库上进行检索分析 第22课、高级检索组件开发一   知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第23课、高级检索组件开发二     知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第24课、相似匹配组件开发一   知识点:基于SolrCloud实现相似性检索操作 第25课、相似匹配组件开发二   知识点:基于SolrCloud实现相似性检索操作 第26课、课程总结与Solr6的展望   知识点:课程大总结,并对最新版的Solr6进行亮点分析以及未来的展望

爱吃鱼的程序员 2020-06-12 15:21:44 0 浏览量 回答数 0

问题

【MaxCompute】的产品概述

玄学酱 2019-12-01 21:55:03 1428 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。

小哇 2019-12-02 01:21:12 0 浏览量 回答数 0

回答

一、算法工程师简介 (通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看) 算法工程师目前是一个高端也是相对紧缺的职位; 算法工程师包括 音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师( @之介 感谢补充)、其他【其他一切需要复杂算法的行业】 专业要求:计算机、电子、通信、数学等相关专业; 学历要求:本科及其以上的学历,大多数是硕士学历及其以上; 语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文; 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。 算法工程师的技能树(不同方向差异较大,此处仅供参考) 1 机器学习 2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-reduce/MPI 3 数据挖掘 4 扎实的数学功底 5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R 加分项:具有较为丰富的项目实践经验(不是水论文的哪种) 二、算法工程师大致分类与技术要求 (一)图像算法/计算机视觉工程师类 包括 图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:机器学习,模式识别 l 技术要求: (1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化; (2) 语言:精通C/C++; (3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】 (4) 熟悉OpenCV/OpenGL/Caffe等常用开源库; (5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑; (6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先; (7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速; 应用领域: (1) 互联网:如美颜app (2) 医学领域:如临床医学图像 (3) 汽车领域 (4) 人工智能 相关术语: (1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程 (2) Matlab:商业数学软件; (3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题 (4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。 (5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。 (6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。 (7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。 (二)机器学习工程师 包括 机器学习工程师 要求 l 专业:计算机、数学、统计学相关专业; l 技术领域:人工智能,机器学习 l 技术要求: (1) 熟悉Hadoop/Hive以及Map-Reduce计算模式,熟悉Spark、Shark等尤佳; (2) 大数据挖掘; (3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发; 应用领域: (1)人工智能,比如各类仿真、拟人应用,如机器人 (2)医疗用于各类拟合预测 (3)金融高频交易 (4)互联网数据挖掘、关联推荐 (5)无人汽车,无人机 相关术语: (1) Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (三)自然语言处理工程师 包括 自然语言处理工程师 要求 l 专业:计算机相关专业; l 技术领域:文本数据库 l 技术要求: (1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法; (2) 应用NLP、机器学习等技术解决海量UGC的文本相关性; (3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发; (4) 人工智能,分布式处理Hadoop; (5) 数据结构和算法; 应用领域: 口语输入、书面语输入 、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。 相关术语: (2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】 (四)射频/通信/信号算法工程师类 包括 3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师 要求 l 专业:计算机、通信相关专业; l 技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理 l 技术要求: (1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备; (2) 信号处理技术,通信算法; (3) 熟悉同步、均衡、信道译码等算法的基本原理; (4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件; (5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学 应用领域: 通信 VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】 物联网,车联网 导航,军事,卫星,雷达 相关术语: (1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。 (2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。 (3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】 (4) DSP:数字信号处理,也指数字信号处理芯片 (五)数据挖掘算法工程师类 包括 推荐算法工程师,数据挖掘算法工程师 要求 l 专业:计算机、通信、应用数学、金融数学、模式识别、人工智能; l 技术领域:机器学习,数据挖掘 l 技术要求: (1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法; (2) 熟练使用SQL、Matlab、Python等工具优先; (3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】 (4) 数学基础要好,如高数,统计学,数据结构 l 加分项:数据挖掘建模大赛; 应用领域 (1) 个性化推荐 (2) 广告投放 (3) 大数据分析 相关术语 Map-Reduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。 (六)搜索算法工程师 要求 l 技术领域:自然语言 l 技术要求: (1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发 (2) hadoop、lucene (3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验 (4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验; (5) 精通倒排索引、全文检索、分词、排序等相关技术; (6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架; (7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ; (8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。 (七)控制算法工程师类 包括了云台控制算法,飞控控制算法,机器人控制算法 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求: (1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动 (2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试; l 加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础; 应用领域 (1)医疗/工业机械设备 (2)工业机器人 (3)机器人 (4)无人机飞控、云台控制等 (八)导航算法工程师 要求 l 专业:计算机,电子信息工程,航天航空,自动化 l 技术要求(以公司职位JD为例) 公司一(1)精通惯性导航、激光导航、雷达导航等工作原理; (2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法; (3)具备导航方案设计和实现的工程经验; (4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具; 公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历; (2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合; 应用领域 无人机、机器人等。

