• 关于

    java或者数组索引

    的搜索结果

回答

Java 语言定义了一些异常类在 java.lang 标准包中。 标准运行时异常类的子类是最常见的异常类。由于 java.lang 包是默认加载到所有的 Java 程序的,所以大部分从运行时异常类继承而来的异常都可以直接使用。 Java 根据各个类库也定义了一些其他的异常,下面的表中列出了 Java 的非检查性异常。 异常描述ArithmeticException当出现异常的运算条件时,抛出此异常。例如,一个整数"除以零"时,抛出此类的一个实例。ArrayIndexOutOfBoundsException用非法索引访问数组时抛出的异常。如果索引为负或大于等于数组大小,则该索引为非法索引。ArrayStoreException试图将错误类型的对象存储到一个对象数组时抛出的异常。ClassCastException当试图将对象强制转换为不是实例的子类时,抛出该异常。IllegalArgumentException抛出的异常表明向方法传递了一个不合法或不正确的参数。IllegalMonitorStateException抛出的异常表明某一线程已经试图等待对象的监视器,或者试图通知其他正在等待对象的监视器而本身没有指定监视器的线程。IllegalStateException在非法或不适当的时间调用方法时产生的信号。换句话说,即 Java 环境或 Java 应用程序没有处于请求操作所要求的适当状态下。IllegalThreadStateException线程没有处于请求操作所要求的适当状态时抛出的异常。IndexOutOfBoundsException指示某排序索引(例如对数组、字符串或向量的排序)超出范围时抛出。NegativeArraySizeException如果应用程序试图创建大小为负的数组,则抛出该异常。NullPointerException当应用程序试图在需要对象的地方使用 null 时,抛出该异常NumberFormatException当应用程序试图将字符串转换成一种数值类型,但该字符串不能转换为适当格式时,抛出该异常。SecurityException由安全管理器抛出的异常,指示存在安全侵犯。StringIndexOutOfBoundsException此异常由 String 方法抛出,指示索引或者为负,或者超出字符串的大小。UnsupportedOperationException当不支持请求的操作时,抛出该异常。 下面的表中列出了 Java 定义在 java.lang 包中的检查性异常类。 异常描述ClassNotFoundException应用程序试图加载类时,找不到相应的类,抛出该异常。CloneNotSupportedException当调用 Object 类中的 clone 方法克隆对象,但该对象的类无法实现 Cloneable 接口时,抛出该异常。IllegalAccessException拒绝访问一个类的时候,抛出该异常。InstantiationException当试图使用 Class 类中的 newInstance 方法创建一个类的实例,而指定的类对象因为是一个接口或是一个抽象类而无法实例化时,抛出该异常。InterruptedException一个线程被另一个线程中断,抛出该异常。NoSuchFieldException请求的变量不存在NoSuchMethodException请求的方法不存在
huc_逆天 2021-01-08 14:08:25 0 浏览量 回答数 0

回答

数组越界错误。跟jdk版本无关。你到<spanstyle="font-family:"font-size:14px;line-height:22px;background-color:#FFFFFF;">AlertController.java的891行看下。可以在前面打印索引和数组大小。我靠数组越界了,你到你的adapter中的getview方法查找一下数组或者集合,在get数据的时候出错了,或者你的集合或数组本身的长度就是0
爱吃鱼的程序员 2020-06-09 13:45:32 0 浏览量 回答数 0

回答

我只需要将所有数组元素初始化为布尔型false。 请改用任一方法,boolean[]以便所有值默认为false: boolean[] array = new boolean[size]; 或者使用Arrays#fill()填充整个数组Boolean.FALSE: Boolean[] array = new Boolean[size]; Arrays.fill(array, Boolean.FALSE); 另请注意,数组索引基于零。该freq[Global.iParameter[2]] = false;行如你有会导致ArrayIndexOutOfBoundsException。要了解有关Java中数组的更多信息,请查阅此基本Oracle教程。
保持可爱mmm 2020-02-08 11:25:42 0 浏览量 回答数 0

回答

Arraylist和Vector是采用数组方式存储数据,此数组元素数大于实际存储的数据以便增加插入元素,都允许直接序号索引元素,但是插入数据要涉及到数组元素移动等内存操作,所以插入数据慢,查找有下标,所以查询数据快,Vector由于使用了synchronized方法-线程安全,所以性能上比ArrayList要差,LinkedList使用双向链表实现存储,按序号索引数据需要进行向前或向后遍历,但是插入数据时只需要记录本项前后项即可,插入数据较快。线性表,链表,哈希表是常用的数据结构,在进行java开发时,JDK已经为我们提供了一系列相应的类实现基本的数据结构,这些结构均在java.util包中,collection├List│├LinkedList│├ArrayList│└Vector│ └Stack└SetMap├Hashtable├HashMap└WeakHashMapCollection接口Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素(elements),一些Collection允许相同的元素而另一些不行。一些能排序而另一些不行。Java SDK不提供直接继承自Collection的类,Java SDK提供的类都是继承自Collection的“子接口”如List和Set。所有实现Collection接口的类都必须提供两个标准的构造函数:无参数的构造函数用于创建一个空的Collection,有一个Collection参数的构造函数用于创建一个新的Collection,这个新的Collection与传入的Collection有相同的元素。后一个构造函数允许用户复制一个Collection。如何遍历Collection中的每一个元素?不论Collection的实际类型如何,它都支持一个iterator()的方法,该方法返回一个迭代子,使用该迭代子即可逐一访问Collection中每一个元素。典型的用法如下:    Iterator it = collection.iterator(); // 获得一个迭代子    while(it.hasNext()) {      Object obj = it.next(); // 得到下一个元素    }  由Collection接口派生的两个接口是List和Set。List接口  List是有序的Collection,使用此接口能够精确的控制每个元素插入的位置。用户能够使用索引(元素在List中的位置,类似于数组下标)来访问List中的元素,这类似于Java的数组。和下面要提到的Set不同,List允许有相同的元素。  除了具有Collection接口必备的iterator()方法外,List还提供一个listIterator()方法,返回一个ListIterator接口,和标准的Iterator接口相比,ListIterator多了一些add()之类的方法,允许添加,删除,设定元素,还能向前或向后遍历。  实现List接口的常用类有LinkedList,ArrayList,Vector和Stack。ArrayList类  ArrayList实现了可变大小的数组。它允许所有元素,包括null。ArrayList没有同步。size,isEmpty,get,set方法运行时间为常数。但是add方法开销为分摊的常数,添加n个元素需要O(n)的时间。其他的方法运行时间为线性。  每个ArrayList实例都有一个容量(Capacity),即用于存储元素的数组的大小。这个容量可随着不断添加新元素而自动增加,但是增长算法并没有定义。当需要插入大量元素时,在插入前可以调用ensureCapacity方法来增加ArrayList的容量以提高插入效率。  和LinkedList一样,ArrayList也是非同步的(unsynchronized)。Vector类  Vector非常类似ArrayList,但是Vector是同步的。由Vector创建的Iterator,虽然和ArrayList创建的Iterator是同一接口,但是,因为Vector是同步的,当一个Iterator被创建而且正在被使用,另一个线程改变了Vector的状态(例如,添加或删除了一些元素),这时调用Iterator的方法时将抛出ConcurrentModificationException,因此必须捕获该异常。Stack 类  Stack继承自Vector,实现一个后进先出的堆栈。Stack提供5个额外的方法使得Vector得以被当作堆栈使用。基本的push和pop方法,还有peek方法得到栈顶的元素,empty方法测试堆栈是否为空,search方法检测一个元素在堆栈中的位置。Stack刚创建后是空栈。Map接口  请注意,Map没有继承Collection接口,Map提供key到value的映射。一个Map中不能包含相同的key,每个key只能映射一个value。Map接口提供3种集合的视图,Map的内容可以被当作一组key集合,一组value集合,或者一组key-value映射。Hashtable类  Hashtable继承Map接口,实现一个key-value映射的哈希表。任何非空(non-null)的对象都可作为key或者value。  添加数据使用put(key, value),取出数据使用get(key),这两个基本操作的时间开销为常数。Hashtable通过initial capacity和load factor两个参数调整性能。通常缺省的load factor 0.75较好地实现了时间和空间的均衡。增大load factor可以节省空间但相应的查找时间将增大,这会影响像get和put这样的操作。使用Hashtable的简单示例如下,将1,2,3放到Hashtable中,他们的key分别是”one”,”two”,”three”:    Hashtable numbers = new Hashtable();    numbers.put(“one”, new Integer(1));    numbers.put(“two”, new Integer(2));    numbers.put(“three”, new Integer(3));  要取出一个数,比如2,用相应的key:    Integer n = (Integer)numbers.get(“two”);    System.out.println(“two = ” + n);  由于作为key的对象将通过计算其散列函数来确定与之对应的value的位置,因此任何作为key的对象都必须实现hashCode和equals方法。hashCode和equals方法继承自根类Object,如果你用自定义的类当作key的话,要相当小心,按照散列函数的定义,如果两个对象相同,即obj1.equals(obj2)=true,则它们的hashCode必须相同,但如果两个对象不同,则它们的hashCode不一定不同,如果两个不同对象的hashCode相同,这种现象称为冲突,冲突会导致操作哈希表的时间开销增大,所以尽量定义好的hashCode()方法,能加快哈希表的操作。  如果相同的对象有不同的hashCode,对哈希表的操作会出现意想不到的结果(期待的get方法返回null),要避免这种问题,只需要牢记一条:要同时复写equals方法和hashCode方法,而不要只写其中一个。  Hashtable是同步的。HashMap类  HashMap和Hashtable类似,不同之处在于HashMap是非同步的,并且允许null,即null value和null key。,但是将HashMap视为Collection时(values()方法可返回Collection),其迭代子操作时间开销和HashMap的容量成比例。因此,如果迭代操作的性能相当重要的话,不要将HashMap的初始化容量设得过高,或者load factor过低。WeakHashMap类  WeakHashMap是一种改进的HashMap,它对key实行“弱引用”,如果一个key不再被外部所引用,那么该key可以被GC回收。总结  如果涉及到堆栈,队列等操作,应该考虑用List,对于需要快速插入,删除元素,应该使用LinkedList,如果需要快速随机访问元素,应该使用ArrayList。  如果程序在单线程环境中,或者访问仅仅在一个线程中进行,考虑非同步的类,其效率较高,如果多个线程可能同时操作一个类,应该使用同步的类。  要特别注意对哈希表的操作,作为key的对象要正确复写equals和hashCode方法。  尽量返回接口而非实际的类型,如返回List而非ArrayList,这样如果以后需要将ArrayList换成LinkedList时,客户端代码不用改变。这就是针对抽象编程。同步性Vector是同步的。这个类中的一些方法保证了Vector中的对象是线程安全的。而ArrayList则是异步的,因此ArrayList中的对象并不是线程安全的。因为同步的要求会影响执行的效率,所以如果你不需要线程安全的集合那么使用ArrayList是一个很好的选择,这样可以避免由于同步带来的不必要的性能开销。数据增长从内部实现机制来讲ArrayList和Vector都是使用数组(Array)来控制集合中的对象。当你向这两种类型中增加元素的时候,如果元素的数目超出了内部数组目前的长度它们都需要扩展内部数组的长度,Vector缺省情况下自动增长原来一倍的数组长度,ArrayList是原来的50%,所以最后你获得的这个集合所占的空间总是比你实际需要的要大。所以如果你要在集合中保存大量的数据那么使用Vector有一些优势,因为你可以通过设置集合的初始化大小来避免不必要的资源开销。使用模式在ArrayList和Vector中,从一个指定的位置(通过索引)查找数据或是在集合的末尾增加、移除一个元素所花费的时间是一样的,这个时间我们用O(1)表示。但是,如果在集合的其他位置增加或移除元素那么花费的时间会呈线形增长:O(n-i),其中n代表集合中元素的个数,i代表元素增加或移除元素的索引位置。为什么会这样呢?以为在进行上述操作的时候集合中第i和第i个元素之后的所有元素都要执行位移的操作。这一切意味着什么呢?这意味着,你只是查找特定位置的元素或只在集合的末端增加、移除元素,那么使用Vector或ArrayList都可以。如果是其他操作,你最好选择其他的集合操作类。比如,LinkList集合类在增加或移除集合中任何位置的元素所花费的时间都是一样的?O(1),但它在索引一个元素的使用缺比较慢-O(i),其中i是索引的位置.使用ArrayList也很容易,因为你可以简单的使用索引来代替创建iterator对象的操作。LinkList也会为每个插入的元素创建对象,所有你要明白它也会带来额外的开销。最后,在《Practical Java》一书中Peter Haggar建议使用一个简单的数组(Array)来代替Vector或ArrayList。尤其是对于执行效率要求高的程序更应如此。因为使用数组(Array)避免了同步、额外的方法调用和不必要的重新分配空间的操作。
wangccsy 2019-12-02 01:48:37 0 浏览量 回答数 0

