• 关于

    python 词图

    的搜索结果

问题

【教程免费下载】 Python数据科学实践指南

沉默术士 2019-12-01 22:07:52 1973 浏览量 回答数 2

回答

虽然我不是Python高手,但我是零基础,之前会的都是软件PS,PPT之类。点击链接加入群【我爱python大神】:https://jq.qq.com/?_wv=1027&k=47zuLPd 如果目的是想成为程序员,参考教学大纲。 如果只是学程序,理解科技,解决工作问题,我的方式可以参考使用: 1,找到合适的入门书籍,大致读一次,循环啊判断啊,常用类啊,搞懂(太难的跳过) 2,做些简单习题,字符串比较,读取日期之类PythonCookbook不错(太难太无趣的,再次跳过,保持兴趣是最重要的,不会的以后可以再学) 3,加入Python讨论群,态度友好笑眯眯(很重要,这样高手才会耐心纠正你错误常识)。很多小问题,纠结许久,对方一句话点播思路,真的节约你很多时间。耐心指教我的好人,超级超级多谢。 4,解决自己电脑问题。比如下载美剧,零散下载了2,4,5,8集,而美剧共12集,怎样找出漏下的那几集?然后问题分解,1读取全部下载文件名,2提取集的数字,3数字排序和(1--12)对比,找出漏下的。点击链接加入群【我爱python大神】:https://jq.qq.com/?_wv=1027&k=47zuLPd 5,时刻记住目的,不是为了当程序员,是为了解决问题。比如,想偷懒抓网页内容,用urllib不行,用request也不行,才发现抓取内容涉及那么多方面(cookie,header,SSL,url,javascript等等),当然可以听人家劝,回去好好读书,从头读。 或者,不求效率,只求解决,用ie打开网页再另存为行不行?ie已经渲染过全部结果了。 问题变成:1--打开指定的10个网页(一行代码就行)。更复杂的想保存呢?利用已经存在的包,比如PAM30(我的是Python3),直接打开ie,用函数outHTML另存为文本,再用搜索函数(str搜索也行,re正则也行)找到数据。简单吧?而且代码超级短。 6,保持兴趣,用最简单的方式解决问题,什么底层驱动,各种交换,留给大牛去写吧。我们利用已经有的包完成。 7,耐心读文档,并且练习快速读文档。拿到新包,找到自己所需要的函数,是需要快速读一次的。这个不难,读函数名,大概能猜到是干嘛的,然后看看返回值,能判断是不是自己需要的。 8,写帮助文件和学习笔记,并发布共享。教别人的时候,其实你已经自己再次思考一次了。 我觉得学程序就像学英文,把高频率的词(循环,判断,常用包,常用函数)搞懂,就能拼装成自己想要的软件。 然后点点击链接加入群【我爱python大神】:https://jq.qq.com/?_wv=1027&k=47zuLPd是很好用的。 然后,坚持下去~ 6月10日补充------------------------------ 一定要保持兴趣,太复杂的跳过,就像小学数学,小学英语,都是由简入深。 网络很平面,无数国际大牛著作好书,关于Python,算法,电脑,网络,或者程序员思路,或者商业思维(浪潮之巅是本好书)等等,还有国际名校的网络公开课(中英文字幕翻译完毕,观看不是难事),讲计算机,网络,安全,或者安卓系统,什么都有,只要能持续保持兴趣,一点点学习下去,不是难事。 所有天才程序员,都曾是儿童,回到儿童思维来理解和学习。觉得什么有趣,先学,不懂的,先放着,遇到问题再来学,效果更好。 唯一建议是,不要太贪心,耐心学好一门优雅的语言,再学其它。虽然Javascript做特效很炫,或提某问题时,有大牛建议,用Ruby来写更好之类,不要改方向。就像老笑话:“要学习递归,必须首先理解递归。”然后死循环一直下去。坚持学好一门语言,再研究其他。 即使一门语言,跟网络,数据库等等相关的部分,若都能学好,再学其他语言,是很快的事情。 另外就是,用学英文的耐心来学计算机,英文遇到不懂的词,抄下,查询。 python里,看到Http,查查定义,看到outHtml,查查定义,跟初学英语时候一样,不要直接猜意思,因为精确描述性定义,跟含糊自然语有区别的。而新人瞎猜,很容易错误理解,wiki,google很有用。 我还在使劲啃Python的路上~~一起加油:) 2012年8月26日补充线------------------------------------------------------------------ QQ群:22507237陆续有些高手走了,也有新人加入。 另外10月20日,上海有Python开发者大会, 给出2个截图吧,我最近做的,真的很烂,但是能用:) 这个是上次Python测试题目“从电商网站的搜索页中抓取制作商品图片墙”。我选了最最容易的静态网站。当然京东的抓取,比这种难。 这个很方便我自己每天查询,用Python3+PyQt4,用“公司名字”关键词,在各个论坛,图片,视频,商场查询。每天看一次,很方便快速了解信息。 1.如果是因为兴趣,想做些比较漂亮的网页或者做些特别的、能帮到自己的小程序,可以直接买市面上的大部分Python教材,直接从Python学起,学实际的编程。Python并不难学,最初设计的时候就力图规避一些C、C++等等程序让入门者头大的内容,而且库函数也比较丰富,语法相对清晰直白,不会故意做一些高效率但是难弄懂的东西。而且相对语法要求(尤其是缩进==)比较严比较死,虽然你会觉得麻烦,不过确实易读而且省的粗心犯错。 2.如果是想从事编程的职业,建议还是循序渐进的来,单纯只学语言比较浅,还是从数据结构、离散数学、算法一步一步来比较好。这样学确实很枯燥,但是基础比较好,可塑性强些,再学其他算法和语言都方便不少,而且读好的源码理解的更透更深。真正专业性的学习和兴趣式的尝试差别还是很大的,要真的非常感兴趣肯吃苦才行,虽然经常看到有很多人在报考或者转入这方面的专业,不过说实话急着跳出去的一样不少。 实际上,要把一段代码编程直观的产品、工具,远远没有你想像的那么难,与其他东西的学习一样都是模仿加重复性练习,不过是非专业的人接触的少所以觉得编程特别难。现在编程语言和工具越来越多,发展很快,编程的门槛已经降低了很多了。只是相对来说,精通很难,非常难。。。 我的朋友问我怎么能快速地掌握Python。我想Python包含的内容很多,加上各种标准库,拓展库,乱花渐欲迷人眼,就想写一个快速的,类似于w3cschool风格的Python教程,一方面保持言语的简洁,另一方面循序渐进,尽量让没有背景的读者也可以从基础开始学习。另外,我在每一篇中专注于一个小的概念,希望可以让人在闲暇时很快读完。?  学好python你需要一个良好的环境,一个优质的开发交流群,群里都是那种相互帮助的人才是可以的,我有建立一个python学习交流群,在群里我们相互帮助,相互关心,相互分享内容,这样出问题帮助你的人就比较多,群号是304加上050最後799,这样就可以找到大神聚合的群,如果你只愿意别人帮助你,不愿意分享或者帮助别人,那就请不要加了,你把你会的告诉别人这是一种分享。 感觉写的好,对你有帮助,就点个赞呗,别光只收藏哈.~( ̄▽ ̄)~ ?

