• 关于

    python 经典

    的搜索结果

回答

在python里凡是继承了object的类,都是新式类 Python3里只有新式类 Python2里面继承object的是新式类,没有写父类的是经典类 经典类目前在Python里基本没有应用

珍宝珠 2019-12-02 03:12:43 0 浏览量 回答数 0

回答

分享十本学习Python的书籍,让你学习Python从入门到精通。1、Python基础教程(第2版 修订版)《Python基础教程(第2版修订版)》包括Python程序设计的方方面面,内容涉及的范围较广,既能为初学者夯实基础,又能帮助程序员提升技能,适合各个层次的Python开发人员阅读参考。2、Python编程:从入门到实践本书是一本针对所有层次的Python读者而作的Python入门书。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念;第二部分将理论付诸实践。本书适合对Python感兴趣的任何层次的读者阅读。3、Python核心编程(第3版)《Python核心编程(第3版)》是经典畅销图书《Python核心编程(第二版)》的全新升级版本,总共分为3部分。第1部分为讲解了Python的一些通用应用;第2部分讲解了与Web开发相关的主题;第3部分为一个补充/实验章节,包括文本处理以及其他内容。《Python核心编程(第3版)》适合具有一定经验的Python开发人员阅读。4、利用Python进行数据分析《利用Python进行数据分析》是2013年机械工业出版社出版的软硬件开发类图书,作者是麦金尼。讲述了从pandas库的数据分析工具开始利用高性能工具、matpIotlib、pandas的groupby功能等处理各种各样的时间序列数据。5、Python零基础入门学习本书适合学习Python3的入门读者,也适用对编程一无所知,但渴望用编程改变世界的朋友们!本书提倡理解为主,应用为王。虽然这是一本入门书籍,但本书的“野心”可并不止于“初级水平”的教学。6、用Python写网络爬虫《用Python写网络爬虫》作为使用Python来爬取网络数据的杰出指南,讲解了从静态页面爬取数据的方法以及使用缓存来管理服务器负载的方法。本书是为想要构建可靠的数据爬取解决方案的开发人员写作的,本书假定读者具有一定的Python编程经验。当然,具备其他编程语言开发经验的读者也可以阅读本书,并理解书中涉及的概念和原理。7、O'Reilly:Python学习手册(第4版)《7.O'Reilly:Python学习手册(第4版)》每一章都包含关于Python语言的关键内容的独立的一课,并且包含了一个独特的“练习题”部分,其中带有实际的练习和测试,以便你可以练习新的技能并随着学习而测试自己的理解。你会发现众多带有注释的示例以及图表,它们将帮助你开始学习Python3.0。8、流畅的Python《流畅的Python》致力于帮助Python开发人员挖掘这门语言及相关程序库的优质特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。9、O'Reilly:深入浅出Python(中文版)《O'Reilly:深入浅出Python(中文版)》是经典python图书,初中级python独门秘笈,涵盖python3.0摒弃枯燥、死板的说教方式,以类似生动PPT的形式教你学python。10、“笨办法”学Python(第3版附光盘1张)这本《“笨办法”学Python》的写法独树一帜,从章节练习入手,引导读者自己输入代码,并进行讲解,每个章节都不是很难,循循善诱,本书不是很厚,但是读完本书绝对有一种对Python语言大彻大悟的感觉,是将一本书从薄读到厚的升华。建议Python初学者购买阅读。这十本书都是很适合小白入门Python并逐渐深入学习的,大家静下心来可以好好挑选出最适合自己的。

元芳啊 2019-12-02 01:04:42 0 浏览量 回答数 0

回答

Python核心编程,这本书出的比较早里面代码还是主要以2.x为主,但是还是很经典的。Learn Python the Hard WayHead First Python:比较基础的一本,作为入门还是可以的。Python学习手册(Learning Python)Python cook book :网上有翻译过来的,还不错。

xuning715 2019-12-02 01:10:28 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

Python数据结构篇数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。**这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**(1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)(2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现(3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆(4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现2.Python算法设计篇算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟****2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵****3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**(1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。(2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**(3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法(4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分**(5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**(7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**(9)[Python Algorithms - C9 Graphs](Python Algorithms) /question/19889750/answer/27901020有哪些用 Python 语言讲算法和数据结构的书

