• 关于

    java事务效率

    的搜索结果

问题

分布式事务了解吗?你们是如何解决分布式事务问题的?【Java问答学堂】58期

面试题 分布式事务了解吗?你们是如何解决分布式事务问题的? 面试官心理分析 只要聊到你做了分布式系统,必问分布式事务,你对分布式事务一无所知的话,确实会很坑...
剑曼红尘 2020-07-16 15:11:28 5 浏览量 回答数 1

回答

面试题 如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题? 面试官心理分析 这个是肯定的,用 MQ 有个基本原则,就是数据不能多一条,也不能少一条,不能多,就是前面说的重复消费和幂等性问题。不能少,就是说这数据别搞丢了。那这个问题你必须得考虑一下。 如果说你这个是用 MQ 来传递非常核心的消息,比如说计费、扣费的一些消息,那必须确保这个 MQ 传递过程中绝对不会把计费消息给弄丢。 面试题剖析 数据的丢失问题,可能出现在生产者、MQ、消费者中,咱们从 RabbitMQ 和 Kafka 分别来分析一下吧。 RabbitMQ 生产者弄丢了数据 生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。 此时可以选择用 RabbitMQ 提供的事务功能,就是生产者发送数据之前开启 RabbitMQ 事务 channel.txSelect ,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务 channel.txRollback ,然后重试发送消息;如果收到了消息,那么可以提交事务 channel.txCommit 。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少? 【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果? 【Java问答学堂】13期 redis 和 memcached 有什么区别? 【Java问答学堂】14期 redis 都有哪些数据类型?分别在哪些场景下使用比较合适? 【Java问答学堂】15期redis 的过期策略都有哪些?内存淘汰机制都有哪些? 【Java问答学堂】16期如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍 为什么使用消息队列?【Java问答学堂】17期 消息队列有什么优点和缺点?【Java问答学堂】18期 Kafka、ActiveMQ、RabbitMQ、RocketMQ的区别?【Java问答学堂】19期 如何保证消息队列的高可用?【Java问答学堂】20期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性?【Java问答学堂】21期
剑曼红尘 2020-05-20 19:23:55 0 浏览量 回答数 0

问题

如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题?【Java问答学堂】22期

面试题 如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题? 面试官心理分析 这个是肯定的,用 MQ 有个基本原则,就是数据不能多一条,也不能少...
剑曼红尘 2020-05-20 19:23:46 0 浏览量 回答数 1

问题

集群部署时的分布式 Session 如何实现?【Java问答学堂】59期

面试题 集群部署时的分布式 Session 如何实现? 面试官心理分析 面试官问了你一堆 Dubbo 是怎么玩儿的,你会玩儿 Dubbo 就可以把单块系统弄成分布式系统,然后分布式之后接踵而来...
剑曼红尘 2020-07-16 15:14:21 1335 浏览量 回答数 2

回答

可以使用基于事务的批量insert,效率也会很好。我说的批量不是addBatch这些,而是先开启一个事务,然后一次insert只去插入一条,而插入很多条后去commit这个事务。为什么:默认情况下,一个insert是一个事务,每个事务都会写日志。通过减少写日志的次数,速度可以提升很多。伪代码:<preclass="brush:java;toolbar:true;auto-links:false;">starttransaction;foreachdata{try:insert(data)catch:printdata+"插入失败"}commit; 请问问题数据是怎样导致问题的?使用的insertsql长什么样子?数据、以及问题数据长什么样子?问题数据是不是可以不要?可能我表达不够清晰,这里想向大家学习的是如何在兼顾效率的情况下获得详细的错误信息,而非如何解决问题数据。请问问题数据是怎样导致问题的?值长度过界(然后我会扩充长度)使用的insertsql长什么样子?insertintotb_name(...)values(...)数据、以及问题数据长什么样子?问题数据是不是可以不要?这两个问题没有关系,我想要的是错误提示而非如何解决数据问题。
爱吃鱼的程序员 2020-06-12 14:15:16 0 浏览量 回答数 0

问题

电商网站的商品详情页系统架构【Java问答学堂】61期

小型电商网站的商品详情页系统架构 小型电商网站的页面展示采用页面全量静态化的思想。数据库中存放了所有的商品信息,页面静态化系统,将数据填充进静态模板中,形成静态化页面,推入 Ngin...
剑曼红尘 2020-07-20 13:08:17 1491 浏览量 回答数 2

问题

Redis 的并发竞争问题是什么?如何解决这个问题?【Java问答】39期

面试题 Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗? 面试官心理分析 这个也是线上非常常见的一个问题,就是多客户端同时并发写一个...
剑曼红尘 2020-06-17 21:12:34 1 浏览量 回答数 1

