• 关于 heap算法java 的搜索结果

回答

Java内存模型 按照官方的说法:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。 JVM主要管理两种类型内存:堆和非堆,堆内存(Heap Memory)是在 Java 虚拟机启动时创建,非堆内存(Non-heap Memory)是在JVM堆之外的内存。 堆是Java代码可及的内存,留给开发人员使用的;非堆是JVM留给自己用的,包含方法区、JVM内部处理或优化所需的内存(如 JIT Compiler,Just-in-time Compiler,即时编译后的代码缓存)、每个类结构(如运行时常数池、字段和方法数据)以及方法和构造方法的代码。 JVM 内存包含如下几个部分: 堆内存(Heap Memory): 存放Java对象 非堆内存(Non-Heap Memory): 存放类加载信息和其它meta-data 其它(Other): 存放JVM 自身代码等 Java内存分配 Java的内存管理实际上就是变量和对象的管理,其中包括对象的分配和释放。 JVM内存申请过程如下: JVM 会试图为相关Java对象在Eden中初始化一块内存区域 当Eden空间足够时,内存申请结束;否则到下一步 JVM 试图释放在Eden中所有不活跃的对象(这属于1或更高级的垃圾回收),释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区 Survivor区被用来作为Eden及OLD的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区 当OLD区空间不够时,JVM 会在OLD区进行完全的垃圾收集(0级) 完全垃圾收集后,若Survivor及OLD区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现”out of memory”错误 GC基本原理 GC(Garbage Collection),是JAVA/.NET中的垃圾收集器。 编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显式操作方法。所以,Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放。 对于程序员来说,分配对象使用new关键字;释放对象时,只要将对象所有引用赋值为null,让程序不能够再访问到这个对象,我们称该对象为”不可达的”.GC将负责回收所有”不可达”对象的内存空间。 对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是”可达的”,哪些对象是”不可达的”.当GC确定一些对象为”不可达”时,GC就有责任回收这些内存空间。 为了保证 GC能够在不同平台实现的问题,Java规范对GC的很多行为都没有进行严格的规定。例如,对于采用什么类型的回收算法、什么时候进行回收等重要问题都没有明确的规定。 GC分代划分 JVM内存模型中Heap区分两大块,一块是 Young Generation,另一块是Old Generation 在Young Generation中,有一个叫Eden Space的空间,主要是用来存放新生的对象,还有两个Survivor Spaces(from、to),它们的大小总是一样,它们用来存放每次垃圾回收后存活下来的对象。 在Old Generation中,主要存放应用程序中生命周期长的内存对象。 在Young Generation块中,垃圾回收一般用Copying的算法,速度快。每次GC的时候,存活下来的对象首先由Eden拷贝到某个SurvivorSpace,当Survivor Space空间满了后,剩下的live对象就被直接拷贝到OldGeneration中去。因此,每次GC后,Eden内存块会被清空。 在Old Generation块中,垃圾回收一般用mark-compact的算法,速度慢些,但减少内存要求。 垃圾回收分多级,0级为全部(Full)的垃圾回收,会回收OLD段中的垃圾;1级或以上为部分垃圾回收,只会回收Young中的垃圾,内存溢出通常发生于OLD段或Perm段垃圾回收后,仍然无内存空间容纳新的Java对象的情况。增量式GC 增量式GC(Incremental GC),是GC在JVM中通常是由一个或一组进程来实现的,它本身也和用户程序一样占用heap空间,运行时也占用CPU。 当GC进程运行时,应用程序停止运行。当GC运行时间较长时,用户能够感到Java程序的停顿,另外一方面,如果GC运行时间太短,则可能对象回收率太低. 增量式GC就是通过一定的回收算法,把一个长时间的中断,划分为很多个小的中断,通过这种方式减少GC对用户程序的影响。 Sun JDK提供的HotSpot JVM就能支持增量式GC。HotSpot JVM缺省GC方式为不使用增量GC,为了启动增量GC,我们必须在运行Java程序时增加-Xincgc的参数。 HotSpot JVM增量式GC的实现是采用Train GC算法,它的基本想法就是:将堆中的所有对象按照创建和使用情况进行分组(分层),将使用频繁高和具有相关性的对象放在一队中,随着程序的运行,不断对组进行调整。当GC运行时,它总是先回收最老的(最近很少访问的)的对象,如果整组都为可回收对象,GC将整组回收。这样,每次GC运行只回收一定比例的不可达对象,保证程序的顺畅运行。 详解函数finalize 更多内容: https://chenhx.blog.csdn.net/article/details/83957456 https://chenhx.blog.csdn.net/article/details/84294481