问题

查找低填充率 结束语:报错

从 Java 代码到 Java 堆 背景信息:Java 进程的内存使用 参考知识 Java 对象详解 Java 数组对象详解 更为复杂数据结构详解 32 位和 64 位 Java 对象 Java 集合的内存使用 集合中的空白空...
kun坤 2020-06-14 09:44:00 0 浏览量 回答数 0

回答

异常是程序中的一些错误,但并不是所有的错误都是异常,并且错误有时候是可以避免的。 比如说,你的代码少了一个分号,那么运行出来结果是提示是错误 java.lang.Error;如果你用System.out.println(11/0),那么你是因为你用0做了除数,会抛出 java.lang.ArithmeticException 的异常。 异常发生的原因有很多,通常包含以下几大类: 用户输入了非法数据。 要打开的文件不存在。 网络通信时连接中断,或者JVM内存溢出。 这些异常有的是因为用户错误引起,有的是程序错误引起的,还有其它一些是因为物理错误引起的。- 要理解Java异常处理是如何工作的,你需要掌握以下三种类型的异常: 检查性异常:最具代表的检查性异常是用户错误或问题引起的异常,这是程序员无法预见的。例如要打开一个不存在文件时,一个异常就发生了,这些异常在编译时不能被简单地忽略。 运行时异常: 运行时异常是可能被程序员避免的异常。与检查性异常相反,运行时异常可以在编译时被忽略。 错误: 错误不是异常,而是脱离程序员控制的问题。错误在代码中通常被忽略。例如,当栈溢出时,一个错误就发生了,它们在编译也检查不到的。 Exception 类的层次 所有的异常类是从 java.lang.Exception 类继承的子类。 Exception 类是 Throwable 类的子类。除了Exception类外,Throwable还有一个子类Error 。 Java 程序通常不捕获错误。错误一般发生在严重故障时,它们在Java程序处理的范畴之外。 Error 用来指示运行时环境发生的错误。 例如,JVM 内存溢出。一般地,程序不会从错误中恢复。 异常类有两个主要的子类:IOException 类和 RuntimeException 类。 在 Java 内置类中(接下来会说明),有大部分常用检查性和非检查性异常。 Java 内置异常类 Java 语言定义了一些异常类在 java.lang 标准包中。 标准运行时异常类的子类是最常见的异常类。由于 java.lang 包是默认加载到所有的 Java 程序的,所以大部分从运行时异常类继承而来的异常都可以直接使用。 Java 根据各个类库也定义了一些其他的异常,下面的表中列出了 Java 的非检查性异常。 异常 描述 ArithmeticException 当出现异常的运算条件时,抛出此异常。例如,一个整数"除以零"时,抛出此类的一个实例。 ArrayIndexOutOfBoundsException 用非法索引访问数组时抛出的异常。如果索引为负或大于等于数组大小,则该索引为非法索引。 ArrayStoreException 试图将错误类型的对象存储到一个对象数组时抛出的异常。 ClassCastException 当试图将对象强制转换为不是实例的子类时,抛出该异常。 IllegalArgumentException 抛出的异常表明向方法传递了一个不合法或不正确的参数。 IllegalMonitorStateException 抛出的异常表明某一线程已经试图等待对象的监视器,或者试图通知其他正在等待对象的监视器而本身没有指定监视器的线程。 IllegalStateException 在非法或不适当的时间调用方法时产生的信号。换句话说,即 Java 环境或 Java 应用程序没有处于请求操作所要求的适当状态下。 IllegalThreadStateException 线程没有处于请求操作所要求的适当状态时抛出的异常。 IndexOutOfBoundsException 指示某排序索引(例如对数组、字符串或向量的排序)超出范围时抛出。 NegativeArraySizeException 如果应用程序试图创建大小为负的数组,则抛出该异常。 NullPointerException 当应用程序试图在需要对象的地方使用 null 时,抛出该异常 NumberFormatException 当应用程序试图将字符串转换成一种数值类型,但该字符串不能转换为适当格式时,抛出该异常。 SecurityException 由安全管理器抛出的异常,指示存在安全侵犯。 StringIndexOutOfBoundsException 此异常由 String 方法抛出,指示索引或者为负,或者超出字符串的大小。 UnsupportedOperationException 当不支持请求的操作时,抛出该异常。 下面的表中列出了 Java 定义在 java.lang 包中的检查性异常类。 异常 描述 ClassNotFoundException 应用程序试图加载类时,找不到相应的类,抛出该异常。 CloneNotSupportedException 当调用 Object 类中的 clone 方法克隆对象,但该对象的类无法实现 Cloneable 接口时,抛出该异常。 IllegalAccessException 拒绝访问一个类的时候,抛出该异常。 InstantiationException 当试图使用 Class 类中的 newInstance 方法创建一个类的实例,而指定的类对象因为是一个接口或是一个抽象类而无法实例化时,抛出该异常。 InterruptedException 一个线程被另一个线程中断,抛出该异常。 NoSuchFieldException 请求的变量不存在 NoSuchMethodException 请求的方法不存在 异常方法 下面的列表是 Throwable 类的主要方法: 序号 方法及说明 1 public String getMessage() 返回关于发生的异常的详细信息。这个消息在Throwable 类的构造函数中初始化了。 2 public Throwable getCause() 返回一个Throwable 对象代表异常原因。 3 public String toString() 使用getMessage()的结果返回类的串级名字。 4 public void printStackTrace() 打印toString()结果和栈层次到System.err,即错误输出流。 5 public StackTraceElement [] getStackTrace() 返回一个包含堆栈层次的数组。下标为0的元素代表栈顶,最后一个元素代表方法调用堆栈的栈底。 6 public Throwable fillInStackTrace() 用当前的调用栈层次填充Throwable 对象栈层次,添加到栈层次任何先前信息中。 捕获异常 使用 try 和 catch 关键字可以捕获异常。try/catch 代码块放在异常可能发生的地方。 try/catch代码块中的代码称为保护代码,使用 try/catch 的语法如下: try { // 程序代码 }catch(ExceptionName e1) { //Catch 块 } Catch 语句包含要捕获异常类型的声明。当保护代码块中发生一个异常时,try 后面的 catch 块就会被检查。 如果发生的异常包含在 catch 块中,异常会被传递到该 catch 块,这和传递一个参数到方法是一样。 实例 下面的例子中声明有两个元素的一个数组,当代码试图访问数组的第三个元素的时候就会抛出一个异常。 ExcepTest.java 文件代码: // 文件名 : ExcepTest.java import java.io.*; public class ExcepTest{ public static void main(String args[]){ try{ int a[] = new int[2]; System.out.println("Access element three :" + a[3]); }catch(ArrayIndexOutOfBoundsException e){ System.out.println("Exception thrown :" + e); } System.out.println("Out of the block"); } } 以上代码编译运行输出结果如下: Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3 Out of the block 多重捕获块 一个 try 代码块后面跟随多个 catch 代码块的情况就叫多重捕获。 多重捕获块的语法如下所示: try{ // 程序代码 }catch(异常类型1 异常的变量名1){ // 程序代码 }catch(异常类型2 异常的变量名2){ // 程序代码 }catch(异常类型3 异常的变量名3){ // 程序代码 } 上面的代码段包含了 3 个 catch块。 可以在 try 语句后面添加任意数量的 catch 块。 如果保护代码中发生异常,异常被抛给第一个 catch 块。 如果抛出异常的数据类型与 ExceptionType1 匹配,它在这里就会被捕获。 如果不匹配,它会被传递给第二个 catch 块。 如此,直到异常被捕获或者通过所有的 catch 块。 实例 该实例展示了怎么使用多重 try/catch。 try { file = new FileInputStream(fileName); x = (byte) file.read(); } catch(FileNotFoundException f) { // Not valid! f.printStackTrace(); return -1; } catch(IOException i) { i.printStackTrace(); return -1; } throws/throw 关键字: 如果一个方法没有捕获到一个检查性异常,那么该方法必须使用 throws 关键字来声明。throws 关键字放在方法签名的尾部。 也可以使用 throw 关键字抛出一个异常,无论它是新实例化的还是刚捕获到的。 下面方法的声明抛出一个 RemoteException 异常: import java.io.*; public class className { public void deposit(double amount) throws RemoteException { // Method implementation throw new RemoteException(); } //Remainder of class definition } 一个方法可以声明抛出多个异常,多个异常之间用逗号隔开。 例如,下面的方法声明抛出 RemoteException 和 InsufficientFundsException: import java.io.*; public class className { public void withdraw(double amount) throws RemoteException, InsufficientFundsException { // Method implementation } //Remainder of class definition } finally关键字 finally 关键字用来创建在 try 代码块后面执行的代码块。 无论是否发生异常,finally 代码块中的代码总会被执行。 在 finally 代码块中,可以运行清理类型等收尾善后性质的语句。 finally 代码块出现在 catch 代码块最后,语法如下: try{ // 程序代码 }catch(异常类型1 异常的变量名1){ // 程序代码 }catch(异常类型2 异常的变量名2){ // 程序代码 }finally{ // 程序代码 } 实例 ExcepTest.java 文件代码: public class ExcepTest{ public static void main(String args[]){ int a[] = new int[2]; try{ System.out.println("Access element three :" + a[3]); }catch(ArrayIndexOutOfBoundsException e){ System.out.println("Exception thrown :" + e); } finally{ a[0] = 6; System.out.println("First element value: " +a[0]); System.out.println("The finally statement is executed"); } } } 以上实例编译运行结果如下: Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3 First element value: 6 The finally statement is executed 注意下面事项: catch 不能独立于 try 存在。 在 try/catch 后面添加 finally 块并非强制性要求的。 try 代码后不能既没 catch 块也没 finally 块。 try, catch, finally 块之间不能添加任何代码。 声明自定义异常 在 Java 中你可以自定义异常。编写自己的异常类时需要记住下面的几点。 所有异常都必须是 Throwable 的子类。 如果希望写一个检查性异常类,则需要继承 Exception 类。 如果你想写一个运行时异常类,那么需要继承 RuntimeException 类。 可以像下面这样定义自己的异常类: class MyException extends Exception{ } 只继承Exception 类来创建的异常类是检查性异常类。 下面的 InsufficientFundsException 类是用户定义的异常类,它继承自 Exception。 一个异常类和其它任何类一样,包含有变量和方法。 实例 以下实例是一个银行账户的模拟,通过银行卡的号码完成识别,可以进行存钱和取钱的操作。 InsufficientFundsException.java 文件代码: // 文件名InsufficientFundsException.java import java.io.*; //自定义异常类,继承Exception类 public class InsufficientFundsException extends Exception { //此处的amount用来储存当出现异常(取出钱多于余额时)所缺乏的钱 private double amount; public InsufficientFundsException(double amount) { this.amount = amount; } public double getAmount() { return amount; } } 为了展示如何使用我们自定义的异常类, 在下面的 CheckingAccount 类中包含一个 withdraw() 方法抛出一个 InsufficientFundsException 异常。 CheckingAccount.java 文件代码: // 文件名称 CheckingAccount.java import java.io.*; //此类模拟银行账户 public class CheckingAccount { //balance为余额,number为卡号 private double balance; private int number; public CheckingAccount(int number) { this.number = number; } //方法:存钱 public void deposit(double amount) { balance += amount; } //方法:取钱 public void withdraw(double amount) throws InsufficientFundsException { if(amount <= balance) { balance -= amount; } else { double needs = amount - balance; throw new InsufficientFundsException(needs); } } //方法:返回余额 public double getBalance() { return balance; } //方法:返回卡号 public int getNumber() { return number; } } 下面的 BankDemo 程序示范了如何调用 CheckingAccount 类的 deposit() 和 withdraw() 方法。 BankDemo.java 文件代码: //文件名称 BankDemo.java public class BankDemo { public static void main(String [] args) { CheckingAccount c = new CheckingAccount(101); System.out.println("Depositing $500..."); c.deposit(500.00); try { System.out.println("\nWithdrawing $100..."); c.withdraw(100.00); System.out.println("\nWithdrawing $600..."); c.withdraw(600.00); }catch(InsufficientFundsException e) { System.out.println("Sorry, but you are short $" + e.getAmount()); e.printStackTrace(); } } } 编译上面三个文件,并运行程序 BankDemo,得到结果如下所示: Depositing $500... Withdrawing $100... Withdrawing $600... Sorry, but you are short $200.0 InsufficientFundsException at CheckingAccount.withdraw(CheckingAccount.java:25) at BankDemo.main(BankDemo.java:13) 通用异常 在Java中定义了两种类型的异常和错误。 JVM(Java虚拟机) 异常:由 JVM 抛出的异常或错误。例如:NullPointerException 类,ArrayIndexOutOfBoundsException 类,ClassCastException 类。 程序级异常:由程序或者API程序抛出的异常。例如 IllegalArgumentException 类,IllegalStateException 类。
游客2q7uranxketok 2021-02-07 20:08:10 0 浏览量 回答数 0

