• 关于 java换行符问题 的搜索结果

回答

哈哈,这个问题描述的太过简单了,别人的回答顶多是“节哀”######确实######节哀###### debug不是可以调试吗?区别啊。 节哀吧。。。 ###### 节哀###### 谢谢,问题找到了。 通过diffeclipse导出的jar包和ant build的jar包不同,反编译不同的class文件后发现原因。 原因:linux和windows换行符不同。代码是在linux平台下写出的,现在windows下编译打包。 eclipse导出时,注释代码没能正常换行,影响到了java代码。 解决:将代码拷出,再拷入规范换行符或者通过ant build.xml打包。

爱吃鱼的程序员 2020-05-30 23:43:28 0 浏览量 回答数 0

问题

问大牛一个换行符和制表符的问题? 400 报错

爱吃鱼的程序员 2020-06-03 14:33:02 2 浏览量 回答数 1

回答

不知道你说的是什么编译器什么语言,如果是C#的话,那么标识符内部不能换行/空格。之间可以。比如intabc=123;其中intabc=123;这些每个是一个整体,内部不可以分割。你可以intabc=123;或者intabc=123;但是不能intabc=123;或者intabc=123;你要知道,编程语言是英语为母语的人发明的,那么和英文一样,单词中间不能拆分,否则乱套了。比如nowhere,是一个单词,但是如果可以随意拆分,是nowhere还是nowhere?那不搞不清楚了么 忽略空格,换行是在你输入正确的前提下.比如inta=0; intb=10;这样的忽略没问题 对了,字符串的空格,或者突然在一个空白行上打上很多空格符号,是有问题的!尤其是PYTHON语言 如果你写成 inta=10000; 是没有问题的,java语法中是合法的。但是你写成 inta=10000;//orinta=10000; java语法无法解析100[空格][空格]00是什么东西,自然会报错,你可以在ide工具中查看错误信息。 可见,这是个意外符号,也就是java基础中的,数字变量中是不能有空格的。 C语言里面换行要加\

爱吃鱼的程序员 2020-06-23 20:49:55 0 浏览量 回答数 0

阿里云限量爆款产品特惠抢购

最新性价比爆款,每日10:00限量抢购!还可领取多种产品代金券福利,限量神券抢完即止。

问题

是否可以从Java控制台中删除新行?

montos 2020-03-26 15:41:10 6 浏览量 回答数 2

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

Java技术1000问(3)【精品问答】

问问小秘 2020-06-02 14:27:10 42 浏览量 回答数 1

问题

JSP表单提交给servlet,获取表单数据

长安归故里. 2020-01-08 16:06:11 0 浏览量 回答数 1

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

问题

如何使用regex、Java查找换行后开始的单词?

小六码奴 2019-12-01 20:00:53 10 浏览量 回答数 1

回答

我的问题是我不确定是否需要先将值存储到本地数组“ array”中,然后将所述数组分配给类Movie actors数组,还是需要直接将值分配给类Movie actors数组。如果是这样,我不确定该怎么做。 import java.util.Arrays; import java.util.Scanner; class Movie { private String[] actors; private String director; private int year; Movie() { } public Movie(String[] actors, String director, int year) { this.actors = actors; this.director = director; this.year = year; } public String[] getActors() { return actors; } public void setActors(String[] actors) { this.actors = actors; } public String getDirector() { return director; } public void setDirector(String director) { this.director = director; } public int getYear() { return year; } public void setYear(int year) { this.year = year; } @Override public String toString() { return "Movie [actors=" + Arrays.toString(actors) + ", director=" + director + ", year=" + year + "]"; } } public class Main { public static void main(String[] argv) throws Exception { // Scanner initialization Scanner input = new Scanner(System.in); System.out.print("How many actors star in this movie?: "); int num = Integer.parseInt(input.nextLine()); String array[] = new String[num]; System.out.println("Enter the " + num + " actors starred now"); for (int i = 0; i < array.length; i++) { array[i] = input.nextLine(); } System.out.print("Enter the name of the director:"); String director = input.nextLine(); System.out.print("Enter the release year:"); int year = Integer.parseInt(input.nextLine()); Movie movie1 = new Movie(array, director, year); // Alternatively Movie movie2 = new Movie(); movie2.setActors(array); movie2.setDirector(director); movie2.setYear(year); // Display System.out.println(movie1); } } 我的另一个问题是上面提到的一个问题,如果我输入了3个要存储的名称,则只能输入2个 使用Scanner::nextLine代替Scanner::nextInt。您面临的问题是因为将int输入分配给后的换行符(Enter)array[0]。在使用next()或nextFoo()之后,检查扫描仪是否跳过nextLine()?了解更多信息。 运行示例: How many actors star in this movie?: 2 Enter the 2 actors starred now James Bond Enter the name of the director:Xyz Enter the release year:2010 Movie [actors=[James, Bond], director=Xyz, year=2010] 回答来源:Stack Overflow