爱吃鱼的程序员 2020-06-08 17:59:21 0 浏览量 回答数 0

回答

第十名、R语言 颁奖词 R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 提名词 R语言作者,George Ross Ihaka:在奥克兰大学统计系任副教授,是R语言的最初作者。 排名理由 作者头发浓密度:100% 第九名、Python 颁奖词 Python是一种广泛使用的高级编程语言,属于通用型编程语言。作为一种解释型语言,Python的设计哲学强调代码的可读性和简洁的语法。相比于C++或Java,Python让开发者能够用更少的代码表达想法。不管是小型还是大型程序,该语言都试图让程序的结构清晰明了。 提名词 Python语言作者,Guido van Rossum:生于荷兰哈勒姆,计算机程序员,为Python程序设计语言的最初设计者及主要架构师。 排名理由 作者头发浓密度:95% 第八名、C语言 颁奖词 C是一种通用的编程语言,广泛用于系统软件与应用软件的开发。C语言具有高效、灵活、功能丰富、表达力强和较高的可移植性等特点。C语言编译器普遍存在于各种不同的操作系统中,例如Microsoft Windows、macOS、Linux、Unix等。C语言的设计影响了众多后来的编程语言,例如C++、Objective-C、Java、C#等。 提名词 C语言作者,Dennis MacAlistair Ritchie:美国计算机科学家。黑客圈子通常称他为“dmr”。他是C语言的创造者、Unix操作系统的关键开发者,对计算机领域产生了深远影响,并与肯·汤普逊同为1983年图灵奖得主。 排名理由 作者头发浓密度:85%(+胡须) 第七名、Go 颁奖词 Go(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。Go的语法接近C语言,但对于变量的声明有所不同。Go支持垃圾回收功能。 提名词 Go语言作者,Robert C. Pike:来自加拿大的程序员,曾经加入贝尔实验室,为 UNIX小组的成员。他与肯·汤普逊共同开发了UTF-8。目前为 google的工程师,参与编程语言 Go与Sawzall的研发工作。 排名理由 作者头发浓密度:80% 第六名、JavaScript 颁奖词 JavaScript,通常缩写为JS,是一种高级的,解释执行的编程语言。JavaScript是一门基于原型、函数先行的语言,是一门多范式的语言,它支持面向对象编程,命令式编程,以及函数式编程。它已经由ECMA(欧洲计算机制造商协会)通过ECMAScript实现语言的标准化。它被世界上的绝大多数网站所使用,也被世界主流浏览器(Chrome、IE、Firefox、Safari、Opera)支持。 提名词 JavaScript语言作者,Brendan Eich:美国程序员与企业家,JavaScript主要创造者与架构师,曾任Mozilla公司的首席技术官,并曾短暂担任首席执行官。 排名理由 作者头发浓密度:75% 第五名、Objective-C 颁奖词 Objective-C是一种通用、高级、面向对象的编程语言。它扩展了标准的ANSI C编程语言,将Smalltalk式的消息传递机制加入到ANSI C中。目前主要支持的编译器有GCC和Clang(采用LLVM作为后端)。 提名词 Objective-C作者,Brad Cox:美国计算机科学家。于傅尔曼大学主修化学与数学,于芝加哥大学取得数学生物学博士学位。Objective-C主要作者。 排名理由 作者头发浓密度:70% 第四名、PHP 颁奖词 PHP(全称:PHP:Hypertext Preprocessor,即“PHP:超文本预处理器”)是开源的通用计算机脚本语言,尤其适用于网络开发并可嵌入HTML中使用。PHP的语法借鉴吸收C语言、Java和Perl等流行计算机语言的特点,易于一般程序员学习。PHP的主要目标是允许网络开发人员快速编写动态页面,但PHP也被用于其他很多领域。 提名词 PHP语言作者,Rasmus Lerdorf:出生于格陵兰岛凯凯塔苏瓦克,是一个丹麦程序员,他拥有加拿大国籍。他也是编程语言PHP的创始人,其中PHP的头两个版本是由他编写的,后来他也参与PHP后续版本的开发。 排名理由 作者头发浓密度:60% 第三名、Java 颁奖词 Java是一种广泛使用的计算机编程语言,拥有跨平台、面向对象、泛型编程的特性,广泛应用于企业级Web应用开发和移动应用开发。Java编程语言是个简单、面向对象、分布式、解释性、健壮、安全与系统无关、可移植、高性能、多线程和动态的语言。 提名词 Java语言作者,James Gosling:出生于加拿大,软件专家,Java编程语言的共同创始人之一,一般公认他为“Java之父”。 排名理由 作者头发浓密度:50% 第二名、C++ 颁奖词 C++是一种使用广泛的计算机程序设计语言。它是一种通用程序设计语言,支持多重编程模式,例如过程化程序设计、数据抽象、面向对象程序设计、泛型程序设计和设计模式等。 提名词 C++语言作者,Bjarne Stroustrup:生于丹麦奥胡斯郡,计算机科学家。他以创造C++编程语言而闻名,被称为“C++之父”。 排名理由 作者头发浓密度:40% 第一名、Visual Basic .NET 颁奖词 Visual Basic .NET(VB.NET)是.NET Framework框架下的一种多重编程范式高级语言。Visual Basic .NET属Basic系语言,其语法特点是以极具亲和力的英文单词为基础标识,以及与自然语言极其相近的逻辑表达,有时候你会觉得写VB.NET代码就好像在写英文句子一样,从这个角度来说,VB.NET似乎是最高级的一门编程语言,当然在Basic系语言中VB.NET也确实是迄今为止最强大的一门编程语言。 提名词 Visual Basic .NET作者,Alan Cooper:交互设计的提倡者。库珀有些时候被叫做 Visual Basic 之父,虽然大多数的工作是由微软的内部开发团队完成的,但是对于Windows可视化设计工具的创意是来源于库珀的。 排名理由 作者头发浓密度:0% 以上,就是世界上最难学的编程语言前十名,本次大赛组委会认为,作者的头发越稀少,说明这种语言在学习过程中要掉越多的头发,所以,推导出这种语言越难学。 你现在学得语言排名第几呢?欢迎在下方评论区留言哦~ 原文链接 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答