问题

[求助]spring引入rabbitmq的template报错?报错

在引入rabbbitMq的配置文件的时候,抛出数组索引越界异常 比如:单独在xml中引入 <bean id="amqpTemplate" class="org.springframework...
爱吃鱼的程序员 2020-06-06 16:41:38 0 浏览量 回答数 1

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

哈希表 7月10日 【今日算法】

首先什么是 哈希表,哈希表(英文名字为Hash table,国内也有一些算法书籍翻译为散列表,大家看到这两个名称知道都是指hash table就可以了)。 哈希表...
游客ih62co2qqq5ww 2020-07-11 07:14:35 6 浏览量 回答数 1

问题

dubbo 的工作原理?注册中心挂了的问题?说说一次 rpc 请求的流程?【Java问答】47期

面试题 说一下的 dubbo 的工作原理?注册中心挂了可以继续通信吗?说说一次 rpc 请求的流程? 面试官心理分析 MQ、ES、Redis、Dubbo,上来先问你一些思考性的问...
剑曼红尘 2020-06-30 09:02:47 8 浏览量 回答数 1

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)
问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0

问题

百问百答 《Java开发手册(嵩山版)》

从java命名标准来讲,代码中的命名需要注意什么? java中类名命名是用什么规则,有什么情形是例外的? POJO类中的布尔类型变量要不要加is前缀,为什么ÿ...
不语奈何 2021-03-25 13:30:32 28 浏览量 回答数 0

回答

在Java中,常量池的概念想必很多人都听说过。这也是面试中比较常考的题目之一。在Java有关的面试题中,一般习惯通过String的有关问题来考察面试者对于常量池的知识的理解,几道简单的String面试题难倒了无数的开发者。所以说,常量池是Java体系中一个非常重要的概念。 谈到常量池,在Java体系中,共用三种常量池。分别是字符串常量池、Class常量池和运行时常量池。 本文先来介绍一下到底什么是Class常量池。 什么是Class文件 在Java代码的编译与反编译那些事儿中我们介绍过Java的编译和反编译的概念。我们知道,计算机只认识0和1,所以程序员写的代码都需要经过编译成0和1构成的二进制格式才能够让计算机运行。 我们在《深入分析Java的编译原理》中提到过,为了让Java语言具有良好的跨平台能力,Java独具匠心的提供了一种可以在所有平台上都能使用的一种中间代码——字节码(ByteCode)。 有了字节码,无论是哪种平台(如Windows、Linux等),只要安装了虚拟机,都可以直接运行字节码。 同样,有了字节码,也解除了Java虚拟机和Java语言之间的耦合。这话可能很多人不理解,Java虚拟机不就是运行Java语言的么?这种解耦指的是什么? 其实,目前Java虚拟机已经可以支持很多除Java语言以外的语言了,如Groovy、JRuby、Jython、Scala等。之所以可以支持,就是因为这些语言也可以被编译成字节码。而虚拟机并不关心字节码是有哪种语言编译而来的。 Java语言中负责编译出字节码的编译器是一个命令是javac。 javac是收录于JDK中的Java语言编译器。该工具可以将后缀名为.java的源文件编译为后缀名为.class的可以运行于Java虚拟机的字节码。 如,我们有以下简单的HelloWorld.java代码: public class HelloWorld { public static void main(String[] args) { String s = "Hollis"; } } 通过javac命令生成class文件: javac HelloWorld.java 生成HelloWorld.class文件:  如何使用16进制打开class文件:使用 vim test.class ,然后在交互模式下,输入:%!xxd 即可。 可以看到,上面的文件就是Class文件,Class文件中包含了Java虚拟机指令集和符号表以及若干其他辅助信息。 要想能够读懂上面的字节码,需要了解Class类文件的结构,由于这不是本文的重点,这里就不展开说明了。 读者可以看到,HelloWorld.class文件中的前八个字母是cafe babe,这就是Class文件的魔数(Java中的”魔数”) 我们需要知道的是,在Class文件的4个字节的魔数后面的分别是4个字节的Class文件的版本号(第5、6个字节是次版本号,第7、8个字节是主版本号,我生成的Class文件的版本号是52,这时Java 8对应的版本。也就是说,这个版本的字节码,在JDK 1.8以下的版本中无法运行)在版本号后面的,就是Class常量池入口了。 Class常量池 Class常量池可以理解为是Class文件中的资源仓库。 Class文件中除了包含类的版本、字段、方法、接口等描述信息外,还有一项信息就是常量池(constant pool table),用于存放编译器生成的各种字面量(Literal)和符号引用(Symbolic References)。 由于不同的Class文件中包含的常量的个数是不固定的,所以在Class文件的常量池入口处会设置两个字节的常量池容量计数器,记录了常量池中常量的个数。  当然,还有一种比较简单的查看Class文件中常量池的方法,那就是通过javap命令。对于以上的HelloWorld.class,可以通过 javap -v HelloWorld.class 查看常量池内容如下:  从上图中可以看到,反编译后的class文件常量池中共有16个常量。而Class文件中常量计数器的数值是0011,将该16进制数字转换成10进制的结果是17。 原因是与Java的语言习惯不同,常量池计数器是从0开始而不是从1开始的,常量池的个数是10进制的17,这就代表了其中有16个常量,索引值范围为1-16。 常量池中有什么 介绍完了什么是Class常量池以及如何查看常量池,那么接下来我们就要深入分析一下,Class常量池中都有哪些内容。 常量池中主要存放两大类常量:字面量(literal)和符号引用(symbolic references)。 字面量 前面说过,运行时常量池中主要保存的是字面量和符号引用,那么到底什么字面量? 在计算机科学中,字面量(literal)是用于表达源代码中一个固定值的表示法(notation)。几乎所有计算机编程语言都具有对基本值的字面量表示,诸如:整数、浮点数以及字符串;而有很多也对布尔类型和字符类型的值也支持字面量表示;还有一些甚至对枚举类型的元素以及像数组、记录和对象等复合类型的值也支持字面量表示法。 以上是关于计算机科学中关于字面量的解释,并不是很容易理解。说简单点,字面量就是指由字母、数字等构成的字符串或者数值。 字面量只可以右值出现,所谓右值是指等号右边的值,如:int a=123这里的a为左值,123为右值。在这个例子中123就是字面量。 int a = 123; String s = "hollis"; 上面的代码事例中,123和hollis都是字面量。 本文开头的HelloWorld代码中,Hollis就是一个字面量。 符号引用 常量池中,除了字面量以外,还有符号引用,那么到底什么是符号引用呢。 符号引用是编译原理中的概念,是相对于直接引用来说的。主要包括了以下三类常量: * 类和接口的全限定名 * 字段的名称和描述符 * 方法的名称和描述符 这也就可以印证前面的常量池中还包含一些com/hollis/HelloWorld、main、([Ljava/lang/String;)V等常量的原因了。 Class常量池有什么用 前面介绍了这么多,关于Class常量池是什么,怎么查看Class常量池以及Class常量池中保存了哪些东西。有一个关键的问题没有讲,那就是Class常量池到底有什么用。 首先,可以明确的是,Class常量池是Class文件中的资源仓库,其中保存了各种常量。而这些常量都是开发者定义出来,需要在程序的运行期使用的。 在《深入理解Java虚拟》中有这样的表述: Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载Class文件的时候进行动态连接。也就是说,在Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法得到真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。关于类的创建和动态连接的内容,在虚拟机类加载过程时再进行详细讲解。 前面这段话,看起来很绕,不是很容易理解。其实他的意思就是: Class是用来保存常量的一个媒介场所,并且是一个中间场所。在JVM真的运行时,需要把常量池中的常量加载到内存中。 至于到底哪个阶段会做这件事情,以及Class常量池中的常量会以何种方式被加载到具体什么地方,会在本系列文章的后续内容中继续阐述。欢迎关注我的博客(http://www.hollischuang.com) 和公众号(Hollis),即可第一时间获得最新内容。 另外,关于常量池中常量的存储形式,以及数据类型的表示方法本文中并未涉及,并不是说这部分知识点不重要,只是Class字节码的分析本就枯燥,作者不想在一篇文章中给读者灌输太多的理论上的内容。感兴趣的读者可以自行Google学习,如果真的有必要,我也可以单独写一篇文章再深入介绍。 参考资料 《深入理解java虚拟机》 《Java虚拟机原理图解》 1.2.2、Class文件中的常量池详解(上)
montos 2020-06-02 10:12:18 0 浏览量 回答数 0

问题

【算法】五分钟算法小知识:二叉堆详解实现优先级队列

二叉堆(Binary Heap)没什么神秘,性质比二叉搜索树 BST 还简单。其主要操作就两个,sink(下沉)和 swim(上浮࿰...
游客ih62co2qqq5ww 2020-05-12 16:17:02 4 浏览量 回答数 1