montos 2020-03-25 20:17:48 0 浏览量 回答数 0

回答

本文主要介绍Java中的自动拆箱与自动装箱的有关知识。 基本数据类型 基本类型,或者叫做内置类型,是Java中不同于类(Class)的特殊类型。它们是我们编程中使用最频繁的类型。 Java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化。 Java基本类型共有八种,基本类型可以分为三类: 字符类型char 布尔类型boolean 数值类型byte、short、int、long、float、double。 数值类型又可以分为整数类型byte、short、int、long和浮点数类型float、double。 Java中的数值类型不存在无符号的,它们的取值范围是固定的,不会随着机器硬件环境或者操作系统的改变而改变。 实际上,Java中还存在另外一种基本类型void,它也有对应的包装类 java.lang.Void,不过我们无法直接对它们进行操作。 基本数据类型有什么好处 我们都知道在Java语言中,new一个对象是存储在堆里的,我们通过栈中的引用来使用这些对象;所以,对象本身来说是比较消耗资源的。 对于经常用到的类型,如int等,如果我们每次使用这种变量的时候都需要new一个Java对象的话,就会比较笨重。所以,和C++一样,Java提供了基本数据类型,这种数据的变量不需要使用new创建,他们不会在堆上创建,而是直接在栈内存中存储,因此会更加高效。 整型的取值范围 Java中的整型主要包含byte、short、int和long这四种,表示的数字范围也是从小到大的,之所以表示范围不同主要和他们存储数据时所占的字节数有关。 先来个简答的科普,1字节=8位(bit)。java中的整型属于有符号数。 先来看计算中8bit可以表示的数字: 最小值:10000000 (-128)(-2^7) 最大值:01111111(127)(2^7-1) 整型的这几个类型中, byte:byte用1个字节来存储,范围为-128(-2^7)到127(2^7-1),在变量初始化的时候,byte类型的默认值为0。 short:short用2个字节存储,范围为-32,768 (-2^15)到32,767 (2^15-1),在变量初始化的时候,short类型的默认值为0,一般情况下,因为Java本身转型的原因,可以直接写为0。 int:int用4个字节存储,范围为-2,147,483,648 (-2^31)到2,147,483,647 (2^31-1),在变量初始化的时候,int类型的默认值为0。 long:long用8个字节存储,范围为-9,223,372,036,854,775,808 (-2^63)到9,223,372,036, 854,775,807 (2^63-1),在变量初始化的时候,long类型的默认值为0L或0l,也可直接写为0。 超出范围怎么办 上面说过了,整型中,每个类型都有一定的表示范围,但是,在程序中有些计算会导致超出表示范围,即溢出。如以下代码: int i = Integer.MAX_VALUE; int j = Integer.MAX_VALUE; int k = i + j; System.out.println("i (" + i + ") + j (" + j + ") = k (" + k + ")"); 输出结果:i (2147483647) + j (2147483647) = k (-2) **这就是发生了溢出,溢出的时候并不会抛异常,也没有任何提示。**所以,在程序中,使用同类型的数据进行运算的时候,一定要注意数据溢出的问题。 包装类型 Java语言是一个面向对象的语言,但是Java中的基本数据类型却是不面向对象的,这在实际使用时存在很多的不便,为了解决这个不足,在设计类时为每个基本数据类型设计了一个对应的类进行代表,这样八个和基本数据类型对应的类统称为包装类(Wrapper Class)。 包装类均位于java.lang包,包装类和基本数据类型的对应关系如下表所示 基本数据类型包装类byteBytebooleanBooleanshortShortcharCharacterintIntegerlongLongfloatFloatdoubleDouble 在这八个类名中,除了Integer和Character类以后,其它六个类的类名和基本数据类型一致,只是类名的第一个字母大写即可。 为什么需要包装类 很多人会有疑问,既然Java中为了提高效率,提供了八种基本数据类型,为什么还要提供包装类呢? 这个问题,其实前面已经有了答案,因为Java是一种面向对象语言,很多地方都需要使用对象而不是基本数据类型。比如,在集合类中,我们是无法将int 、double等类型放进去的。因为集合的容器要求元素是Object类型。 为了让基本类型也具有对象的特征,就出现了包装类型,它相当于将基本类型“包装起来”,使得它具有了对象的性质,并且为其添加了属性和方法,丰富了基本类型的操作。 