• 关于

    游戏服务器案例

    的搜索结果

问题

游戏云精彩帖汇总

nono20011908 2019-12-01 20:59:51 43468 浏览量 回答数 12

问题

ECS免费体验用户案例展播(持续更新中)

qilu 2019-12-01 21:26:06 7754 浏览量 回答数 4

问题

客户案例:龙之召唤

聚小编 2019-12-01 21:08:37 7448 浏览量 回答数 0

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

学生动手场景应用,快速了解并掌握云服务器的各种新奇玩法!

问题

【架构部署类问题】

domen 2019-12-01 21:55:33 8120 浏览量 回答数 1

问题

【客户案例】玩蟹科技:游戏与云计算的合作相得益彰

keer 2019-12-01 21:33:39 10598 浏览量 回答数 3

回答

云服务器ECS具有广泛的应用场景,既可以作为Web服务器或者应用服务器单独使用,又可以与其他阿里云服务集成提供丰富的解决方案。 说明 云服务器ECS的典型应用场景包括却不限于本文描述,您可以在使用云服务器ECS的同时发现云计算带来的技术红利。 企业官网或轻量的Web应用 网站初始阶段访问量小,只需要一台低配置的云服务器ECS实例即可运行Apache或Nginx等Web应用程序、数据库、存储文件等。随着网站发展,您可以随时升级ECS实例的配置,或者增加ECS实例数量,无需担心低配计算单元在业务突增时带来的资源不足。 多媒体以及高并发应用或网站 云服务器ECS与对象存储OSS搭配,对象存储OSS承载静态图片、视频或者下载包,进而降低存储费用。同时配合内容分发网络CDN和负载均衡SLB,可大幅减少用户访问等待时间、降低网络带宽费用以及提高可用性。更多详情,请参见对象存储OSS、CDN和负载均衡。 高I/O要求数据库 支持承载高I/O要求的数据库,如OLTP类型数据库以及NoSQL类型数据库。您可以使用较高配置的I/O优化型云服务器ECS,同时采用ESSD云盘,可实现高I/O并发响应和更高的数据可靠性。您也可以使用多台中等偏下配置的I/O优化型ECS实例,搭配负载均衡SLB,建设高可用底层架构。更多详情,请参见ESSD云盘和负载均衡。 访问量波动剧烈的应用或网站 某些应用,如抢红包应用、优惠券发放应用、电商网站和票务网站,访问量可能会在短时间内产生巨大的波动。您可以配合使用弹性伸缩,自动化实现在请求高峰来临前增加ECS实例,并在进入请求低谷时减少ECS实例。满足访问量达到峰值时对资源的要求,同时降低了成本。如果搭配负载均衡SLB,您还可以实现高可用应用架构。更多详情,请参见弹性伸缩和负载均衡。 大数据及实时在线或离线分析 云服务器ECS提供了大数据类型实例规格族,支持Hadoop分布式计算、日志处理和大型数据仓库等业务场景。由于大数据类型实例规格采用了本地存储的架构,云服务器ECS在保证海量存储空间、高存储性能的前提下,可以为云端的Hadoop集群、Spark集群提供更高的网络性能。更多详情,请参见大数据型实例规格族。 机器学习和深度学习等AI应用 通过采用GPU计算型实例,您可以搭建基于TensorFlow框架等的AI应用。此外,GPU计算型还可以降低客户端的计算能力要求,适用于图形处理、云游戏云端实时渲染、AR/VR的云端实时渲染等瘦终端场景。更多详情,请参见GPU计算型实例。 更多案例 更多关于云服务器ECS的应用场景,请参见云服务器ECS客户案例。