回答

1.阻塞与同步2.BIO与NIO对比3.NIO简介4.缓冲区Buffer5.通道Channel6.反应堆7.选择器8.NIO源码分析9.AIO1.阻塞与同步1)阻塞(Block)和非租塞(NonBlock):阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候阻塞:往往需要等待缞冲区中的数据准备好过后才处理其他的事情,否則一直等待在那里。非阻塞:当我们的进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回2)同步(Synchronization)和异步(Async)的方式:同步和异步都是基于应用程序私操作系统处理IO事件所采用的方式,比如同步:是应用程序要直接参与IO读写的操作。异步:所有的IO读写交给搡作系统去处理,应用程序只需要等待通知。同步方式在处理IO事件的时候,必须阻塞在某个方法上靣等待我们的IO事件完成(阻塞IO事件或者通过轮询IO事件的方式).对于异步来说,所有的IO读写都交给了搡作系统。这个时候,我们可以去做其他的事情,并不拓要去完成真正的IO搡作,当搡作完成IO后.会给我们的应用程序一个通知同步:阻塞到IO事件,阻塞到read成则write。这个时候我们就完全不能做自己的事情,让读写方法加入到线程里面,然后阻塞线程来实现,对线程的性能开销比较大,参考:https://blog.csdn.net/CharJay_Lin/article/details/812598802.BIO与NIO对比block IO与Non-block IO1)区别IO模型 IO NIO方式 从硬盘到内存 从内存到硬盘通信 面向流(乡村公路) 面向缓存(高速公路,多路复用技术)处理 阻塞IO(多线程) 非阻塞IO(反应堆Reactor)触发 无 选择器(轮询机制)2)面向流与面向缓冲Java NIO和IO之间第一个最大的区别是,IO是面向流的.NIO是面向缓冲区的。Java IO面向流意味着毎次从流中读一个成多个字节,直至读取所有字节,它们没有被缓存在任何地方,此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的教据,需要先将它缓存到一个缓冲区。Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,霱要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数裾。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。3)阻塞与非阻塞Java IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。4)选择器(Selector)Java NIO的选择器允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择"通道:这些通里已经有可以处理的褕入,或者选择已准备写入的通道。这选怿机制,使得一个单独的线程很容易来管理多个通道。5)NIO和BIO读取文件BIO读取文件:链接BIO从一个阻塞的流中一行一行的读取数据image | left | 469x426NIO读取文件:链接通道是数据的载体,buffer是存储数据的地方,线程每次从buffer检查数据通知给通道image | left | 559x3946)处理数据的线程数NIO:一个线程管理多个连接BIO:一个线程管理一个连接3.NIO简介在Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节的数据,面向流的I/O速度非常慢,而在Java 1.4中推出了NIO,这是一个面向块的I/O系统,系统以块的方式处理处理,每一个操作在一步中产生或者消费一个数据库,按块处理要比按字节处理数据快的多。在NIO中有几个核心对象需要掌握:缓冲区(Buffer)、通道(Channel)、选择器(Selector)。参考:链接image2.png | center | 851x3834.缓冲区Buffer缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于Java中的基本类型,基本都有一个具体Buffer类型与之相对应,它们之间的继承关系如下图所示:image3.png | center | 650x3681)其中的四个属性的含义分别如下:容量(Capacity):缓冲区能够容纳的数据元素的最大数量。这一个容量在缓冲区创建时被设定,并且永远不能改变。上界(Limit):缓冲区的第一个不能被读或写的元素。或者说,缓冲区中现存元素的计数。位置(Position):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。标记(Mark):下一个要被读或写的元素的索引。位置会自动由相应的 get( )和 put( )函数更新。2)Buffer的常见方法如下所示:flip(): 写模式转换成读模式rewind():将 position 重置为 0 ,一般用于重复读。clear() :compact(): 将未读取的数据拷贝到 buffer 的头部位。mark(): reset():mark 可以标记一个位置, reset 可以重置到该位置。Buffer 常见类型: ByteBuffer 、 MappedByteBuffer 、 CharBuffer 、 DoubleBuffer 、 FloatBuffer 、 IntBuffer 、 LongBuffer 、 ShortBuffer 。3)基本操作Buffer基础操作: 链接缓冲区分片,缓冲区分配,直接缓存区,缓存区映射,缓存区只读:链接4)缓冲区存取数据流程存数据时position会++,当停止数据读取的时候调用flip(),此时limit=position,position=0读取数据时position++,一直读取到limitclear() 清空 buffer ,准备再次被写入 (position 变成 0 , limit 变成 capacity) 。5.通道Channel通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓冲区。同样不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。image4.png | center | 368x191在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:image5.png | center | 650x5171)使用NIO读取数据在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel读取到Buffer中 例子:链接 2)使用NIO写入数据使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤:从FileInputStream获取Channel 创建Buffer 将数据从Channel写入到Buffer中 例子:链接 6.反应堆1)阻塞IO模型在老的IO包中,serverSocket和socket都是阻塞式的,因此一旦有大规模的并发行为,而每一个访问都会开启一个新线程。这时会有大规模的线程上下文切换操作(因为都在等待,所以资源全都被已有的线程吃掉了),这时无论是等待的线程还是正在处理的线程,响应率都会下降,并且会影响新的线程。image6.png | center | 739x3362)NIOJava NIO是在jdk1.4开始使用的,它既可以说成“新IO”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:1.由一个专门的线程来处理所有的IO事件,并负责分发。2.事件驱动机制:事件到的时候触发,而不是同步的去监视事件。3.线程通讯:线程之间通过wait,notify等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。image7.png | center | 689x251注:每个线程的处理流程大概都是读取数据,解码,计算处理,编码,发送响应。7.选择器传统的 server / client 模式会基于 TPR ( Thread per Request ) .服务器会为每个客户端请求建立一个线程.由该线程单独负贵处理一个客户请求。这种模式带未的一个问题就是线程数是的剧增.大量的线程会增大服务器的开销,大多数的实现为了避免这个问题,都采用了线程池模型,并设置线程池线程的最大数量,这又带来了新的问题,如果线程池中有 200 个线程,而有 200 个用户都在进行大文件下载,会导致第 201 个用户的请求无法及时处理,即便第 201 个用户只想请求一个几 KB 大小的页面。传统的 Sorvor / Client 模式如下围所示:image8.png | center | 597x286NIO 中非阻塞IO采用了基于Reactor模式的工作方式,IO调用不会被阻塞,相反是注册感兴趣的特点IO事件,如可读数据到达,新的套接字等等,在发生持定率件时,系统再通知我们。 NlO中实现非阻塞IO的核心设计Selector,Selector就是注册各种IO事件的地方,而且当那些事件发生时,就是这个对象告诉我们所发生的事件。image9.png | center | 462x408当有读或者写等任何注册的事件发生时,可以从Selector中获得相应的SelectionKey,同时从SelectionKey中可以找到发生的事件和该事件所发生的具体的SelectableChannel,以获得客户端发送过来的数据。使用NIO中非阻塞IO编写服务器处理程序,有三个步骤1.向Selector对象注册感兴趣的事件2.从Selector中获取感兴趣的事件3.根据不同事件进行相应的处理8.NIO源码分析Selector是NIO的核心epool模型1)SelectorSelector的open()方法:链接2)ServerSocketChannelServerSocketChannel.open() 链接9.AIOAsynchronous IO异步非阻塞IOBIO ServerSocketNIO ServerSocketChannelAIO AsynchronousServerSocketChannel
wangccsy 2019-12-02 01:46:51 0 浏览量 回答数 0

问题

为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗?【Java问答学堂】46期

面试题 为什么要进行系统拆分?如何进行系统拆分?拆分后不用 dubbo 可以吗? 面试官心理分析 从这个问题开始就进行分布式系统环节了,现在出去面试分布式都成标配了,...
剑曼红尘 2020-06-29 16:39:00 6 浏览量 回答数 1

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。
剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