拆箱与装箱 那么,有了基本数据类型和包装类,肯定有些时候要在他们之间进行转换。比如把一个基本数据类型的int转换成一个包装类型的Integer对象。 我们认为包装类是对基本类型的包装,所以,把基本数据类型转换成包装类的过程就是打包装,英文对应于boxing,中文翻译为装箱。 反之,把包装类转换成基本数据类型的过程就是拆包装,英文对应于unboxing,中文翻译为拆箱。 在Java SE5之前,要进行装箱,可以通过以下代码: Integer i = new Integer(10); 自动拆箱与自动装箱 在Java SE5中,为了减少开发人员的工作,Java提供了自动拆箱与自动装箱功能。 自动装箱: 就是将基本数据类型自动转换成对应的包装类。 自动拆箱:就是将包装类自动转换成对应的基本数据类型。 Integer i =10; //自动装箱 int b= i; //自动拆箱 Integer i=10 可以替代 Integer i = new Integer(10);,这就是因为Java帮我们提供了自动装箱的功能,不需要开发者手动去new一个Integer对象。 自动装箱与自动拆箱的实现原理 既然Java提供了自动拆装箱的能力,那么,我们就来看一下,到底是什么原理,Java是如何实现的自动拆装箱功能。 我们有以下自动拆装箱的代码: public static void main(String[]args){ Integer integer=1; //装箱 int i=integer; //拆箱 } 对以上代码进行反编译后可以得到以下代码: public static void main(String[]args){ Integer integer=Integer.valueOf(1); int i=integer.intValue(); } 从上面反编译后的代码可以看出,int的自动装箱都是通过Integer.valueOf()方法来实现的,Integer的自动拆箱都是通过integer.intValue来实现的。如果读者感兴趣,可以试着将八种类型都反编译一遍 ,你会发现以下规律: 自动装箱都是通过包装类的valueOf()方法来实现的.自动拆箱都是通过包装类对象的xxxValue()来实现的。 哪些地方会自动拆装箱 我们了解过原理之后,在来看一下,什么情况下,Java会帮我们进行自动拆装箱。前面提到的变量的初始化和赋值的场景就不介绍了,那是最简单的也最容易理解的。 我们主要来看一下,那些可能被忽略的场景。 场景一、将基本数据类型放入集合类 我们知道,Java中的集合类只能接收对象类型,那么以下代码为什么会不报错呢? List<Integer> li = new ArrayList<>(); for (int i = 1; i < 50; i ++){ li.add(i); } 将上面代码进行反编译,可以得到以下代码: List<Integer> li = new ArrayList<>(); for (int i = 1; i < 50; i += 2){ li.add(Integer.valueOf(i)); } 以上,我们可以得出结论,当我们把基本数据类型放入集合类中的时候,会进行自动装箱。 场景二、包装类型和基本类型的大小比较 有没有人想过,当我们对Integer对象与基本类型进行大小比较的时候,实际上比较的是什么内容呢?看以下代码: Integer a=1; System.out.println(a==1?"等于":"不等于"); Boolean bool=false; System.out.println(bool?"真":"假"); 对以上代码进行反编译,得到以下代码: Integer a=1; System.out.println(a.intValue()==1?"等于":"不等于"); Boolean bool=false; System.out.println(bool.booleanValue?"真":"假"); 可以看到,包装类与基本数据类型进行比较运算,是先将包装类进行拆箱成基本数据类型,然后进行比较的。 场景三、包装类型的运算 有没有人想过,当我们对Integer对象进行四则运算的时候,是如何进行的呢?看以下代码: Integer i = 10; Integer j = 20; System.out.println(i+j); 反编译后代码如下: Integer i = Integer.valueOf(10); Integer j = Integer.valueOf(20); System.out.println(i.intValue() + j.intValue()); 我们发现,两个包装类型之间的运算,会被自动拆箱成基本类型进行。 场景四、三目运算符的使用 这是很多人不知道的一个场景,作者也是一次线上的血淋淋的Bug发生后才了解到的一种案例。