有只黑白猫 2020-01-16 17:41:53 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

【教程免费下载】Python数据科学实践指南

玄学酱 2019-12-01 22:08:33 1492 浏览量 回答数 3

问题

程序员报错问题大征集启幕喽,更有AirPods、Cherry机械键盘等你拿

问问小秘 2020-05-21 11:33:55 10546 浏览量 回答数 4

问题

【教程免费下载】Python数据挖掘:概念、方法与实践

知与谁同 2019-12-01 22:07:57 1942 浏览量 回答数 1

问题

用JavaScript编写一个Java虚拟机?谈谈哗众取宠的BicaVM 400 请求报错 

kun坤 2020-05-29 09:57:19 2 浏览量 回答数 1

问题

接入图片服务之如何实现关键词?

青衫无名 2019-12-01 21:57:18 880 浏览量 回答数 0

问题

【教程免费下载】深度学习导论及案例分析

玄学酱 2019-12-01 22:07:45 2373 浏览量 回答数 1

问题

【教程免费下载】 Python数据挖掘:概念、方法与实践

沉默术士 2019-12-01 22:07:52 1066 浏览量 回答数 1

回答

作者:九章算法 链接:https://www.zhihu.com/question/21669554/answer/790851463 来源:知乎 即使作为编程新手,刚刚接触GitHub,也建议你从最简单的项目入手,而不是单纯研究大量理论。 这个3000+ starts的优(宅)秀(男)项目:komeiji-satori/Dress就非常适合初学者Pick。作为全球最大同性交友平台,这个项目里集结了大量的女装大佬。而且,这应该是 GitHub 最低准入门槛项目了,就算不会写代码也都可以参加。你可以在这里学习 GitHub 的用法,从克隆项目、创建分支、提交和同步修改,到合并分支请求的整套流程,只需一次即可熟悉 Git/GitHub 的使用。 当然,你还要事先准备至少一张你的女装照。 好了,接下来分享一些正经的。 基于这个项目,你就可以马上开始你的实践了。 第一步:打开官网:https://github.com 注册一个帐户。 第二步:创建仓库 填写仓库的名字和描述。 创建好了之后,点击“Branch master”,创建分支——在文本框中输入分支名称和描述,然后点击蓝色部分确认。 第三步:点击创建一个新文件 输入想要提交的代码以及下方的文件名和描述后,点击最下方的Commit new file即可。 第四步:修改&保存修改在github上,提交&保存修改的操作是commits。每一次的commit都会被记录,可以被其他用户查看。 点击铅笔图案即可修改,修改后点击Commit changes即可。 第五步:提交Pull request 点击New pull request,选择你所做的分支,编辑你想修改的内容,经过与原来内容的对比,确认后提交请求。然后@特定的人或者团队,请求他们review,并反馈给你(还可以请求把你的代码加入他们的分支)。 第六步:合并修改历史 点击绿色按钮,将自述编辑合并到Branch master。 合并成功后可以删除该分支。 应用: **1、查看别人的代码or项目,给其点赞评论或关注点击“gist" ** 然后选择“All gists”,可以查看别人写的代码。 蓝色框“commonts”、“stars”,可以评论或跟踪关注别人的代码。 2、clone别人的代码,修修改改,然后变成自己的代码 点击别人代码右上方的”forks”,然后点击“Embed”,选择Clone,即可克隆保存别人的代码。点击Download,可以下载他人代码到本地。 3、查看别人代码的修改历史 点击“Revisions”即可查看修改历史,以及修改前和修改后的对比。当然,除了这些基础的功能之外,GitHub 更是一个强大的宝库,怎么发现宝藏,是有诀窍的。 **寻找 Demo 节省时间 ** 当我们在工作中需要快速掌握和使用新的技术,又没有太多精力从头开始学习,我们就可以在 GitHub 上寻找相应的 Demo,在简单了解原理、稍作尝试之后,引入到项目中。你可以按照技术栈的关键字搜索,并根据更新时间进行排序,以查找是否有合适的 Demo。 **寻找脚手架:加快前期开发 ** 有时候,我们需要寻找一个合适的脚手架来帮助我们做出想要的东西,这时候我们可以,直接使用技术栈 + boilerplate 或者 starter 等关键词进行搜索,如 react boilerplate。如果其中找到的组合技术栈不大符合自己的要求,那么再加上相应技术栈的关键字,如 react redux boilerplate 即可。 寻找 awesome-xxx:探索可能性 在Github上,有一些前人总结整理好的宝库,比如Awesome-xxx 系列。 只要有一定知识广度的领域、语言、框架等,都有自己的 awesome-xxx 系列的项目,如 awesome-python, awesome-iot, awesome-react 等等。在这样的项目里,都以一定的知识体系整理出来的,从索引和查阅上也相应的更为方便。如果你想学习一些新的东西,进入一个新的领域,那就搜索 awesome xxx 吧。 学习资源 GitHub 上拥有大量的学习资源,从各类文章到各种笔记,还有各式各样的电子书。 如: 搜索: 类型 + 笔记,如 操作系统 笔记 就能找到一些操作系统相关的笔记。 搜索: 书名 就能找到一些和这本书相关的资源,如 重构 改善既有代码的设计。 GitHub 上还可以搜索到各种 未经授权 的英文书籍的翻译,或是各种电子书的 PDF 版。还有一些库,可以提供相应的学习资源,如 free-programming-books-zh_CN,即免费的编程中文书籍索引。 与此同时,Github上不乏简单的新手项目,实践练手再好不过 ZKEACMS:一个可视化设计的CMS系统(内容管理系统)。页面布局是可以直接在线设计,页面也是可以在线设计,编辑的,模板是可以直接在线编辑的,样式还可以可视化直接编辑,内容板块可以直接从现有板块中快速添加。是一个非常适合新手跟进的优质项目。 textgenrnn:一款基于 Keras/TensorFlow 的 Python 3 模块,可以用来创建字符级的循环神经网络。 JEESNS:一款基于JAVA企业级平台研发的社交管理系统,依托企业级JAVA的高效、安全、稳定等优势,开创国内JAVA版开源SNS先河。数据库使用MYSQL,全部源代码开放。 最后,祝你寻宝愉快~~ 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-07 10:50:51 0 浏览量 回答数 0