琴瑟 2019-12-02 01:22:41 0 浏览量 回答数 0

回答

1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。 **这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。** (1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突) (2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现 (3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆 (4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现 2.Python算法设计篇 算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。 这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。 本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟** **2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵** **3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~** (1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。 (2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。** (3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法 (4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分** (5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法** (6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法** (7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等** (8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比** (9)[Python Algorithms - C9 Graphs](Python Algorithms)

寒凝雪 2019-12-02 01:22:23 0 浏览量 回答数 0

回答

Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms) 中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例 如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文 章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。 **这一部分是下 面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比 较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。** (1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突) (2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现 (3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆 (4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现 2.Python算法设计篇 算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms), 内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排 序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并 没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但 是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来 了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。 这里每篇文章都有实现代码,但是代码我一般都不会分 析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算 法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟 们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。 本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1. 你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这 个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇 文章之后都还有一两道小题练手哟** **2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂 不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科 普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵** **3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~** (1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。 (2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。** (3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法 (4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分** (5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法** (6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法** (7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等** (8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比** (9)[Python Algorithms - C9 Graphs](Python Algorithms) https://www.zhihu.com/question/19889750/answer/27901020

青衫无名 2019-12-02 01:23:20 0 浏览量 回答数 0

回答

1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。 **这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。** (1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突) (2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现 (3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆 (4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现 2.Python算法设计篇 算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。 这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。 本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟** **2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵** **3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~** (1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。 (2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。** (3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法 (4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分** (5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法** (6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法** (7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等** (8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比** (9)[Python Algorithms - C9 Graphs](Python Algorithms) **本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**

一键天涯 2019-12-02 01:23:49 0 浏览量 回答数 0

问题

python新式类和经典类的区别?

珍宝珠 2019-12-01 21:55:37 40 浏览量 回答数 2

问题

python中经典类、新式类区别?

天枢2020 2020-03-11 10:10:06 3 浏览量 回答数 2

回答

 1. 更加人性化的设计  Python的设计更加人性化,具有快速、坚固、可移植性、可扩展性的特点,十分适合人工智能;开源免费,而且学习简单,很容易实现普及;内置强大的库,可以轻松实现更大强大的功能。  2. 总体的AI库  AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法;  pyDatalog:Python中的逻辑编程引擎;  SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法,它专注于提供一个易于使用,有良好文档和测试的库;  EasyAI:一个双人AI游戏的python引擎。  3. 机器学习库  PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库,它也提供了多种预定义好的环境来测试和比较你的算法;  PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法,它支持Linux和Mac OS X;  scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具,它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包紧密联系在一起的;  MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法,流型学习方法,集中分类,概率方法,数据预处理方法等等。  4. 自然语言和文本处理库  NLTK开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析,有windows、Mac OSX和Linux版本。  Python具有丰富而强大的库,能够将其他语言制作的各种模块很轻松的联结在一起,对于性能要求高的功能,可以用C/C++进行重写,而后封装成Python可以调用的扩展类库,这是人工智能必备功能,因此,Python编程对人工智能是一门非常有用的语言。

世事皆空 2019-12-02 01:07:33 0 浏览量 回答数 0

回答

补充楼下: 主要区别是继承的时候: 经典类是深入优先; 新式类是广度优先. 在python中只有新式类没有经典类了;也就是说python3继承是广度优先.

游客aasf2nc2ujisi 2019-12-02 03:15:54 0 浏览量 回答数 0

回答

是指经典的python 2.7版本,现在最新的python已经是3.3版本往上了,官方已经宣布不再维护和支持2.7版本了

1038123254913072 2019-12-02 01:04:06 0 浏览量 回答数 0

回答

在python中经常会看到类继承于object 这个用于区分经典类和新式类,有object关键字为新式类. python3中可省略object类.默认就是新式类.