回答

Python常见数据结构整理 Python中常见的数据结构可以统称为容器(container)。序列(如列表和元组)、映射(如字典)以及集合(set)是三类主要的容器。 一、序列(列表、元组和字符串) 序列中的每个元素都有自己的编号。Python中有6种内建的序列。其中列表和元组是最常见的类型。其他包括字符串、Unicode字符串、buffer对象和xrange对象。下面重点介绍下列表、元组和字符串。 1、列表 列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。 (1)、创建 通过下面的方式即可创建一个列表: 1 2 3 4 list1=['hello','world'] print list1 list2=[1,2,3] print list2 输出: ['hello', 'world'] [1, 2, 3] 可以看到,这中创建方式非常类似于javascript中的数组。 (2)、list函数 通过list函数(其实list是一种类型而不是函数)对字符串创建列表非常有效: 1 2 list3=list("hello") print list3 输出: ['h', 'e', 'l', 'l', 'o'] 2、元组 元组与列表一样,也是一种序列,唯一不同的是元组不能被修改(字符串其实也有这种特点)。 (1)、创建 1 2 3 4 5 6 t1=1,2,3 t2="jeffreyzhao","cnblogs" t3=(1,2,3,4) t4=() t5=(1,) print t1,t2,t3,t4,t5 输出: (1, 2, 3) ('jeffreyzhao', 'cnblogs') (1, 2, 3, 4) () (1,) 从上面我们可以分析得出: a、逗号分隔一些值,元组自动创建完成; b、元组大部分时候是通过圆括号括起来的; c、空元组可以用没有包含内容的圆括号来表示; d、只含一个值的元组,必须加个逗号(,); (2)、tuple函数 tuple函数和序列的list函数几乎一样:以一个序列(注意是序列)作为参数并把它转换为元组。如果参数就算元组,那么该参数就会原样返回: 1 2 3 4 5 6 7 8 t1=tuple([1,2,3]) t2=tuple("jeff") t3=tuple((1,2,3)) print t1 print t2 print t3 t4=tuple(123) print t45 输出: (1, 2, 3) ('j', 'e', 'f', 'f') (1, 2, 3) Traceback (most recent call last): File "F:\Python\test.py", line 7, in <module> t4=tuple(123) TypeError: 'int' object is not iterable 3、字符串 (1)创建 1 2 3 4 5 str1='Hello world' print str1 print str1[0] for c in str1: print c 输出: Hello world H H e l l o w o r l d (2)格式化 字符串格式化使用字符串格式化操作符即百分号%来实现。 1 2 str1='Hello,%s' % 'world.' print str1 格式化操作符的右操作数可以是任何东西,如果是元组或者映射类型(如字典),那么字符串格式化将会有所不同。 1 2 3 4 5 6 strs=('Hello','world') #元组 str1='%s,%s' % strs print str1 d={'h':'Hello','w':'World'} #字典 str1='%(h)s,%(w)s' % d print str1 输出: Hello,world Hello,World 注意:如果需要转换的元组作为转换表达式的一部分存在,那么必须将它用圆括号括起来: 1 2 str1='%s,%s' % 'Hello','world' print str1 输出: Traceback (most recent call last): File "F:\Python\test.py", line 2, in <module> str1='%s,%s' % 'Hello','world' TypeError: not enough arguments for format string 如果需要输出%这个特殊字符,毫无疑问,我们会想到转义,但是Python中正确的处理方式如下: 1 2 str1='%s%%' % 100 print str1 输出:100% 对数字进行格式化处理,通常需要控制输出的宽度和精度: 1 2 3 4 5 6 7 from math import pi str1='%.2f' % pi #精度2 print str1 str1='%10f' % pi #字段宽10 print str1 str1='%10.2f' % pi #字段宽10,精度2 print str1 输出: 3.14 3.141593 3.14 字符串格式化还包含很多其他丰富的转换类型,可参考官方文档。 Python中在string模块还提供另外一种格式化值的方法:模板字符串。它的工作方式类似于很多UNIX Shell里的变量替换,如下所示: 1 2 3 4 from string import Template str1=Template('$x,$y!') str1=str1.substitute(x='Hello',y='world') print str1 输出: Hello,world! 如果替换字段是单词的一部分,那么参数名称就必须用括号括起来,从而准确指明结尾: 1 2 3 4 from string import Template str1=Template('Hello,w${x}d!') str1=str1.substitute(x='orl') print str1 输出: Hello,world! 如要输出符,可以使用$输出: 1 2 3 4 from string import Template str1=Template('$x$$') str1=str1.substitute(x='100') print str1 输出:100$ 除了关键字参数之外,模板字符串还可以使用字典变量提供键值对进行格式化: 1 2 3 4 5 from string import Template d={'h':'Hello','w':'world'} str1=Template('$h,$w!') str1=str1.substitute(d) print str1 输出: Hello,world! 除了格式化之外,Python字符串还内置了很多实用方法,可参考官方文档,这里不再列举。 4、通用序列操作(方法) 从列表、元组以及字符串可以“抽象”出序列的一些公共通用方法(不是你想像中的CRUD),这些操作包括:索引(indexing)、分片(sliceing)、加(adding)、乘(multiplying)以及检查某个元素是否属于序列的成员。除此之外,还有计算序列长度、最大最小元素等内置函数。 (1)索引 1 2 3 4 5 6 str1='Hello' nums=[1,2,3,4] t1=(123,234,345) print str1[0] print nums[1] print t1[2] 输出 H 2 345 索引从0(从左向右)开始,所有序列可通过这种方式进行索引。神奇的是,索引可以从最后一个位置(从右向左)开始,编号是-1: 1 2 3 4 5 6 str1='Hello' nums=[1,2,3,4] t1=(123,234,345) print str1[-1] print nums[-2] print t1[-3] 输出: o 3 123 (2)分片 分片操作用来访问一定范围内的元素。分片通过冒号相隔的两个索引来实现: 1 2 3 4 5 6 7 8 nums=range(10) print nums print nums[1:5] print nums[6:10] print nums[1:] print nums[-3:-1] print nums[-3:] #包括序列结尾的元素,置空最后一个索引 print nums[:] #复制整个序列 输出: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 2, 3, 4] [6, 7, 8, 9] [1, 2, 3, 4, 5, 6, 7, 8, 9] [7, 8] [7, 8, 9] 不同的步长,有不同的输出: 1 2 3 4 5 6 7 8 nums=range(10) print nums print nums[0:10] #默认步长为1 等价于nums[1:5:1] print nums[0:10:2] #步长为2 print nums[0:10:3] #步长为3 ##print nums[0:10:0] #步长为0 print nums[0:10:-2] #步长为-2 输出: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [0, 2, 4, 6, 8] [0, 3, 6, 9] [] (3)序列相加 1 2 3 4 5 6 7 str1='Hello' str2=' world' print str1+str2 num1=[1,2,3] num2=[2,3,4] print num1+num2 print str1+num1 输出: Hello world [1, 2, 3, 2, 3, 4] Traceback (most recent call last): File "F:\Python\test.py", line 7, in <module> print str1+num1 TypeError: cannot concatenate 'str' and 'list' objects (4)乘法 1 2 3 4 5 6 print [None]*10 str1='Hello' print str1*2 num1=[1,2] print num1*2 print str1*num1 输出: [None, None, None, None, None, None, None, None, None, None] HelloHello [1, 2, 1, 2] Traceback (most recent call last): File "F:\Python\test.py", line 5, in <module> print str1*num1 TypeError: can't multiply sequence by non-int of type 'list' (5)成员资格 in运算符会用来检查一个对象是否为某个序列(或者其他类型)的成员(即元素): 1 2 3 4 5 str1='Hello' print 'h' in str1 print 'H' in str1 num1=[1,2] print 1 in num1 输出: False True True (6)长度、最大最小值 通过内建函数len、max和min可以返回序列中所包含元素的数量、最大和最小元素。 1 2 3 4 5 6 7 8 str1='Hello' print len(str1) print max(str1) print min(str1) num1=[1,2,1,4,123] print len(num1) print max(num1) print min(num1) 输出: 5 o H 5 123 1 二、映射(字典) 映射中的每个元素都有一个名字,如你所知,这个名字专业的名称叫键。字典(也叫散列表)是Python中唯一内建的映射类型。 1、键类型 字典的键可以是数字、字符串或者是元组,键必须唯一。在Python中,数字、字符串和元组都被设计成不可变类型,而常见的列表以及集合(set)都是可变的,所以列表和集合不能作为字典的键。键可以为任何不可变类型,这正是Python中的字典最强大的地方。 1 2 3 4 5 6 7 8 list1=["hello,world"] set1=set([123]) d={} d[1]=1 print d d[list1]="Hello world." d[set1]=123 print d 输出: {1: 1} Traceback (most recent call last): File "F:\Python\test.py", line 6, in <module> d[list1]="Hello world." TypeError: unhashable type: 'list' 2、自动添加 即使键在字典中并不存在,也可以为它分配一个值,这样字典就会建立新的项。 3、成员资格 表达式item in d(d为字典)查找的是键(containskey),而不是值(containsvalue)。 Python字典强大之处还包括内置了很多常用操作方法,可参考官方文档,这里不再列举。 思考:根据我们使用强类型语言的经验,比如C#和Java,我们肯定会问Python中的字典是线程安全的吗。 三、集合 集合(Set)在Python 2.3引入,通常使用较新版Python可直接创建,如下所示: strs=set(['jeff','wong','cnblogs']) nums=set(range(10)) 看上去,集合就是由序列(或者其他可迭代的对象)构建的。集合的几个重要特点和方法如下: 1、副本是被忽略的 集合主要用于检查成员资格,因此副本是被忽略的,如下示例所示,输出的集合内容是一样的。 1 2 3 4 5 set1=set([0,1,2,3,0,1,2,3,4,5]) print set1 set2=set([0,1,2,3,4,5]) print set2 输出如下: set([0, 1, 2, 3, 4, 5]) set([0, 1, 2, 3, 4, 5]) 2、集合元素的顺序是随意的 这一点和字典非常像,可以简单理解集合为没有value的字典。 1 2 strs=set(['jeff','wong','cnblogs']) print strs 输出如下: set(['wong', 'cnblogs', 'jeff'])
琴瑟 2019-12-02 01:22:27 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

你下面不是有logger.info这行代码这是可以捕捉到异常的,看异常一点一点分析吧。 “如果有一条数据报错,那么全部数据都不能执行成功”,这个可以用oracle事务。 java倒是不大了解,应该可以根据oracle返回值判断事务是否执行成功,然后中断吧。 你看看报错信息,应该会有相关的SQL语句信息在里面,然后你再去找对应的SQL了。 查看日志文件,找对应的错误 报错之前打印出来。或者存在局部变量中,catch异常之后,把这个局部变量的值打印出来。例如: Strings=null;try{x=next-data();xxxxx其他处理代码。xxxx }catch(Exceptione){这里打印s即可。} 你这里应该可以只记录索引i。异常时打印出来。 事务的特性,你虽然1000条执行一次,但是没有提交,如果有一条报错肯定都回滚了,你可以1000条执行一次,然后马上提交,这样如果一个批次出现异常,那么只会影响这1000条,这1000条会回滚,然后查看后台日志,看看具体是哪一条 这是我打印的SQL。 我是想把所有的数据导进新的库中,其中我还要对数据进行相应的改变,所以需要写这个程序。 其次我要执行的任务是晚上下班时,将程序跑起来,然后第二天所有程序导进新的数据库,然后错误的数据能够打印到日志里面。 可以程序验证数据有效性,有误的log、跳过。 有人给我说过可以自定义异常,这样只要能定到是那条数据有错了,能拿到错误的Object数组就好处理了,所以想问问,到底该怎么做
爱吃鱼的程序员 2020-06-23 00:06:09 0 浏览量 回答数 0

回答

public synchronized void insert() {     ... } 试试这个。######您好,请问 如果我不用这种同步的方法, 只用事务隔离可以解决吗###### 加synchronized比较简单暴力,性价比最好。更优的方式是添加流水单号,根据流水单号进行同步或者异步添加。但是需要实现很多内容。######简单暴力、好处是 Java 端当掉了并发的压力,数据库还是一个个进出,压力不会落到数据库上。哈哈哈######  transactionl###### 两次插入请求和事务没太大关系,上面的加synchronize关键字在一台机器上的时候算是一个办法,但不是可行的办法,这相当于把所有任务都串行了,浪费服务器资源。这种情况可以有几种处理办法: 1. 数据库加唯一索引,如果有唯一列可以标识的话 2. 两行重复在事务完成之后做一个删除判断,将id比较小的(大的也OK,只要逻辑一致)几条删掉,只保留一条 3. 加分布式锁,这也需要唯一标识来加锁 4. 不完美的解决办法,前端保证短时间内只发一次请求(正常用户没有问题,容易被hack,但可以挡正常流量,这应该是必须要做的)###### 引用来自“52iSilence7”的评论 两次插入请求和事务没太大关系,上面的加synchronize关键字在一台机器上的时候算是一个办法,但不是可行的办法,这相当于把所有任务都串行了,浪费服务器资源。这种情况可以有几种处理办法: 1. 数据库加唯一索引,如果有唯一列可以标识的话 2. 两行重复在事务完成之后做一个删除判断,将id比较小的(大的也OK,只要逻辑一致)几条删掉,只保留一条 3. 加分布式锁,这也需要唯一标识来加锁 4. 不完美的解决办法,前端保证短时间内只发一次请求(正常用户没有问题,容易被hack,但可以挡正常流量,这应该是必须要做的) 增加分布式锁,注意释放锁死锁情况。 楼上说的比较ID大小的方法仅限于ID是自增情况,如果是UUID不适用。  ######  事务和并发问题 事务和并发,这两个并不是一个对等的概念。 先给出简单解决方案,具体的实现在下文会给出。   第一种方式(推荐):   给数据添加唯一索引,这种方式能解决,但是会影响效率。   第二种方式:   如果是分布式项目,可以使用分布式锁,具体可以通过redis或者zookeeper来实现,   如果是单点项目,可以使用同步代码块来实现。   第三种方式(推荐):   使用insert where not exists 语句来限制插入。   第四种方式:   使用redis的`SETNX`方法来实现。     在具体业务中,我们更推荐第一种方式和第三种方式相结合的形式,但是大多数业务场景中,往往只采用第一种方式即可。   具体解决方案和思路。   在关系型数据库中(如MySql),一个事务可以是一条SQL语句,或者一组SQL语句。 其展现形式大致如下:   ``` BEGIN; /*开启事务*/ SQL 1; SQL 2; SQL 3; COMMIT;/ROLLBACK; /*提交或回滚*/ ```   他的具体表现是,上面一组SQL(SQL 1/SQL 2/SQL 3)在执行时,他们同时生效或者同时失败。   并发场景重现   如题所诉,假设`报名表`由下列字段构成   ``` CREATE TABLE `sign_up` (   `user_id` varchar(32) NOT NULL COMMENT '用户ID',   `create_time` datetime NOT NULL COMMENT '用户报名时间' ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ```   题中目前的操作应该大致如下:   ``` BEGIN; /*step1:从数据库获取当前用户是否已经报名*/ SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = ''; /*step2:如果用户未报名,则在数据库中插入数据*/ INSERT INTO sign_up values('',NOW()); COMMIT; ``` 此时代码本身是有漏洞的,当请求并发时,可能触发下列场景。   请求A: `SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = '123';` 请求B: `SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = '123';` 请求A: `INSERT INTO sign_up values('123',NOW());` 请求B: `INSERT INTO sign_up values('123',NOW());`   数据库在未添加唯一索引的场景下会插入两条数据,添加唯一索引的场景下则会报错`唯一索引冲突`。   此时虽然开启了事务,但是在整个执行过程中,如果没有开启唯一索引,SQL都是执行成功的,不会触发`ROLLBACK`; 如果开启了唯一索引,此时应该也就没有这个疑问了。   解决方案 针对这种问题,其实可以采取几种常见的方式来解决。 第一种方式: 在单点部署的工程中,可以通过对核心代码部分添加同步来解决,比如使用`synchronized`或者`ReentrantLock`来实现, 限制部分代码的并发访问,但是这样必然会降低该接口的效率,而且,在分布式工程内,该解决方法并不适用 ,所以不建议使用。   第二种方式: 通过分布式一致性锁来实现 针对第一种方案,通过分布式一致性锁取代常规同步块,进而实现在分布式工程中将并发转为同步。 分布式一致锁的实现方案有很多种,常见的有基于redis实现和基于zookeeper实现。   第三种方式:给数据库字段添加唯一索引 `ALTER TABLE sign_up ADD UNIQUE INDEX `user_id`(`user_id`);` 或者 `CREATE UNIQUE INDEX user_id ON sign_up(user_id); ` 这种方式通过在数据库端来限制表中不得同时存在同一用户的多条数据,这种方式实现比较简单,推荐使用,但是通过抛异常的形式来实现功能,会损失部分效率。   第四种方式: 使用`insert where not exists` 类型的语句来实现 ``` INSERT INTO sign_up (user_id, create_time) SELECT     '123', NOW() FROM     DUAL WHERE     NOT EXISTS (         SELECT             user_id         FROM             sign_up         WHERE             user_id = '123'     ); ```   这种方式,实现上将select 语句和insert语句合并到一起执行,避免了题中描述的并发问题,因为从实现上`insert`语句的执行依赖于`select`语句的查询结果 ,从根本上就避免了题中涉及到的并发问题,使用这种方式调用端可以根据`SQL`执行影响的行数来判断是否插入成功,进而执行对应的业务逻辑 ,这种方式普适性较强,推荐使用。   第五种方式,借助`redis`的`SETNX`方法来实现 ``` SETNX 是 ‘SET if Not eXists’的简称,命令格式大致如下:SETNX [key] [value]. 作用是:将指定的[key]的值设为[value],如果给定的key已经存在,则SETNX不做任何操作。 设置成功,该方法返回1,设置失败,该方法返回0. ``` 借助`SETNX`命令,我们可以将题中的`select`语句改为该方式,根据`SETNX`的返回值来执行相应的业务逻辑。 tips: 该方法需要注意redis的key值失效时间。   上诉五种方式都可以解决该问题。   问题产生的本质原因   下面再简单聊一下,并发和事务的问题。   事务有四大特性:A(原子性),C(一致性),I(隔离性),D(持久性)。   其中   - 原子性表示:事务所包含的所有操作,要么全部成功,要么全部失败。   - 一致性表示:事务执行前后必须处于一致性状态。   - 隔离性:当多个用户并发访问数据库的时候,多个并发线程相互隔离。   - 持久性:事务一旦被提交,对数据库的改变是永久性的,即使数据库系统遭遇故障也不会丢失提交的事务。   出现题中的问题,应该是混淆了原子性和隔离性的概念,原子性只是保证了事务中包含的操作要么同时成功,要么同时失败。 他并不会帮助我们处理业务代码中产生的并发问题,同理隔离性要求处理的是数据库并发,而不是业务并发。   在题中,业务代码内的两条SQL在没有配置唯一索引的场景下,并发时,并不会产生SQL执行失败的场景,两条语句默认都是成功的 ,这也就意味着事务最终是提交(`COMMIT`)的,进而导致数据库出现两条数据。   为了解决这种问题,我们的思路往往可以放在如何在业务层面将会出现并发问题的代码原子化,比如本文给出的解决方案,均是基于此而实现的。  ###### 加锁处理、唯一索引、基于redis防止重复提交###### 1.数据库的唯一索引 2.如果不是分布式部署的话上java锁 3.如果是分布式的话上基于redis的分布式锁 4.最好用lock锁 锁代码就可 没必要锁整个方法
kun坤 2020-06-07 22:25:21 0 浏览量 回答数 0