回答

面试题 Redis 的并发竞争问题是什么?如何解决这个问题?了解 Redis 事务的 CAS 方案吗? 面试官心理分析 这个也是线上非常常见的一个问题,就是多客户端同时并发写一个 key,可能本来应该先到的数据后到了,导致数据版本错了;或者是多客户端同时获取一个 key,修改值之后再写回去,只要顺序错了,数据就错了。 而且 Redis 自己就有天然解决这个问题的 CAS 类的乐观锁方案。 面试题剖析 某个时刻,多个系统实例都去更新某个 key。可以基于 zookeeper 实现分布式锁。每个系统通过 zookeeper 获取分布式锁,确保同一时间,只能有一个系统实例在操作某个 key,别人都不允许读和写。 你要写入缓存的数据,都是从 mysql 里查出来的,都得写入 mysql 中,写入 mysql 中的时候必须保存一个时间戳,从 mysql 查出来的时候,时间戳也查出来。 每次要写之前,先判断一下当前这个 value 的时间戳是否比缓存里的 value 的时间戳要新。如果是的话,那么可以写,否则,就不能用旧的数据覆盖新的数据。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少? 【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果? 【Java问答学堂】13期 redis 和 memcached 有什么区别? 【Java问答学堂】14期 redis 都有哪些数据类型?分别在哪些场景下使用比较合适? 【Java问答学堂】15期redis 的过期策略都有哪些?内存淘汰机制都有哪些? 【Java问答学堂】16期如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍 为什么使用消息队列?【Java问答学堂】17期 消息队列有什么优点和缺点?【Java问答学堂】18期 Kafka、ActiveMQ、RabbitMQ、RocketMQ的区别?【Java问答学堂】19期 如何保证消息队列的高可用?【Java问答学堂】20期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性?【Java问答学堂】21期 如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题?【Java问答学堂】22期 如何保证消息的顺序性?【Java问答学堂】23期 如何解决消息队列的延时以及过期失效问题?【Java问答学堂】24期 如果让你写一个消息队列,该如何进行架构设计?【Java问答学堂】25期 ES 的分布式架构原理能说一下么(ES 是如何实现分布式的啊)?【Java问答学堂】26期 ES 写入数据的工作原理是什么啊?ES 查询数据的工作原理是什么啊?【Java问答学堂】27期 ES 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?【Java问答学堂】28期 ES 生产集群的部署架构是什么?每个索引的数据量大概有多少?【Java问答学堂】29期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?【Java问答学堂】30期 Redis 和 Memcached 的区别?Redis 的线程模型是什么?【Java问答学堂】31期 Redis 都有哪些数据类型?分别在哪些场景下使用比较合适?【Java问答学堂】32期 Redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现?【Java问答】33期 如何保证 redis 的高并发和高可用?【Java问答】34期 Redis 的持久化有哪几种方式?【Java问答】35期 Redis 集群模式的工作原理能说一下么?【Java问答】36期 了解什么是 Redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?【Java问答】37期 如何保证缓存与数据库的双写一致性?【Java问答】38期
剑曼红尘 2020-06-17 21:12:43 0 浏览量 回答数 0

回答

一、Spring Spring是一个解决了许多在J2EE开发中常见的问题的强大框架。 Spring提供了管理业务对象的一致方法并且鼓励了注入对接口编程而不是对类编程的良好习惯。Spring的架构基础是基于使用JavaBean属性的Inversion of Control容器。然而,这仅仅是完整图景中的一部分:Spring在使用IoC容器作为构建完关注所有架构层的完整解决方案方面是独一无二的。 Spring提供了唯一的数据访问抽象,包括简单和有效率的JDBC框架,极大的改进了效率并且减少了可能的错误。Spring的数据访问架构还集成了Hibernate和其他O/R mapping解决方案。Spring还提供了唯一的事务管理抽象,它能够在各种底层事务管理技术,例如JTA或者JDBC事务提供一个一致的编程模型。Spring提供了一个用标准Java语言编写的AOP框架,它给POJOs提供了声明式的事务管理和其他企业事务--如果你需要--还能实现你自己的aspects。这个框架足够强大,使得应用程序能够抛开EJB的复杂性,同时享受着和传统EJB相关的关键服务。Spring还提供了可以和IoC容器集成的强大而灵活的MVC Web框架。 二、STRUCTS Struts是一个基于Sun J2EE平台的MVC框架,主要是采用Servlet和JSP技术来实现的。由于Struts能充分满足应用开发的需求,简单易用,敏捷迅速,在过去的一年中颇受关注。Struts把Servlet、JSP、自定义标签和信息资源(message resources)整合到一个统一的框架中,开发人员利用其进行开发时不用再自己编码实现全套MVC模式,极大的节省了时间,所以说Struts是一个非常不错的应用框架。 三、Hibernate Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库。 Hibernate可以应用在任何使用JDBC的场合,既可以在Java的客户端程序实用,也可以在Servlet/JSP的Web应用中使用,最具革命意义的是,Hibernate可以在应用EJB的J2EE架构中取代CMP,完成数据持久化的重任。,Hibernate可以在应用EJB的J2EE架构中取代CMP,完成数据持久化的重任。 答案来源网络,供参考,希望对您有帮助
问问小秘 2019-12-02 03:02:33 0 浏览量 回答数 0