问题

人工智能技术百问——机器真的能取代人类吗

yq传送门 2019-12-01 20:27:57 4467 浏览量 回答数 3

问题

【阿里云产品公测】简单日志服务SLS使用评测含教程

mr_wid 2019-12-01 21:08:11 36639 浏览量 回答数 20

回答

**01 明确目标 ** 鲁迅曾经没说过:“明确分析目标,你的分析已经成功了一大半”。 做深入分析之前,面对这一堆评价数据,我们要明确,究竟想通过分析来解决什么问题?只有明确分析目标,才能把发散的思维聚焦起来。 为了给大家一个明确的分析锚点,假设我们是这款辣椒酱的产品负责人,要基于评价,更好的获悉消费者对产品的看法,从而为后续产品优化提供思路。 所以,我们的分析目标是“基于评价反馈,量化消费者感知,指导优化产品”。 注:这里给到的一个假设目标并不完美,主要是抛砖引玉,大家可以从不同的维度来提出目标假设,尝试不同分析方向。 是不是有那么一丢丢分析思路了?别急,目标还需要继续拆解。 02 拆解目标 这些年来,最有价值的一个字,便是“拆”了: 在数据分析中也是同理。 我们在上一步已经确定了“基于评价优化产品”的目标,但这只是一个笼统模糊的目标。要让目标真正可落地,“拆”是必不可少的一步。 “拆”的艺术大体可以分为两步,第一步是换位思考。 评价来源于客户,客户对产品有哪些方面的感知呢?我们可以闭上眼睛,幻想自己购买了这款辣椒酱。 接着进入第二步,基于换位的逻辑拆解,这里可以按照模拟购物流程的逻辑来拆解: 首先,李子柒本身有非常强的IP光环,大家在选购时或多或少是慕名而来。所以,在购买决策时,到底有多大比例是冲着李子柒来的? Next,在没收到货前,影响体验的肯定是物流,付款到收货用了几天?派送员态度怎么样,送货上门了吗? 收到货后,使用之前,体感最强的则是包装。外包装有没有破损?有没有变形?产品包装是精致还是粗糙? 接下来是产品体验,拿辣椒酱来说,日期是否新鲜?牛肉用户是否喜欢?到底好不好吃? 吃完之后,我们建立起了对产品的立体感知——性价比。我花钱买这个产品到底值不值?这个价位是贵了还是便宜?实惠不实惠? 品牌、物流、包装、产品(日期、口味)和性价比五大天王锋芒初现,我们下一步需要量化消费者对于每个方面的感知。 03 Python实现 对于评价的拆解和量化,这里介绍一种简单粗暴的方式,按标点把整条评论拆分成零散的模块,再设置一系列预置词来遍历。 注:再次强调我们这篇内容的主题是“如何基于最基础的技术,做进一步的分析,这里假设我们只会最基础的python语法和pandas。 有同学会问“为什么不用分词”!此问可谓正中我怀。不过,我把这个问题当作开放式思考题留给大家——如果用分词,如何实现同样的效果,以及有什么优缺点? 言归正传,我们先看看实战爬取的评论数据,一共1794条: 把每条评论按照标点拆分成短句,为了省事,用了简单的正则拆分: 我们发现,就算是比较长段的评论,也只是涉及到品牌、物流、包装、产品和性价比的部分方面,所以,我们依次去遍历匹配,看短句中有没有相关的内容,没有就跳过,有的话再判断具体情绪。 以物流为例,当短句中出现“物流”、“快递”、“配送”、“取货”等关键词,大体可以判定这个短句和物流相关。 接着,再在短句中寻找代表情绪的词汇,正面的像“快”、“不错”、“棒”、“满意”、“迅速”;负面的“慢”、“龟速”、“暴力”、“差”等。 在我们预设词的基础上进行两次遍历匹配,大体可以判断这句话是不是和物流相关,以及客户对物流的看法是正面还是负面: 为方便理解,用了灰常丑陋的语法来一对一实现判断。包装、产品和性价比等其他模块的判断,也是沿用上述逻辑,只是在预设词上有所差异,部分代码如下: def judge_comment(df,result): judges = pd.DataFrame(np.zeros(13 * len(df)).reshape(len(df),13), columns = ['品牌','物流正面','物流负面','包装正面','包装负面','原料正面', '原料负面','口感正面','口感负面','日期正面','日期负面', '性价比正面','性价比负面']) for i in range(len(result)): words = result[i] for word in words: #李子柒的产品具有强IP属性,基本都是正面评价,这里不统计情绪,只统计提及次数 if '李子柒' in word or '子柒' in word or '小柒' in word or '李子七' in word\ or '小七' in word: judges.iloc[i]['品牌'] = 1 #先判断是不是物流相关的 if '物流' in word or '快递' in word or '配送' in word or '取货' in word: #再判断是正面还是负面情感 if '好' in word or '不错' in word or '棒' in word or '满意' in word or '迅速' in word: judges.iloc[i]['物流正面'] = 1 elif '慢' in word or '龟速' in word or '暴力' in word or '差' in word: judges.iloc[i]['物流负面'] = 1 #判断是否包装相关 if '包装' in word or '盒子' in word or '袋子' in word or '外观' in word: if '高端' in word or '大气' in word or '还行' in word or '完整' in word or '好' in word or\ '严实' in word or '紧' in word: judges.iloc[i]['包装正面'] = 1 elif '破' in word or '破损' in word or '瘪' in word or '简陋' in word: judges.iloc[i]['包装负面'] = 1 #产品 #产品原料是牛肉为主,且评价大多会提到牛肉,因此我们把这个单独拎出来分析 if '肉' in word: if '大' in word or '多' in word or '足' in word or '香' in word or '才' in word: judges.iloc[i]['原料正面'] = 1 elif '小' in word or '少' in word or '没' in word: judges.iloc[i]['原料负面'] = 1 #口感的情绪 if '口味' in word or '味道' in word or '口感' in word or '吃起来' in word: if '不错' in word or '好' in word or '棒' in word or '鲜' in word or\ '可以' in word or '喜欢' in word or '符合' in word: judges.iloc[i]['口感正面'] = 1 elif '不好' in word or '不行' in word or '不鲜' in word or\ '太烂' in word: judges.iloc[i]['口感负面'] = 1 #口感方面,有些是不需要出现前置词,消费者直接评价好吃难吃的,例如: if '难吃' in word or '不好吃' in word: judges.iloc[i]['口感负面'] = 1 elif '好吃' in word or '香' in word: judges.iloc[i]['口感正面'] = 1 #日期是不是新鲜 if '日期' in word or '时间' in word or '保质期' in word: if '新鲜' in word: judges.iloc[i]['日期正面'] = 1 elif '久' in word or '长' in word: judges.iloc[i]['日期负面'] = 1 elif '过期' in word: judges.iloc[i]['日期负面'] = 1 #性价比 if '划算' in word or '便宜' in word or '赚了' in word or '囤货' in word or '超值' in word or \ '太值' in word or '物美价廉' in word or '实惠' in word or '性价比高' in word or '不贵' in word: judges.iloc[i]['性价比正面'] = 1 elif '贵' in word or '不值' in word or '亏了' in word or '不划算' in word or '不便宜' in word: judges.iloc[i]['性价比负面'] = 1 final_result = pd.concat([df,judges],axis = 1) return final_result 运行一下,结果毕现: 第一条评价,很明显的说快递暴力,对应“物流负面”计了一分。 第二条评价,全面夸赞,提到了品牌,和正面的物流、口感信息。 第三条评价,粉丝表白,先说品牌,再夸口感。 看起来还不赖,下面我们对结果数据展开分析。 04 结果分析 我们先对结果做个汇总: 一共爬了1794条评论,评论中有提及到我们关注点的有1937次(之所以用次,是因为一条评论中可能涉及到多个方面)。粗略一瞥,口感和原料占比较高,画个图更细致的看看。 看来,辣椒酱的口感(好不好吃)是客户最最最关注的点,没有之一,占比高达57.98%,领先其他类别N个身位。 慢随其后的,是原料、品牌、性价比和包装,而物流和日期则鲜有提及,消费者貌似不太关注,或者说目前基本满足要求。 那不同类别正负面评价占比是怎么样的呢? 整体来看,主流评论以好评为主,其中口感、品牌(这个地方其实没有细分)、包装以正面评价占绝对主导。 原料和性价比,负面评价占比分别是14%和38%,而物流和日期由于本身占比太少,参考性不强。 作为一个分析师,我们从原料、性价比负面评价占比中看到了深挖的机会。 原料负面评价是单纯的在吐槽原材料吗? 初步筛选之后,发现事情并没有那么简单。 原料负面评价共出现了53次,但里面有24次给了口感正面的评价,甚至还有8次原料正面评价!罗生门吗? 这8次即正面又负面的原料评价,其实是揭了我们在预置词方面的不严谨,前面判断牛肉相关的短句,“小”就是负面,“大”就是正面,有些绝对。 而判断准确的原料差评中,虽然有一半说味道不错,但还是不留情面的吐槽了牛肉粒之小,之少,甚至还有因此觉得被骗。 如何让牛肉粒在体感上获取更多的好评,是应该在产品传播层做期望控制的宣导?还是在产品层增加牛肉的“肉感”?需要结合具体业务进一步探究。 性价比呢? 性价比相关负面评价共58次,负面情绪占性价比相关的38%。这些负面评价消费者大多数认为价格偏贵,不划算,还有一部分提到了通过直播渠道购买价格相对便宜,但日常价格难以接受。 坦白讲,这款辣酱的价格在线上确实属于高端价位,而价格体系是一个比较复杂的场景,这里暂不展开分析。 但是对于这部分认为性价比不符预期的客户,是应该因此反推产品价格,还是把他们打上“价格敏感的标签”,等大促活动唤醒收割,这是两条可以考虑并推进的道路。 物流和日期提及太少,不具备参考性,但为了不那么虎头蛇尾,我们还是顺手看一眼物流负面评价: 果然,物流是一项必备需求,基本满足预期的话消费者并不会主动提及,没达预期则大概率会雷霆震怒。而物流暴力、速度太慢是两个永恒的槽点。 至此,我们基于看起来简单的评价数据,用简单浅白的方式,做了细致的拆分,并通过拆分更进一步的量化和分析,向深渊,哦不,向深入迈进了那么一丢丢。