谙忆 2019-12-02 03:08:20 0 浏览量 回答数 0

回答

Java 11 新特性官网公开的 17 个 JEP(JDK Enhancement Proposal 特性增强提议):181: Nest-Based Access Control(基于嵌套的访问控制)309: Dynamic Class-File Constants(动态的类文件常量)315: Improve Aarch64 Intrinsics(改进 Aarch64 Intrinsics)318: Epsilon: A No-Op Garbage Collector(Epsilon 垃圾回收器,又被称为"No-Op(无操作)"回收器)320: Remove the Java EE and CORBA Modules(移除 Java EE 和 CORBA 模块,JavaFX 也已被移除)321: HTTP Client (Standard)323: Local-Variable Syntax for Lambda Parameters(用于 Lambda 参数的局部变量语法)324: Key Agreement with Curve25519 and Curve448(采用 Curve25519 和 Curve448 算法实现的密钥协议)327: Unicode 10328: Flight Recorder(飞行记录仪)329: ChaCha20 and Poly1305 Cryptographic Algorithms(实现 ChaCha20 和 Poly1305 加密算法)330: Launch Single-File Source-Code Programs(启动单个 Java 源代码文件的程序)331: Low-Overhead Heap Profiling(低开销的堆分配采样方法)332: Transport Layer Security (TLS) 1.3(对 TLS 1.3 的支持)333: ZGC: A Scalable Low-Latency Garbage Collector (Experimental)(ZGC:可伸缩的低延迟垃圾回收器,处于实验性阶段)335: Deprecate the Nashorn JavaScript Engine(弃用 Nashorn JavaScript 引擎)336: Deprecate the Pack200 Tools and API(弃用 Pack200 工具及其 API)

auto_answer 2019-12-02 01:55:14 0 浏览量 回答数 0

回答

第一种OutOfMemoryError: PermGen space发生这种问题的原意是程序中使用了大量的jar或class,使java虚拟机装载类的空间不够,与Permanent Generation space有关。解决这类问题有以下两种办法:增加java虚拟机中的XX:PermSize和XX:MaxPermSize参数的大小,其中XX:PermSize是初始永久保存区域大小,XX:MaxPermSize是最大永久保存区域大小。如针对tomcat6.0,在catalina.sh 或catalina.bat文件中一系列环境变量名说明结束处(大约在70行左右) 增加一行: JAVA_OPTS=" -XX:PermSize=64M -XX:MaxPermSize=128m" 如果是windows服务器还可以在系统环境变量中设置。感觉用tomcat发布sprint+struts+hibernate架构的程序时很容易发生这种内存溢出错误。使用上述方法,我成功解决了部署ssh项目的tomcat服务器经常宕机的问题。清理应用程序中web-inf/lib下的jar,如果tomcat部署了多个应用,很多应用都使用了相同的jar,可以将共同的jar移到tomcat共同的lib下,减少类的重复加载。这种方法是网上部分人推荐的,我没试过,但感觉减少不了太大的空间,最靠谱的还是第一种方法。第二种OutOfMemoryError: Java heap space发生这种问题的原因是java虚拟机创建的对象太多,在进行垃圾回收之间,虚拟机分配的到堆内存空间已经用满了,与Heap space有关。解决这类问题有两种思路:检查程序,看是否有死循环或不必要地重复创建大量对象。找到原因后,修改程序和算法。 我以前写一个使用K-Means文本聚类算法对几万条文本记录(每条记录的特征向量大约10来个)进行文本聚类时,由于程序细节上有问题,就导致了Java heap space的内存溢出问题,后来通过修改程序得到了解决。增加Java虚拟机中Xms(初始堆大小)和Xmx(最大堆大小)参数的大小。如:set JAVA_OPTS= -Xms256m -Xmx1024m第三种OutOfMemoryError:unable to create new native thread在java应用中,有时候会出现这样的错误:OutOfMemoryError: unable to create new native thread.这种怪事是因为JVM已经被系统分配了大量的内存(比如1.5G),并且它至少要占用可用内存的一半。有人发现,在线程个数很多的情况下,你分配给JVM的内存越多,那么,上述错误发生的可能性就越大。那么是什么原因造成这种问题呢?每一个32位的进程最多可以使用2G的可用内存,因为另外2G被操作系统保留。这里假设使用1.5G给JVM,那么还余下500M可用内存。这500M内存中的一部分必须用于系统dll的加载,那么真正剩下的也许只有400M,现在关键的地方出现了:当你使用Java创建一个线程,在JVM的内存里也会创建一个Thread对象,但是同时也会在操作系统里创建一个真正的物理线程(参考JVM规范),操作系统会在余下的400兆内存里创建这个物理线程,而不是在JVM的1500M的内存堆里创建。在jdk1.4里头,默认的栈大小是256KB,但是在jdk1.5里头,默认的栈大小为1M每线程,因此,在余下400M的可用内存里边我们最多也只能创建400个可用线程。这样结论就出来了,要想创建更多的线程,你必须减少分配给JVM的最大内存。还有一种做法是让JVM宿主在你的JNI代码里边。给出一个有关能够创建线程的最大个数的估算公式:(MaxProcessMemory - JVMMemory - ReservedOsMemory) / (ThreadStackSize) = Number of threads对于jdk1.5而言,假设操作系统保留120M内存:1.5GB JVM: (2GB-1.5Gb-120MB)/(1MB) = ~380 threads1.0GB JVM: (2GB-1.0Gb-120MB)/(1MB) = ~880 threads对于栈大小为256KB的jdk1.4而言,1.5GB allocated to JVM: ~1520 threads1.0GB allocated to JVM: ~3520 threads 对于这个异常我们首先需要判断下,发生内存溢出时进程中到底都有什么样的线程,这些线程是否是应该存在的,是否可以通过优化来降低线程数; 另外一方面默认情况下java为每个线程分配的栈内存大小是1M,通常情况下,这1M的栈内存空间是足足够用了,因为在通常在栈上存放的只是基础类型的数据或者对象的引用,这些东西都不会占据太大的内存, 我们可以通过调整jvm参数,降低为每个线程分配的栈内存大小来解决问题,例如在jvm参数中添加-Xss128k将线程栈内存大小设置为128k。