琴瑟 2019-12-02 01:21:11 0 浏览量 回答数 0

问题

游戏云间之五:游戏架构

起航 2019-12-01 21:46:16 14237 浏览量 回答数 9

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙

剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。

玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

回答

简介 如果您听说过 Node,或者阅读过一些文章,宣称 Node 是多么多么的棒,那么您可能会想:“Node 究竟是什么东西?”尽管不是针对所有人的,但 Node 可能是某些人的正确选择。 为试图解释什么是 Node.js,本文探究了它能解决的问题,它如何工作,如何运行一个简单应用程序,最后,Node 何时是和何时不是一个好的解决方案。本文不涉及如何编写一个复杂的 Node 应用程序,也不是一份全面的 Node 教程。阅读本文应该有助于您决定是否应该学习 Node,以便将其用于您的业务。 Node 旨在解决什么问题? Node 公开宣称的目标是 “旨在提供一种简单的构建可伸缩网络程序的方法”。当前的服务器程序有什么问题?我们来做个数学题。在 Java™ 和 PHP 这类语言中,每个连接都会生成一个新线程,每个新线程可能需要 2 MB 配套内存。在一个拥有 8 GB RAM 的系统上,理论上最大的并发连接数量是 4,000 个用户。随着您的客户端基础的增长,您希望您的 web 应用程序支持更多用户,这样,您必须添加更多服务器。当然,这会增加业务成本,尤其是服务器成本、运输成本和人工成本。除这些成本上升外,还有一个技术问题:用户可能针对每个请求使用不同的服务器,因此,任何共享资源都必须在所有服务器之间共享。例如,在 Java 中,静态变量和缓存需要在每个服务器上的 JVMs 之间共享。这就是整个 web 应用程序架构中的瓶颈:一个服务器能够处理的并发连接的最大数量。 Node 解决这个问题的方法是:更改连接连接到服务器的方式。每个连接都创建一个进程,该进程不需要配套内存块,而不是为每个连接生成一个新的 OS 线程(并向其分配一些配套内存)。Node 声称它绝不会死锁,因为它根本不允许使用锁,它不会直接阻塞 I/O 调用。Node 还宣称,运行它的服务器能支持数万个并发连接。事实上,Node 通过将整个系统中的瓶颈从最大连接数量更改到单个系统的流量来改变服务器面貌。 现在您有了一个能处理数万条并发连接的程序,那么您能通过 Node 实际构建什么呢?如果您有一个 web 应用程序需要处理这么多连接,那将是一件很 “恐怖” 的事!那是一种 “如果您有这个问题,那么它根本不是问题” 的问题。在回答上面的问题之前,我们先看看 Node 如何工作以及它被设计的如何运行。 Node 肯定不是什么 没错,Node 是一个服务器程序。但是,它肯定不 像 Apache 或 Tomcat。那些服务器是独立服务器产品,可以立即安装并部署应用程序。通过这些产品,您可以在一分钟内启动并运行一个服务器。Node 肯定不是这种产品。Apache 能添加一个 PHP 模块来允许开发人员创建动态 web 页,使用 Tomcat 的程序员能部署 JSPs 来创建动态 web 页。Node 肯定不是这种类型。 在 Node 的早期阶段(当前是 version 0.4.6),它还不是一个 “运行就绪” 的服务器程序,您还不能安装它,向其中放置文件,拥有一个功能齐全的 web 服务器。即使是要实现 web 服务器在安装完成后启动并运行这个基本功能,也还需要做大量工作。 Node 如何工作 Node 本身运行 V8 JavaScript。等等,服务器上的 JavaScript?没错,您没有看错。服务器端 JavaScript 是一个相对较新的概念,这个概念是大约两年前在 developerWorks 上讨论 Aptana Jaxer 产品时提到的(参见 参考资料)。尽管 Jaxer 一直没有真正流行,但这个理念本身并不是遥不可及的 — 为何不能在服务器上使用客户机上使用的编程语言? 什么使 V8?V8 JavaScript 引擎是 Google 用于他们的 Chrome 浏览器的底层 JavaScript 引擎。很少有人考虑 JavaScript 在客户机上实际做了些什么?实际上,JavaScript 引擎负责解释并执行代码。使用 V8,Google 创建了一个以 C++ 编写的超快解释器,该解释器拥有另一个独特特征;您可以下载该引擎并将其嵌入任何 应用程序。它不仅限于在一个浏览器中运行。因此,Node 实际上使用 Google 编写的 V8 JavaScript 引擎并将其重建为在服务器上使用。太完美了!既然已经有一个不错的解决方案可用,为何还要创建一种新语言呢? 事件驱动编程 许多程序员接受的教育使他们认为,面向对象编程是完美的编程设计,而对其他编程方法不屑一顾。Node 使用一个所谓的事件驱动编程模型。 清单 1. 客户端上使用 jQuery 的事件驱动编程 复制代码 代码如下: // jQuery code on the client-side showing how Event-Driven programming works // When a button is pressed, an Event occurs - deal with it // directly right here in an anonymous function, where all the // necessary variables are present and can be referenced directly $("#myButton").click(function(){ if ($("#myTextField").val() != $(this).val()) alert("Field must match button text"); }); 实际上,服务器端和客户端没有任何区别。没错,这没有按钮点击操作,也没有向文本字段键入的操作,但在一个更高的层面上,事件正在 发生。一个连接被建立 — 事件!数据通过连接接收 — 事件!数据通过连接停止 — 事件! 为什么这种设置类型对 Node 很理想?JavaScript 是一种很棒的事件驱动编程语言,因为它允许匿名函数和闭包,更重要的是,任何写过代码的人都熟悉它的语法。事件发生时调用的回调函数可以在捕获事件处编写。这样,代码容易编写和维护,没有复杂的面向对象框架,没有接口,没有在上面架构任何内容的潜能。只需监听事件,编写一个回调函数,然后,事件驱动编程将照管好一切! 示例 Node 应用程序 最后,我们来看一些代码!让我们将讨论过的所有内容综合起来,创建我们的第一个 Node 应用程序。由于我们已经知道,Node 对于处理高流量应用程序很理想,我们就来创建一个非常简单的 web 应用程序 — 一个为实现最大速度而构建的应用程序。下面是 “老板” 交代的关于我们的样例应用程序的具体要求:创建一个随机数字生成器 RESTful API。这个应用程序应该接受一个输入:一个名为 “number” 的参数。然后,应用程序返回一个介于 0 和该参数之间的随机数字,并将生成的数字返回调用者。由于 “老板” 希望它成为一个广泛流行的应用程序,因此它应该能处理 50,000 个并发用户。我们来看看代码: 清单 2. Node 随机数字生成器 复制代码 代码如下: // these modules need to be imported in order to use them. // Node has several modules. They are like any #include // or import statement in other languages var http = require("http"); var url = require("url"); // The most important line in any Node file. This function // does the actual process of creating the server. Technically, // Node tells the underlying operating system that whenever a // connection is made, this particular callback function should be // executed. Since we're creating a web service with REST API, // we want an HTTP server, which requires the http variable // we created in the lines above. // Finally, you can see that the callback method receives a 'request' // and 'response' object automatically. This should be familiar // to any PHP or Java programmer. http.createServer(function(request, response) { // The response needs to handle all the headers, and the return codes // These types of things are handled automatically in server programs // like Apache and Tomcat, but Node requires everything to be done yourself response.writeHead(200, {"Content-Type": "text/plain"}); // Here is some