1934890530796658 2020-03-24 14:02:56 0 浏览量 回答数 0

回答

Re【客户案例】玩蟹科技:游戏与云计算的合作相得益彰 我也是用阿里云做手游的,但是阿里云的泛域名在部分城市无法解析,例如深圳电信的dns服务器就解析不了我在阿里云的域名 不知道玩蟹的大师们是如何解决这个问题的,能否把解决方案分享一下 ------------------------- 回2楼牛逼王的帖子 这个和我自己的域名没关系,是阿里云的域名解析不了 而且不是某个产品的问题,涉及xx.xx.aliyuncs.com域名的产品都有问题 严格来说这是运营商的bug,部分运营商的域名解析服务器太老了不支持泛域名解析 但是我不可能去找全国各地的电信、移动、联通等等运营商要求他们升级域名服务器 所以只能来论坛问一下有没有解决办法

wrexdeng 2019-12-02 02:21:48 0 浏览量 回答数 0

问题

客户案例分享——云络科技

申木 2019-12-01 21:49:30 9891 浏览量 回答数 1

回答

1、Kafka分布式集群架构,基本都开源、免费2、与其他MQ不同,Kafka可以高速消息处理,高并发百万级别3、支持分区容错方式 Kafka通过复制日志到多台服务器以进行容错4、实时消息处理数据流Sreaming5、当然不支持AMQP协议,为了追求性能6、目前阿里的RocketMQ可以认为是升级版本的Kafka7、大数据、游戏、监控平台成熟案例很多8、阿里双11每天千亿消息系统RocketMQ,主要架构类似Kafka

徐雷frank 2019-12-02 01:48:42 0 浏览量 回答数 0

问题

客户案例:《玉契OL》与安全强防护的那些事儿

nono20011908 2019-12-01 22:00:37 7756 浏览量 回答数 0

问题

大数据 比你更懂自己

柚子 2019-12-01 21:40:32 5650 浏览量 回答数 0

问题

【客户案例】云上救命APP!——e代驾手机客户端!