蛮大人123 2019-12-02 02:27:59 0 浏览量 回答数 0

Java学习路线 26门免费课程

排名第一的编程语言,从事云计算、大数据开发工作必备

回答

"如果jvm使用了coping算法,一开始就会将可用内存分为两块,from域和to域, 每次只是使用from域,to域则空闲着。当from域内存不够了,开始执行GC操作,这个时候,会把from域存活的对象拷贝到to域,然后直接把from域进行内存清理。 coping算法一般是使用在新生代中,因为新生代中的对象一般都是朝生夕死的,存活对象的数量并不多,这样使用coping算法进行拷贝时效率比较高。jvm将Heap 内存划分为新生代与老年代,又将新生代划分为Eden(伊甸园) 与2块Survivor Space(幸存者区) ,然后在Eden –>Survivor Space 以及From Survivor Space 与To Survivor Space 之间实行Copying 算法。 不过jvm在应用coping算法时,并不是把内存按照1:1来划分的,这样太浪费内存空间了。一般的jvm都是8:1。也即是说,Eden区:From区:To区域的比例是 始终有90%的空间是可以用来创建对象的,而剩下的10%用来存放回收后存活的对象。 1、当Eden区满的时候,会触发第一次young gc,把还活着的对象拷贝到Survivor From区;当Eden区再次触发young gc的时候,会扫描Eden区和From区域,对两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域,并将Eden和From区域清空。 2、当后续Eden又发生young gc的时候,会对Eden和To区域进行垃圾回收,存活的对象复制到From区域,并将Eden和To区域清空。 3、可见部分对象会在From和To区域中复制来复制去,如此交换15次(由JVM参数MaxTenuringThreshold决定,这个参数默认是15),最终如果还是存活,就存入到老年代 注意: 万一存活对象数量比较多,那么To域的内存可能不够存放,这个时候会借助老年代的空间。 优点:在存活对象不多的情况下,性能高,能解决内存碎片和java垃圾回收算法之-标记清除 中导致的引用更新问题。 缺点: 会造成一部分的内存浪费。不过可以根据实际情况,将内存块大小比例适当调整;如果存活对象的数量比较大,coping的性能会变得很差。"