unique-looking code. This is how Node retrives // parameters passed in from client requests. The url module // handles all these functions. The parse function // deconstructs the URL, and places the query key-values in the // query object. We can find the value for the "number" key // by referencing it directly - the beauty of JavaScript. var params = url.parse(request.url, true).query; var input = params.number; // These are the generic JavaScript methods that will create // our random number that gets passed back to the caller var numInput = new Number(input); var numOutput = new Number(Math.random() * numInput).toFixed(0); // Write the random number to response response.write(numOutput); // Node requires us to explicitly end this connection. This is because // Node allows you to keep a connection open and pass data back and forth, // though that advanced topic isn't discussed in this article. response.end(); // When we create the server, we have to explicitly connect the HTTP server to // a port. Standard HTTP port is 80, so we'll connect it to that one. }).listen(80); // Output a String to the console once the server starts up, letting us know everything // starts up correctly console.log("Random Number Generator Running..."); 将上面的代码放到一个名为 “random.js” 的文件中。现在,要启动这个应用程序并运行它(进而创建 HTTP 服务器并监听端口 80 上的连接),只需在您的命令提示中输入以下命令:% node random.js。下面是服务器已经启动并运行时它看起来的样子: 复制代码 代码如下: root@ubuntu:/home/moila/ws/mike# node random.js Random Number Generator Running... 访问应用程序 应用程序已经启动并运行。Node 正在监听任何连接,我们来测试一下。由于我们创建了一个简单的 RESTful API,我们可以使用我们的 web 浏览器来访问这个应用程序。键入以下地址(确保您完成了上面的步骤):localhost/?number=27。 您的浏览器窗口将更改到一个介于 0 到 27 之间的随机数字。单击浏览器上的 “重新载入” 按钮,将得到另一个随机数字。就是这样,这就是您的第一个 Node 应用程序! Node 对什么有好处? 到此为止,应该能够回答 “Node 是什么” 这个问题了,但您可能还不清楚什么时候应该使用它。这是一个需要提出的重要问题,因为 Node 对有一些东西有好处,但相反,对另一些东西而言,目前 Node 可能不是一个好的解决方案。您需要小心决定何时使用 Node,因为在错误的情况下使用它可能会导致一个多余编码的 LOT。 它对什么有好处? 正如您此前所看到的,Node 非常适合以下情况:您预计可能有很高的流量,而在响应客户端之前服务器端逻辑和处理所需不一定是巨大的。Node 表现出众的典型示例包括: 1.RESTful API 提供 RESTful API 的 web 服务接收几个参数,解析它们,组合一个响应,并返回一个响应(通常是较少的文本)给用户。这是适合 Node 的理想情况,因为您可以构建它来处理数万条连接。它还不需要大量逻辑;它只是从一个数据库查找一些值并组合一个响应。由于响应是少量文本,入站请求时少量文本,因此流量不高,一台机器甚至也可以处理最繁忙的公司的 API 需求。 2.Twitter 队列 想像一下像 Twitter 这样的公司,它必须接收 tweets 并将其写入一个数据库。实际上,每秒几乎有数千条 tweets 达到,数据库不可能及时处理高峰时段需要的写入数量。Node 成为这个问题的解决方案的重要一环。如您所见,Node 能处理数万条入站 tweets。它能迅速轻松地将它们写入一个内存排队机制(例如 memcached),另一个单独进程可以从那里将它们写入数据库。Node 在这里的角色是迅速收集 tweet 并将这个信息传递给另一个负责写入的进程。想象一下另一种设计 — 一个常规 PHP 服务器自己试图处理对数据库的写入 — 每个 tweet 将在写入数据库时导致一个短暂的延迟,这是因为数据库调用正在阻塞通道。由于数据库延迟,一台这样设计的机器每秒可能只能处理 2000 条入站 tweets。每秒 100 万条 tweets 需要 500 个服务器。相反,Node 能处理每个连接而不会阻塞通道,从而能捕获尽可能多的 tweets。一个能处理 50,000 条 tweets 的 Node 机器只需要 20 个服务器。 3.映像文件服务器 一个拥有大型分布式网站的公司(比如 Facebook 或 Flickr)可能会决定将所有机器只用于服务映像。Node 将是这个问题的一个不错的解决方案,因为该公司能使用它编写一个简单的文件检索器,然后处理数万条连接。Node 将查找映像文件,返回文件或一个 404 错误,然后什么也不用做。这种设置将允许这类分布式网站减少它们服务映像、.js 和 .css 文件等静态文件所需的服务器数量。 它对什么有坏处? 当然,在某些情况下,Node 并非理想选择。下面是 Node 不擅长的领域: 1.动态创建的页 目前,Node 没有提供一种默认方法来创建动态页。例如,使用 JavaServer Pages (JSP) 技术时,可以创建一个在这样的 JSP 代码段中包含循环的 index.jsp 页。Node 不支持这类动态的、HTML 驱动的页面。同样,Node 不太适合作为 Apache 和 Tomcat 这样的网页服务器。因此,如果您想在 Node 中提供这样一个服务器端解决方案,必须自己编写整个解决方案。PHP 程序员不想在每次部署 web 应用程序时都编写一个针对 Apache 的 PHP 转换器,当目前为止,这正是 Node 要求您做的。 2. 关系数据库重型应用程序 Node 的目的是快速、异步和非阻塞。数据库并不一定分享这些目标。它们是同步和阻塞的,因为读写时对数据库的调用在结果生成之前将一直阻塞通道。因此,一个每个请求都需要大量数据库调用、大量读取、大量写入的 web 应用程序非常不适合 Node,这是因为关系数据库本身就能抵销 Node 的众多优势。(新的 NoSQL 数据库更适合 Node,不过那完全是另一个主题了。) 结束语 问题是 “什么是 Node.js?” 应该已经得到解答。阅读本文之后,您应该能通过几个清晰简洁的句子回答这个问题。如果这样,那么您已经走到了许多编码员和程序员的前面。我和许多人都谈论过 Node,但它们对 Node 究竟是什么一直很迷惑。可以理解,他们具有的是 Apache 的思维方式 — 服务器是一个应用程序,将 HTML 文件放入其中,一切就会正常运转。而 Node 是目的驱动的。它是一个软件程序,使用 JavaScript 来允许程序员轻松快速地创建快速、可伸缩的 web 服务器。Apache 是运行就绪的,而 Node 是编码就绪的。 Node 完成了它提供高度可伸缩服务器的目标。它并不分配一个 “每个连接一个线程” 模型,而是使用一个 “每个连接一个流程” 模型,只创建每个连接需要的内存。它使用 Google 的一个非常快速的 JavaScript 引擎:V8 引擎。它使用一个事件驱动设计来保持代码最小且易于阅读。所有这些因素促成了 Node 的理想目标 — 编写一个高度可伸缩的解决方案变得比较容易。 与理解 Node 是 什么同样重要的是,理解它不是 什么。Node 并不是 Apache 的一个替代品,后者旨在使 PHP web 应用程序更容易伸缩。事实确实如此。在 Node 的这个初始阶段,大量程序员使用它的可能性不大,但在它能发挥作用的场景中,它的表现非常好。 将来应该期望从 Node 得到什么呢?这也许是本文引出的最重要的问题。既然您知道了它现在的作用,您应该会想知道它下一步将做什么。在接下来的一年中,我期待着 Node 提供与现有的第三方支持库更好地集成。现在,许多第三方程序员已经研发了用于 Node 的插件,包括添加文件服务器支持和 MySQL 支持。希望 Node 开始将它们集成到其核心功能中。最后,我还希望 Node 支持某种动态页面模块,这样,您就可以在 HTML 文件中执行在 PHP 和 JSP(也许是一个 NSP,一个 Node 服务器页)中所做的操作。最后,希望有一天会出现一个 “部署就绪” 的 Node 服务器,可以下载和安装,只需将您的 HTML 文件放到其中,就像使用 Apache 或 Tomcat 那样。Node 现在还处于初始阶段,但它发展得很快,可能不久就会出现在您的视野中。 答案来源于网络