问题

Hystrix 是什么?【Java问答学堂】60期

Hystrix 是什么? 在分布式系统中,每个服务都可能会调用很多其他服务,被调用的那些服务就是依赖服务,有的时候某些依赖服务出现故障也是很正常的。 Hystrix 可以让我们在分...
剑曼红尘 2020-07-20 12:49:25 2 浏览量 回答数 1

回答

为什么谷歌会支持 Kotlin? 2017 年 11 月,Android Studio 3.0 正式开放下载,此版本的 Android Studio 将 Kotlin 语言支持集成到 IDE 中,在此版本上,代码自动完成和语法突出显示都可以在此版本上平稳运行,今年 4 月推出的 Android Studio 3.1 为 Kotlin 代码提供了更好的 Lint 支持,并通过为 Android Emulator 添加 Quick Boot 功能加快了测试速度。 2018 年 2 月,Google 推出预览版本的 Android KTX,Android KTX 是一组扩展程序,它在 Android 框架和支持库上提供了一个良好的 API 层,使 Kotlin 代码更加简洁。 在 Google I/O 2018 上,Google 发布了 Android Jetpack,它是下一代的 Android 组件,它将支持库向后兼容和立即更新的优点融合到更多组件中,提高开发速率和质量,不仅如此,Android Jetpack 将全面兼容 Kotlin,而且它还能利用 Android KTX 使得 Kotlin 代码更加简洁。 这些都是 Google 逐渐向 Kotlin 靠拢的证据,虽然还不至于让 Kotlin 完全取代 Java,但不难看出 Google 的“偏心”。事实上,Kotlin 自己也非常争气:2017 年 11 月,在第一届 Kotlin 专题大会 KotlinConf 上,Kotlin 首席设计师 Andrey Breslav 宣布 Kotlin 将支持 iOS 开发和 Web 开发,这意味着 Kotlin 向全平台开发迈出了重要的一步。 Kotlin 目前正处于发展的初始阶段,还有很多成长的空间。Google 现在是把它当成 Android 黄昏时期的救命稻草,它能与 Java 100% 互通,但它存在的目的并不是为了取代 Java,只是为了让开发者有多种选择。虽说编程语言只是软件实现的一种工具,开发者无论选择哪种语言都没有绝对的对与错。 Kotlin 真比 Java 强? 相较于 Java,Kotlin 的确在一些方面有较大优势:效率高、易维护、可靠、简单易学。在一些特定场景下,许多 Java 开发者因为某些方面的问题选择了切换到 Kotlin:比如受够了 Java NullPointerException 的人都喜欢 Kotlin 的 Null 安全特性;扩展函数被大量使用;除了扩展 Java 类,人们也常常将 Java 代码迁移到 Kotlin。 Java 依旧是编程语言排行榜上的第一名。但 Java 是最好的语言么?不是,因为在每个领域都有更合适的编程语言。 那么,Java 语言到底有什么优势可以占据排行榜第一的位置呢? 其一,语法比较简单,学过计算机编程的开发者都能快速上手。 其二,在若干了领域都有很强的竞争力,比如服务端编程,高性能网络程序,企业软件事务处理,分布式计算,Android 移动终端应用开发等等。 最重要的一点是符合工程学的需求,成为企业软件公司的首选,也受到互联网公司的青睐。 综合而言,Java 语言全能方面是最好的。但同样可以看到,Android 社区拥抱 Kotlin 的速度越来越快,也许有一天,在 Android 世界里,我们会看到 Kotlin 对 Java 的超越。 Kotlin 是一门与 Swift 类似的静态类型 JVM 语言,由 JetBrains 设计开发并开源。与 Java 相比,Kotlin 的语法更简洁、更具表达性,而且提供了更多的特性,比如,高阶函数、操作符重载、字符串模板。它与 Java 高度可互操作,可以同时用在一个项目中。 创建一种兼容 Java 的语言 编译速度至少同 Java 一样快 比 Java 更安全 比 Java 更简洁 比最成熟的竞争者 Scala 还简单
游客pklijor6gytpx 2020-01-06 09:44:55 0 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