星尘linger 2020-04-13 09:07:08 0 浏览量 回答数 0

回答

Java之JVM垃圾回收 内存结构以及垃圾回收算法前言:由于小组技术分享的需要,懂的不是很多所以我就找了这个我自己感兴趣的知识点给大家做个简单的介绍。由于是新人,算不了很懂,只是总结性的讲了些概念性的东西。给大家分享的同时,算是给自己做个笔记吧。作为Java语言的核心之一,JVM垃圾回收帮我们解决了让我们很头疼的垃圾回收问题。我们不需要像VC++一样,作为内存管理的统治者需要我们对我们分配的每一块内存进行回收,否则就会造成内存泄露问题。是不是只要有JVM存在我们就不会出现内存泄露问题,出现内存泄露问题我们又该怎么办,如果我们想提高我们程序的稳定性和其他性能我们能从什么地方下手!!!相信这些问题是我们程序过程中不可逾越的。了解JVM的内存分配及其相应的垃圾回收机制,不仅仅是可以了解底层的JVM运行机制,而且对于程序性能的优化和提升还是很有必要的。一、JVM内存分配区域结构图一从图一可以看出JVM中的内存分配包括PC Register(PC寄存器) JVM栈 堆(Heap) 方法区域(MethodArea)运行时常量池(RuntimeConstant Pool) 本地方法堆栈(NativeMethod Stacks),这几部分区域但是从程序员的角度来看我们只关注JVM Heap和JVM Stack,因为这两部分是直接关系程序运行期间的内存状态,所以我会主要介绍这两部分内存,其他的我只是给出了简单的一些概念性解释:PC Register(Program Counter 寄存器):主要作用是记录当前线程所执行的字节码的行号。方法区域(MethodArea):方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,法区域也是全局共享的,它在虚拟机启动时在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。运行时常量池(RuntimeConstant Pool):存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。本地方法堆栈(NativeMethod Stacks):JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。JVM栈:主要存放一些基本类型的变量和对象的引用变量。JVM堆:用来存放由 new 创建的对象和数组Java 虚拟机的自动垃圾回收器来管理(注意数组也是对象,所以说数组也是存放在JVM堆中)。由于栈中存放的是主要存放一些基本类型的变量和对象的引用变量,所以当过了变量的作用区域或者是当程序运行结束后它所占用的内存会自动的释放掉,所以不用来关心,下面我们主要来说的是堆内存的分配以及回收的算法。二、JVM堆内存介绍工欲善其事,必先利其器。所以了解堆内存的内部结构是很必要的。在Jvm中堆空间划分为三个代:年轻代(Young Generation)、年老代(Old Generation)和永久代(Permanent Generation)。年轻带主要是动态的存储,年轻带主要储存新产生的对象,年老代储存年龄大些的对象,永久带主要是存储的是java的类信息,包括解析得到的方法、属性、字段等。永久带基本不参与垃圾回收。所以说我们说的垃圾回收主要是针对年轻代和年老代。图二年轻代又分成3个部分,一个eden区和两个相同的survior区。刚开始创建的对象都是放置在eden区的。分成这样3个部分,主要是为了生命周期短的对象尽量留在年轻带。当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survior。年老代主要存放生命周期比较长的对象,比如缓存对象。(经过IBM的一个研究机构研究数据表明,基本上80%-98%的对象都会在年轻代的Eden区死掉从而本回收掉,所以说真正进入到老年代的对象很少,这也是为什么MinorGC比MajorGC更加频繁的原因)具体JVM内存垃圾回收过程描述如下 :1、对象在Eden区完成内存分配2、当Eden区满了,再创建对象,会因为申请不到空间,触发minorGC,进行young(eden+1survivor)区的垃圾回收3、minorGC时,Eden不能被回收的对象被放入到空的survivor(Eden肯定会被清空),另一个survivor里不能被GC回收的对象也会被放入这个survivor,始终保证一个survivor是空的4、当做第3步的时候,如果发现survivor满了,则这些对象被copy到old区,或者survivor并没有满,但是有些对象已经足够Old,也被放入Old区 XX:MaxTenuringThreshold5、当Old区被放满的之后,进行fullGC补充: MinorGC:年轻代所进行的垃圾回收,非常频繁,一般回收速度也比较快。 MajorGC:老年代进行的垃圾回收,发生一次MajorGC至少伴随一次MinorGC,一般比MinorGC速度慢十倍以上。 FullGC:整个堆内存进行的垃圾回收,很多时候是MajorGC 以后就是堆内存结构已经大致的垃圾回收过程。三、对象分配原则1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。四、垃圾收集器作为JVM中的核心之一垃圾收集器,主要完成的功能包括:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。所以说我们在实现垃圾收集器的同时就要实现两个算法一个是发现无用的对象第二就是回收该对象的内存。收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。发现无用对象只要的实现算法包括引用计数法和根搜索算法,引用计数法主要是JVM的早期实现方法,因为引用计数无法解决循环引用的问题,所以现在JVM实现的主要是根搜索算法,引用计数法:堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就不可用从而可以被回收。 根搜索算法:通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。目前的收集器主要有三种:串行收集器:使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高并行收集器:对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用并发收集器:可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用五、垃圾收集器的回收算法Copying算法:算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。 过程: 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。Mark-Sweep算法: 算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。 过程: 第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。它停止所有工作,收集器从根开始访问每一个活跃的节点,标记它所访问的每一个节点。走过所有引用后,收集就完成了,然后就对堆进行清除(即对堆中的每一个对象进行检查),所有没有标记的对象都作为垃圾回收并返回空闲列表。Mark-Compact算法: 算法:标记阶段与“Mark-Sweep”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。过程:此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。Sun JDK GC策略:新生代算法实现:Copying,Copying,Copying旧生代算发实现:Mark-Sweep-Compact,Mark –Compact,Mark –Sweep!!六、JvisuaVM 工具如果我们想优化自己的程序,那么我们就必须清楚的了解不同代码程序所消耗的性能多少,作为JDK的一部分,这个工具给我们提供了很大的帮助。这个工具可以在JDK的bin目录下找到,功能很强大,可以注意利用