养狐狸的猫 2019-12-02 02:17:03 0 浏览量 回答数 0

回答

通过容器镜像服务企业版的 Helm Chart 功能,您可以高效便捷地托管和分发 Kubernetes 集群内的各种资源。在安装并配置 Helm Chart 客户端和配置企业版实例之后,您才可以推送和拉取 Chart。 背景信息 Kubernetes 提供了统一模式的 API,能以 YAML 格式的文件定义 Kubernetes 集群内的资源。这些资源的种类繁多,例如无状态应用的部署 Deployment、有状态应用的部署 StatefulSet、配置项 ConfigMap 等。 在这个基于 YAML 文件的软件交付体系不断完善过程中,云原生社区衍生了一个更高维度的概念及其实现工具,即 Chart 和 Helm。 Chart 是一系列 Kubernetes 集群内资源描述文件的组合,一个 Chart 可以是一个 WordPress 和 MySQL 的组合,也可以是一个 etcd 集群的组合。 Helm 是一个命令行程序,用于管理这些 Chart,以及其运行态 Release。 容器镜像服务企业版支持 v2 版本的 Chart 安全托管,帮助您在云上便捷管理云原生资产。在企业版实例概览页开启 Charts 组件,待组件状态变为运行中,即可开始托管 Chart 类型仓库。 开启Chart 安装并配置客户端 从官方下载需要的Helm Chart版本。 说明 请确保客户端为 v2 及以上版本,建议使用 v2.14.2 版本。可以通过执行 helm version -c 命令查看客户端版本。 # 解压缩 tar -zxvf helm-v2.14.2-linux-amd64.tgz # 移动至指定位置 mv linux-amd64/helm /usr/local/bin/helm 安装 Helm 插件。 说明 在安装 Helm 插件前,需要预先安装 git。 # 安装 Helm 插件,请注意预先安装 git helm plugin install https://github.com/AliyunContainerService/helm-acr # 初始化 # 1. 如果你当前在容器服务集群节点上,默认已经有初始化完成的 tiller ,只需要初始化 client。可以使用 skip-refresh 命令避免访问 google Chart 源: helm init --client-only --skip-refresh # 2. 如果你当前在自建的 Kubernetes 集群节点上,并且希望避免访问 google Chart 源,可以使用以下命令: helm init --skip-refresh 配置企业版实例 配置访问凭证 在企业版实例管理的访问凭证页面,通过设置固定密码或者临时密码作为访问凭证的密码,控制台右侧获取访问凭证的账号名。这对账号名与密码将作为后续 Helm Chart 的访问凭证。 获取凭证 配置访问控制策略 在企业版实例管理的访问控制页面,可以打开公网访问或者添加指定 VPC 打开专有网络访问,保证后续 Helm Chart 的上传。 添加VPC打开公网访问入口 配置访问格式 在命名空间 namespace 下,创建一个 Chart 仓库 repository,如下图所示:配置访问格式 当命名空间开启了自动创建仓库功能后,无需提前在界面创建 Chart 仓库,可直接在终端 Helm Push Chart 仓库。 企业版中 Chart 仓库的格式为 <实例名称>-chart.<Region ID>.cr.aliyuncs.com/<命名空间>/<Chart 仓库名>,Chart 仓库的版本为<Chart 名称>-<版本号>。 配置本地仓库映射 需要指定一个本地仓库名称,映射到线上的某一个命名空间下的某一个 Chart 仓库。 export HELM_REPO_USERNAME='<企业版实例访问凭证中账号>'; export HELM_REPO_PASSWORD='<企业版实例访问凭证中密码>'; helm repo add <本地仓库名称> acr://<实例名称>-chart.<Region ID>.cr.aliyuncs.com/<命名空间>/<Chart 仓库> --username ${HELM_REPO_USERNAME} --password ${HELM_REPO_PASSWORD} 配置本地仓库映射 推送 Chart 本地创建一个 Chart helm create <Chart 名称> 推送 Chart 目录 helm push <Chart 名称> <本地仓库名称> 或者推送 Chart 压缩包 helm push <Chart 名称>-<Chart 版本>.tgz <本地仓库名称> 推送chart 返回企业版实例控制台,可以看到 Chart 仓库新增一个版本,如下图所示: 版本列表 拉取 Chart 从线上 Chart 仓库更新本地 Chart 索引 helm repo update 拉取 Chart helm fetch <本地仓库名称>/<Chart 名称> --version <Chart 版本> 或者直接安装 Chart helm install -f values.yaml <本地仓库名称>/<Chart 名称> --version <Chart 版本>