游客aasf2nc2ujisi 2019-12-02 03:14:44 0 浏览量 回答数 0

回答

经典类遵循:深度优先,python2中类从object继承 新式类遵循:广度优先,Python3中,只有新式类

游客h2jwb5k5qe2pa 2020-03-11 11:24:23 0 浏览量 回答数 0

回答

经典类遵循:深度优先,python2中类从object继承 新式类遵循:广度优先,Python3中,只有新式类

天枢2020 2020-03-11 10:10:59 0 浏览量 回答数 0

问题

【精品问答】Python数据爬取面试题库100问

珍宝珠 2019-12-01 21:55:53 6502 浏览量 回答数 3

问题

开发者居家学习必看:6大类技术进阶问答指南

珍宝珠 2020-02-10 11:38:17 237 浏览量 回答数 0

回答

OSC 第 128 期高手问答 -- Python3 开发实战 @壁_花 @idisikx @hell0cat @DarkAngel @北京老爷们儿      恭喜以上五位网友或获得《Python Web开发实战》图书一本  请私信 @博文视点   告知快递信息(格式:姓名+电话+地址+邮编号码)!  ######@dongwm :不知作者有没有涉及过大数据方向的?我看部分大数据相关的都要用到python这是为什么?Hadoop整个生态圈都是Java的,python的定位是什么?######@dongwm :其实我是一个狂热的Python爱好者,但是还是想问: 用Python来进行Web开发,与它的其他竞争者相比,有什么优势呢?比如,与Ruby On Rails相比,它能更敏捷(快速)地开发,用写尽量少的代码来完成任务吗?与Node.js和Golang相比,它在支持高并发、多线程、执行性能等方面有什么优势吗?如果一些性能方面的优化可以通过编写C扩展模块,或者通过cffi、Boost.Python、Cython等方式进行优化,Node.js、Ruby等同样可以做到。一句话概括上面的问题就是:是什么原因吸引我们使用Python来进行Web开发呢?######@dongwm : 按照“没有银弹”一说,python应该也有自己的适用范围吧,是不是比较适用于机器学习,不适合于web开发呢?######Python被称为「胶水语言」,虽然没有「统治」哪个领域,但是基本上个个领域都把手伸了进去。 机器学习我不熟不敢妄谈是不是更合适。我只能说,Python很适合web开发######使用豆瓣很多年,很喜欢豆瓣的风格。之前一直是在网页端浏览,后来又到了手机app端。我总体感觉豆瓣的进步很快。我想问的问题是,python web一直作为豆瓣的开发首选,是因为什么?还有关于豆瓣的权限模块的设计时,python web发挥了什么优势。作为手机端app的开发,python web会起到什么作用吗?######回复 @机器猫123 : 会的。也许不会开源,但是酱厂里面确实有很多不错的实现######回复 @dongwm : 未来豆瓣会继续用python web衍生开发新的产品吗?######回复 @dongwm : 谢谢老师的回答。######豆瓣选择Python,其实是公司和语言的风格很相似的缘故吧。我们做事喜欢优雅,清晰,高效,这这好也是Python希望的。 豆瓣的基础设施基本都是使用Python完成,包含权限部分,但是Python web和权限模块设计感觉没啥直接的关系,就是抽出来的库和使用它的关系,我也没懂有什么优势或者劣势。 豆瓣app的API后端是使用PythonWeb完成的###### 引用来自“DarkAngel”的评论 @dongwm :其实我是一个狂热的Python爱好者,但是还是想问: 用Python来进行Web开发,与它的其他竞争者相比,有什么优势呢?比如,与Ruby On Rails相比,它能更敏捷(快速)地开发,用写尽量少的代码来完成任务吗?与Node.js和Golang相比,它在支持高并发、多线程、执行性能等方面有什么优势吗?如果一些性能方面的优化可以通过编写C扩展模块,或者通过cffi、Boost.Python、Cython等方式进行优化,Node.js、Ruby等同样可以做到。一句话概括上面的问题就是:是什么原因吸引我们使用Python来进行Web开发呢? 引用来自“dongwm”的评论ROR我倒没有实际的用过,不敢妄言。Python最大的优势是他是一个「胶水」语言,在工作中的各个方向都能看到Python对应的库的身影,学会Python会让你的路比较宽,但是用ruby,可能在我印象里面就是Web开发比较有名。我现在还没有发现做Web开发有比Python效率高的方式。 其实很多人都担心Python的执行效率,然而其实绝大多数情况Python足够快,不快的话要先看看自己是不是用得不对或者不好。现在硬件资源很廉价,除非上升到BAT那种规模,否者基本还没有到达讨论语言瓶颈的问题。现在豆瓣绝大多数基础设施都是使用Python开发的。在Web开发中,我们很少通过写扩展的方式提高性能,其实编程语言一般都不是网站性能的瓶颈,还可以通过其他方式解决。 之前学ROR是因为老师要求用这个,我没有用Python进行Web开发的经验,稍微有一点了解的也只是Flask或者Falcon这种轻量级的,感觉能够快速开发小巧的应用,但是不知道有哪个特别出名的应用或者网站系统是由Python开发的(比如WordPress和Discuz用的PHP,Gitlab用的Ruby,OSC好像用的是Java吧)。Python确实是一种比较万能的语言,但有点万金油却不够专精的感觉。