茶什i 2020-01-10 14:16:36 0 浏览量 回答数 0

问题

日志的发布历史有哪些?

轩墨 2019-12-01 21:50:57 1618 浏览量 回答数 0

问题

程序员报错行为大赏-配置报错

问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

初识Hadoop:报错

kun坤 2020-06-07 00:57:43 0 浏览量 回答数 1

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

回答

疫情下的2020,程序员找工作和往年有什么不同?该如何寻找方向? ###行业环境 曾经 以前端为例,早期(2009年之前)的程序员岗位中,甚至都没有单独的前端岗位。页 面UI的设计与开发大多数都有后端包揽。存在感很小,那时候的程序员,也没有如今的火 热,在那个年代,金融行业仍是主流;那个电脑,程序员并没有如现在这般被大众所熟知与多金。 十年来风云莫测,Java易主了,node.js诞生了,互联网行业又重新注入了新的活力。 互联网行业同时也带动了周边相关行业的发展,比如IT培训、在线教育、社交电商等等, 从2011年淘宝双十一开始,淘宝真正成为国民电商平台的霸主。淘宝这个最大的电商平台, 可以说是一个集众多IT技术于一身的一个产物了。也是开启互联网时代的领头人,现如今 的时代,是移动互联网的世界。IT作为一个未来一个大时代的走向,是会越来越成熟,越 来越奔放的。 就薪资而言,曾经一直占领行业薪资top的金融行业,如今也被互联网岗位所取代。看到这里你可能会说某某财务总监年薪百万,可是你可曾想过,一个普通公司也许就那么一位或几位年薪百万的财务总监,但是在阿里巴巴这样的企业里,年薪百万未必非要坐上财务总监的位置,不完全统计,年薪百万的阿里人(开发岗)不低于4位数,技术驱动核心竞争力。那个时代,HTML5出世,移动互联网也迎来红利期,微信、今日头条、抖音等超级APP相继诞生 现在 不知怎么了,2019年起互联网行业内出现了很大波动,大批中小微企业倒闭、员工事业,不景气的企业用着正规或不正规的手段裁员,校招紧缩,员工生病被辞退等新闻被揭露。也许是互联网行业走向成熟,伴随着的优胜略汰的现象,如今的互联网,再也不是随便随便拿着PPT去路演就能拿到投资的行业,个人觉得,互联网行业在2020年将从“平台为王”向“服务为王”进行转换,谁能在服务上获得用户的认可,谁就有可能会获得更快的发展速度,所以对于大型互联网平台来说,2020年所面临的挑战还是非常大的。如果说在增量时代,互联网行业拼的是速度,那么在存量时代,互联网行业将开始拼服务,而服务体验度的不断提升是互联网行业发展的一个必然结果。 程序员现状 过去 过去的程序员找工作只要技术够牛就不会愁工作,2013年网上还盛传企业去教育培训机构挖人的新闻,如今这种现象是不会存在的。这也许就是一个行业走向稳定和成熟所伴随的稳重而不盲目。 对于程序员而言,所要关注的不该仅仅是技术本身了,学历、英语、沟通与表达能力也都非常重要。而前端为例,曾经写写jQ就能找到一份工作,在无内推的情况下,如今不会三大框架可能连简历都筛选不过去,行内盛传一句戏谑的话”面试造火箭,工作拧螺丝”,如今确实如此。个人决定,尽管行业不如从前,招聘要求也越来越高,作为一个有志气有报复的程序员,就应该紧跟行业的脚步,保持对行业的敏感,时时刻刻不能放弃学习,欲戴王冠必承其重。无论大家处于哪些行业哪种岗位,无论你是做算法岗还是业务应用开发,你都是在为互联网行业提供自己的一份力。GITHUB、StackOverFlow、掘金上那么多活跃的前辈、队友都在为互联网积极贡献开源项目,为这个行业发光发热。 未来 因为笔者是前端岗,我就以前端岗为例谈谈对当下及未来前端岗位的发展方向和技术要求。 当下前端热门的话题有AI、跨端应用、音视频等等。前端做AI在以前看来是否是不可能的事,我想大多数人和我一样,第一次听见“人工智能”这个词的时候都会觉得是一个很高大上、遥不可及的概念,我们对它的印象总是停留在各种各样神奇而又复杂的算法,这些仿佛都是那些名校博士才有能力去做的工作。我也曾一度以为自己和这个行业没有太多缘分,但自从Tensorflow发布了JS版本之后,这一领域又引起了我的注意。在python垄断的时代,发布JS工具库不就是意味着我们前端工程师也可以参与其中。可以参考JS图像识别项目(https://github.com/jerryOnlyZRJ/image-regression)。 随着JS引擎的计算能力不断增强,人工智能领域的不断发展,可以预见的是,在不久的将来,肯定能有一些简单的算法可以被移植到用户前端执行,这样既能减少请求,又能分担后端压力。这一切并不是无稽之谈,为什么tensorflow.js会应运而生,正是因为JS的社区在不断壮大,JS这款便捷的语言也在得到更为普遍的使用。 还是应征了那句老话:技术从来不会受限于语言,受限你的,永远只是思想。 谈到前端前端框架,目前有 Vue、React、Svelte、Angular (按GITHUB排行榜);初次之外,各种平台的框架也都层次不穷,以小程序为例就有taro、omi、uniapp、mpx、mpvue等等,前端轮子多,总有一款适合你。但是探究和比较框架已经没有实际意义了,狼叔在2019年的D2论坛上的演讲,其中那句话令我记忆深刻,“前端的纷争已经结束,接下来的重点是提效”,现在已经不是争论三驾马车和flutter框架之争、性能之争,而是如何运用前端技术去发力、提高生成效能。因为最终我们的生产成果需要接收社会大众的检验,学好技术是过程,做好产品是结果,不该把时间放在没有效率的事上。 保持学习的热情,保持编码的的热情,无论你现在是写算法亦或是写业务,术业有专职。 前端面试指南 针对招聘需求可能会要求的一些技术栈,我整理一些常用的前端框架和技能,但是很不够全面,比如canvs、webgl、threeJs、phaser、pixi等等绘图、可视化相关的东西都没有列举到,仅供大家参考。 2020谁的码生不迷茫 码生如佛,弓象征着码生的曲曲折折,一撇是那曾经走的弯路,那一竖是将要走的路,2020年,希望大家大道至简,学会权衡,懂得舍弃,持续进化,抓住机遇。共勉~