1934890530796658 2020-03-25 12:30:51 0 浏览量 回答数 0

回答

在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。但在电商等场景中,对于数据一致性的解决方法和常见的互联网系统(如 MySQL 主从同步)又有一定区别,分成以下 6 种解决方案。(一)规避分布式事务——业务整合业务整合方案主要采用将接口整合到本地执行的方法。拿问题场景来说,则可以将服务 A、B、C 整合为一个服务 D 给业务,这个服务 D 再通过转换为本地事务的方式,比如服务 D 包含本地服务和服务 E,而服务 E 是本地服务 A ~ C 的整合。优点:解决(规避)了分布式事务。缺点:显而易见,把本来规划拆分好的业务,又耦合到了一起,业务职责不清晰,不利于维护。由于这个方法存在明显缺点,通常不建议使用。(二)经典方案 - eBay 模式此方案的核心是将需要分布式处理的任务通过消息日志的方式来异步执行。消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试。人工重试更多的是应用于支付场景,通过对账系统对事后问题的处理。消息日志方案的核心是保证服务接口的幂等性。考虑到网络通讯失败、数据丢包等原因,如果接口不能保证幂等性,数据的唯一性将很难保证。eBay 方式的主要思路如下。Base:一种 Acid 的替代方案此方案是 eBay 的架构师 Dan Pritchett 在 2008 年发表给 ACM 的文章,是一篇解释 BASE 原则,或者说最终一致性的经典文章。文中讨论了 BASE 与 ACID 原则在保证数据一致性的基本差异。如果 ACID 为分区的数据库提供一致性的选择,那么如何实现可用性呢?答案是BASE (basically available, soft state, eventually consistent)BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。文章中描述了一个最常见的场景,如果产生了一笔交易,需要在交易表增加记录,同时还要修改用户表的金额。这两个表属于不同的远程服务,所以就涉及到分布式事务一致性的问题。文中提出了一个经典的解决方法,将主要修改操作以及更新用户表的消息放在一个本地事务来完成。同时为了避免重复消费用户表消息带来的问题,达到多次重试的幂等性,增加一个更新记录表 updates_applied 来记录已经处理过的消息。基于以上方法,在第一阶段,通过本地的数据库的事务保障,增加了 transaction 表及消息队列 。在第二阶段,分别读出消息队列(但不删除),通过判断更新记录表 updates_applied 来检测相关记录是否被执行,未被执行的记录会修改 user 表,然后增加一条操作记录到 updates_applied,事务执行成功之后再删除队列。通过以上方法,达到了分布式系统的最终一致性。进一步了解 eBay 的方案可以参考文末链接。(三)去哪儿网分布式事务方案随着业务规模不断地扩大,电商网站一般都要面临拆分之路。就是将原来一个单体应用拆分成多个不同职责的子系统。比如以前可能将面向用户、客户和运营的功能都放在一个系统里,现在拆分为订单中心、代理商管理、运营系统、报价中心、库存管理等多个子系统。拆分首先要面临的是什么呢?最开始的单体应用所有功能都在一起,存储也在一起。比如运营要取消某个订单,那直接去更新订单表状态,然后更新库存表就 ok 了。因为是单体应用,库在一起,这些都可以在一个事务里,由关系数据库来保证一致性。但拆分之后就不同了,不同的子系统都有自己的存储。比如订单中心就只管理自己的订单库,而库存管理也有自己的库。那么运营系统取消订单的时候就是通过接口调用等方式来调用订单中心和库存管理的服务了,而不是直接去操作库。这就涉及一个『分布式事务』的问题。分布式事务有两种解决方式优先使用异步消息。上文已经说过,使用异步消息 Consumer 端需要实现幂等。幂等有两种方式,一种方式是业务逻辑保证幂等。比如接到支付成功的消息订单状态变成支付完成,如果当前状态是支付完成,则再收到一个支付成功的消息则说明消息重复了,直接作为消息成功处理。另外一种方式如果业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现。对于 producer 端在业务数据库的同实例上放一个消息库,发消息和业务操作在同一个本地事务里。发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除,如果遇到消息队列服务异常或网络问题,消息没有成功发出那么消息就留在这里了,会有另外一个服务不断地将这些消息扫出重新发送。有的业务不适合异步消息的方式,事务的各个参与方都需要同步的得到结果。这种情况的实现方式其实和上面类似,每个参与方的本地业务库的同实例上面放一个事务记录库。比如 A 同步调用 B,C。A 本地事务成功的时候更新本地事务记录状态,B 和 C 同样。如果有一次 A 调用 B 失败了,这个失败可能是 B 真的失败了,也可能是调用超时,实际 B 成功。则由一个中心服务对比三方的事务记录表,做一个最终决定。假设现在三方的事务记录是 A 成功,B 失败,C 成功。那么最终决定有两种方式,根据具体场景:重试 B,直到 B 成功,事务记录表里记录了各项调用参数等信息;执行 A 和 B 的补偿操作(一种可行的补偿方式是回滚)。对 b 场景做一个特殊说明:比如 B 是扣库存服务,在第一次调用的时候因为某种原因失败了,但是重试的时候库存已经变为 0,无法重试成功,这个时候只有回滚 A 和 C 了。那么可能有人觉得在业务库的同实例里放消息库或事务记录库,会对业务侵入,业务还要关心这个库,是否一个合理的设计?实际上可以依靠运维的手段来简化开发的侵入,我们的方法是让 DBA 在公司所有 MySQL 实例上预初始化这个库,通过框架层(消息的客户端或事务 RPC 框架)透明的在背后操作这个库,业务开发人员只需要关心自己的业务逻辑,不需要直接访问这个库。总结起来,其实两种方式的根本原理是类似的,也就是将分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性。(四)蘑菇街交易创建过程中的分布式一致性方案交易创建的一般性流程我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。面临的问题每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?方案选型服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。(五)支付宝及蚂蚁金融云的分布式服务 DTS 方案业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。分布式事务服务简介分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。核心特性传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。简单的说,DTS 框架有如下特性:最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。与 RPC 服务协议无关:在 SOA 架构下,一个或多个 DB 操作往往被包装成一个一个的 Service,Service 与 Service 之间通过 RPC 协议通信。DTS 框架构建在 SOA 架构上,与底层协议无关。与底层事务实现无关: DTS 是一个抽象的基于 Service 层的概念,与底层事务实现无关,也就是说在 DTS 的范围内,无论是关系型数据库 MySQL,Oracle,还是 KV 存储 MemCache,或者列存数据库 HBase,只要将对其的操作包装成 DTS 的参与者,就可以接入到 DTS 事务范围内。一个完整的业务活动由一个主业务服务与若干从业务服务组成。主业务服务负责发起并完成整个业务活动。从业务服务提供 TCC 型业务操作。业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”与 2PC 协议比较,没有单独的 Prepare 阶段,降低协议成本。系统故障容忍度高,恢复简单(六)农信网数据一致性方案电商业务公司的支付部门,通过接入其它第三方支付系统来提供支付服务给业务部门,支付服务是一个基于 Dubbo 的 RPC 服务。对于业务部门来说,电商部门的订单支付,需要调用支付平台的支付接口来处理订单;同时需要调用积分中心的接口,按照业务规则,给用户增加积分。从业务规则上需要同时保证业务数据的实时性和一致性,也就是支付成功必须加积分。我们采用的方式是同步调用,首先处理本地事务业务。考虑到积分业务比较单一且业务影响低于支付,由积分平台提供增加与回撤接口。具体的流程是先调用积分平台增加用户积分,再调用支付平台进行支付处理,如果处理失败,catch 方法调用积分平台的回撤方法,将本次处理的积分订单回撤。用户信息变更公司的用户信息,统一由用户中心维护,而用户信息的变更需要同步给各业务子系统,业务子系统再根据变更内容,处理各自业务。用户中心作为 MQ 的 producer,添加通知给 MQ。APP Server 订阅该消息,同步本地数据信息,再处理相关业务比如 APP 退出下线等。我们采用异步消息通知机制,目前主要使用 ActiveMQ,基于 Virtual Topic 的订阅方式,保证单个业务集群订阅的单次消费。总结分布式服务对衍生的配套系统要求比较多,特别是我们基于消息、日志的最终一致性方案,需要考虑消息的积压、消费情况、监控、报警等。