比如在科学计算方面很流行,但是论效率不如Julia,论支持库的丰富和使用广泛度不如Matlab(特别是学校里面,教授做研究或者教学一般都会用Matlab);在系统管理方面看,能用Python干的脚本化工作,用shell或者perl基本上都能干,而且需要写的代码行数说不定更少。如果说用Python进行Web开发效率高,是有特指某一个框架吗,还是泛指? 我在写程序时首先会想到用Python,是因为喜欢tial-and-error这种方式,能够在正式写代码前确认想法能不能实现,能够让我有兴趣和信心继续下去。但真要说起来,能够提供REPL特性的语言也不少。 Python的执行效率貌似永远是Python热门的讨论话题,比如GIL的存在必须要用特殊的方式来优化。像gevent和Tornado之类的存在也适用于高并发的网络连接(不过Python在这方面的性能不一定是最高的,没有看过相关的测试)。再说Python的实现,除了最出名的CPython和PyPy之外,甚至还有为嵌入式设备开发的MicroPython(这也在另一方面说明了Python的万能性)。Dropbox的技术栈中也使用了Python,并且有开发面向性能的Python实现pyston,此外还有Stackless Python(听名字感觉很厉害,虽然其实我并没有去了解这到底是什么),但它家也在用Golang和Rust开发高性能的东西。那么,豆瓣的基础设施实现中,用Python开发的应用效率如何?也有使用除了CPython之外的实现来进行优化吗?(我是不是扯得有点偏题了?) ######回复 @dongwm : 那么用Python来开发Web,是否属于那种会带来这种优势的选择呢?或者有没有哪家公司通过把技术栈切换到Python而带来了这种进步?######回复 @dongwm : 以现在的硬件发展水平,基本上任何数量级的访问都可以通过硬件的堆砌获得支持。不过经常会看到新闻,比如某某公司将它的某某技术构架从XX语言切换到了YY语言,然后获得了性能提升、提高了稳定性、减少了部署的服务器等优势,(我记忆中有看到Twitter的新闻,PHP 7的新闻,还有一些其他的)。######豆瓣每天服务着千万级别的用户(抱歉不能说具体数字)的请求,绝大多数应用和基础设施都是Python实现的。所以应用效率不用担心。虽然可以使用C/C++的扩展提高运行效率,但是我接触的场景里面很少。相当于写扩展的维护性和成本,大家更愿意从架构,算法等方面来解决。######嚯,你的问题好长。 进行Web开发效率高算是泛指,包含django和flask。效率高也体现在它们的第三方扩展和支持比较完善,基本能想到的都有对应的项目支持,这样少造了很多轮子。###### @dongwm :python的确很好,也很强大,我也一直在用,但我大都做的和web方面没有什么联系.而我对web方面挺感兴趣,但自学起来始终不得要领,进展有点慢,大神能否讲一讲web方面的学习经验,或者flask方面的心得.又或者推荐一些关于web好的学习资源.期待您的回答并致谢.###### @dongwm :了解Python基本知识,希望学习一门Python web框架学习后端开发。之前我对部分主流框架进行了一些了解:Django,Tornado,在知乎上有一个非常活跃的群体。在框架的选择问题上,只有最适合你自己、最适合你的团队的框架。编程语言选择也是一个道理,你的团队Python最熟就用Python好了,其实大部分人是没必要太关心框架的性能的,因为你开发的网站根本就是个小站,能上1万的IP的网站已经不多了,上10万的更是很少很少。在没有一定的访问量前谈性能其实是没有多大意义的,因为你的CPU和内存一直就闲着呢。而且语言和框架一般也不会是性能瓶颈,性能问题最常出现在数据库访问和文件读写上。 ######嗯 赞同你的观点。很多人在杞人忧天。先等活到有必要讨论语言的那一天,那时候早就有钱有人有时间,哪怕Python真的不满足,重构呗######@dongwm :Python确实越来越火了,知乎就是python做的,偶尔搞了一点,发现确实很高级,至少比java语言高级一些某些功能Java只需要写100行,而Python可能只要20行。做一些外维系统还是挺方便的,比如日志的提取等,之前学的是2.7版本,现在python3比之前的版本有哪些新特性呢? ######python 3是相当于站在Python2的肩膀上,摒弃了早年设计python 2的错误思想(所以有的地方向前不兼容),加了一些新的语法,比如asyncio,甚至type hint(我不喜欢)。 具体的内容可以看 https://docs.python.org/3/whatsnew/index.html。 总体上和Python 2区别不大。不用纠结Python 2/3###### @dongwm :初入门python,有c、java基础。再看《python基础教程(第二版)》。请问您有推荐的书籍吗?######我个人在知乎专栏写过一篇推荐书的文章 https://zhuanlan.zhihu.com/p/22198827。我建议有一些其他语言基础的同学好好地看看《Python学习手册》,如果你英语比较好,建议直接看原著。