1、使用PrearedStatementPrearedStatement接口是Statement接口的子接口,它继承了Statement的所有功能。多次执行同一语句时,PreparedStatment对SQL的预编译可以提高查询效率。PreparedStatment还可以通过预编译的方式避免我们在拼接SQL时造成SQL注入。2、使用ConnectionPool(连接池)使用连接池作为最佳实践几乎都成了公认的标准。一些框架已经提供了内建的连接池支持, 例如Spring中的Database Connection Pool,如果你的应用部署在JavaEE的应用服务器中, 例如JBoss,WAS,这些服务器也会有内建的连接池支持,例如DBCP。 使用连接的原因简单的说就是因为创建JDBC连接耗时比较长,如果每次查询都重新打开一个连接, 然后关闭,性能将会非常低,而如果事先创建好一批连接缓存起来,使用的时候取出, 不使用的时候仍不关闭,将会节省大量的创建关闭连接的时间。3、禁用自动提交这个最佳实践在我们使用JDBC的批量提交的时候显得非常有用,将自动提交禁用后, 你可以将一组数据库操作放在一个事务中,而自动提交模式每次执行SQL语句都将执行自己的事务, 并且在执行结束提交。4、使用Batch UpdateJDBC的API提供了通过addBatch()方法向batch中添加SQL查询,然后通过executeBatch()执行批量的查询。 JDBC batch update可以减少数据库数据传输的往返次数,从而提高性能。5、使用列名获取ResultSet中的数据,从而避免invalidColumIndexErrorJDBC中的查询结果封装在ResultSet中,我们可以通过列名和列序号两种方 式获取查询的数据, 当我们传入的列序号不正确的时候,就会抛出invalidColumIndexException, 例如你传入了0,就会出错,因为ResultSet中的列序号是从1开始的。 另外,如果你更改了数据表中列的顺序,你也不必更改JDBC代码,保持了程序的健壮性。 有一些Java程序员 可能会说通过序号访问列要比列名访问快一些,确实是这样,但是为了程序的健壮性、可读性,我还是更推荐你使用列名来访问。6、 使用变量绑定而不是字符串拼接在第一条最佳实践中,我们已经说过要使用PreparedStatment可以防止注入,而使用? 或者其他占位符也会提升性能,因为这样数据库就可以使用不同的参数执行相同的查询, 这个最佳实践带来更高的性能的同时也防止了SQL注入。7、要记住关闭Statement、PreparedStatement和Connection通常的做法是在finally块中关闭它们,这样做的好处是不论语句执行正确与否, 不管是否有异常抛出,都能保证资源被释放。在Java7中,可以通过Automatic Resource Management Block来自动的关闭资源。8、选择合适的JDBC驱动有四种JDBC驱动,分别是JDBC-ODBC Bridge driver (bridge driver)Native-API/partly Java driver (native driver)AllJava/Net-protocol driver (middleware driver)All Java/Native-protocol driver (Pure java driver)9、尽量使用标准的SQL语句,从而在某种程度上避免数据库对SQL支持的差异不同的数据库厂商的数据库产品支持的SQL的语法会有一定的出入,为了方便移植,我推荐使用标准的ANSI SQL标准写SQL语句。10、使用正确的getXXX()方法当从ResultSet中读取数据的时候,虽然JDBC允许你使用getString()和getObject()方法获取任何数据类型, 推荐使用正确的getXXX方法,这样可以避免数据类型转换。
wangccsy 2019-12-02 01:49:01 0 浏览量 回答数 0

问题

如何设计一个高并发系统?【Java问答学堂】45期

面试题 如何设计一个高并发系统? 面试官心理分析 说实话,如果面试官问你这个题目,那么你必须要使出全身吃奶劲了。为啥?因为你没看到现在很多公司招聘的 JD 里都是说啥࿰...
剑曼红尘 2020-06-28 20:53:14 10 浏览量 回答数 1

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

面试题 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数...
剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

问题

SSH面试题

1.什么是struts2?struts的工作原理? struts2:1)经典的  mvc (Model  View  Controller) 框架                          ...
琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