小川游鱼 2019-12-02 01:46:40 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

第一问简单 用队列就行 第二问 队列中间件或者原子锁 但这就不是同时了######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######你现在希望实现的就是有序嘛,那肯定要用锁才行,比如两个请求A和B同时发出,首先都需要获取锁,如果没获取成功,就等待,强制有序;存取都一样,只要保证了顺序,其他的都好说。######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######就是并发及队列的应用,这方面的技术都有相应的解决方案,可以去google搜索试试。######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######高并发问题嘛。队列 + 微秒时间######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######gearman######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??###### 第一个比较好解决,业务部分不考虑并发和排序,在表中有2个字段,id(对于mysql用自增,对于oracle用sequence),另一个timestamp记录时间,但是要是原子性事务保证。排序的时候用 order by timestamp,id 就可以了。 第二个,在php这玩意下,不提供线程、并发控制和锁、CAS原子量,mysql没有实现sequence等等,所以你这个方案暂时看很难实现(当然手动锁表之类方式也能实现,但实现了也没啥价值 )。 ######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??###### 有很多数据拥有相同的时间标签, 这个时间标签怎么定的?在计算机里有真正的“同时”? 时间搞细点,再做个队列 ######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??###### 另外,“同时”“并列”这些概念是不对的,只要时间片足够小,先后顺序是一定存在的。 即使并发很大,竞争很激烈,但只有一个能够获得锁,所以看起来“同时”的东西,会变成锁机制下的硬性排序。  ######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??

爱吃鱼的程序员 2020-06-03 16:39:55 0 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