《Python基础教程》虽然是一个经典的入门教程,写作风格也相对轻松幽默,但是由于本书写作于2010年,书中有大量内容已经过时,所以不推荐! ========================== Python "RemoteError: Remote error: UnicodeEncodeError 'ascii' codec can't encode ch:报错 {   "traceback": "  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/st2actions/container/base.py\", line 99, in _do_run\n    LOG.debug('Performing run for runner: %s' % (runner.runner_id), extra=extra)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 49, in wrapped_f\n    def wrapped_f(*args, **kw):\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 206, in call\n    if not self.should_reject(attempt):\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 247, in get\n    else:\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/retrying.py\", line 200, in call\n    try:\n  File \"/opt/stackstorm/runners/mistral_v2/mistral_v2.py\", line 219, in run\n    result = self.start(action_parameters=action_parameters)\n  File \"/opt/stackstorm/runners/mistral_v2/mistral_v2.py\", line 256, in start\n    **options)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/v2/executions.py\", line 56, in create\n    return self._create('/executions', data)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/base.py\", line 95, in _create\n    self._raise_api_exception(resp)\n  File \"/opt/stackstorm/st2/lib/python2.7/site-packages/mistralclient/api/base.py\", line 143, in _raise_api_exception\n    error_message=error_data)\n",         "error": "RemoteError: Remote error: UnicodeEncodeError 'ascii' codec can't encode character u'\\xae' in position 169: ordinal not in range(128)\n[u'Traceback (most recent call last):\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/server.py\", line 155, in _process_incoming\\n    failure = None\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/dispatcher.py\", line 222, in dispatch\\n    if hasattr(endpoint, method):\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/oslo_messaging/rpc/dispatcher.py\", line 192, in _do_dispatch\\n    new_args[argname] = self.serializer.deserialize_entity(ctxt, arg)\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/engine/engine_server.py\", line 98, in start_workflow\\n    (rpc_ctx, workflow_identifier, utils.cut(workflow_input),\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/utils/__init__.py\", line 284, in cut\\n    return cut_dict(data, length=length)\\n', u'  File \"/opt/stackstorm/mistral/lib/python2.7/site-packages/mistral/utils/__init__.py\", line 198, in cut_dict\\n    v = str(value)\\n', u\"UnicodeEncodeError: 'ascii' codec can't encode character u'\\\\xae' in position 169: ordinal not in range(128)\\n\"]." }