看一个简单的三目运算符的代码: boolean flag = true; Integer i = 0; int j = 1; int k = flag ? i : j; 很多人不知道,其实在int k = flag ? i : j;这一行,会发生自动拆箱。反编译后代码如下: boolean flag = true; Integer i = Integer.valueOf(0); int j = 1; int k = flag ? i.intValue() : j; System.out.println(k); 这其实是三目运算符的语法规范。当第二,第三位操作数分别为基本类型和对象时,其中的对象就会拆箱为基本类型进行操作。 因为例子中,flag ? i : j;片段中,第二段的i是一个包装类型的对象,而第三段的j是一个基本类型,所以会对包装类进行自动拆箱。如果这个时候i的值为null,那么就会发生NPE。(自动拆箱导致空指针异常) 场景五、函数参数与返回值 这个比较容易理解,直接上代码了: //自动拆箱 public int getNum1(Integer num) { return num; } //自动装箱 public Integer getNum2(int num) { return num; } 自动拆装箱与缓存 Java SE的自动拆装箱还提供了一个和缓存有关的功能,我们先来看以下代码,猜测一下输出结果: public static void main(String... strings) { Integer integer1 = 3; Integer integer2 = 3; if (integer1 == integer2) System.out.println("integer1 == integer2"); else System.out.println("integer1 != integer2"); Integer integer3 = 300; Integer integer4 = 300; if (integer3 == integer4) System.out.println("integer3 == integer4"); else System.out.println("integer3 != integer4"); } 我们普遍认为上面的两个判断的结果都是false。虽然比较的值是相等的,但是由于比较的是对象,而对象的引用不一样,所以会认为两个if判断都是false的。在Java中,==比较的是对象应用,而equals比较的是值。所以,在这个例子中,不同的对象有不同的引用,所以在进行比较的时候都将返回false。奇怪的是,这里两个类似的if条件判断返回不同的布尔值。 上面这段代码真正的输出结果: integer1 == integer2 integer3 != integer4 原因就和Integer中的缓存机制有关。在Java 5中,在Integer的操作上引入了一个新功能来节省内存和提高性能。整型对象通过使用相同的对象引用实现了缓存和重用。 适用于整数值区间-128 至 +127。 只适用于自动装箱。使用构造函数创建对象不适用。 具体的代码实现可以阅读Java中整型的缓存机制一文,这里不再阐述。 我们只需要知道,当需要进行自动装箱时,如果数字在-128至127之间时,会直接使用缓存中的对象,而不是重新创建一个对象。 其中的javadoc详细的说明了缓存支持-128到127之间的自动装箱过程。最大值127可以通过-XX:AutoBoxCacheMax=size修改。 实际上这个功能在Java 5中引入的时候,范围是固定的-128 至 +127。后来在Java 6中,可以通过java.lang.Integer.IntegerCache.high设置最大值。 这使我们可以根据应用程序的实际情况灵活地调整来提高性能。到底是什么原因选择这个-128到127范围呢?因为这个范围的数字是最被广泛使用的。 在程序中,第一次使用Integer的时候也需要一定的额外时间来初始化这个缓存。 在Boxing Conversion部分的Java语言规范(JLS)规定如下: 如果一个变量p的值是: -128至127之间的整数(§3.10.1) true 和 false的布尔值 (§3.10.3) ‘\u0000’至 ‘\u007f’之间的字符(§3.10.4) 范围内的时,将p包装成a和b两个对象时,可以直接使用a==b判断a和b的值是否相等。 自动拆装箱带来的问题 当然,自动拆装箱是一个很好的功能,大大节省了开发人员的精力,不再需要关心到底什么时候需要拆装箱。但是,他也会引入一些问题。 包装对象的数值比较,不能简单的使用==,虽然-128到127之间的数字可以,但是这个范围之外还是需要使用equals比较。 前面提到,有些场景会进行自动拆装箱,同时也说过,由于自动拆箱,如果包装类对象为null,那么自动拆箱时就有可能抛出NPE。 如果一个for循环中有大量拆装箱操作,会浪费很多资源。 参考资料 Java的自动拆装箱