auto_answer 2019-12-02 01:56:35 0 浏览量 回答数 0

回答

为什么80%的码农都做不了架构师?>>> hot3.png Java语言特性系列 Java5的新特性 Java6的新特性 Java7的新特性 Java8的新特性 Java9的新特性 Java10的新特性 Java11的新特性 Java12的新特性 Java13的新特性 序 本文主要讲述一下Java12的新特性 版本号 java -version openjdk version "12" 2019-03-19 OpenJDK Runtime Environment (build 12+33) OpenJDK 64-Bit Server VM (build 12+33, mixed mode) 从version信息可以看出是build 12+33 特性列表 189: Shenandoah: A Low-Pause-Time Garbage Collector (Experimental) Shenandoah GC是一个面向low-pause-time的垃圾收集器,它最初由Red Hat实现,支持aarch64及amd64 architecture;ZGC也是面向low-pause-time的垃圾收集器,不过ZGC是基于colored pointers来实现,而Shenandoah GC是基于brooks pointers来实现;如果要使用Shenandoah GC需要编译时--with-jvm-features选项带有shenandoahgc,然后启动时使用-XX:+UnlockExperimentalVMOptions -XX:+UseShenandoahGC 230: Microbenchmark Suite 在jdk源码里头新增了一套基础的microbenchmarks suite 325: Switch Expressions (Preview) 对switch进行了增强,除了使用statement还可以使用expression,比如原来的写法如下: switch (day) { case MONDAY: case FRIDAY: case SUNDAY: System.out.println(6); break; case TUESDAY: System.out.println(7); break; case THURSDAY: case SATURDAY: System.out.println(8); break; case WEDNESDAY: System.out.println(9); break; } 现在可以改为如下写法: switch (day) { case MONDAY, FRIDAY, SUNDAY -> System.out.println(6); case TUESDAY -> System.out.println(7); case THURSDAY, SATURDAY -> System.out.println(8); case WEDNESDAY -> System.out.println(9); } 以及在表达式返回值 int numLetters = switch (day) { case MONDAY, FRIDAY, SUNDAY -> 6; case TUESDAY -> 7; case THURSDAY, SATURDAY -> 8; case WEDNESDAY -> 9; }; 对于需要返回值的switch expression要么正常返回值要么抛出异常,以下这两种写法都是错误的 int i = switch (day) { case MONDAY -> { System.out.println("Monday"); // ERROR! Block doesn't contain a break with value } default -> 1; }; i = switch (day) { case MONDAY, TUESDAY, WEDNESDAY: break 0; default: System.out.println("Second half of the week"); // ERROR! Group doesn't contain a break with value }; 334: JVM Constants API 新增了JVM Constants API,具体来说就是java.base模块新增了java.lang.constant包,引入了ConstantDesc接口(ClassDesc、MethodTypeDesc、MethodHandleDesc这几个接口直接继承了ConstantDesc接口)以及Constable接口;ConstantDesc接口定义了resolveConstantDesc方法,Constable接口定义了describeConstable方法;String、Integer、Long、Float、Double均实现了这两个接口,而EnumDesc实现了ConstantDesc接口 340: One AArch64 Port, Not Two 64-bit Arm platform (arm64),也可以称之为aarch64;之前JDK有两个关于aarch64的实现,分别是src/hotspot/cpu/arm以及open/src/hotspot/cpu/aarch64,它们的实现重复了,为了集中精力更好地实现aarch64,该特性在源码中删除了open/src/hotspot/cpu/arm中关于64-bit的实现,保留其中32-bit的实现,于是open/src/hotspot/cpu/aarch64部分就成了64-bit ARM architecture的默认实现 341: Default CDS Archives java10的新特性JEP 310: Application Class-Data Sharing扩展了JDK5引入的Class-Data Sharing,支持application的Class-Data Sharing;Class-Data Sharing可以用于多个JVM共享class,提升启动速度,最早只支持system classes及serial GC,JDK9对其进行扩展以支持application classes及其他GC算法,并在JDK10中开源出来(以前是commercial feature);JDK11将-Xshare:off改为默认-Xshare:auto,以更加方便使用CDS特性;JDK12的这个特性即在64-bit平台上编译jdk的时候就默认在${JAVA_HOME}/lib/server目录下生成一份名为classes.jsa的默认archive文件(大概有18M)方便大家使用 344: Abortable Mixed Collections for G1 G1在garbage collection的时候,一旦确定了collection set(CSet)开始垃圾收集这个过程是without stopping的,当collection set过大的时候,此时的STW时间会过长超出目标pause time,这种情况在mixed collections时候比较明显。这个特性启动了一个机制,当选择了一个比较大的collection set,允许将其分为mandatory及optional两部分(当完成mandatory的部分,如果还有剩余时间则会去处理optional部分)来将mixed collections从without stopping变为abortable,以更好满足指定pause time的目标 346: Promptly Return Unused Committed Memory from G1 G1目前只有在full GC或者concurrent cycle的时候才会归还内存,由于这两个场景都是G1极力避免的,因此在大多数场景下可能不会及时会还committed Java heap memory给操作系统。JDK12的这个特性新增了两个参数分别是G1PeriodicGCInterval及G1PeriodicGCSystemLoadThreshold,设置为0的话,表示禁用。当上一次garbage collection pause过去G1PeriodicGCInterval(milliseconds)时间之后,如果getloadavg()(one-minute)低于G1PeriodicGCSystemLoadThreshold指定的阈值,则触发full GC或者concurrent GC(如果开启G1PeriodicGCInvokesConcurrent),GC之后Java heap size会被重写调整,然后多余的内存将会归还给操作系统 细项解读 上面列出的是大方面的特性,除此之外还有一些api的更新及废弃,主要见JDK 12 Release Notes,这里举几个例子。 