回答

public synchronized void insert() {     ... } 试试这个。######您好,请问 如果我不用这种同步的方法, 只用事务隔离可以解决吗###### 加synchronized比较简单暴力,性价比最好。更优的方式是添加流水单号,根据流水单号进行同步或者异步添加。但是需要实现很多内容。######简单暴力、好处是 Java 端当掉了并发的压力,数据库还是一个个进出,压力不会落到数据库上。哈哈哈######  transactionl###### 两次插入请求和事务没太大关系,上面的加synchronize关键字在一台机器上的时候算是一个办法,但不是可行的办法,这相当于把所有任务都串行了,浪费服务器资源。这种情况可以有几种处理办法: 1. 数据库加唯一索引,如果有唯一列可以标识的话 2. 两行重复在事务完成之后做一个删除判断,将id比较小的(大的也OK,只要逻辑一致)几条删掉,只保留一条 3. 加分布式锁,这也需要唯一标识来加锁 4. 不完美的解决办法,前端保证短时间内只发一次请求(正常用户没有问题,容易被hack,但可以挡正常流量,这应该是必须要做的)###### 引用来自“52iSilence7”的评论 两次插入请求和事务没太大关系,上面的加synchronize关键字在一台机器上的时候算是一个办法,但不是可行的办法,这相当于把所有任务都串行了,浪费服务器资源。这种情况可以有几种处理办法: 1. 数据库加唯一索引,如果有唯一列可以标识的话 2. 两行重复在事务完成之后做一个删除判断,将id比较小的(大的也OK,只要逻辑一致)几条删掉,只保留一条 3. 加分布式锁,这也需要唯一标识来加锁 4. 不完美的解决办法,前端保证短时间内只发一次请求(正常用户没有问题,容易被hack,但可以挡正常流量,这应该是必须要做的) 增加分布式锁,注意释放锁死锁情况。 楼上说的比较ID大小的方法仅限于ID是自增情况,如果是UUID不适用。  ######  事务和并发问题 事务和并发,这两个并不是一个对等的概念。 先给出简单解决方案,具体的实现在下文会给出。   第一种方式(推荐):   给数据添加唯一索引,这种方式能解决,但是会影响效率。   第二种方式:   如果是分布式项目,可以使用分布式锁,具体可以通过redis或者zookeeper来实现,   如果是单点项目,可以使用同步代码块来实现。   第三种方式(推荐):   使用insert where not exists 语句来限制插入。   第四种方式:   使用redis的`SETNX`方法来实现。     在具体业务中,我们更推荐第一种方式和第三种方式相结合的形式,但是大多数业务场景中,往往只采用第一种方式即可。   具体解决方案和思路。   在关系型数据库中(如MySql),一个事务可以是一条SQL语句,或者一组SQL语句。 其展现形式大致如下:   ``` BEGIN; /*开启事务*/ SQL 1; SQL 2; SQL 3; COMMIT;/ROLLBACK; /*提交或回滚*/ ```   他的具体表现是,上面一组SQL(SQL 1/SQL 2/SQL 3)在执行时,他们同时生效或者同时失败。   并发场景重现   如题所诉,假设`报名表`由下列字段构成   ``` CREATE TABLE `sign_up` (   `user_id` varchar(32) NOT NULL COMMENT '用户ID',   `create_time` datetime NOT NULL COMMENT '用户报名时间' ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ```   题中目前的操作应该大致如下:   ``` BEGIN; /*step1:从数据库获取当前用户是否已经报名*/ SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = ''; /*step2:如果用户未报名,则在数据库中插入数据*/ INSERT INTO sign_up values('',NOW()); COMMIT; ``` 此时代码本身是有漏洞的,当请求并发时,可能触发下列场景。   请求A: `SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = '123';` 请求B: `SELECT su.user_id,su.create_time FROM sign_up su WHERE user_id = '123';` 请求A: `INSERT INTO sign_up values('123',NOW());` 请求B: `INSERT INTO sign_up values('123',NOW());`   数据库在未添加唯一索引的场景下会插入两条数据,添加唯一索引的场景下则会报错`唯一索引冲突`。   此时虽然开启了事务,但是在整个执行过程中,如果没有开启唯一索引,SQL都是执行成功的,不会触发`ROLLBACK`; 如果开启了唯一索引,此时应该也就没有这个疑问了。   解决方案 针对这种问题,其实可以采取几种常见的方式来解决。 第一种方式: 在单点部署的工程中,可以通过对核心代码部分添加同步来解决,比如使用`synchronized`或者`ReentrantLock`来实现, 限制部分代码的并发访问,但是这样必然会降低该接口的效率,而且,在分布式工程内,该解决方法并不适用 ,所以不建议使用。   第二种方式: 通过分布式一致性锁来实现 针对第一种方案,通过分布式一致性锁取代常规同步块,进而实现在分布式工程中将并发转为同步。 分布式一致锁的实现方案有很多种,常见的有基于redis实现和基于zookeeper实现。   第三种方式:给数据库字段添加唯一索引 `ALTER TABLE sign_up ADD UNIQUE INDEX `user_id`(`user_id`);` 或者 `CREATE UNIQUE INDEX user_id ON sign_up(user_id); ` 这种方式通过在数据库端来限制表中不得同时存在同一用户的多条数据,这种方式实现比较简单,推荐使用,但是通过抛异常的形式来实现功能,会损失部分效率。   第四种方式: 使用`insert where not exists` 类型的语句来实现 ``` INSERT INTO sign_up (user_id, create_time) SELECT     '123', NOW() FROM     DUAL WHERE     NOT EXISTS (         SELECT             user_id         FROM             sign_up         WHERE             user_id = '123'     ); ```   这种方式,实现上将select 语句和insert语句合并到一起执行,避免了题中描述的并发问题,因为从实现上`insert`语句的执行依赖于`select`语句的查询结果 ,从根本上就避免了题中涉及到的并发问题,使用这种方式调用端可以根据`SQL`执行影响的行数来判断是否插入成功,进而执行对应的业务逻辑 ,这种方式普适性较强,推荐使用。   第五种方式,借助`redis`的`SETNX`方法来实现 ``` SETNX 是 ‘SET if Not eXists’的简称,命令格式大致如下:SETNX [key] [value]. 作用是:将指定的[key]的值设为[value],如果给定的key已经存在,则SETNX不做任何操作。 设置成功,该方法返回1,设置失败,该方法返回0. ``` 借助`SETNX`命令,我们可以将题中的`select`语句改为该方式,根据`SETNX`的返回值来执行相应的业务逻辑。 tips: 该方法需要注意redis的key值失效时间。   上诉五种方式都可以解决该问题。   问题产生的本质原因   下面再简单聊一下,并发和事务的问题。   事务有四大特性:A(原子性),C(一致性),I(隔离性),D(持久性)。   其中   - 原子性表示:事务所包含的所有操作,要么全部成功,要么全部失败。   - 一致性表示:事务执行前后必须处于一致性状态。   - 隔离性:当多个用户并发访问数据库的时候,多个并发线程相互隔离。   - 持久性:事务一旦被提交,对数据库的改变是永久性的,即使数据库系统遭遇故障也不会丢失提交的事务。   出现题中的问题,应该是混淆了原子性和隔离性的概念,原子性只是保证了事务中包含的操作要么同时成功,要么同时失败。 他并不会帮助我们处理业务代码中产生的并发问题,同理隔离性要求处理的是数据库并发,而不是业务并发。   在题中,业务代码内的两条SQL在没有配置唯一索引的场景下,并发时,并不会产生SQL执行失败的场景,两条语句默认都是成功的 ,这也就意味着事务最终是提交(`COMMIT`)的,进而导致数据库出现两条数据。   为了解决这种问题,我们的思路往往可以放在如何在业务层面将会出现并发问题的代码原子化,比如本文给出的解决方案,均是基于此而实现的。  ###### 加锁处理、唯一索引、基于redis防止重复提交###### 1.数据库的唯一索引 2.如果不是分布式部署的话上java锁 3.如果是分布式的话上基于redis的分布式锁 4.最好用lock锁 锁代码就可 没必要锁整个方法
kun坤 2020-06-07 22:25:21 0 浏览量 回答数 0