montos 2020-06-01 21:24:01 0 浏览量 回答数 0

问题

【阿里云产品公测】简单日志服务SLS使用评测含教程

mr_wid 2019-12-01 21:08:11 36639 浏览量 回答数 20

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:44 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:44 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:45 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:45 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:44 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:45 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:44 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:43 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:44 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:45 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:45 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:43 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:44 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 用户可以在HTTP请求中增加 Authorization 的Header来包含签名(Signature)信息,表明这个消息已被授权。 Authorization字段计算的方法 Authorization = "OSS " + AccessKeyId + ":" + Signature Signature = base64(hmac-sha1(AccessKeySecret, VERB + "\n" + Content-MD5 + "\n" + Content-Type + "\n" + Date + "\n" + CanonicalizedOSSHeaders + CanonicalizedResource)) AccessKeySecret 表示签名所需的密钥 VERB表示HTTP 请求的Method,主要有PUT,GET,POST,HEAD,DELETE等 \n 表示换行符 Content-MD5 表示请求内容数据的MD5值,对消息内容(不包括头部)计算MD5值获得128比特位数字,对该数字进行base64编码而得到。该请求头可用于消息合法性的检查(消息内容是否与发送时一致),如”eB5eJF1ptWaXm4bijSPyxw==”,也可以为空。详情参看RFC2616 Content-MD5。 Content-Type 表示请求内容的类型,如”application/octet-stream”,也可以为空 Date 表示此次操作的时间,且必须为GMT格式,如”Sun, 22 Nov 2015 08:16:38 GMT” CanonicalizedOSSHeaders 表示以 x-oss- 为前缀的http header的字典序排列 CanonicalizedResource 表示用户想要访问的OSS资源 其中,Date和CanonicalizedResource不能为空;如果请求中的Date时间和OSS服务器的时间差15分钟以上,OSS服务器将拒绝该服务,并返回HTTP 403错误。 构建CanonicalizedOSSHeaders的方法 所有以 x-oss- 为前缀的HTTP Header被称为CanonicalizedOSSHeaders。它的构建方法如下: 将所有以 x-oss- 为前缀的HTTP请求头的名字转换成 小写 。如X-OSS-Meta-Name: TaoBao转换成x-oss-meta-name: TaoBao。 如果请求是以STS获得的AccessKeyId和AccessKeySecret发送时,还需要将获得的security-token值,以 x-oss-security-token:security-token 的形式加入到签名字符串中。 将上一步得到的所有HTTP请求头按照名字的字典序进行升序排列。 删除请求头和内容之间分隔符两端出现的任何空格。如x-oss-meta-name: TaoBao转换成:x-oss-meta-name:TaoBao。 将每一个头和内容用 \n 分隔符分隔拼成最后的CanonicalizedOSSHeaders。 说明 CanonicalizedOSSHeaders可以为空,无需添加最后的 \n。 如果只有一个,则如 x-oss-meta-a\n,注意最后的\n。 如果有多个,则如 x-oss-meta-a:a\nx-oss-meta-b:b\nx-oss-meta-c:c\n, 注意最后的\n。 构建CanonicalizedResource的方法 用户发送请求中想访问的OSS目标资源被称为CanonicalizedResource。它的构建方法如下: 将CanonicalizedResource置成空字符串 ""; 放入要访问的OSS资源 /BucketName/ObjectName(无ObjectName则CanonicalizedResource为”/BucketName/“,如果同时也没有BucketName则为“/”) 如果请求的资源包括子资源(SubResource) ,那么将所有的子资源按照字典序,从小到大排列并以 & 为分隔符生成子资源字符串。在CanonicalizedResource字符串尾添加 ?和子资源字符串。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&uploadId=UploadId 如果用户请求在指定了查询字符串(QueryString,也叫Http Request Parameters),那么将这些查询字符串及其请求值按照 字典序,从小到大排列,以 & 为分隔符,按参数添加到CanonicalizedResource中。此时的CanonicalizedResource如:/BucketName/ObjectName?acl&response-content-type=ContentType&uploadId=UploadId。 说明 OSS目前支持的子资源(sub-resource)包括:acl,uploads,location,cors,logging,website,referer,lifecycle,delete,append,tagging,objectMeta,uploadId,partNumber,security-token,position,img,style,styleName,replication,replicationProgress,replicationLocation,cname,bucketInfo,comp,qos,live,status,vod,startTime,endTime,symlink,x-oss-process,response-content-type,response-content-language,response-expires,response-cache-control,response-content-disposition,response-content-encoding等 子资源(sub-resource)有三种类型: 资源标识,如子资源中的acl,append,uploadId,symlink等,详见关于Bucket的操作和关于Object的操作。 指定返回Header字段,如 response-***,详见GetObject的Request Parameters。 文件(Object)处理方式,如 x-oss-process,用于文件的处理方式,如图片处理。 计算签名头规则 签名的字符串必须为 UTF-8 格式。含有中文字符的签名字符串必须先进行 UTF-8 编码,再与 AccessKeySecret计算最终签名。 签名的方法用RFC 2104中定义的HMAC-SHA1方法,其中Key为 AccessKeySecret` 。 Content-Type 和 Content-MD5 在请求中不是必须的,但是如果请求需要签名验证,空值的话以换行符 \n 代替。 在所有非HTTP标准定义的header中,只有以 x-oss- 开头的header,需要加入签名字符串;其他非HTTP标准header将被OSS忽略(如上例中的x-oss-magic是需要加入签名字符串的)。 