添加项 支持unicode 11 支持Compact Number Formatting 使用实例如下 @Test public void testCompactNumberFormat(){ var cnf = NumberFormat.getCompactNumberInstance(Locale.CHINA, NumberFormat.Style.SHORT); System.out.println(cnf.format(1_0000)); System.out.println(cnf.format(1_9200)); System.out.println(cnf.format(1_000_000)); System.out.println(cnf.format(1L << 30)); System.out.println(cnf.format(1L << 40)); System.out.println(cnf.format(1L << 50)); } 输出 1万 2万 100万 11亿 1兆 1126兆 String支持transform、indent操作 @Test public void testStringTransform(){ System.out.println("hello".transform(new Function<String, Integer>() { @Override public Integer apply(String s) { return s.hashCode(); } })); } @Test public void testStringIndent(){ System.out.println("hello".indent(3)); } Files新增mismatch方法 @Test public void testFilesMismatch() throws IOException { FileWriter fileWriter = new FileWriter("/tmp/a.txt"); fileWriter.write("a"); fileWriter.write("b"); fileWriter.write("c"); fileWriter.close(); FileWriter fileWriterB = new FileWriter("/tmp/b.txt"); fileWriterB.write("a"); fileWriterB.write("1"); fileWriterB.write("c"); fileWriterB.close(); System.out.println(Files.mismatch(Path.of("/tmp/a.txt"),Path.of("/tmp/b.txt"))); } Collectors新增teeing方法用于聚合两个downstream的结果 @Test public void testCollectorTeeing(){ var result = Stream.of("Devoxx","Voxxed Days","Code One","Basel One") .collect(Collectors.teeing(Collectors.filtering(n -> n.contains("xx"),Collectors.toList()), Collectors.filtering(n -> n.endsWith("One"),Collectors.toList()), (List list1, List list2) -> List.of(list1,list2) )); System.out.println(result.get(0)); System.out.println(result.get(1)); } CompletionStage新增exceptionallyAsync、exceptionallyCompose、exceptionallyComposeAsync方法 @Test public void testExceptionallyAsync() throws ExecutionException, InterruptedException { LOGGER.info("begin"); int result = CompletableFuture.supplyAsync(() -> { LOGGER.info("calculate"); int i = 1/0; return 100; }).exceptionallyAsync((t) -> { LOGGER.info("error error:{}",t.getMessage()); return 0; }).get(); LOGGER.info("result:{}",result); } JDK12之前CompletionStage只有一个exceptionally,该方法体在主线程执行,JDK12新增了exceptionallyAsync、exceptionallyComposeAsync方法允许方法体在异步线程执行,同时新增了exceptionallyCompose方法支持在exceptionally的时候构建新的CompletionStage Allocation of Old Generation of Java Heap on Alternate Memory Devices G1及Parallel GC引入experimental特性,允许将old generation分配在诸如NV-DIMM memory的alternative memory device ZGC: Concurrent Class Unloading ZGC在JDK11的时候还不支持class unloading,JDK12对ZGC支持了Concurrent Class Unloading,默认是开启,使用-XX:-ClassUnloading可以禁用 新增-XX:+ExtensiveErrorReports -XX:+ExtensiveErrorReports可以用于在jvm crash的时候收集更多的报告信息到hs_err .log文件中,product builds中默认是关闭的,要开启的话,需要自己添加-XX:+ExtensiveErrorReports参数 新增安全相关的改进 支持java.security.manager系统属性,当设置为disallow的时候,则不使用SecurityManager以提升性能,如果此时调用System.setSecurityManager则会抛出UnsupportedOperationException keytool新增-groupname选项允许在生成key pair的时候指定一个named group 新增PKCS12 KeyStore配置属性用于自定义PKCS12 keystores的生成 Java Flight Recorder新增了security-related的event 支持ChaCha20 and Poly1305 TLS Cipher Suites jdeps Reports Transitive Dependences jdeps的--print-module-deps, --list-deps, 以及--list-reduce-deps选项得到增强,新增--no-recursive用于non-transitive的依赖分析,--ignore-missing-deps用于suppress missing dependence errors 移除项 移除com.sun.awt.SecurityWarnin 移除FileInputStream、FileOutputStream、Java.util.ZipFile/Inflator/Deflator的finalize方法 移除GTE CyberTrust Global Root 移除javac的-source, -target对6及1.6的支持,同时移除--release选项 废弃项 废弃的API列表见deprecated-list 废弃-XX:+/-MonitorInUseLists选项 废弃Default Keytool的-keyalg值 已知问题 Swing不支持GTK+ 3.20及以后的版本 在使用JVMCI Compiler(比如Graal)的时候,JVMTI的can_pop_frame及can_force_early_return的capabilities是被禁用的 其他事项 如果用户没有指定user.timezone且从操作系统获取的为空,那么user.timezone属性的初始值为空变为null java.net.URLPermission的行为发生轻微变化,以前它会忽略url中的query及fragment部分,这次改动新增query及fragment部分,即scheme : // authority [ / path ]变动为scheme : // authority [ / path ] [ ignored-query-or-fragment ] javax.net.ssl.SSLContext API及Java Security Standard Algorithm Names规范移除了必须实现TLSv1及TLSv1.1的规定 小结 java12不是LTS(Long-Term Support)版本(oracle版本才有LTS),oracle对该版本的support周期为6个月。这个版本主要有几个更新点,一个是语法层更新,一个是API层面的更新,另外主要是GC方面的更新。 语法层面引入了preview版本的Switch Expressions;API层面引入了JVM Constants API,引入CompactNumberFormat,让NumberFormat支持COMPACTSTYLE,对String、Files、Collectors、CompletionStage等新增方法;GC方面引入了experimental版本的Shenandoah GC,不过oracle build的openjdk没有enable Shenandoah GC support;另外主要对ZGC及G1 GC进行了改进 其中JDK12对ZGC支持了Concurrent Class Unloading,默认是开启,使用-XX:-ClassUnloading可以禁用;对于G1 GC则新增支持Abortable Mixed Collections以及Promptly Return Unused Committed Memory特性 doc openjdk 12 JDK 12 Release Notes Java 12 Released with Experimental Switch Expressions and Shenandoah GC Definitive Guide To Java 12 Definitive Guide To Switch Expressions In Java 12 JVM Class Data Sharing JEP 310: Application Class-Data Sharing Improve Launch Times On Java 10 With Application Class-Data Sharing Make -Xshare:auto the default for server VM Using application class-data sharing Java Performance Tuning News February 2018 JDK 12 Security Enhancements 转载于:https://my.oschina.net/go4it/blog/3025254