问题

【今日算法】4月23日-如何调度考生的座位

这是 LeetCode 第 855 题,有趣且具有一定技巧性。这种题目并不像动态规划这类算法拼智商,而是看你对常用数据结构的理解和写代码的水平,个人认为值得重视和学习。 另外说句题外话࿰...
游客ih62co2qqq5ww 2020-04-23 20:33:10 19 浏览量 回答数 1

回答

官方文档上列举共有32种常见算子,包括Transformation的20种操作和Action的12种操作。 Transformation: 1.map map的输入变换函数应用于RDD中所有元素,而mapPartitions应用于所有分区。区别于mapPartitions主要在于调用粒度不同。如parallelize(1 to 10, 3),map函数执行10次,而mapPartitions函数执行3次。 ​ 2.filter(function) 过滤操作,满足filter内function函数为true的RDD内所有元素组成一个新的数据集。如:filter(a == 1)。 3.flatMap(function) map是对RDD中元素逐一进行函数操作映射为另外一个RDD,而flatMap操作是将函数应用于RDD之中的每一个元素,将返回的迭代器的所有内容构成新的RDD。而flatMap操作是将函数应用于RDD中每一个元素,将返回的迭代器的所有内容构成RDD。 flatMap与map区别在于map为“映射”,而flatMap“先映射,后扁平化”,map对每一次(func)都产生一个元素,返回一个对象,而flatMap多一步就是将所有对象合并为一个对象。 4.mapPartitions(function) 区于foreachPartition(属于Action,且无返回值),而mapPartitions可获取返回值。与map的区别前面已经提到过了,但由于单独运行于RDD的每个分区上(block),所以在一个类型为T的RDD上运行时,(function)必须是Iterator => Iterator 类型的方法(入参)。 5.mapPartitionsWithIndex(function) 与mapPartitions类似,但需要提供一个表示分区索引值的整型值作为参数,因此function必须是(int, Iterator )=>Iterator 类型的。 ​ 6.sample(withReplacement, fraction, seed) 采样操作,用于从样本中取出部分数据。withReplacement是否放回,fraction采样比例,seed用于指定的随机数生成器的种子。(是否放回抽样分true和false,fraction取样比例为(0, 1]。seed种子为整型实数。) ​ 7.union(otherDataSet) 对于源数据集和其他数据集求并集,不去重。 ​ 8.intersection(otherDataSet) 对于源数据集和其他数据集求交集,并去重,且无序返回。 ​ 9.distinct([numTasks]) 返回一个在源数据集去重之后的新数据集,即去重,并局部无序而整体有序返回。 ​ ​ 10.groupByKey([numTasks]) 在一个PairRDD或(k,v)RDD上调用,返回一个(k,Iterable )。主要作用是将相同的所有的键值对分组到一个集合序列当中,其顺序是不确定的。groupByKey是把所有的键值对集合都加载到内存中存储计算,若一个键对应值太多,则易导致内存溢出。 在此,用之前求并集的union方法,将pair1,pair2变为有相同键值的pair3,而后进行groupByKey ​ 11.reduceByKey(function,[numTasks]) 与groupByKey类似,却有不同。如(a,1), (a,2), (b,1), (b,2)。groupByKey产生中间结果为( (a,1), (a,2) ), ( (b,1), (b,2) )。而reduceByKey为(a,3), (b,3)。 reduceByKey主要作用是聚合,groupByKey主要作用是分组。(function对于key值来进行聚合) ​ 12.aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) 类似reduceByKey,对pairRDD中想用的key值进行聚合操作,使用初始值(seqOp中使用,而combOpenCL中未使用)对应返回值为pairRDD,而区于aggregate(返回值为非RDD) ​ 13.sortByKey([ascending], [numTasks]) 同样是基于pairRDD的,根据key值来进行排序。ascending升序,默认为true,即升序;numTasks 14.join(otherDataSet,[numTasks]) 加入一个RDD,在一个(k,v)和(k,w)类型的dataSet上调用,返回一个(k,(v,w))的pair dataSet。 ​ 15.cogroup(otherDataSet,[numTasks]) 合并两个RDD,生成一个新的RDD。实例中包含两个Iterable值,第一个表示RDD1中相同值,第二个表示RDD2中相同值(key值),这个操作需要通过partitioner进行重新分区,因此需要执行一次shuffle操作。(若两个RDD在此之前进行过shuffle,则不需要) ​ 16.cartesian(otherDataSet) 求笛卡尔乘积。该操作不会执行shuffle操作。 ​ 17.pipe(command,[envVars]) 通过一个shell命令来对RDD各分区进行“管道化”。通过pipe变换将一些shell命令用于Spark中生成的新RDD,如: ​ 18.coalesce(numPartitions) 重新分区,减少RDD中分区的数量到numPartitions。 ​ 19.repartition(numPartitions) repartition是coalesce接口中shuffle为true的简易实现,即Reshuffle RDD并随机分区,使各分区数据量尽可能平衡。若分区之后分区数远大于原分区数,则需要shuffle。 ​ 20.repartitionAndSortWithinPartitions(partitioner) 该方法根据partitioner对RDD进行分区,并且在每个结果分区中按key进行排序。 Action: 1.reduce(function) reduce将RDD中元素两两传递给输入函数,同时产生一个新值,新值与RDD中下一个元素再被传递给输入函数,直到最后只有一个值为止。 ​ 2.collect() 将一个RDD以一个Array数组形式返回其中的所有元素。 ​ 3.count() 返回数据集中元素个数,默认Long类型。 ​ 4.first() 返回数据集的第一个元素(类似于take(1)) ​ 5.takeSample(withReplacement, num, [seed]) 对于一个数据集进行随机抽样,返回一个包含num个随机抽样元素的数组,withReplacement表示是否有放回抽样,参数seed指定生成随机数的种子。 该方法仅在预期结果数组很小的情况下使用,因为所有数据都被加载到driver端的内存中。 ​ 6.take(n) 返回一个包含数据集前n个元素的数组(从0下标到n-1下标的元素),不排序。 ​ 7.takeOrdered(n,[ordering]) 返回RDD中前n个元素,并按默认顺序排序(升序)或者按自定义比较器顺序排序。 ​ 8.saveAsTextFile(path) 将dataSet中元素以文本文件的形式写入本地文件系统或者HDFS等。Spark将对每个元素调用toString方法,将数据元素转换为文本文件中的一行记录。 若将文件保存到本地文件系统,那么只会保存在executor所在机器的本地目录。 ​ 9.saveAsSequenceFile(path)(Java and Scala) 将dataSet中元素以Hadoop SequenceFile的形式写入本地文件系统或者HDFS等。(对pairRDD操作) ​ 10.saveAsObjectFile(path)(Java and Scala) 将数据集中元素以ObjectFile形式写入本地文件系统或者HDFS等。 ​ ​ 11.countByKey() 用于统计RDD[K,V]中每个K的数量,返回具有每个key的计数的(k,int)pairs的hashMap。 ​ 12.foreach(function) 对数据集中每一个元素运行函数function。
bigbigtree 2020-03-19 19:21:30 0 浏览量 回答数 0

问题

如何自定义ETL?