问问小秘 2020-03-23 10:08:43 0 浏览量 回答数 0

回答

转自:思否 本文作者:Michael van der Gulik 原文链接:《Why WebAssembly is a big deal》 译者:敖小剑 WebAssembly 是每个程序员都应该关注的技术。WebAssembly 会变得更流行。 WebAssembly 将取代 JavaScript。WebAssembly 将取代 HTML 和 CSS。 WebAssembly 将取代手机应用。WebAssembly 将取代桌面应用。在 10 年内,我保证每个程序员至少需要知道如何使用工具来操作 WebAssembly 并理解它是如何工作的。 你可能会说,“太离谱了!” 好吧,请继续阅读。 什么是 WebAssembly 当前形式的 WebAssembly 是 Web 浏览器的新扩展,可以运行预编译代码…快速地。在 C ++ 中编写了一些小代码,然后使用 Emscripten 编译器将该代码编译为 WebAssembly。通过一些 Javascript 粘合,就可以在 Web 浏览器中调用这一小段代码,例如,运行粒子模拟。 WebAssembly 文件,扩展名为.wasm,本身是包含可执行指令的二进制格式。要使用该文件,必须编写一个运行某些 Javascript 的 HTML 文件来获取、编译和执行 WebAssembly 文件。WebAssembly 文件在基于堆栈的虚拟机上执行,并使用共享内存与其 JavaScript 包装器进行通信。 到目前为止,这似乎并不有趣。它看起来只不过是 JavaScript 的加速器。但是,聪明的读者会对 WebAssembly 可能成为什么有所了解。 WebAssembly 将成为什么? 第一个重要发现是 WebAssembly 是一个安全的沙盒虚拟机。可以从 Internet 运行喜欢的 WebAssembly 代码,而确保它不会接管 PC 或服务器。四个主流 Web 浏览器对它的安全性非常有信心,它已经默认实现并启用了。它的真正安全性还有待观察,但安全性是 WebAssembly 的核心设计目标。 第二个重要发现是 WebAssembly 是一个通用的编译目标。它的原始编译器是一个 C 编译器,这个编译器很好地指示了 WebAssembly 虚拟机的低级和可重定向性。许多编程语言都使用 C 语言编写虚拟机,其他一些语言甚至使用 C 本身作为编译目标。 此时,有人整理了一个可以编译为 WebAssembly 的编程语言列表。这份名单将在未来很多年中继续增长。 WebAssembly 允许使用任何编程语言编写代码,然后让其他人在任何平台上安全地运行该代码,无需安装任何内容。朋友们,这是美好梦想的开始。 部署问题 我们来谈谈如何将软件提供给用户。 为新项目选择编程语言的一个重要因素是如何将项目部署到客户。您的程序员喜欢用 Haskell,Python,Visual Basic 或其他语言编写应用程序,具体取决于他们的喜好。要使用喜欢的语言,他们需要编译应用,制作一些可安装的软件包,并以某种方式将其安装在客户端的计算机上。有许多方法可以提供软件 - 包管理器,可执行安装程序或安装服务,如 Steam,Apple App Store,Google Play 或 Microsoft store。 每一个安装机制都意味着痛苦,从应用商店安装时的轻微疼痛,到管理员要求在他的 PC 上运行一些旧的 COBOL 代码时的集群头痛。 部署是一个问题。对于开发人员和系统管理员来说,部署一直是一个痛点。我们使用的编程语言与我们所针对的平台密切相关。如果大量用户在 PC 或移动设备上,我们使用 HTML 和 Javascript。如果用户是 Apple 移动设备用户,我们使用……呃…… Swift?(我实际上不知道)。如果用户在 Android 设备上,我们使用 Java 或 Kotlin。如果用户在真实计算机上并且愿意处理掉他们的部署问题,那么我们开发人员才能在我们使用的编程语言中有更多选择。 WebAssembly 有可能解决部署问题。 有了 WebAssembly,您可以使用任何编程语言编写应用,只要这些编程语言可以支持 WebAssembly,而应用可以在任何设备和任何具有现代 Web 浏览器的操作系统上运行。 硬件垄断 想购买台式机或笔记本电脑。有什么选择?好吧,有英特尔,有 AMD。多年来一直是双寡头垄断。保持这种双寡头垄断的一个原因是 x86 架构只在这两家公司之间交叉许可,而且通常预编译的代码需要 x86 或 x86-64(也就是 AMD-64)架构。还有其他因素,例如设计世界上最快的 CPU 是一件很艰难但也很昂贵的事情。 WebAssembly 是一种可让您在任何平台上运行代码的技术(之一)。如果它成为下一个风口,硬件市场将变得商品化。应用编译为 WebAssembly,就可以在任何东西上运行 - x86,ARM,RISC-V,SPARC。即便是操作系统市场也会商品化;您所需要的只是一个支持 WebAssembly 的浏览器,以便在硬件可以运行时运行最苛刻的应用程序。 编者注:Second State 研发的专为服务端优化的 WebAssembly 引擎 SSVM 已经可以运行在高通骁龙芯片上。Github 链接:https://github.com/second-sta... 云计算 但等等,还有更多。云计算成为IT经理办公室的流行词已有一段时间,WebAssembly 可以直接迎合它。 WebAssembly 在安全沙箱中执行。可以制作一个容器,它可以在服务器上接受和执行 WebAssembly 模块,而资源开销很小。对于提供的每个服务,无需在虚拟机上运行完整的操作系统。托管提供商只提供对可以上传代码的WebAssembly 容器的访问权限。它可以是一个原始容器,接收 socket 并解析自己的 HTTP 连接,也可以是一个完整的 Web 服务容器,其中 WebAssembly 模块只需要处理预解析的HTTP请求。 这还不存在。如果有人想变得富有,那么可以考虑这个想法。 编者注:目前已经有人正在实现这个想法,Byte Alliance 计划将WebAssembly 带到浏览器之外,Second State 已经发布了为服务端设计的WebAssembly 引擎开发者预览版。 不是云计算 WebAssembly 足以取代 PC 上本地安装的大多数应用程序。我们已经使用 WebGL(又名OpenGL ES 2.0)移植了游戏。我预测不久之后,受益于WebAssembly,像 LibreOffice 这样的大型应用可以直接从网站上获得,而无需安装。 在这种情况下,在本地安装应用没什么意义。本地安装的应用和 WebAssembly 应用之间几乎没有区别。WebAssembly 应用已经可以使用屏幕,键盘和鼠标进行交互。它可以在 2D 或 OpenGL 中进行图形处理,并使用硬件对视频流进行解码。可以播放和录制声音。可以访问网络摄像头。可以使用 WebSockets。可以使用 IndexedDB 存储大量数据在本地磁盘上。这些已经是 Web 浏览器中的标准功能,并且都可以使用 JavaScript 向 WebAssembly 暴露。 目前唯一困难的地方是 WebAssembly 无法访问本地文件系统。好吧,可以通过 HTML 使用文件上传对话,但这不算。最终,总会有人为此创建 API,并可能称之为 “WASI”。 “从互联网上运行应用程序!?胡说八道!“,你说。好吧,这是使用 Qt 和 WebAssembly 实现的文本编辑器 (以及更多)。 这是一个简单的例子。