kun坤 2020-06-15 11:08:13 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

回答

推荐 流畅的python 一书,经典中的经典。 进阶必备。

游客aasf2nc2ujisi 2019-12-02 03:11:12 0 浏览量 回答数 0

回答

python2.x直接中文字符串用u'你好',这样 刚刚测试了一下#-*-coding:cp936-*-原因导致错误的改变,是因为改了windows行尾在windows的python自带编辑器run,提示加#-*-coding:cp936-*-,加了之后变成‘xd0’错误的Non-ASCII了,不知道是不是还缺什么回复 @電泡泡:记得重新保存一下回复 @電泡泡:#-*-coding:utf-8-*-这个去掉python2.7.3#修改时间--〉#u'修改时间':问题还是存在代码贴出了 第一行#修改时间:一样报错,改成#time:这行就没有保持难道是不支持中文字符集吗把第14行删除重新敲一次,是不是复制的代码,弄来了不可见的non-ascii字符貌似简体也不行我用的是繁体,应该怎么办呢可以保留吗那个是注释,这个也有关系吗经典的python编码问题,很麻烦,不能一概而论。问题的发生和你的系统,文本格式有关。,就我猜的话,应该是你读入的html编码为utf8。但是你用的是windws平台,编码是gb2312。查一下相关资料为好,手上没有你的东西,很难针对性找到原因。在linux(deepin)下的,查资料也就教人加上这句,还是没有效果,难道一定要写英文的吗 引用来自“AproSane”的答案 经典的python编码问题,很麻烦,不能一概而论。问题的发生和你的系统,文本格式有关。,就我猜的话,应该是你读入的html编码为utf8。但是你用的是windws平台,编码是gb2312。查一下相关资料为好,手上没有你的东西,很难针对性找到原因。没有涉及到html这是用gedit编辑的纯代码,里面包含的汉字就会报错,看了一下文件的编码本身就是utf-8尝试另存为,问题还是一样 编辑中文最好用python自带的idle保存。其实根本不需要加编码声明。 中文和其他非ascii字符,前加u声明就ok了sudoapt-getinstdlladle安装好了谢谢linux下的python,没有找到idle

爱吃鱼的程序员 2020-06-22 21:57:04 0 浏览量 回答数 0

回答

编译过程中发现以下几个问题: 1、它提供的mkrpm.sh脚本会调用一个python-build命令编译python2.7.9,但版本库中并没有这个提供这个命令 2、将python-build注释掉,用自己编译好的python2.7.9,会报一个“RPMbuilderrors:”但没有其他提示, 我这里是编译通过了不过版本号比阿里云镜低一个版本号 等我后面写个教程 @2box商务的人已经采购完了才给我们之前不知道这个坑也没有特地要求回复 @江鸟:那你怎么不用vpc呢?我这个是拿来在vpc里面使用的 @2box又发现了新的坑阿里经典网络会修改mac地址过滤要转发的包导致作为网关转发失败客服也没有解决方案回复 @江鸟:我这边测试自己编译的VPN没有问题,但是IPSec如果用硬件网关去连接会出现连接不上的情况,如果对端改用自己编译的安装包去搭建就可以;后面换用它的镜像两种都就可以了,感觉是不是他之前功能有bug呢?醉后买了一个他们的虚拟化实例,实例里边有最新的flexgw-2.3.0-1.el6.x86_64.rpm