日志服务提供流式的全托管数据加工服务,您可以配置一个ETL Job,日志服务将定时生成ETL Task并触发函数执行:增量消费日志服务logstore的数据,在函数里完成自定义加工任务...
轩墨 2019-12-01 21:55:51 1872 浏览量 回答数 0

回答

SpringBoot整合ES 创建SpringBoot项目,导入 ES 6.2.1 的 RestClient 依赖和 ES 依赖。在项目中直接引用 es-starter 的话会报容器初始化异常错误,导致项目无法启动。如果有读者解决了这个问题,欢迎留言交流 org.elasticsearch.client elasticsearch-rest-high-level-client ${elasticsearch.version} org.elasticsearch elasticsearch ${elasticsearch.version} 为容器定义 RestClient 对象 /** * 在Spring容器中定义 RestClient 对象 * @Author: keats_coder * @Date: 2019/8/9 * @Version 1.0 * */ @Configuration public class ESConfig { @Value("${yunshangxue.elasticsearch.hostlist}") private String hostlist; // 127.0.0.1:9200 @Bean // 高版本客户端 public RestHighLevelClient restHighLevelClient() { // 解析 hostlist 配置信息。假如以后有多个,则需要用 , 分开 String[] split = hostlist.split(","); // 创建 HttpHost 数组,其中存放es主机和端口的配置信息 HttpHost[] httpHostArray = new HttpHost[split.length]; for (int i = 0; i < split.length; i++) { String item = split[i]; httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http"); } // 创建RestHighLevelClient客户端 return new RestHighLevelClient(RestClient.builder(httpHostArray)); } // 项目主要使用 RestHighLevelClient,对于低级的客户端暂时不用 @Bean public RestClient restClient() { // 解析hostlist配置信息 String[] split = hostlist.split(","); // 创建HttpHost数组,其中存放es主机和端口的配置信息 HttpHost[] httpHostArray = new HttpHost[split.length]; for (int i = 0; i < split.length; i++) { String item = split[i]; httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http"); } return RestClient.builder(httpHostArray).build(); } } 在 yml 文件中配置 eshost yunshangxue: elasticsearch: hostlist: ${eshostlist:127.0.0.1:9200} 调用相关 API 执行操作 创建操作索引的对象 构建操作索引的请求 调用对象的相关API发送请求 获取响应消息 /** * 删除索引库 */ @Test public void testDelIndex() throws IOException { // 操作索引的对象 IndicesClient indices = client.indices(); // 删除索引的请求 DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("ysx_course"); // 删除索引 DeleteIndexResponse response = indices.delete(deleteIndexRequest); // 得到响应 boolean b = response.isAcknowledged(); System.out.println(b); } 创建索引, 步骤和删除类似,需要注意的是删除的时候需要指定 ES 库分片的数量和副本的数量,并且在创建索引的时候可以将映射一起指定了。代码如下 public void testAddIndex() throws IOException { // 操作索引的对象 IndicesClient indices = client.indices(); // 创建索引的请求 CreateIndexRequest request = new CreateIndexRequest("ysx_course"); request.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0")); // 创建映射 request.mapping("doc", "{\n" + " \"properties\": {\n" + " \"description\": {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + " \"name\": {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + "\"pic\":{ \n" + "\"type\":\"text\", \n" + "\"index\":false \n" + "}, \n" + " \"price\": {\n" + " \"type\": \"float\"\n" + " },\n" + " \"studymodel\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"timestamp\": {\n" + " \"type\": \"date\",\n" + " \"format\": \"yyyy-MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis\"\n" + " }\n" + " }\n" + " }", XContentType.JSON); // 执行创建操作 CreateIndexResponse response = indices.create(request); // 得到响应 boolean b = response.isAcknowledged(); System.out.println(b); } Java API操作ES 准备数据环境 创建索引:ysx_course 创建映射: PUT http://localhost:9200/ysx_course/doc/_mapping { "properties": { "description": { // 课程描述 "type": "text", // String text 类型 "analyzer": "ik_max_word", // 存入的分词模式:细粒度 "search_analyzer": "ik_smart" // 查询的分词模式:粗粒度 }, "name": { // 课程名称 "type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_smart" }, "pic":{ // 图片地址 "type":"text", "index":false // 地址不用来搜索,因此不为它构建索引 }, "price": { // 价格 "type": "scaled_float", // 有比例浮点 "scaling_factor": 100 // 比例因子 100 }, "studymodel": { "type": "keyword" // 不分词,全关键字匹配 }, "timestamp": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" } } } 加入原始数据: POST http://localhost:9200/ysx_course/doc/1 { "name": "Bootstrap开发", "description": "Bootstrap是由Twitter推出的一个前台页面开发框架,是一个非常流行的开发框架,此框架集成了多种页面效果。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。", "studymodel": "201002", "price":38.6, "timestamp":"2018-04-25 19:11:35", "pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" } DSL搜索 DSL(Domain Specific Language)是ES提出的基于json的搜索方式,在搜索时传入特定的json格式的数据来完成不 同的搜索需求。DSL比URI搜索方式功能强大,在项目中建议使用DSL方式来完成搜索。 查询全部 原本我们想要查询全部的话,需要使用 GET 请求发送 _search 命令,如今使用 DSL 方式搜索,可以使用 POST 请求,并在请求体中设置 JSON 字符串来构建查询条件 POST http://localhost:9200/ysx_course/doc/_search 请求体 JSON { "query": { "match_all": {} // 查询全部 }, "_source" : ["name","studymodel"] // 查询结果包括 课程名 + 学习模式两个映射 } 具体的测试方法如下:过程比较繁琐,好在条理还比较清晰 // 搜索全部记录 @Test public void testSearchAll() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // matchAllQuery搜索全部 searchSourceBuilder.query(QueryBuilders.matchAllQuery()); // 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段 searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{}); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); for(SearchHit hit:searchHits){ // 文档的主键 String id = hit.getId(); // 源文档内容 Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String name = (String) sourceAsMap.get("name"); // 由于前边设置了源文档字段过虑,这时description是取不到的 String description = (String) sourceAsMap.get("description"); // 学习模式 String studymodel = (String) sourceAsMap.get("studymodel"); // 价格 Double price = (Double) sourceAsMap.get("price"); // 日期 Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp")); System.out.println(name); System.out.println(studymodel); System.out.println("你看不见我,看不见我~" + description); System.out.println(price); } } 坑:red> 执行过程中遇到的问题:不能对这个值进行初始化,导致 Spring 容器无法初始化 Caused by: java.lang.IllegalArgumentException: Could not resolve placeholder 'yunshangxue.elasticsearch.hostlist' in value "${yunshangxue.elasticsearch.hostlist}" 通过检查 target 目录发现,生成的 target 文件包中没有将 yml 配置文件带过来... 仔细对比发现,我的项目竟然变成了一个不是 Maven 的项目。重新使用 IDEA 导入 Mavaen 工程之后便能正常运行了 分页查询 我们来 look 一下 ES 的分页查询参数: { // from 起始索引 // size 每页显示的条数 "from" : 0, "size" : 1, "query": { "match_all": {} }, "_source" : ["name","studymodel"] } 1565524349684 通过查询结果可以发现,我们设置了分页参数之后, hits.total 仍然是 3,表示它找到了 3 条数据,而按照分页规则,它只会返回一条数据,因此 hits.hits 里面只有一条数据。这也符合我们的业务规则,在查询前端页面显示总共的条数和当前的数据。 由此,我们就可以通过 Java API 来构建查询条件了:对上面查询全部的代码进行如下改造: // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); int page = 2; // 页码 int size = 1; // 每页显示的条数 int index = (page - 1) * size; searchSourceBuilder.from(index); searchSourceBuilder.size(1); // 搜索方式 // matchAllQuery搜索全部 searchSourceBuilder.query(QueryBuilders.matchAllQuery()); 精确查询 TermQuery Term Query为精确查询,在搜索时会整体匹配关键字,不再将关键字分词 例如: { "query": { "term": { // 查询的方式为 term 精确查询 "name": "spring" // 查询的字段为 name 关键字是 spring } }, "_source": [ "name", "studymodel" ] } 此时查询的结果是: "hits": [ { "_index": "ysx_course", "_type": "doc", "_id": "3", "_score": 0.9331132, "_source": { "studymodel": "201001", "name": "spring开发基础" } } ] 查询到了上面这条数据,因为 spring开发基础 分完词后是 spring 开发 基础 ,而查询关键字是 spring 不分词,这样当然可以匹配到这条记录,但是当我们修改关键字为 spring开发,按照往常的查询方法,也是可以查询到的。但是 term 不一样,它不会对关键字分词。结果可想而知是查询不到的 JavaAPI如下: // 搜索方式 // termQuery 精确查询 searchSourceBuilder.query(QueryBuilders.termQuery("studymodel", "201002")); 根据 ID 查询: 根据 ID 精确查询和根据其他条件精确查询是一样的,不同的是 id 字段前面有一个下划线注意写上 searchSourceBuilder.query(QueryBuilders.termQuery("_id", "1")); 但是,当一次查询多个 ID 时,相应的 API 也应该改变,使用 termsQuery 而不是 termQuery。多了一个 s 全文检索 MatchQuery MatchQuery 即全文检索,会对关键字进行分词后匹配词条。 query:搜索的关键字,对于英文关键字如果有多个单词则中间要用半角逗号分隔,而对于中文关键字中间可以用 逗号分隔也可以不用 operator:设置查询的结果取交集还是并集,并集用 or, 交集用 and { "query": { "match": { "description": { "query": "spring开发", "operator": "or" } } } } 有时,我们需要设定一个量化的表达方式,例如查询 spring开发基础,这三个词条。我们需求是至少匹配两个词条,这时 operator 属性就不能满足要求了,ES 还提供了另外一个属性:minimum_should_match 用一个百分数来设定应该有多少个词条满足要求。例如查询: “spring开发框架”会被分为三个词:spring、开发、框架 设置"minimum_should_match": "80%"表示,三个词在文档的匹配占比为80%,即3*0.8=2.4,向下取整得2,表 示至少有两个词在文档中要匹配成功。 JavaAPI 通过 matchQuery.minimumShouldMatch 的方式来设置条件 // matchQuery全文检索 searchSourceBuilder.query(QueryBuilders.matchQuery("description", "Spring开发框架").minimumShouldMatch("70%")); 多字段联合搜索 MultiQuery 上面的 MatchQuery 有一个短板,假如用户输入了某关键字,我们在查找的时候并不知道他输入的是 name 还是 description,这时我们用什么都不合适,而 MultiQuery 的出现解决了这个问题,他可以通过 fields 属性来设置多个域联合查找:具体用法如下 { "query": { "multi_match": { "query": "Spring开发", "minimum_should_match": "70%", "fields": ["name", "description"] } } } JavaAPI searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").minimumShouldMatch("70%")); 提升 boost 在多域联合查询的时候,可以通过 boost 来设置某个域在计算得分时候的比重,比重越高的域当他符合条件时计算的得分越高,相应的该记录也更靠前。通过在 fields 中给相应的字段用 ^权重倍数来实现 "fields": ["name^10", "description"] 上面的代码表示给 name 字段提升十倍权重,查询到的结果: { "_index": "ysx_course", "_type": "doc", "_id": "3", "_score": 13.802518, // 可以清楚的发现,得分竟然是 13 了 "_source": { "name": "spring开发基础", "description": "spring 在java领域非常流行,java程序员都在用。", "studymodel": "201001", "price": 88.6, "timestamp": "2018-02-24 19:11:35", "pic": "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" } }, 而在 Java 中,仍然可以通过链式编程来实现 searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10)); // 设置 name 10倍权重 布尔查询 BoolQuery 如果我们既要对一些字段进行分词查询,同时要对另一些字段进行精确查询,就需要使用布尔查询来实现了。布尔查询对应于Lucene的BooleanQuery查询,实现将多个查询组合起来,有三个可选的参数: must:文档必须匹配must所包括的查询条件,相当于 “AND” should:文档应该匹配should所包括的查询条件其中的一个或多个,相当于 "OR" must_not:文档不能匹配must_not所包括的该查询条件,相当于“NOT” { "query": { "bool": { // 布尔查询 "must": [ // 查询条件 must 表示数组中的查询方式所规定的条件都必须满足 { "multi_match": { "query": "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] } }, { "term": { "studymodel": "201001" } } ] } } } JavaAPI // 搜索方式 // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10); // 然后构造精确匹配查询条件 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("studymodel", "201002"); // 组合两个条件,组合方式为 must 全满足 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); boolQueryBuilder.must(termQueryBuilder); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); 过滤器 定义过滤器查询,是在原本查询结果的基础上对数据进行筛选,因此省略了重新计算的分的步骤,效率更高。并且方便缓存。推荐尽量使用过虑器去实现查询或者过虑器和查询共同使用,过滤器在布尔查询中使用,下边是在搜索结果的基础上进行过滤: { "query": { "bool": { "must": [ { "multi_match": { "query": "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] } } ], "filter": [ { // 过滤条件:studymodel 必须是 201001 "term": {"studymodel": "201001"} }, { // 过滤条件:价格 >=60 <=100 "range": {"price": {"gte": 60,"lte": 100}} } ] } } } 注意:range和term一次只能对一个Field设置范围过虑。 JavaAPI // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10); // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.termQuery("studymodel", "201001")); boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); 排序 我们可以在查询的结果上进行二次排序,支持对 keyword、date、float 等类型添加排序,text类型的字段不允许排序。排序使用的 JSON 格式如下: { "query": { "bool": { "filter": [ { "range": { "price": { "gte": 0, "lte": 100 } } } ] } }, "sort": [ // 注意这里排序是写在 query key 的外面的。这就表示它的API也不是布尔查询提供 { "studymodel": "desc" // 对 studymodel(keyword)降序 }, { "price": "asc" // 对 price(double)升序 } ] } 由上面的 JSON 数据可以发现,排序所属的 API 是和 query 评级的,因此在调用 API 时也应该选择对应的 SearchSourceBuilder 对象 // 排序查询 @Test public void testSort() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(0).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 设置排序规则 searchSourceBuilder.sort("studymodel", SortOrder.DESC); // 第一排序规则 searchSourceBuilder.sort("price", SortOrder.ASC); // 第二排序规则 // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 soutData(searchHits); } 高亮显示 高亮显示可以将搜索结果一个或多个字突出显示,以便向用户展示匹配关键字的位置。 高亮三要素:高亮关键字、高亮前缀、高亮后缀 { "query": { "bool": { "must": [ { "multi_match": { "query": "开发框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ], "type": "best_fields" } } ] } }, "sort": [ { "price": "asc" } ], "highlight": { "pre_tags": [ "" ], "post_tags": [ "" ], "fields": { "name": {}, "description": {} } } } 查询结果的数据如下: 1565585272091 Java 代码如下,注意到上面的 JSON 数据, highlight 和 sort 和 query 依然是同级的,所以也需要用 SearchSourceBuilder 对象来设置到搜索条件中 // 高亮查询 @Test public void testHighLight() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10); // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); // *********************** // 高亮查询 HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.preTags("<em>"); // 高亮前缀 highlightBuilder.postTags("</em>"); // 高亮后缀 highlightBuilder.fields().add(new HighlightBuilder.Field("name")); // 高亮字段 // 添加高亮查询条件到搜索源 searchSourceBuilder.highlighter(highlightBuilder); // *********************** // 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段 searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{}); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 soutData(searchHits); } 根据查询结果的数据结构来获取高亮的数据,替换原有的数据: private void soutData(SearchHit[] searchHits) throws ParseException { SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); for (SearchHit hit : searchHits) { // 文档的主键 String id = hit.getId(); // 源文档内容 Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String name = (String) sourceAsMap.get("name"); // 获取高亮查询的内容。如果存在,则替换原来的name Map<String, HighlightField> highlightFields = hit.getHighlightFields(); if( highlightFields != null ){ HighlightField nameField = highlightFields.get("name"); if(nameField!=null){ Text[] fragments = nameField.getFragments(); StringBuffer stringBuffer = new StringBuffer(); for (Text str : fragments) { stringBuffer.append(str.string()); } name = stringBuffer.toString(); } } // 由于前边设置了源文档字段过虑,这时description是取不到的 String description = (String) sourceAsMap.get("description"); // 学习模式 String studymodel = (String) sourceAsMap.get("studymodel"); // 价格 Double price = (Double) sourceAsMap.get("price"); // 日期 Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp")); System.out.println(name); System.out.println(id); System.out.println(studymodel); System.out.println("你看不见我,看不见我~" + description); System.out.println(price); } }
剑曼红尘 2020-04-15 19:21:40 0 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。
hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