问题

零XML配置测试Spring&Hibernate应用 - java报错

我很热衷于在编译器和IDE的支持下通过移除XML文件来提升Spring3的开发效率,而这并不会改变Spring给你提供的强大的功能。 没有XML配置文件的Hibernate的单元测试是可行的,但是竟然花了我好一...
montos 2020-05-29 23:31:57 0 浏览量 回答数 1

回答

引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 你的测试方法是错误的,用struts2-sping插件后,插件会拦截struts2默认的action实例,而改为spring 创建,至于是不是spring创建不用怀疑,你action类上那些注解都没用,只要你用spring的方法在action中注入一个 bean就知道了,非spring创建的action 这个bean肯定不会有值,而spring创建的这个bean肯定有值,试试!     ######OMG###### 需要说明的是,struts2默认不是单例的,就是说每次请求都会new 所以当然会调用 constructor struts1是默认单例的. ###### 引用来自“潮汐、”的答案 需要说明的是,struts2默认不是单例的,就是说每次请求都会new 所以当然会调用 constructor struts1是默认单例的. 我设@Scope(ConfigurableBeanFactory.SCOPE_SINGLETON),就是想看下是不是由spring管理的,如果是的话,应该是单例,结果显示多例说明该action没有被spring管理呀 ###### 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 ###### 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。     我以前用 SSH 的时候,自己做了封装,基于Hibernate做了一个 Dao 工具类专门应付数据库操作,另外自己做了一个 Controller 继承自 ActionSupport 简化控制层,这个Controller与现在 JFinal Controller 很像。始终对 SSH 的开发效率很失望,一直期盼 java 世界的 rails 能出来,无奈一直没人做这事,只有自己做了 :) ######唔,按照自己的思路以及您的框架体系,对ssh进行了类似的封装,把事务的声明提到了action层,写了2个小项目,还没感觉有什么不便.您觉得这样封装有什么值得注意的么 :)###### 引用来自“抓瓦Or”的答案 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 你的测试方法是错误的,用struts2-sping插件后,插件会拦截struts2默认的action实例,而改为spring 创建,至于是不是spring创建不用怀疑,你action类上那些注解都没用,只要你用spring的方法在action中注入一个 bean就知道了,非spring创建的action 这个bean肯定不会有值,而spring创建的这个bean肯定有值,试试!     是这样的,非常感谢 ###### 引用来自“JFinal”的答案 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。     我以前用 SSH 的时候,自己做了封装,基于Hibernate做了一个 Dao 工具类专门应付数据库操作,另外自己做了一个 Controller 继承自 ActionSupport 简化控制层,这个Controller与现在 JFinal Controller 很像。始终对 SSH 的开发效率很失望,一直期盼 java 世界的 rails 能出来,无奈一直没人做这事,只有自己做了 :) Jfinal真的挺好的,希望有机会能把Jfinal用到项目中,感谢大神热心回复 ######多谢支持,随时欢迎回归 JFinal
kun坤 2020-06-14 06:56:49 0 浏览量 回答数 0