以 x-oss- 开头的header在签名验证前需要符合以下规范: header的名字需要变成小写。 header按字典序自小到大排序。 分割header name和value的冒号前后不能有空格。 每个Header之后都有一个换行符“\n”,如果没有Header,CanonicalizedOSSHeaders就设置为空。 签名示例 假如AccessKeyId是”44CF9590006BF252F707”,AccessKeySecret是”OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV” 请求 签名字符串计算公式 签名字符串 PUT /nelson HTTP/1.0 Content-MD5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra Signature = base64(hmac-sha1(AccessKeySecret,VERB + “\n” + Content-MD5 + “\n”+ Content-Type + “\n” + Date + “\n” + CanonicalizedOSSHeaders+ CanonicalizedResource)) “PUT\n eB5eJF1ptWaXm4bijSPyxw==\n text/html\n Thu, 17 Nov 2005 18:49:58 GMT\n x-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nels 可用以下方法计算签名(Signature): python示例代码: import base64 import hmac import sha h = hmac.new("OtxrzxIsfpFjA7SwPzILwy8Bw21TLhquhboDYROV", "PUT\nODBGOERFMDMzQTczRUY3NUE3NzA5QzdFNUYzMDQxNEM=\ntext/html\nThu, 17 Nov 2005 18:49:58 GMT\nx-oss-magic:abracadabra\nx-oss-meta-author:foo@bar.com\n/oss-example/nelson", sha) Signature = base64.b64encode(h.digest()) print("Signature: %s" % Signature) 签名(Signature)计算结果应该为 26NBxoKdsyly4EDv6inkoDft/yA=,因为Authorization = “OSS “ + AccessKeyId + “:” + Signature所以最后Authorization为 “OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA=”然后加上Authorization头来组成最后需要发送的消息: PUT /nelson HTTP/1.0 Authorization:OSS 44CF9590006BF252F707:26NBxoKdsyly4EDv6inkoDft/yA= Content-Md5: eB5eJF1ptWaXm4bijSPyxw== Content-Type: text/html Date: Thu, 17 Nov 2005 18:49:58 GMT Host: oss-example.oss-cn-hangzhou.aliyuncs.com X-OSS-Meta-Author: foo@bar.com X-OSS-Magic: abracadabra 细节分析 如果传入的AccessKeyId不存在或inactive,返回403 Forbidden。错误码:InvalidAccessKeyId。 若用户请求头中Authorization值的格式不对,返回400 Bad Request。错误码:InvalidArgument。 OSS所有的请求都必须使用HTTP 1.1协议规定的GMT时间格式。其中,日期的格式为:date1 = 2DIGIT SP month SP 4DIGIT; day month year (e.g., 02 Jun 1982)上述日期格式中,“天”所占位数都是“2 DIGIT”。因此,“Jun 2”、“2 Jun 1982”和“2-Jun-82”都是非法日期格式。 如果签名验证的时候,头中没有传入Date或者格式不正确,返回403 Forbidden错误。错误码:AccessDenied。 传入请求的时间必须在OSS服务器当前时间之后的15分钟以内,否则返回403 Forbidden。错误码:RequestTimeTooSkewed。 如果AccessKeyId是active的,但OSS判断用户的请求发生签名错误,则返回403 Forbidden,并在返回给用户的response中告诉用户正确的用于验证加密的签名字符串。用户可以根据OSS的response来检查自己的签名字符串是否正确。返回示例:<?xml version="1.0" ?> <Error> <Code> SignatureDoesNotMatch </Code> <Message> The request signature we calculated does not match the signature you provided. Check your key and signing method. </Message> <StringToSignBytes> 47 45 54 0a 0a 0a 57 65 64 2c 20 31 31 20 4d 61 79 20 32 30 31 31 20 30 37 3a 35 39 3a 32 35 20 47 4d 54 0a 2f 75 73 72 65 61 6c 74 65 73 74 3f 61 63 6c </StringToSignBytes> <RequestId> 1E446260FF9B10C2 </RequestId> <HostId> oss-cn-hangzhou.aliyuncs.com </HostId> <SignatureProvided> y5H7yzPsA/tP4+0tH1HHvPEwUv8= </SignatureProvided> <StringToSign> GET Wed, 11 May 2011 07:59:25 GMT /oss-example?acl </StringToSign> <OSSAccessKeyId> AKIAIVAKMSMOY7VOMRWQ </OSSAccessKeyId> </Error> 说明 OSS SDK已经实现签名,用户使用OSS SDK不需要关注签名问题。如果您想了解具体语言的签名实现,请参考OSS SDK的代码。OSS SDK签名实现的文件如下表: SDK 签名实现 Java SDK OSSRequestSigner.java Python SDK auth.py .Net SDK OssRequestSigner.cs PHP SDK OssClient.php C SDK oss_auth.c JavaScript SDK client.js Go SDK auth.go Ruby SDK util.rb iOS SDK OSSModel.m Android SDK OSSUtils.java 当您自己实现签名,访问OSS报 SignatureDoesNotMatch 错误时,请使用可视化签名工具确认签名并排除错误。 常见问题 Content-MD5的计算方法 Content-MD5的计算 以消息内容为"123456789"来说,计算这个字符串的Content-MD5 正确的计算方式: 标准中定义的算法简单点说就是: 1. 先计算MD5加密的二进制数组(128位)。 2. 再对这个二进制进行base64编码(而不是对32位字符串编码)。 以Python为例子: 正确计算的代码为: >>> import base64,hashlib >>> hash = hashlib.md5() >>> hash.update("0123456789") >>> base64.b64encode(hash.digest()) 'eB5eJF1ptWaXm4bijSPyxw==' 需要注意 正确的是:hash.digest(),计算出进制数组(128位) >>> hash.digest() 'x\x1e^$]i\xb5f\x97\x9b\x86\xe2\x8d#\xf2\xc7' 常见错误是直接对计算出的32位字符串编码进行base64编码。 例如,错误的是:hash.hexdigest(),计算得到可见的32位字符串编码 >>> hash.hexdigest() '781e5e245d69b566979b86e28d23f2c7' 错误的MD5值进行base64编码后的结果: >>> base64.b64encode(hash.hexdigest()) 'NzgxZTVlMjQ1ZDY5YjU2Njk3OWI4NmUyOGQyM2YyYzc='