回答

Nacos 服务发现提供与其他服务发现产品不太一样的机制以及概念,在这里稍作介绍,下文中的内容都会多次提到这里介绍的概念,因此掌握这些概念,对于用好 Nacos 服务发现至关重要。 不同于 Consul, Eureka, Nacos 的服务发现使用的领域数据模型是服务 - 集群 - 实例这样的三层结构。最上面是服务,注册端(服务发布者)和订阅端(服务消费者)使用服务来与其他服务做区分,服务发现中,服务是必须指定的。集群则是中间一层,一个服务又会划分为多个集群,每个集群都有它的自定义配置,Nacos 提供了一个默认集群和相应的默认配置,在不需要多集群的场景下,可以不用指定集群。最下一层是实例,每个集群又会包含多个实例,这样对服务进行发现时,可以发现多个集群的所有实例,也可以指定集群,来发现特定集群的实例。 环境准备 首先,需要有一个 Nacos Server 部署起来,目前 Nacos 支持单机模式,也支持集群模式,部署文档可以参考 Nacos 快速入门。然后添加 Nacos 客户端最新版本依赖: <dependency> <groupId>com.alibaba.nacos</groupId> <artifactId>nacos-client</artifactId> <version>[latest-version]</version></dependency> 你可以配置从中央仓库直接依赖,也可以将 Nacos 最新源码下载下来,本地构建客户端版本。 Hello World 我们先来进行一个最简单的服务注册与发现。Nacos 支持从客户端注册服务实例和订阅服务,具体步骤如下: 配置 Nacos 客户端 Properties:Properties properties = new Properties();properties.setProperty(PropertyKeyConst.SERVER_ADDR, "127.0.0.1:8848"); 创建 Nacos Naming 客户端:NamingService namingService = NacosFactory.createNamingService(properties); 注册一个实例:namingService.registerInstance("nacos.test.1", InetAddress.getLocalHost().getHostAddress(), 8080); 查找这个服务的实例:System.out.println(namingService.getAllInstances("nacos.test.1")); 至此一个最简单的 Nacos 服务发现的使用已经完成了。这里要对一些细节稍作解释。首先在第一步中,属性 PropertyKeyConst.SERVER_ADDR 表示的是 Nacos 服务端的地址,这个地址的格式为 IP:port,IP:port。对于单机版,只需要指定一个 IP:port。甚至您可以将端口省略,这样将会访问 Nacos 的默认端口 8848。在第二步中,将创建一个 NamingService 实例,客户端将为该实例创建单独的资源空间,包括缓存、线程池以及配置等。Nacos 客户端没有对该实例做单例的限制,请小心维护这个实例,以防新建了多于预期的实例。第三步注册服务中,使用的是最简单的 API 注册方式,只需要传入服务名、IP、端口就可以。第四步是获取服务下的所有实例列表,包括健康和不健康的。 构建自定义实例 在一些场景中,我们希望注册的实例中,有一些能够被分配更多的流量,而另外一些分配较少的流量,或者能够传入一些实例的元信息存储到 Nacos 服务端,例如 IP 所属的应用或者所在的机房,这样在客户端可以根据服务下挂载的实例的元信息,来自定义负载均衡模式。别担心,我们有另外的注册实例接口,让你可以在注册的时候指定实例的属性: /** * Register a instance to service with specified instance properties * * @param serviceName name of service * @param instance instance to register * @throws NacosException / void registerInstance(String serviceName, Instance instance) throws NacosException; 这个方法可以在注册服务的时候,传入一个 Instanc 实例,而在 Instance 实例中,可以设置实例的若干属性: public class Instance { /* * Unique ID of this instance. / private String instanceId; /* * Instance ip / private String ip; /* * Instance port / private int port; /* * Instance weight / private double weight = 1.0D; /* * Instance health status / @JSONField(name = "valid") private boolean healthy = true; /* * Cluster information of instance / @JSONField(serialize = false) private Cluster cluster = new Cluster(); /* * Service information of instance / @JSONField(serialize = false) private Service service; /* * User extended attributes / private Map<String, String> metadata = new HashMap<String, String>(); ....} 其中,InstanceId 是由服务端生成返回给客户端,用于唯一标识该实例。IP、端口是实例的基本属性,除此之外,还有 weight 权重,可以设置该实例所分配流量的多少,这应该也比较好理解,权重越大,实例分配的流量就会越大。healthy 字段代表该实例是否健康,这个值也是由服务端返回给客户端的。cluster 和 service 分别表示该实例对应的集群和服务的一些信息,这些信息会在下面做介绍。最后是实例的元数据,这个元数据一个 String 对 String 的 Map。那么可以用如下代码来注册一个自定义实例: Instance instance = new Instance();instance.setIp(InetAddress.getLocalHost().getHostAddress());instance.setPort(8080);instance.setWeight(100);Map<String, String> metadata = new HashMap<String, String>(16);metadata.put("app", "nacos");metadata.put("site", "beijing");instance.setMetadata(metadata);namingService.registerInstance("nacos.test.1", instance); 构建自定义集群 Nacos 引入了集群的概念,在服务这个维度下面,可以对服务下的实例列表再做个划分。这在阿里巴巴内部非常普遍。一个典型的场景是这个服务下的实例,需要配置多种健康检查方式,有一些实例使用 TCP 的健康检查方式,另外一些使用 HTTP 的健康检查方式。另一个场景是,这个服务下挂载的机器分属不同的环境,我们希望能够在某些情况下(包括演练)将某个环境的流量全部切走,这样可以通过配置一个环境属于一个集群,来做到一次性切流。 在客户端构建自定义集群,有一些陷阱需要小心。当前我们只有注册实例的接口,实例内部的 cluster 字段可以配置集群的属性。但是多个实例之间如果配置了不同的集群属性,这时候会发生什么呢?Nacos 只会接受第一次注册该集群所传入的集群属性,也就是说,先注册的实例,获得优先权,将它对应的集群信息注册到 Nacos 服务端。只有 Nacos 服务端已经存在该集群的配置,后续的注册请求里的集群信息,都会被忽略。为了确保你的应用保持预期的行为,请务必让同一个集群下的实例使用相同的集群配置。 下面来看看可以为集群定义哪些配置: public class Cluster { /* * Name of belonging service / private String serviceName; /* * Name of cluster / private String name = ""; /* * Health check config of this cluster / private AbstractHealthChecker healthChecker = new AbstractHealthChecker.Tcp(); /* * Default registered port for instances in this cluster. / private int defaultPort = 80; /* * Default health check port of instances in this cluster. / private int defaultCheckPort = 80; /* * Whether or not use instance port to do health check. / private boolean useIPPort4Check = true; private Map<String, String> metadata = new HashMap<String, String>(); ...} 首先是集群对应的服务名,用来表示该集群所属的服务;然后是集群的名字、健康检查方式、默认的端口、默认的健康检查端口以及是否使用是的端口做健康检查。我们先来说简单的,默认端口表示注册时实例默认的端口,这个在客户端并没有体现,但是当使用 API 注册实例的时候,端口是可以不传入的,此时就会用这个默认端口作为实例的端口。然后是默认的健康检查端口,当健康检查方式中没有配置端口时,就会用这个端口来和实例通信,进行健康检查。下一个属性是是否使用实例端口做健康检查,如果设为 true,则会使用实例注册的端口来和实例进行通信。