回答

引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 你的测试方法是错误的,用struts2-sping插件后,插件会拦截struts2默认的action实例,而改为spring 创建,至于是不是spring创建不用怀疑,你action类上那些注解都没用,只要你用spring的方法在action中注入一个 bean就知道了,非spring创建的action 这个bean肯定不会有值,而spring创建的这个bean肯定有值,试试!     ######OMG###### 需要说明的是,struts2默认不是单例的,就是说每次请求都会new 所以当然会调用 constructor struts1是默认单例的. ###### 引用来自“潮汐、”的答案 需要说明的是,struts2默认不是单例的,就是说每次请求都会new 所以当然会调用 constructor struts1是默认单例的. 我设@Scope(ConfigurableBeanFactory.SCOPE_SINGLETON),就是想看下是不是由spring管理的,如果是的话,应该是单例,结果显示多例说明该action没有被spring管理呀 ###### 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 ###### 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。     我以前用 SSH 的时候,自己做了封装,基于Hibernate做了一个 Dao 工具类专门应付数据库操作,另外自己做了一个 Controller 继承自 ActionSupport 简化控制层,这个Controller与现在 JFinal Controller 很像。始终对 SSH 的开发效率很失望,一直期盼 java 世界的 rails 能出来,无奈一直没人做这事,只有自己做了 :) ######唔,按照自己的思路以及您的框架体系,对ssh进行了类似的封装,把事务的声明提到了action层,写了2个小项目,还没感觉有什么不便.您觉得这样封装有什么值得注意的么 :)###### 引用来自“抓瓦Or”的答案 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 你的测试方法是错误的,用struts2-sping插件后,插件会拦截struts2默认的action实例,而改为spring 创建,至于是不是spring创建不用怀疑,你action类上那些注解都没用,只要你用spring的方法在action中注入一个 bean就知道了,非spring创建的action 这个bean肯定不会有值,而spring创建的这个bean肯定有值,试试!     是这样的,非常感谢 ###### 引用来自“JFinal”的答案 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。     我以前用 SSH 的时候,自己做了封装,基于Hibernate做了一个 Dao 工具类专门应付数据库操作,另外自己做了一个 Controller 继承自 ActionSupport 简化控制层,这个Controller与现在 JFinal Controller 很像。始终对 SSH 的开发效率很失望,一直期盼 java 世界的 rails 能出来,无奈一直没人做这事,只有自己做了 :) Jfinal真的挺好的,希望有机会能把Jfinal用到项目中,感谢大神热心回复 ######多谢支持,随时欢迎回归 JFinal
kun坤 2020-05-31 22:40:01 0 浏览量 回答数 0

回答

引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 你的测试方法是错误的,用struts2-sping插件后,插件会拦截struts2默认的action实例,而改为spring 创建,至于是不是spring创建不用怀疑,你action类上那些注解都没用,只要你用spring的方法在action中注入一个 bean就知道了,非spring创建的action 这个bean肯定不会有值,而spring创建的这个bean肯定有值,试试!     ######OMG###### 需要说明的是,struts2默认不是单例的,就是说每次请求都会new 所以当然会调用 constructor struts1是默认单例的. ###### 引用来自“潮汐、”的答案 需要说明的是,struts2默认不是单例的,就是说每次请求都会new 所以当然会调用 constructor struts1是默认单例的. 我设@Scope(ConfigurableBeanFactory.SCOPE_SINGLETON),就是想看下是不是由spring管理的,如果是的话,应该是单例,结果显示多例说明该action没有被spring管理呀 ###### 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 ###### 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。     我以前用 SSH 的时候,自己做了封装,基于Hibernate做了一个 Dao 工具类专门应付数据库操作,另外自己做了一个 Controller 继承自 ActionSupport 简化控制层,这个Controller与现在 JFinal Controller 很像。始终对 SSH 的开发效率很失望,一直期盼 java 世界的 rails 能出来,无奈一直没人做这事,只有自己做了 :) ######唔,按照自己的思路以及您的框架体系,对ssh进行了类似的封装,把事务的声明提到了action层,写了2个小项目,还没感觉有什么不便.您觉得这样封装有什么值得注意的么 :)###### 引用来自“抓瓦Or”的答案 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。 你的测试方法是错误的,用struts2-sping插件后,插件会拦截struts2默认的action实例,而改为spring 创建,至于是不是spring创建不用怀疑,你action类上那些注解都没用,只要你用spring的方法在action中注入一个 bean就知道了,非spring创建的action 这个bean肯定不会有值,而spring创建的这个bean肯定有值,试试!     是这样的,非常感谢 ###### 引用来自“JFinal”的答案 引用来自“基哥”的答案 引用来自“JFinal”的答案 OMG 看过您的jfinal,确实很好用,无奈公司非要用struts2。。。 求大神指点啊。。。     我以前用 SSH 的时候,自己做了封装,基于Hibernate做了一个 Dao 工具类专门应付数据库操作,另外自己做了一个 Controller 继承自 ActionSupport 简化控制层,这个Controller与现在 JFinal Controller 很像。始终对 SSH 的开发效率很失望,一直期盼 java 世界的 rails 能出来,无奈一直没人做这事,只有自己做了 :) Jfinal真的挺好的,希望有机会能把Jfinal用到项目中,感谢大神热心回复 ######多谢支持,随时欢迎回归 JFinal
montos 2020-06-02 19:13:21 0 浏览量 回答数 0