keer 2019-12-01 21:33:32 10528 浏览量 回答数 3

回答

Kafka 是一个消息系统,原本开发自 LinkedIn,用作 LinkedIn 的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。现在它已被多家公司作为多种类型的数据管道和消息系统使用。活动流数据是几乎所有站点在对其网站使用情况做报表时都要用到的数据中最常规的部分。活动数据包括页面访问量(Page View)、被查看内容方面的信息以及搜索情况等内容。这种数据通常的处理方式是先把各种活动以日志的形式写入某种文件,然后周期性地对这些文件进行统计分析。运营数据指的是服务器的性能数据(CPU、IO 使用率、请求时间、服务日志等等数据),总的来说,运营数据的统计方法种类繁多。Kafka 专用术语Broker:Kafka 集群包含一个或多个服务器,这种服务器被称为 broker。Topic:每条发布到 Kafka 集群的消息都有一个类别,这个类别被称为 Topic。(物理上不同 Topic 的消息分开存储,逻辑上一个 Topic 的消息虽然保存于一个或多个 broker 上,但用户只需指定消息的 Topic 即可生产或消费数据而不必关心数据存于何处)。Partition:Partition 是物理上的概念,每个 Topic 包含一个或多个 Partition。Producer:负责发布消息到 Kafka broker。Consumer:消息消费者,向 Kafka broker 读取消息的客户端。Consumer Group:每个 Consumer 属于一个特定的 Consumer Group(可为每个 Consumer 指定 group name,若不指定 group name 则属于默认的 group)。Kafka 交互流程Kafka 是一个基于分布式的消息发布-订阅系统,它被设计成快速、可扩展的、持久的。与其他消息发布-订阅系统类似,Kafka 在主题当中保存消息的信息。生产者向主题写入数据,消费者从主题读取数据。由于 Kafka 的特性是支持分布式,同时也是基于分布式的,所以主题也是可以在多个节点上被分区和覆盖的。信息是一个字节数组,程序员可以在这些字节数组中存储任何对象,支持的数据格式包括 String、JSON、Avro。Kafka 通过给每一个消息绑定一个键值的方式来保证生产者可以把所有的消息发送到指定位置。属于某一个消费者群组的消费者订阅了一个主题,通过该订阅消费者可以跨节点地接收所有与该主题相关的消息,每一个消息只会发送给群组中的一个消费者,所有拥有相同键值的消息都会被确保发给这一个消费者。Kafka 设计中将每一个主题分区当作一个具有顺序排列的日志。同处于一个分区中的消息都被设置了一个唯一的偏移量。Kafka 只会保持跟踪未读消息,一旦消息被置为已读状态,Kafka 就不会再去管理它了。Kafka 的生产者负责在消息队列中对生产出来的消息保证一定时间的占有,消费者负责追踪每一个主题 (可以理解为一个日志通道) 的消息并及时获取它们。基于这样的设计,Kafka 可以在消息队列中保存大量的开销很小的数据,并且支持大量的消费者订阅。利用 Apache Kafka 系统架构的设计思路示例:网络游戏假设我们正在开发一个在线网络游戏平台,这个平台需要支持大量的在线用户实时操作,玩家在一个虚拟的世界里通过互相协作的方式一起完成每一个任务。由于游戏当中允许玩家互相交易金币、道具,我们必须确保玩家之间的诚信关系,而为了确保玩家之间的诚信及账户安全,我们需要对玩家的 IP 地址进行追踪,当出现一个长期固定 IP 地址忽然之间出现异动情况,我们要能够预警,同时,如果出现玩家所持有的金币、道具出现重大变更的情况,也要能够及时预警。此外,为了让开发组的数据工程师能够测试新的算法,我们要允许这些玩家数据进入到 Hadoop 集群,即加载这些数据到 Hadoop 集群里面。对于一个实时游戏,我们必须要做到对存储在服务器内存中的数据进行快速处理,这样可以帮助实时地发出预警等各类动作。我们的系统架设拥有多台服务器,内存中的数据包括了每一个在线玩家近 30 次访问的各类记录,包括道具、交易信息等等,并且这些数据跨服务器存储。我们的服务器拥有两个角色:首先是接受用户发起的动作,例如交易请求,其次是实时地处理用户发起的交易并根据交易信息发起必要的预警动作。为了保证快速、实时地处理数据,我们需要在每一台机器的内存中保留历史交易信息,这意味着我们必须在服务器之间传递数据,即使接收用户请求的这台机器没有该用户的交易信息。为了保证角色的松耦合,我们使用 Kafka 在服务器之间传递信息 (数据)。Kafka 特性Kafka 的几个特性非常满足我们的需求:可扩展性、数据分区、低延迟、处理大量不同消费者的能力。这个案例我们可以配置在 Kafka 中为登陆和交易配置同一个主题。