2019-12-01 23:13:43 0 浏览量 回答数 0

回答

这是oracle的bug,请下载oracle 最新的jar,连接地址: http://download.oracle.com/otn/utilities_drivers/jdbc/11204/ojdbc6.jar 首先,恭喜楼主问题得解,可喜可贺! 其次,感谢楼主解决问题后的分享。 但是我有几点建议想对楼主谏言(不喜勿看,打扰见谅): 第一,从此问题的最终解决来看。楼主的描述实在是不足以让别人更好的帮助你解决问题。首先,你的标题和你的问题就对不上。其次,关于问题描述,最开始你只是把error的stacktrace信息发布出来,这样别人根本就无法很好的帮你判断问题,后来你对描述还更新过一次,加上了表结构和代码,但实际问题是在于oracle的驱动问题,你的描述也没有突出你用的是oracle的这个重点。为了让别人更好的帮助你,望今后把重点信息表述出来,感谢! 第二,对于问题的解决你也没有描述清楚。首先,prepareStatement这个API的文档说明并不能说明oracle驱动的这个bug,对于问题的解决没有实际的帮助。其次,你附带的那个csdn的帖子里面也对这个bug没有任何明确的说明,而且那个帖子最后的一个回复者所述,换驱动并没有解决同样的问题,这样让读者对此bug的描述和解决难免产生质疑,缺乏可信度。虽然我又去stackoverflow确认过了,确实是oracle的jdbc驱动的问题,但是单就此问题的分享的角度,楼主的答案并没有充分体现出分享的价值。为了给大家带来更好的帮助,望楼主以后在回答的时候能给出更权威可信的答案。 ps:我附上stackoverflow对oracle驱动bug的帖子,作为对楼主的补充,供大家参考:http://stackoverflow.com/questions/277744/jdbc-oracle-arrayindexoutofboundsexception 文中还描述了一种workaround的解决方案,请大家参阅。 以上!万谢!大家看过来,这个才是最佳答案^_^谢谢提醒,以后多加注意!这。。。。。这个和8个有什么关系啊,直觉上感觉是你传进去的paras的size根本就不够吧。你调试看一下当时的数据是怎么样的?而且你这标题。。。是怎么回事?你这错误是在save时候的,为什么标题是说getModel的问题?你是说getModel没有给你取到9个属性么?回复 @小兵一枚:呵呵,什么要侮辱,有问题提提怎么了,不要盲目的崇拜!问题原因是oracle的bug!回复 @蚂蚁蚂蚁:不要侮辱强大的JFinal亲莫非你们都是小表! java.lang.ArrayIndexOutOfBoundsException: 8 下次提问还是先检查下错误再提吧 查了查api,如下: prepareStatementPreparedStatementprepareStatement(Stringsql,String[]columnNames)throwsSQLException创建一个能返回由给定数组指定的自动生成键的默认PreparedStatement对象。此数组包含目标表中列的名称,而目标表包含应该返回的自动生成键。如果SQL语句不是INSERT语句,或者SQL语言能够返回自动生成的键(这类语句的列表是特定于供应商的),则驱动程序将忽略该数组。带IN参数或不带IN参数的SQL语句都可以被预编辑并存储在PreparedStatement对象中。然后可以使用此对象多次有效地执行该语句。注:为了处理受益于预编译的带参数SQL语句,此方法进行了优化。如果驱动程序支持预编译,则prepareStatement方法将该语句发送给数据库进行预编译。一些驱动程序可能不支持预编译。在这种情况下,执行PreparedStatement对象之前无法将语句发送给数据库。这对用户没有直接影响;但它的确会影响哪些方法将抛出某些SQLException。使用返回的PreparedStatement对象创建的结果集在默认情况下类型为TYPE_FORWARD_ONLY,并带有CONCUR_READ_ONLY并发级别。已创建结果集的可保存性可调用getHoldability()确定。参数:sql-可能包含一个或多个'?'IN参数占位符的SQL语句columnNames-列名称数组,这些名称指示应该从一个或多个插入行中返回的那些列返回:一个包含预编译语句的新PreparedStatement对象,该对象能够返回由给定列名称数组指定的自动生成键抛出:SQLException-如果发生数据库访问错误,或者在关闭的连接上调用此方法SQLFeatureNotSupportedException-如果JDBC驱动程序不支持此方法 嗯嗯,这才是正解吗感谢楼主解决问题后回来分享,此贴应该放在技术分享区哈 