爱吃鱼的程序员 2020-06-09 15:45:27 0 浏览量 回答数 0

回答

python要是能向前兼容就好了 有没有经典的视频教程推荐一下

nothingfinal 2019-12-01 23:58:11 0 浏览量 回答数 0

问题

零基础Python新手应该怎么去学习??报错

爱吃鱼的程序员 2020-06-08 15:11:50 2 浏览量 回答数 1

回答

1 工具的学习(排列有序) python(我用的python tutorial,细节可以查书learning python,然后查询一些文档比如,numpy,matplotlib官方文档) java (我先看的 head first java, 然后thinking in java看了一部分) linux shell (越熟越好,我只是刷了鸟哥那本入门书的前半部分) hadoop (需要会折腾,在win电脑上不好配置,如果实验室有环境或者有人帮忙带带入门最好。 2 机器学习入门(排列有序) 集体编程智慧(把例子刷一遍,一方面是理解入门数据挖掘,一方面更熟悉下python) 数据挖掘导论,机器学习(tom mitchell),Andrew Ng的机器学习课程,机器学习实战(主要参考下书中的代码,书中代码并不是非常完美,主要用来入门)。。 这几个材料建议选其中一、二个为核心连贯学习,其他可以参考。比如你先用数据挖掘导论了解一些基本的概念,用Andrew Ng的机器学习课程进行比较细致的学习,其中要实习一些算法的时候可以参考机器学习实战,某些算法看不懂时候可以参考其他书籍 Kaggle找几个最简单的题进行入门实战。(比如泰坦尼克号那题) 可以适当了解一些机器学习的具体应用,如:推荐系统、图像处理、语音或搜索。(结合自己的兴趣专业选择某一个深入学习) Pattern Recognition And Machine Learning,The Elements of Statistical Learning 两本理论非常详细的巨著,如果有精力一定要看看。建议从第一本看起(因为我也只能勉强看懂第一本,第二本如果其他人都说很经典,可以看懂的话肯定是要看的)。 3 数据结构基础 算法导论+leetcode在线题目 总结: 看书要多动手,多总结,比如看了个朴素贝叶斯算法,最好把这个方法总结一下,然后编写代码实现简单的例子。参考更多的书籍,参考baidu 另外如果想找份工作一定要多多实习,只要有一份不错的实习经验找个好工作的概率大大增加。从另外一个角度,不要把宝全部压在校招上。