由于 Kafka 支持在单一主题内的排序,而不是跨主题的排序,所以我们为了保证用户在交易前使用实际的 IP 地址登陆系统,我们采用了同一个主题来存储登陆信息和交易信息。当用户登陆或者发起交易动作后,负责接收的服务器立即发事件给 Kafka。这里我们采用用户 id 作为消息的主键,具体事件作为值。这保证了同一个用户的所有的交易信息和登陆信息被发送到 Kafka 分区。每一个事件处理服务被当作一个 Kafka 消费者来运行,所有的消费者被配置到了同一个消费者群组,这样每一台服务器从一些 Kafka 分区读取数据,一个分区的所有数据被送到同一个事件处理服务器 (可以与接收服务器不同)。当事件处理服务器从 Kafka 读取了用户交易信息,它可以把该信息加入到保存在本地内存中的历史信息列表里面,这样可以保证事件处理服务器在本地内存中调用用户的历史信息并做出预警,而不需要额外的网络或磁盘开销。图 1. 游戏设计图图 1. 游戏设计图为了多线程处理,我们为每一个事件处理服务器或者每一个核创建了一个分区。Kafka 已经在拥有 1 万个分区的集群里测试过。切换回 Kafka上面的例子听起来有点绕口:首先从游戏服务器发送信息到 Kafka,然后另一台游戏服务器的消费者从主题中读取该信息并处理它。然而,这样的设计解耦了两个角色并且允许我们管理每一个角色的各种功能。此外,这种方式不会增加负载到 Kafka。测试结果显示,即使 3 个结点组成的集群也可以处理每秒接近百万级的任务,平均每个任务从注册到消费耗时 3 毫秒。上面例子当发现一个事件可疑后,发送一个预警标志到一个新的 Kafka 主题,同样的有一个消费者服务会读取它,并将数据存入 Hadoop 集群用于进一步的数据分析。因为 Kafka 不会追踪消息的处理过程及消费者队列,所以它在消耗极小的前提下可以同时处理数千个消费者。Kafka 甚至可以处理批量级别的消费者,例如每小时唤醒一次一批睡眠的消费者来处理所有的信息。Kafka 让数据存入 Hadoop 集群变得非常简单。当拥有多个数据来源和多个数据目的地时,为每一个来源和目的地配对地编写一个单独的数据通道会导致混乱发生。Kafka 帮助 LinkedIn 规范了数据通道格式,并且允许每一个系统获取数据和写入数据各一次,这样极大地减少数据通道的复杂性和操作耗时。LinkedIn 的架构师 Jay Kreps 说:“我最初是在 2008 年完成键值对数据存储方式后开始的,我的项目是尝试运行 Hadoop,将我们的一些处理过程移动到 Hadoop 里面去。我们在这个领域几乎没有经验,花了几个星期尝试把数据导入、导出,另外一些事件花在了尝试各种各样的预测性算法使用上面,然后,我们开始了漫漫长路”。与 Flume 的区别Kafka 与 Flume 很多功能确实是重复的。以下是评估两个系统的一些建议:Kafka 是一个通用型系统。你可以有许多的生产者和消费者分享多个主题。相反地,Flume 被设计成特定用途的工作,特定地向 HDFS 和 HBase 发送出去。Flume 为了更好地为 HDFS 服务而做了特定的优化,并且与 Hadoop 的安全体系整合在了一起。基于这样的结论,Hadoop 开发商 Cloudera 推荐如果数据需要被多个应用程序消费的话,推荐使用 Kafka,如果数据只是面向 Hadoop 的,可以使用 Flume。Flume 拥有许多配置的来源 (sources) 和存储池 (sinks)。然后,Kafka 拥有的是非常小的生产者和消费者环境体系,Kafka 社区并不是非常支持这样。如果你的数据来源已经确定,不需要额外的编码,那你可以使用 Flume 提供的 sources 和 sinks,反之,如果你需要准备自己的生产者和消费者,那你需要使用 Kafka。Flume 可以在拦截器里面实时处理数据。这个特性对于过滤数据非常有用。Kafka 需要一个外部系统帮助处理数据。无论是 Kafka 或是 Flume,两个系统都可以保证不丢失数据。然后,Flume 不会复制事件。相应地,即使我们正在使用一个可以信赖的文件通道,如果 Flume agent 所在的这个节点宕机了,你会失去所有的事件访问能力直到你修复这个受损的节点。使用 Kafka 的管道特性不会有这样的问题。Flume 和 Kafka 可以一起工作的。如果你需要把流式数据从 Kafka 转移到 Hadoop,可以使用 Flume 代理 (agent),将 kafka 当作一个来源 (source),这样可以从 Kafka 读取数据到 Hadoop。你不需要去开发自己的消费者,你可以使用 Flume 与 Hadoop、HBase 相结合的特性,使用 Cloudera Manager 平台监控消费者,并且通过增加过滤器的方式处理数据。结束语综上所述,Kafka 的设计可以帮助我们解决很多架构上的问题。但是想要用好 Kafka 的高性能、低耦合、高可靠性、数据不丢失等特性,我们需要非常了解 Kafka,以及我们自身的应用系统使用场景,并不是任何环境 Kafka 都是最佳选择。