最后一个属性是集群的元数据,Nacos 支持多个维度的元数据,实例支持,集群支持,下面介绍的服务属性也支持。 健康检查方式,客户端心跳是一种模式,由客户端主动上报健康状态。服务端检测是另外一种模式,Nacos 目前支持三种:TCP、HTTP 和 MYSQL。TCP 方式会从 Nacos 服务端建立一个连接到实例,如果连接建立成功,则表示该实例健康。HTTP 方式则会从 Nacos 服务端想实例发起一个 HTTP 请求,可以配置的属性有访问的相对路径,访问的 HTTP 头部,这个头部使用竖线进行分割,以及预期的请求返回码,默认为 200: private String path = "";private String headers = "";private int expectedResponseCode = 200; MYSQL 健康检查方式,则可以让 Nacos 往实例执行一条 MySQL 命令,可以配置的属性有用户名、密码和执行的命令。执行结果如果不抛异常,则表示实例健康: private String user;private String pwd;private String cmd; 构建自定义服务 同理,服务也可能需要自定义的配置,Nacos 的服务随着实例的注册而存在,并随着所有实例的注销而消亡。目前除了使用 HTTP API 可以修改服务的属性外(这将在未来的篇章中进行介绍),就只能使用注册实例时传入服务属性来进行服务的自定义配置。这里的服务与 Consul 或者 Eureka 不同,Consul 与 Eureka 的服务其实就是指的实例,而每个实例有一个服务名,通过这个服务名来获取相同服务名下的实例列表,服务本身并不是一个数据实体。在真正的生产环境中,我们认为服务本身也是具有数据存储需求的,例如作用于服务下所有实例的配置、权限控制等。虽然有一些配置可以放到实例级别,例如健康检查是否开启。但是当服务的规模成千上万后,想要整体修改这些实例的健康检查开关,就是一个繁重的运维操作。另一些配置,例如下文会提到的健康保护阈值,是一定是一个服务只有一个唯一的值的,多个值将会造成逻辑上的冲突。 /* * Service name / private String name; /* * Protect threshold / private float protectThreshold = 0.0F; /* * Application name of this service / private String app; /* * Service group which is meant to classify services into different sets. / private String group; /* * Health check mode. / private String healthCheckMode; private Map<String, String> metadata = new HashMap<String, String>(); 服务的属性存储在 Service 类中,自上而下,依次是服务的名称、服务的健康保护阈值、服务的应用名、服务的分组、服务的健康检查模式以及服务的元数据。相关概念这里不再做一一陈述,你可以参考 Nacos 官网 概念介绍。这里要提到的是服务的健康保护阈值,在阿里巴巴内部,这个值被广泛的设置和调优。在这里对该属性的初衷做一个简单的介绍。分布式服务场景下的一个问题是在部分实例不健康的情况下,是否能够将流所有流量引向其他健康实例?在一些情况下,这可能造成雪崩效应。即本来健康的实例被多余的流量冲击,也变得不健康,然后导致健康的实例越来越少,最后整个服务崩溃。此时可以使用这个健康保护阈值,当健康实例与所有实例的比例小于这个值的时候,则认为所有实例都是健康的,这样虽然部分流量流向了不健康的实例,但是剩余健康的实例还是能够正常访问的。 服务发现 Nacos 的服务发现,有主动拉取和推送两种模式,这与一般的服务发现架构相同。在拉取方式中,提供了三个方法,一个是查询所有注册的实例,一个是只查询健康且上线的实例,还有一个是获取一个健康且上线的实例。一般情况下,订阅端并不关心不健康的实例或者权重设为 0 的实例,但是也不排除一些场景下,有一些运维或者管理的场景需要拿到所有的实例。目前的版本同时还支持根据服务端设定的负载均衡策略,来查询单个可用的实例。就好像 DNS 解析一样,虽然每次都返回一个后端 IP,但是整体可以保证域名挂载的所有 IP 会按照一定的策略都能够被客户端解析到。 /* * Get all instances of a service * * @param serviceName name of service * @return A list of instance * @throws NacosException /List<Instance> getAllInstances(String serviceName) throws NacosException;/* * Get qualified instances of service * * @param serviceName name of service * @param healthy a flag to indicate returning healthy or unhealthy instances * @return A qualified list of instance * @throws NacosException /List<Instance> selectInstances(String serviceName, boolean healthy) throws NacosException;/* * Select one healthy instance of service using predefined load balance strategy * * @param serviceName name of service * @return qualified instance * @throws NacosException /Instance selectOneHealthyInstance(String serviceName) throws NacosException; 前两个查询方法会返回所有实例的列表,这允许用户通过额外的工作,将实例的权重或者元数据运用到负载均衡中。对于一般的微服务场景,针对每个实例轮询,这样已经足够了。事实上,不管是在 Eureka 还是 Consul 里,其原生客户端都是只负责服务的发现,并不支持负载均衡。这样就需要第三方的 ribbon 或者 fabio 来完成负载均衡工作,此时它们的负载均衡,是完全放在客户端的。 Nacos 也会支持客户端侧的负载均衡,并支持用户扩展的负载均衡策略。不过在阿里巴巴内部,通常只需要由服务端来配置负载均衡策略,所有的调用端不区分业务的使用同一套负载均衡策略。因为实际上,调用端往往并不关心自身访问的服务的流量分配,而只需要一个可用的服务节点就可以了。而服务提供端,则由于其部署规模很大和部署环境的复杂,需要对环境信息敏感的流量分配以及对流量的绝对控制权。这时,往往需要提供端审慎的配置好统一的负载均衡策略,来保证所有订阅端按照这个策略来进行访问。 除了主动查询实例列表,Nacos 还提供订阅模式来感知服务下实例列表的变化,包括服务配置或者实例配置的变化。可以使用下面的接口来进行订阅或者取消订阅: /* * Subscribe service to receive events of instances alteration * * @param serviceName name of service * @param listener event listener * @throws NacosException /void subscribe(String serviceName, EventListener listener) throws NacosException;/* * Unsubscribe event listener of service * * @param serviceName name of service * @param listener event listener * @throws NacosException */void unsubscribe(String serviceName, EventListener listener) throws NacosException; 控制台使用 Nacos 0.3.0 版本上线了控制台,作为生产环境基本的运维工具,服务发现也通过控制台释放了部分的运维能力。虽然控制台承担的是运维为主的工作,但是开发人员也需要通过控制台来查看当前服务的注册状态和健康状态等,服务发现的控制台页面介绍可以参考 https://nacos.io/en-us/blog/discovery-console.html。虽然这篇文章中的一些页面通过社区的反馈而做了细微的调整,但是通过这篇文章应该可以掌握怎么使用服务发现的控制台了。控制台的启动方式也很简单,将 Nacos 安装包下载安装启动(安装教程)之后,直接访问:http://localhost:8848/nacos/index.html 即可打开最新的控制台界面。 小 结 Nacos 目前的版本,集成了服务发现和配置管理的基本能力以及部分高级特性。作为最小生产可用版本,Nacos 未来还会继续开放新特性,结合 SpringCloud、K8S、Dubbo 等生态,为开发者提供极致易用和稳定的服务管理和配置管理能力。在可预期的几个版本内,将会支持元数据的管理及 DNS 的服务发现。争取将使用 Nacos,作为服务发现和配置管理选型的最佳实践。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:00:16 0 浏览量 回答数 0

问题

DRDS Sequence 是什么?

猫饭先生 2019-12-01 21:20:47 1752 浏览量 回答数 0

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

问题

【精品问答】130+大数据面试汇总

问问小秘 2019-12-01 21:52:42 1644 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SSL证书 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 2020中国云原生 阿里云云栖号