爱吃鱼的程序员 2020-06-23 11:59:19 0 浏览量 回答数 0

回答

一,android串口通信 串口通信采用一个第三方开源项目,实现串口数据收发。 使用了 api和jni; 支持4串口同时收发,有定时自动发送功能,收发模式可选Txt或Hex模式; n,8,1,没得选; 为减轻界面卡顿的情况,接收区的刷新采用单独的线程进行定时刷新; 发送区的数据以及一些设置项,在程序关闭时会自动保存,打开时自动载入; jni使用最新的NDKr8b重新编译了一下 简单编写步骤: 1.新建一个项目,自己起个名字 2.直接复制serialport api和jni文件夹到新建的工程,如果不想自己编译jni,就连libs文件夹也一起复制 3.去android官方网站下载NDK,解压,在CMD中转到jni目录,并执行 绝对路径ndk-build 4.自己再封装一个工具类或直接使用SerialPort类都行,举个直接使用的例: 直接剽窃原项目的SerialPortActivity.java,并稍微改一下,重点改这里 mSerialPort = mApplication.getSerialPort(); 这里可以改成 new SerialPort(new File("/dev/s3c2410_serial0"), 9600, 0);//COM0,波特率9600 SerialPortFinder的使用就没什么好讲的了,实例化后用.getAllDevicesPath()就能获取到所有设备了。其它如数据转换等请参考源码 源码可以参考谷歌android-serialport-api例子 二,串口通信协议解析 1.通信基本格式 字段 描述 长度(字节) 起始符 0F,十六进制码 1 信息类型 一个字节,十六进制码(0F,F0,FF等保留码不用)1 信息长度 是信息内容的长度,ASCII码表示(0~9,A~F,最大长度为256)(例如长为11个,十六进制是0B,则两个字节就写0x30 0x42)。 注:因为最大长度256不能满足有些指令的要求,所以对长度做了扩展,下面是扩展说明: 如果第一个字节的最高位为1,则表示扩展长度。在扩展长度状态下,其他15个字节通过16进制大端模式来保存长度。比如:0x80 0x12表示长度为0x001 2,0x81 0x12表示长度为0x0112。2 信息内容 一组十六进制码 N 校验 一个字节,十六进制码,是自信息类型起至对象号止所有码的异或。1 结束符 F0,一个字节,十六进制码 (为了保证可靠性,车机下发的结束符为F0 FF)1 2.协议解析 /** * 读取终端设备数据 * @author Administrator */ private class ReadThread extends Thread { @Override public void run() { super.run(); // 定义一个包的最大长度 int maxLength = 2048; byte[] buffer = new byte[maxLength]; // 每次收到实际长度 int available = 0; // 当前已经收到包的总长度 int currentLength = 0; // 协议头长度4个字节(开始符1,类型1,长度2) int headerLength = 4; while (!isInterrupted()) { try { available = mInputStream.available(); if (available > 0) { // 防止超出数组最大长度导致溢出 if (available > maxLength - currentLength) { available = maxLength - currentLength; } mInputStream.read(buffer, currentLength, available); currentLength += available; } } catch (Exception e) { e.printStackTrace(); } int cursor = 0; // 如果当前收到包大于头的长度,则解析当前包 while (currentLength >= headerLength) { // 取到头部第一个字节 if (buffer[cursor] != 0x0F) { --currentLength; ++cursor; continue; } int contentLenght = parseLen(buffer, cursor, headerLength); // 如果内容包的长度大于最大内容长度或者小于等于0,则说明这个包有问题,丢弃 if (contentLenght <= 0 || contentLenght > maxLength - 5) { currentLength = 0; break; } // 如果当前获取到长度小于整个包的长度,则跳出循环等待继续接收数据 int factPackLen = contentLenght + 5; if (currentLength < contentLenght + 5) { break; } // 一个完整包即产生 // proceOnePacket(buffer,i,factPackLen); onDataReceived(buffer, cursor, factPackLen); currentLength -= factPackLen; cursor += factPackLen; } // 残留字节移到缓冲区首 if (currentLength > 0 && cursor > 0) { System.arraycopy(buffer, cursor, buffer, 0, currentLength); } } } } /** * 获取协议内容长度 * @param header * @return */ public int parseLen(byte buffer[], int index, int headerLength) { // if (buffer.length - index < headerLength) { return 0; } byte a = buffer[index + 2]; byte b = buffer[index + 3]; int rlt = 0; if (((a >> 7) & 0x1) == 0x1) { rlt = (((a & 0x7f) << 8) | b); } else { char[] tmp = new char[2]; tmp[0] = (char) a; tmp[1] = (char) b; String s = new String(tmp, 0, 2); rlt = Integer.parseInt(s, 16); } return rlt; } protected void onDataReceived(final byte[] buffer, final int index, final int packlen) { System.out.println("收到信息"); byte[] buf = new byte[packlen]; System.arraycopy(buffer, index, buf, 0, packlen); ProtocolAnalyze.getInstance(myHandler).analyze(buf); }

爵霸 2019-12-02 01:56:32 0 浏览量 回答数 0

问题

日志的发布历史有哪些?

轩墨 2019-12-01 21:50:57 1618 浏览量 回答数 0

问题

在Header中包含签名

青衫无名 2019-12-01 21:49:04 3078 浏览量 回答数 1