hiekay 2019-12-02 01:42:10 0 浏览量 回答数 0

问题

该来的终于来了:“第一起”基于 IPv6 的 DDoS 攻击

驻云科技 2019-12-01 21:44:35 4186 浏览量 回答数 1

问题

MongoDB 使用场景及运维管理问题交流探讨

云栖技术 2019-12-01 21:56:59 2493 浏览量 回答数 0

回答

1、拼多多被黑产薅羊毛事件 提名理由: 2019 年 1 月 20 日,微博爆料称拼多多出现重大 Bug:从网友晒出的图片看,此次 100 元无门槛券随便领,全场通用(特殊商品除外),有效期一年。有网友表示,凌晨 3 点多被同行“喊醒”,让来拼多多“薅羊毛”,“只需支付 4 毛钱,就可以充值 100 元话费”。 拼多多回应表示:有黑灰产团伙通过一个过期的优惠券漏洞盗取数千万元平台优惠券,进行不正当牟利。针对此行为,平台已第一时间修复漏洞,并正对涉事订单进行溯源追踪。同时我们已向公安机关报案,并将积极配合相关部门对涉事黑灰产团伙予以打击。 **翻车点评:**本次事件除了反映出拼多多在研发流程上的管控问题,也侧写出了中国企业的公关之难:在拼多多公关看来,此次被薅羊毛 200 亿的谣言是有心人在造谣抹黑;在旁观者看来,此次 200 亿谣言是拼多多的营销手段。一场罗生门背后,除了要敬畏每一行代码,还要敬畏每一位用户才是。 翻车等级:★★★☆☆ 2、苹果误发 7 倍工资给开发者,随后追回 提名理由: 2019 年 9 月 4 日,一位名为 @waylybaye 的 IOS 开发者在社交平台上爆料:“苹果搞了个大事故!!给国内开发者打上上个月的钱的时候,把单位是人民币的钱当成美元打过来了!所有开发者的收入都翻了 7 倍!现在这笔 7 倍的外汇已经到账可以申报了,但我不敢动……请问这种情况怎么搞?” 9 月 5 日,苹果官方发出邮件回应结算出错。在邮件中,苹果公司称,由于合作银行德意志银行方的问题,影响了开发者 2019 年 7 月的收入。希望开发者能够配合银行退回错误的金额,另外再汇一笔正确的金额。 该开发者表示将配合苹果公司退回款项,律师表示如果主张返还的行为给中国开发者带来很大的不便,甚至造成一些损失并有证据证明,那么中国开发者可以向苹果公司主张赔偿损失。 **翻车点评:**如果是越南开发者,收入岂不是翻了 2 万多倍?如果是津巴布韦开发者,岂不是要上天? **翻车等级:**★★★☆☆ 3、李世石击败围棋 AI:怀疑电脑质量有问题 提名理由: 李世石是当今世界唯一一位曾经打败 AI 围棋程序 AlphaGo 的人类棋手,他在 2019 年宣布了正式退役。这位棋手表示:在 AI 出现之后,他意识到即使通过疯狂的努力再次成为排名第一的棋手,他也无法真正一览众山小,因为有一个实体你无法击败它。 此次退役赛,李世石选择了对战 NHN Entertainment 开发的 AI 围棋程序 HanDol,这名 AI 棋手已经打败了韩国排名前五的棋手。2019 年 12 月 18 日,退役赛首战,李世石被让两子,做好了首战告负心理准备的李世石却意外取胜,原因在于 AI 程序在对弈中出现了一个低级失误,被李世石抓住机会一举奠定胜局。赢棋后的李世石并没有表现出过多的兴奋,他甚至怀疑是这台电脑的质量没有达到应有的水平。 **翻车点评:**AI、大数据、云计算的三位一体 ABC 战略,将给未来的世界带来怎样的颠覆?也许再过几年,你看到的金翻车奖就是 AI 评选的了。 翻车等级:★★★☆☆ 4、程序员用 Null 做车牌,命中车管所漏洞吃下所有无主罚单 提名理由: Joseph Tartaro 是一位美国软件安全领域的专家,2016 年年底,Tartaro 决定要注册一块有个性的车牌。作为一名软件安全方面的专家,他有着许多技术人独有的职业癖好:希望车牌号能够与工作联系在一起。“我可以给我老婆注册一块 VOID 车牌,这样我们的车道就变成了 NULL 和 VOID 了”。 