行者武松 2019-12-02 01:20:11 0 浏览量 回答数 0

问题

阿里云运维部署工具AppDeploy最佳实践

阚俊宝 2019-12-01 21:03:04 11511 浏览量 回答数 6

回答

本文以Java语言和Python语言为例介绍如何使用Alibaba Cloud ESS SDK快速创建多可用区的伸缩组。 前提条件 使用本教程进行操作前,请确保您已经注册了阿里云账号。如还未注册,请先完成账号注册。 背景信息 弹性伸缩的伸缩组分为经典网络伸缩组和专有网络伸缩组。在创建专有网络伸缩组时,您需要配置伸缩组对应的交换机。伸缩组创建完成后,通过该伸缩组弹性扩张的ECS实例都使用该交换机。 原弹性伸缩服务限定一个专有网络伸缩组只能配置一个交换机,由于一个交换机只归属于一个可用区,当您配置好伸缩组的交换机以后,如果交换机所在的可用区因库存不足等原因不能创建ECS实例,您伸缩组中的伸缩配置、伸缩规则以及伸缩组对应的报警任务等都将失效。 为了优化上述问题,提高伸缩组的可用性,伸缩组新增多可用区参数(VSwitchIds.N)。您在创建伸缩组的时候可以使用该参数为伸缩组配置多个交换机,当一个交换机所在可用区无法创建ECS实例的时候,弹性伸缩服务会为您自动切换到其它交换机所在的可用区。在使用该参数的时候,您需要注意以下几点: 如果使用了VSwitchIds.N多可用区参数,VSwitchId参数将被忽略。 VSwitchIds.N参数中,N的取值范围为[1, 5],即一个伸缩组最多可以配置5个交换机。 VSwitchIds.N参数中指定的交换机必须在同一个专有网络下。 VSwitchIds.N参数中N代表交换机的优先级,编号为1的交换机为创建实例的第一选择,交换机优先级随编号的增大依次降低。 当优先级较高的交换机所在可用区无法创建实例时,会自动选择下一优先级的交换机来创建实例。在使用多可用区参数时,建议设置同一地域下不同可用区的交换机,降低因单可用区库存不足无法创建ECS实例的概率,提高伸缩组的可用性。 使用Alibaba Cloud ESS SDK for Java创建多可用区伸缩组 导入Alibaba Cloud ESS SDK for Java。 下载依赖库aliyun-java-sdk-core、aliyun-java-sdk-ess,您可以查看maven-central界面,搜索并下载相应的jar包,aliyun-java-sdk-ess对应的jar包的版本号需要是2.1.3及以上版本才能使用多可用区参数,aliyun-java-sdk-core对应的jar包的版本号推荐使用最新版本。 您也可以使用maven来管理您Java项目的依赖库,在项目对应的pom.xml文件中加入下面的依赖项: com.aliyun aliyun-java-sdk-ess 2.1.3 com.aliyun aliyun-java-sdk-core 3.5.0 使用Java SDK创建多可用区伸缩组。 将Alibaba Cloud ESS SDK for Java导入到Java工程后,您即可以通过SDK编码创建多可用区伸缩组,示例代码如下: public class EssSdkDemo { public static final String REGION_ID = "cn-hangzhou"; public static final String AK = "ak"; public static final String AKS = "aks"; public static final Integer MAX_SIZE = 10; public static final Integer MIN_SIZE = 1; public static final String SCALING_GROUP_NAME = "TestScalingGroup"; //交换机列表,交换机优先级从前往后依次降低,第一位的交换机优先级最高。 public static final String[] vswitchIdArray = { "vsw-id1", "vsw-id2", "vsw-id3", "vsw-id4", "vsw-id5" }; public static final List vswitchIds = Arrays.asList(vswitchIdArray); public static void main(String[] args) throws Exception { IClientProfile clientProfile = DefaultProfile.getProfile(REGION_ID, AK, AKS); IAcsClient client = new DefaultAcsClient(clientProfile); createScalingGroup(client); } /** * 创建多可用区伸缩组。 * @param client * @return * @throws Exception */ public static String createScalingGroup(IAcsClient client) throws Exception { CreateScalingGroupRequest request = new CreateScalingGroupRequest(); request.setRegionId("cn-beijing"); request.setMaxSize(MAX_SIZE); request.setMinSize(MIN_SIZE); request.setScalingGroupName(SCALING_GROUP_NAME); request.setVSwitchIds(vswitchIds); CreateScalingGroupResponse response = client.getAcsResponse(request); return response.getScalingGroupId(); } } 上述代码中,VSwitch的优先级随其在列表中出现的顺序依次降低,排在列表最前面的VSwitch优先级最高。 使用Alibaba Cloud ESS SDK for Python创建多可用区伸缩组 安装Alibaba Cloud ESS SDK for Python。 和Java语言类似,您需要先下载依赖库aliyun-python-sdk-ess、aliyun-python-sdk-core。本文推荐使用pip的方式安装Python依赖包,pip安装说明请参见Installation-Pip。 安装好pip以后,您可以使用命令pip install aliyun-python-sdk-ess==2.1.3 pip install aliyun-python-sdk-core==3.5.0安装两个依赖库。 使用Python SDK创建多可用区伸缩组。 导入Alibaba Cloud ESS SDK for Python依赖库后,您即可以通过SDK编码创建多可用区伸缩组,示例代码如下: coding=utf-8 import json import logging from aliyunsdkcore import client from aliyunsdkess.request.v20140828.CreateScalingGroupRequest import CreateScalingGroupRequest logging.basicConfig(level=logging.INFO, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S') 请替换自己的ak信息。 ak = 'ak' aks = 'aks' scaling_group_name = 'ScalingGroupTest' max_size = 10 min_size = 1 vswitch_ids = ["vsw-id1", "vsw-id2", "vsw-id3", "vsw-id4", "vsw-id5"] region_id = 'cn-beijing' clt = client.AcsClient(ak, aks, region_id) def _create_scaling_group(): request = CreateScalingGroupRequest() request.set_ScalingGroupName(scaling_group_name) request.set_MaxSize(max_size) request.set_MinSize(min_size) request.set_VSwitchIds(vswitch_ids) response = _send_request(request) return response.get('ScalingGroupId') def _send_request(request): request.set_accept_format('json') try: response_str = clt.do_action(request) logging.info(response_str) response_detail = json.loads(response_str) return response_detail except Exception as e: logging.error(e) if name == 'main': scaling_group_id = _create_scaling_group() print '创建伸缩组成功,伸缩组ID:' + str(scaling_group_id) 上述代码中,VSwitch的优先级随其在列表中出现的顺序依次降低,排在列表最前面的VSwitch优先级最高。

1934890530796658 2020-03-22 13:32:50 0 浏览量 回答数 0

问题

CodePipeline:产品简介:产品优势

行者武松 2019-12-01 21:52:53 1225 浏览量 回答数 0

问题

最佳实践:使用ESS SDK快速创建多可用区伸缩组

青蛙跳 2019-12-01 21:31:51 559 浏览量 回答数 0

问题

【精品锦集】Java热门回答04

问问小秘 2019-12-01 19:53:23 170 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站