问题

经典动态规划:高楼扔鸡蛋(进阶篇) 6月3日【今日算法】

我们在 上篇文章 聊了高楼扔鸡蛋问题,讲了一种效率不是很高,但是较为容易理解的动态规划解法。后台很多读者问如何更高效地解决这个问题,今天就谈两种思路,来优化一下这个问题,...
游客ih62co2qqq5ww 2020-06-03 15:10:38 7 浏览量 回答数 1

回答

我们实现本地延时比较简单,直接使用Java中现成的即可,那我们分布式消息队列的实现有哪些难点呢? 有很多同学首先会想到我们实现分布式消息队列的延时任务,可不可以直接使用本地的那一套,用ScheduledThreadPoolExecutor,Timer,当然这是可以的,前提是你的消息量很小,但是我们分布式消息队列往往都是企业级别的中间件,数据量都是非常的大,那么我们纯内存的方案肯定是行不通的。所以我们就有了下面这几个方案来解决我们这个问题。 #数据库 数据库一般来说是我们很容易想到的一个办法,我们通常可以建立下面这样一个表: CREATE TABLE `delay_message` ( `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT, `excute_time` bigint(16) DEFAULT NULL COMMENT '执行时间,ms级别', `body` varchar(4096) COLLATE utf8mb4_unicode_ci DEFAULT NULL COMMENT '消息体', PRIMARY KEY (`id`), KEY `time_index` (`excute_time`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci; 这个表中我们使用excute_time代表我们真实的执行时间,并且对其建立索引,然后在我们的消息服务中,启动一个定时任务,定时从数据库中扫描已经可以执行的消息,然后开始执行,具体流程如下面所示: 使用数据库的方法是一个比较原始的方法,在没有延时消息这个概念之前,要做一个订单多少分钟过期的这种功能,通常使用这个方法去完成。而这个方法通常也比较局限于我们单个业务,如果想扩展为我们企业级的一个中间件的话是不行的,因为mysql由于BTree的特性,会随着维护二级索引的开销越来越大,导致写入会越来越慢,所以这个方案通常不会被考虑。 #RocksDB/LevelDB 我们之前介绍RocketMQ在开源版本中只实现了18个Level的延时消息,但是有很多公司基于RocketMQ做了自己的一套支持任意时间的延时消息,在美团内部封装了RocketMQ使用LevelDB做了对延时消息的封装,在滴滴开源的DDMQ中,使用了RocksDB对RocketMQ的延时消息部分进行了封装。 其原理基本和Mysql类似,如下图所示: 为什么同样是数据库RocksDB会比Mysql更加合适呢?因为RocksDB的特性是LSM树,其使用场景适用于大量写入,和消息队列的场景更加契合,所以这个也是滴滴和美团选择其作为延时消息封装的存储介质。 #时间轮+磁盘存储 再说时间轮之前,让我们再次回到我们的实现本地延时的时候使用的ScheduledThreadPoolExecutor还有Timer,他们都是使用的优先级队列完成的,优先级队列本质上也就是堆结构,堆结构的插入的时间复杂度是O(LogN),如果未来我们的内存可以做到无限,我们使用使用优先级队列去做延时消息的存储,但是随着消息的增多,我们的插入消息的效率也会越来越低,那么怎么才能让我们的插入消息的效率不随着消息的增多而变低呢?答案就是时间轮。 什么是时间轮呢?其实我们可以简单的将其看做是一个多维数组。在很多框架中都使用了时间轮来做一些定时的任务,用来替代我们的Timer,比如我之前讲过的有关本地缓存Caffeine一篇文章,在Caffeine中是一个二层时间轮,也就是二维数组,其一维的数据表示较大的时间维度比如,秒,分,时,天等,其二维的数据表示该时间维度较小的时间维度,比如秒内的某个区间段。当定位到一个TimeWhile[i][j]之后,其数据结构其实是一个链表,记录着我们的Node。在Caffeine利用时间轮记录我们在某个时间过期的数据,然后去处理。 由于时间轮是一个数组的结构,那么其插入复杂度是O(1)。我们解决了效率之后,但是我们的内存依旧不是无限的,我们时间轮如何使用呢?答案当然就是磁盘,在去哪儿开源的QMQ中已经实现了时间轮+磁盘存储,这里为了方便描述我将其转化为RocketMQ中的结构来进行讲解,实现图如下: Step 1: 生产者投递延时消息到CommitLog,这个时候使用了偷换Topic的那招,来达到后面的效果。 Step 2: 后台有一个Reput的任务定时拉取,延时Topic相关的Message。 Step 3: 判断这个Message是否在当前时间轮范围中,如果不在则来到Step4,如果在的话就直接将消息投递进入时间轮。 Step 4: 找到当前消息所属的scheduleLog,然后写入进去,去哪儿默认划分是一个小时为一段,这里可以根据业务自行调整。 Step 5:时间轮会定时预加载下个时间段的scheduleLog到内存。 Step 6: 到点的消息会还原topic再次投递到CommitLog,如果投递成功这里会记录dispatchLog。记录的原因是因为时间轮是内存的,你不知道已经执行到哪个位置了,如果执行到最后最后1s钟的时候挂了,这段时间轮之前的所有数据又得重新加载,这里是用来过滤已经投递过的消息。 时间轮+磁盘存储我个人觉得比上面的RocksDB要更加正统一点,不依赖其他的中间件就可以完成,可用性自然也就更高,当然阿里云的RocketMQ具体怎么实现的这个两种方案都有可能。 #redis 在社区中也有很多公司使用的Redis做的延时消息,在Redis中有一个数据结构是Zest,也就是有序集合,他可以实现类似我们的优先级队列的功能,同样的他也是堆结构,所以插入算法复杂度依然是O(logN),但是由于Redis足够快,所以这一块可以忽略。(这块没有做对比的基准测试,只是猜测)。有同学会问,redis不是纯内存的k,v吗,同样的应该也会受到内存限制啊,为什么还会选择他呢? 其实在这个场景中,Redis是很容易水平扩展的当一个Redis内存不够,这里可以使用两个甚至更多,来满足我们的需要,redis延时消息的原理图(原图出自:https://www.cnblogs.com/lylife/p/7881950.html)如下: Delayed Messages Pool: Redis Hash结构,key为消息ID,value为具体的message,当然这里也可以用磁盘或者数据库代替。这里主要存储我们所有消息的内容。 Delayed Queue: ZSET数据结构,value为消息ID,score为执行时间,这里Delayed Queue可以水平扩展从而增加我们可以支持的数据量。 Worker Thread Pool: 其中有多个Worker,可以部署在多个机器上形成一个集群,集群中的所有Worker通过ZK进行协调,分配Delayed Queue。 我们怎么才能知道Delayed Queue中的消息到期了呢?这里有两种方法: 每个Worker定时扫描,ZSET的最小执行时间,如果到了就取出,这个方法在消息少的时候特别浪费资源,在消息量多的时候,由于轮训不及时导致延时的时间不准确。 因为第一个方法问题比较多,所以这里借鉴了Timer中的一些思想,通过wait-notify可以达到一个比较好的延时效果,并且资源也不会浪费,第一次的时候还是获取ZSET中最小的时间,然后wait(执行时间-当前时间),这样就不需要浪费资源到达时间时会自动响应,如果当前ZSET有新的消息进入,并且比我们等待的消息还要小,那么直接notify唤醒,重新获取这个更小的消息,然后又wait,如此循环。
kun坤 2020-04-23 20:01:58 0 浏览量 回答数 0

问题

【开源项目】Nacos问答集锦

nacos 如果注册到不同的命名空间下,如何相互调用呢使用nacos-server-1.0.0时出现日志不兼容情况,请问是什么原因导致的nacos-server 空配置报错,java.util.Co...
一人吃饱,全家不饿 2021-02-02 10:51:08 11 浏览量 回答数 0

问题

Android目录结构(详解):报错

Android目录结构(详解) 下面是HelloAndroid项目在eclipse中的目录层次结构: 由上图可以看出项目的根目录下共有九个文件(夹),...
kun坤 2020-06-07 21:39:11 0 浏览量 回答数 1

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 阿里云AIoT