当然,这里面是有其深层含义的。Tartaro 在最近的一次 Defcon 黑客大会上说,“null”在很多编程语言中是一个文本字符串,用来表示空值或未定义的值。在很多计算机中,null 就是 void。也就是说,他跟她老婆其实是二位一体的存在,公不离婆秤不离砣,颇有点程序员式的浪漫。但很快,这个车牌就让他浪不起来了,因为 Null 命中了车管所系统漏洞,他为此收到了所有的无名罚单,总额超过 1.2 万美元。他后来坦言,初衷其实只是为了使用 Null 车牌来逃避罚单,万万没想到无名罚单却成了自己的。 延展阅读:使用 Null 做自定义车牌,成功命中车管所系统漏洞,所有未填车牌的罚单都是我的了 **翻车点评:**我在看房的时候是坚决不看 404 号门牌的,这哥们却主动给自己报空指针,果然跟那些妖艳贱货有些不同。 **翻车等级:**★★★☆☆ 5、游戏公司主程锁死服务器事件 提名理由: 2019 年 1 月 21 日,一封《告游戏行业全体同仁书》将一家创业公司 C++ 主程燕某推向舆论高潮,这篇文章指责燕某在就职深圳螃蟹网络科技有限公司 3 个月期间,出于报复心理,于游戏上线测试当天无故失踪并锁死电脑和服务器,最终导致公司开发两年的项目失败,损失惨重,创始人尹某背上百万债务开始打工之路。 1 月 24 日,燕某发表长文针对深圳市螃蟹网络科技有限公司创始人尹某的《告游戏行业全体同仁书》中提及的各项指责以及网络传言一一反驳,并表示一切法庭上见,相信法律会还一个公道。 **翻车点评:**2019 年让吃瓜群众真正学到了新闻等等再看,本次事件是典型的反转案例,从《告游戏行业全体同仁书》发布后的”程序员是如何逼死一家公司“的舆论,到后来的风向大反转,深刻地揭示了:瓜,要慢慢吃。脸,要慢慢打。 **翻车等级:**★★★★☆ 6、李彦宏被泼水 提名理由: 2019 年 7 月 3 日,百度 AI 开发者大会于北京国家会议中心举行。百度创始人、董事长兼任 CEO 李彦宏首先发表演讲。而在他正在演示 AI 自主泊车“最后一公里”时,有持矿泉水瓶的男青年冲上台,将水浇在李彦宏头上。李彦宏的白衬衫几乎湿透,他愣了一下后说:“What‘s your problem?” 随后泼水者被工作人员控制,李彦宏在掌声鼓励中说道:“大家看到在 AI 前进的道路上还是会有各种各样想不到的事情会发生。但是我们前行的决心不会改变,我们坚信 AI 会改变每一个人的生活。” **翻车点评:**在技术发展的历史上,总会出现风口过热的情况,无论是 AI 还是区块链,都存在被吹过头的现象,我们愿意看到有清醒的人为这些过热的技术降降温,但却绝对不认可目前这种方式。 翻车等级:★★★★☆ 7、62 岁程序员骚操作,翻车获刑 **提名理由: ** 现年 62 岁的大卫·廷利 (David Tinley) 来自匹兹堡附近的哈里森市,廷利为西门子在 Monroeville 的办事处工作了将近 10 年的时间,他曾接过一个为西门子公司创建管理订单的电子表格需求,电子表格包含自定义脚本,可以根据存储在其他远程文档中的当前订单更新文件的内容,从而允许公司自动化库存和订单管理。 廷利十年前在给西门子写的电子表格中植入了逻辑炸弹,它会在特定日期之后导致电子表格崩溃,于是西门子就必须再次雇佣他进行修复,每次都需要重新支付修复费用,持续时间近 3 年。最近他被抓包了,面临最高十年监禁和 25 万美元(约合人民币 172 万)的指控。 **翻车点评:**西门子居然没有人 review 代码,廷利居然忘了自己挖的坑的发作时间,60 多岁还没退休,资本主义果然罪恶,emmm… 翻车等级:★★★★☆ 8、FBI 网站被黑,数千特工信息泄露 提名理由: 在传统的好莱坞大片里,FBI 通常都是神通广大,无所不能,个个有着汤姆斯克鲁斯的脸,施瓦辛格的体格,既有拳脚功夫了得的特工,也有技术实力超群的 Nerd。从来只有他们攻破某某国家防火墙的份,但现实告诉我们,这真的只是在拍戏。 