游客fog5k2xgyignm 2019-12-02 02:18:51 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 34170 浏览量 回答数 10

问题

堆 7月13日 【今日算法】

游客ih62co2qqq5ww 2020-07-14 10:51:11 13 浏览量 回答数 1

回答

摘要:面试也是一门学问,在面试之前做好充分的准备则是成功的必须条件,而程序员在代码面试时,常会遇到编写算法的相关问题,比如排序、二叉树遍历等等。 在程序员的职业生涯中,算法亦算是一门基础课程,尤其是在面试的时候,很多公司都会让程序员编写一些算法实例,例如快速排序、二叉树查找等等。 本文总结了程序员在代码面试中最常遇到的10大算法类型,想要真正了解这些算法的原理,还需程序员们花些功夫。 1.String/Array/Matrix 在Java中,String是一个包含char数组和其它字段、方法的类。如果没有IDE自动完成代码,下面这个方法大家应该记住: String/arrays很容易理解,但与它们有关的问题常常需要高级的算法去解决,例如动态编程、递归等。 下面列出一些需要高级算法才能解决的经典问题: Evaluate Reverse Polish Notation Longest Palindromic Substring 单词分割 字梯 Median of Two Sorted Arrays 正则表达式匹配 合并间隔 插入间隔 Two Sum 3Sum 4Sum 3Sum Closest String to Integer 合并排序数组 Valid Parentheses 实现strStr() Set Matrix Zeroes 搜索插入位置 Longest Consecutive Sequence Valid Palindrome 螺旋矩阵 搜索一个二维矩阵 旋转图像 三角形 Distinct Subsequences Total Maximum Subarray 删除重复的排序数组 删除重复的排序数组2 查找没有重复的最长子串 包含两个独特字符的最长子串 Palindrome Partitioning 2.链表 在Java中实现链表是非常简单的,每个节点都有一个值,然后把它链接到下一个节点。 class Node { int val; Node next; Node(int x) { val = x; next = null; } } 比较流行的两个链表例子就是栈和队列。 栈(Stack) class Stack{ Node top; public Node peek(){ if(top != null){ return top; } return null; } public Node pop(){ if(top == null){ return null; }else{ Node temp = new Node(top.val); top = top.next; return temp; } } public void push(Node n){ if(n != null){ n.next = top; top = n; } } } 队列(Queue) class Queue{ Node first, last;   public void enqueue(Node n){ if(first == null){ first = n; last = first; }else{ last.next = n; last = n; } }   public Node dequeue(){ if(first == null){ return null; }else{ Node temp = new Node(first.val); first = first.next; return temp; } } } 值得一提的是,Java标准库中已经包含一个叫做Stack的类,链表也可以作为一个队列使用(add()和remove())。(链表实现队列接口)如果你在面试过程中,需要用到栈或队列解决问题时,你可以直接使用它们。 在实际中,需要用到链表的算法有: 插入两个数字 重新排序列表 链表周期 Copy List with Random Pointer 合并两个有序列表 合并多个排序列表 从排序列表中删除重复的 分区列表 LRU缓存 3.树&堆 这里的树通常是指二叉树。 class TreeNode{ int value; TreeNode left; TreeNode right; } 下面是一些与二叉树有关的概念: 二叉树搜索:对于所有节点,顺序是:left children <= current node <= right children; 平衡vs.非平衡:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树; 满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点; 完美二叉树(Perfect Binary Tree):一个满二叉树,所有叶子都在同一个深度或同一级,并且每个父节点都有两个子节点; 完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。 堆(Heap)是一个基于树的数据结构,也可以称为优先队列( PriorityQueue),在队列中,调度程序反复提取队列中第一个作业并运行,因而实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权。堆即为解决此类问题设计的一种数据结构。 下面列出一些基于二叉树和堆的算法: 二叉树前序遍历 二叉树中序遍历 二叉树后序遍历 字梯 验证二叉查找树 把二叉树变平放到链表里 二叉树路径和 从前序和后序构建二叉树 把有序数组转换为二叉查找树 把有序列表转为二叉查找树 最小深度二叉树 二叉树最大路径和 平衡二叉树 4.Graph 与Graph相关的问题主要集中在深度优先搜索和宽度优先搜索。深度优先搜索非常简单,你可以从根节点开始循环整个邻居节点。下面是一个非常简单的宽度优先搜索例子,核心是用队列去存储节点。 第一步,定义一个GraphNode class GraphNode{ int val; GraphNode next; GraphNode[] neighbors; boolean visited; GraphNode(int x) { val = x; } GraphNode(int x, GraphNode[] n){ val = x; neighbors = n; } public String toString(){ return "value: "+ this.val; } } 第二步,定义一个队列 class Queue{ GraphNode first, last; public void enqueue(GraphNode n){ if(first == null){ first = n; last = first; }else{ last.next = n; last = n; } } public GraphNode dequeue(){ if(first == null){ return null; }else{ GraphNode temp = new GraphNode(first.val, first.neighbors); first = first.next; return temp; } } } 第三步,使用队列进行宽度优先搜索 public class GraphTest { public static void main(String[] args) { GraphNode n1 = new GraphNode(1); GraphNode n2 = new GraphNode(2); GraphNode n3 = new GraphNode(3); GraphNode n4 = new GraphNode(4); GraphNode n5 = new GraphNode(5); n1.neighbors = new GraphNode[]{n2,n3,n5}; n2.neighbors = new GraphNode[]{n1,n4}; n3.neighbors = new GraphNode[]{n1,n4,n5}; n4.neighbors = new GraphNode[]{n2,n3,n5}; n5.neighbors = new GraphNode[]{n1,n3,n4}; breathFirstSearch(n1, 5); } public static void breathFirstSearch(GraphNode root, int x){ if(root.val == x) System.out.println("find in root"); Queue queue = new Queue(); root.visited = true; queue.enqueue(root); while(queue.first != null){ GraphNode c = (GraphNode) queue.dequeue(); for(GraphNode n: c.neighbors){ if(!n.visited){ System.out.print(n + " "); n.visited = true; if(n.val == x) System.out.println("Find "+n); queue.enqueue(n); } } } } } 输出结果: value: 2 value: 3 value: 5 Find value: 5 value: 4 实际中,基于Graph需要经常用到的算法: 克隆Graph 15 2014-04-24 18:55:03回复数 293 只看楼主 引用 举报 楼主 柔软的胖纸 Bbs1 5.排序 不同排序算法的时间复杂度,大家可以到wiki上查看它们的基本思想。 BinSort、Radix Sort和CountSort使用了不同的假设,所有,它们不是一般的排序方法。 下面是这些算法的具体实例,另外,你还可以阅读:Java开发者在实际操作中是如何排序的。 归并排序 快速排序 插入排序 6.递归和迭代 下面通过一个例子来说明什么是递归。 问题: 这里有n个台阶,每次能爬1或2节,请问有多少种爬法? 步骤1:查找n和n-1之间的关系 为了获得n,这里有两种方法:一个是从第一节台阶到n-1或者从2到n-2。如果f(n)种爬法刚好是爬到n节,那么f(n)=f(n-1)+f(n-2)。 步骤2:确保开始条件是正确的 f(0) = 0; f(1) = 1; public static int f(int n){ if(n <= 2) return n; int x = f(n-1) + f(n-2); return x; } 递归方法的时间复杂度指数为n,这里会有很多冗余计算。 f(5) f(4) + f(3) f(3) + f(2) + f(2) + f(1) f(2) + f(1) + f(2) + f(2) + f(1) 该递归可以很简单地转换为迭代。 public static int f(int n) { if (n <= 2){ return n; } int first = 1, second = 2; int third = 0; for (int i = 3; i <= n; i++) { third = first + second; first = second; second = third; } return third; } 在这个例子中,迭代花费的时间要少些。关于迭代和递归,你可以去 这里看看。 7.动态规划 动态规划主要用来解决如下技术问题: 通过较小的子例来解决一个实例; 对于一个较小的实例,可能需要许多个解决方案; 把较小实例的解决方案存储在一个表中,一旦遇上,就很容易解决; 附加空间用来节省时间。 上面所列的爬台阶问题完全符合这四个属性,因此,可以使用动态规划来解决: public static int[] A = new int[100]; public static int f3(int n) { if (n <= 2) A[n]= n; if(A[n] > 0) return A[n]; else A[n] = f3(n-1) + f3(n-2);//store results so only calculate once! return A[n]; } 一些基于动态规划的算法: 编辑距离 最长回文子串 单词分割 最大的子数组 8.位操作 位操作符: 从一个给定的数n中找位i(i从0开始,然后向右开始) public static boolean getBit(int num, int i){ int result = num & (1<<i); if(result == 0){ return false; }else{ return true; } } 例如,获取10的第二位: i=1, n=10 1<<1= 10 1010&10=10 10 is not 0, so return true; 典型的位算法: Find Single Number Maximum Binary Gap 9.概率 通常要解决概率相关问题,都需要很好地格式化问题,下面提供一个简单的例子: 有50个人在一个房间,那么有两个人是同一天生日的可能性有多大?(忽略闰年,即一年有365天) 算法: public static double caculateProbability(int n){ double x = 1; for(int i=0; i<n; i++){ x *= (365.0-i)/365.0; } double pro = Math.round((1-x) * 100); return pro/100; } 结果:calculateProbability(50) = 0.97 10.组合和排列 组合和排列的主要差别在于顺序是否重要。 例1: 1、2、3、4、5这5个数字,输出不同的顺序,其中4不可以排在第三位,3和5不能相邻,请问有多少种组合? 例2: 有5个香蕉、4个梨、3个苹果,假设每种水果都是一样的,请问有多少种不同的组合? 基于它们的一些常见算法 排列 排列2 排列顺序 来自: ProgramCreek 转载于:https://bbs.csdn.net/topics/390768965

养狐狸的猫 2019-12-02 02:11:29 0 浏览量 回答数 0

问题

【每日一题】Java知识大测验 | 持续更新

游客ih62co2qqq5ww 2020-03-27 23:52:17 473 浏览量 回答数 1

问题

【算法】五分钟算法小知识:二叉堆详解实现优先级队列

游客ih62co2qqq5ww 2020-05-12 16:17:02 4 浏览量 回答数 1

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SSL证书 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 2020中国云原生 阿里云云栖号