复杂的例子是在 WebBrowser 中运行的 Adobe Premier Pro 或 Blender。或者考虑像 Steam 游戏一样可以直接从网络上运行。这听起来像小说,但从技术上说这并非不能发生。 它会来的。 让我们裸奔! 目前,WebAssembly 在包含 HTML 和 Javascript 包装器的环境中执行。为什么不脱掉这些?有了 WebAssembly,为什么还要在浏览器中包含 HTML 渲染器和 JavaScript 引擎? 通过为所有服务提供标准化 API,这些服务通常是 Web 浏览器提供的,可以创建裸 WebAssembly。就是没有 HTML和 Javascript 包装来管理的 WebAssembly。访问的网页是 .wasm 文件,浏览器会抓取并运行该文件。浏览器为WebAssembly 模块提供画布,事件处理程序以及对浏览器提供的所有服务的访问。 这目前还不存在。如果现在使用 Web 浏览器直接访问 .wasm 文件,它会询问是否要下载它。我假设将设计所需的 API 并使其工作。 结果是 Web 可以发展。网站不再局限于 HTML,CSS 和 Javascript。可以创建全新的文档描述语言。可以发明全新的布局引擎。而且,对于像我这样的 polyglots 最相关,我们可以选择任何编程语言来实现在线服务。 可访问性 但我听到了强烈抗议!可访问性怎么样??搜索引擎怎么办? 好吧,我还没有一个好的答案。但我可以想象几种技术解决方案。 一个解决方案是我们保留内容和表现的分离。内容以标准化格式编写,例如 HTML。演示文稿由 WebAssembly 应用管理,该应用可以获取并显示内容。这允许网页设计师使用想要的任何技术进行任意演示 - 不需要 CSS,而搜索引擎和需要不同类型的可访问性的用户仍然可以访问内容。 请记住,许多 WebAssembly 应用并不是可以通过文本访问的,例如游戏和许多应用。盲人不会从图像编辑器中获得太多好处。 另一个解决方案是发明一个 API,它可以作为 WebAssembly 模块,来提供想在屏幕上呈现的 DOM,供屏幕阅读器或搜索引擎使用。基本上会有两种表示形式:一种是在图形画布上,另一种是产生结构化文本输出。 第三种解决方案是使用屏幕阅读器或搜索引擎可以使用的元数据来增强画布。执行 WebAssembly 并在画布上呈现内容,其中包含描述渲染内容的额外元数据。例如,该元数据将包括屏幕上的区域是否是菜单以及存在哪些选项,或者区域是否想要文本输入,以及屏幕上的区域的自然排序(也称为标签顺序)是什么。基本上,曾经在 HTML 中描述的内容现在被描述为具有元数据的画布区域。同样,这只是一个想法,它可能在实践中很糟糕。 可能是什么 1995年,Sun Microsystems 发布了 Java,带有 Java applets 和大量的宣传。有史以来第一次,网页可以做一些比 和 GIF 动画更有趣的事情。开发人员可以使应用完全在用户的 Web 浏览器中运行。它们没有集成到浏览器中,而是实现为繁重的插件,需要安装整个 JVM。1995年,这不是一个小的安装。applets 也需要一段时间来加载并使用大量内存。我们现在凭借大量内存,这不再是一个问题,但在 Java 生命的第一个十年里,它让体验变得令人厌烦。 applets 也不可靠。无法保证它们会运行,尤其是在用户使用 Microsoft 的实现时。他们也不安全,这是棺材里的最后一颗钉子。 以 JVM 为荣,其他语言最终演变为在 JVM 上运行。但现在,那艘船航行了。 FutureSplash / Macromedia / Adobe Flash 也是一个竞争者,但是是专有的,具有专有工具集和专有语言的专有格式。我读到他们确实在2009年开启了文件格式。最终从浏览器中删除了支持,因为它存在安全风险。 这里的结论是,如果希望您的技术存在于每个人的机器上,那么安全性就需要正视。我真诚地希望 WebAssembly 作为标准对安全问题做出很好的反应。 需要什么? WebAssembly 仍处于初期阶段。它目前能很好的运行代码,而规范版本是 1.0,二进制格式定型。目前正在开展SIMD 指令支持。通过 Web Workers 进行多线程处理也正在进行中。 工具可用,并将在未来几年不断改进。浏览器已经让你窥视 WebAssembly 文件。至少 Firefox 允许查看WebAssembly 字节码,设置断点并查看调用堆栈。我听说浏览器也有 profiling 支持。 语言支持包括一套不错的语言集合–C,C++和Rust是一流的公民。C#,Go和Lua显然有稳定的支持。Python,Scala,Ruby,Java和Typescript都有实验性支持。这可能是一个傲慢的陈述,但我真的相信任何想要在21世纪存在的语言都需要能够在 WebAssembly 上编译或运行。 在访问外部设备的 API 支持方面,我所知道的唯一可用于裸 WebAssembly 的 API 是 WASI,它允许文件和流访问等核心功能,允许 WebAssembly 在浏览器外运行。否则,任何访问外部世界的 API 都需要在浏览器中的 Javascript 中实现。除了本地机器上的文件访问,打印机访问和其他新颖的硬件访问(例如非标准蓝牙或USB设备)之外,应用所需的一切几乎都可以满足。“裸WebAssembly”并不是它成功的必要条件; 它只是一个小的优化,不需要浏览器包含对 HTML,CSS 或 Javascript 的支持。 我不确定在桌面环境中让 WebAssembly 成为一等公民需要什么。需要良好的复制和粘贴支持,拖放支持,本地化和国际化,窗口管理事件以及创建通知的功能。也许这些已经可以从网络浏览器中获得; 我经常惊讶与已经可能的事情。 引发爆炸的火花是创建允许现有应用移植的环境。如果创造了“用于 WebAssembly 的 Linux 子系统”,那么可以将大量现有的开源软件移植到 WebAssembly 上。它需要模拟一个文件系统 - 可以通过将文件系统的所有只读部分都缓存为 HTTP 请求来完成,并且所有可写部分都可以在内存中,远程存储或使用浏览器可以提供的任何文件访问。图形支持可以通过移植 X11 或 Wayland 的实现来使用 WebGL(我理解已经作为 AIGLX 存在?)。 一些 SDL 游戏已经被移植到 WebAssembly - 最着名的是官方演示。 一旦 JVM 在 WebAssembly 中运行,就可以在浏览器中运行大量的 Java 软件。同样适用于其他虚拟机和使用它们的语言。 与 Windows 软件的巨大世界一样,我没有答案。WINE 和 ReactOS 都需要底层的 x86 或 x86-64 机器,所以唯一的选择是获取源代码并移植它,或者使用 x86 模拟器。 尾声 WebAssembly 即将到来。 它来得很慢,但现在所有的部分都可以在你正在使用的浏览器上使用。现在我们等待构建用于从各种编程语言中定位 WebAssembly 的基础设施。一旦构建完成,我们将摆脱 HTML,CSS 和 Javascript 的束缚。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-07 10:32:35 0 浏览量 回答数 0

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙

剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

更多推荐

阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站