2019 年 4 月,包括 TechCrunch 等多家媒体报导,一个黑客组织黑了美国联邦调查局 FBI 的附属网站,并泄露了数千名联邦特工和执法人员的个人信息。黑客攻击了与 FBI 培训学院 National Academy Association 相关的三个网站,利用其中存在的漏洞,下载了每个服务器上的内容。随后黑客将数据发布到他们自己的网站上,并提供下载。电子表格在删除重复数据后包含大约 4 000 条独特记录,包括 FBI 特工与其它执法人员的姓名、个人和政府电子邮件地址、职位、电话号码和邮政地址等信息。 **翻车点评:**有道是终日打雁,却被雁啄了眼睛。但对我们这一代看着 FBI Warning 长大的孩子来说,FBI 它算个球。 翻车等级:★★★★☆ 9、IT 圈的暴力裁员事件 提名理由: 2018 年的春天,堪称近年来最暖的春天。彼时人工智能领域风起云涌,AI 创业公司们纷纷高薪疯抢 AI 开发者,月薪动辄 10 万级别。人工智能的流行还未结束,一个名叫区块链的技术突然又火爆了起来,一时间,“凡人饮水处,皆言区块链”。那是程序员们最甜蜜的一段时间。 这一年的上半年,互联网公司们扎堆上市,蔚为壮观:哔哩哔哩、爱奇艺、美团、小米、拼多多、趣头条……上市后的互联网新兴巨头、独角兽公司为了攻城略地,开启了全面的整军备战:唯有技术、开发者,才是未来的决定因素,这是技术最好的时代。许多人都如此笃信。 一年后的 2019,一切变了:保安赶走身患绝症员工、统计时长裁员、251、1024 等事件频繁映入眼帘,从最开始的愤怒到最后来的无助,我们感同身受。当企业紧缩银根,高薪资的开发们就成了裁员者的 KPI 了。 **翻车点评:**2019 也许是过去十年最坏的一年,也可能是未来十年最好的一年。如果真到万不得已,我们只求一场好聚好散。PS:小编我买了一支录音笔。 **翻车等级:**★★★★★ 10、波音 737 Max 客机软件故障坠机事件 提名理由: 2019 年 3 月 10 日,埃塞俄比亚航空公司一架波音 737 MAX 8 客机在飞往肯尼亚途中坠毁。机上有 149 名乘客和 8 名机组成员,无人生还。据报道,此次失事的是一架全新的波音飞机,四个月前才交付给该航空公司。这是波音 737 MAX 8 半年内出现的第二起严重事故。(第一起为 2018 年 10 月 29 日印尼狮航的坠落事件,189 人罹难) 两次空难的影响因素都有该机型配置的自动控制下压机头的系统,其设计初衷是,如果机身上的传感器检测到高速失速的情况,即使在没有飞行员输入信号的情况下,该系统将强制将飞机的机头向下推。但在狮航空难事件中,该系统接收到了错误数据,导致飞机在正常情况下开始不断下压机头,飞行员在 11 分钟内连续手动拉升 20 余次终告失败,坠海罹难。 这次事故引发了技术圈的广泛讨论,这种由软件带来的自动化能力,究竟是好是坏? **点评:**两起空难总计 346 条人命面前,我们不愿也不敢戏谑。通过对波音公司的陆续调查发现,该公司为了节省成本,裁员了大量资深开发,代之以时薪 9 美元的印度外包,这家数字化转型的“代表企业”看起来光鲜亮丽,但也有阳光下的阴暗背面。 **等级:**★★★★★ 其他候选事件 韩企被爆用免费饮料换 GitHub 上的 star Twitter CEO 杰克·多西的推特账号被黑 特斯拉 App 突然瘫痪,大批车主没法上车 太空作案,NASA 女航天员在太空盗窃前任银行账户 中国人霸榜 GitHub Trending 引发国外开发者不满 你心目中,今年的翻车新闻之首是谁呢?

游客pklijor6gytpx 2020-01-02 10:26:08 0 浏览量 回答数 0

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

日志的发布历史有哪些?

轩墨 2019-12-01 21:50:57 1618 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板