问题

零XML配置测试Spring&Hibernate应用 配置错误

我很热衷于在编译器和IDE的支持下通过移除XML文件来提升Spring3的开发效率,而这并不会改变Spring给你提供的强大的功能。 没有XML配置文件的Hibernate的单元测试是可行的,但是竟然花了我好一...
huc_逆天 2020-05-28 09:19:01 2 浏览量 回答数 0

问题

零XML配置测试Spring&Hibernate应用:报错

我很热衷于在编译器和IDE的支持下通过移除XML文件来提升Spring3的开发效率,而这并不会改变Spring给你提供的强大的功能。 没有XML配置文件的Hibernate的单元测试是可行的,但是竟然花了我好一...
kun坤 2020-06-05 23:35:31 0 浏览量 回答数 1

回答

每5秒钟内就有1万条数据插入,该不会是一个长事务吧? 还是每次写一条就提交呢? ######@苗威 : 嗯嗯,我这次也就是准备用这个方法解决,谢谢你啦,嘿嘿######@李密 : 一次写一批,与一般的处理方法不一样,可以纵向分表,分库######@李密 : 1万左右的数据,就不用存硬盘了,用内存,java缓存组件也行,memcached也行,Mysql Memory引擎 也行,使用过的删掉,新的添上去。######@李密 : 这个就算作是一种“分区表”的应用啦。对每个运营商指定对应的表,然后在应用层做映射。 1W/5sec的插入加上高并发读取算不小的负荷,不知道使用pgsql(配合分区表)是否能解决性能问题。######@李密 : 能解决问题的方法就是好方法###### 这张表因为要和游戏通信,包含很多必须的字段,字段总数有16个,目前服务器200台,以后估计至少500台,那时候插入和查询数量就更恐怖了,所以我越来越担心以后这个项目问题会卡在这个表上 (昨天(22:10) by 李密) 可以通过把字段分表方式避免单表过大。不过以你远期规模使用现在这种数据库结构肯定会崩溃。如果可行(楼主有权设计修改表结构),建议楼主考虑重新设计数据库表甚至更换数据库(有钱换oracle,免费换pgsql)。 另外,并发读写巨大,磁盘性能很重要,要么用SCSI/SAS阵列要么直接上SSD(但SSD的寿命也许需要考虑)。   已经运营两个月了,表内目前数据1000多万。 一年就6千万,如果不做分区表(以时间划分)那么迟早崩溃 java项目+mysql都在这一台服务器上 楼上还有朋友说读写分离,现在连数据库都不是独立服务器,估计再跑几个月就会葛屁的   关于pgsql和mysql比较的一些帖子 http://www.oschina.net/question/126398_23854 http://www.oschina.net/question/96003_13994 http://www.oschina.net/question/129318_19029    ###### redis和Mysql Memory引擎 都行,10W条数据没问题###### @苗威 : 嗯嗯,谢谢你这么耐心帮我,嘿嘿,以后多向你请教###### @李密: 客气,我也只有些理论基础,分表可以水平分,和垂直分,水平分是各个运营商分,垂直分是把所有的邀请码分成若干张表,比如用最后一个字符分,邀请码如果是字符串最好能换成int存,压缩会加快很多查找速度######抽空我研究下,目前想临时采用分表把这个问题解决下,给每个运营商动态分配一个礼品表,运营商两年内也不会超过200个,表的数量也不会有太多,先分表。威哥,你觉得这样设计有重大缺陷不?因为之前我还没这样做过######是 innodb 还是 myisam 呢 ######薯哥哥,是innodb表######锁表应该是在innodB下发生的吧..myisam直接坏表了 ######是innodb######这种情况充分说明内存缓存设计的重要性 ######天啊..大并发居然用innodB..   我测试过innodB的写入性能是非常低的,cpu效率不高..插入爆慢.. 建议读写分离..写可以innodB,读还是myisam吧..###### @gamespoerleveling : 没用的,读库同样存在数据更新问题。在从innodb写库同步到myisam读库时如果读库正好是访问高峰,那么就会遇到楼主现在同样的锁表情况。 总而言之,在大数据量大并发下mysql就是个坑爹的杯具~###### @mark35 : 我是说的读写分离...读myisam的表###### @hulei : 坏不坏表不好说, 但表锁的代价肯定比行锁高!######myisam是表锁啊,这种程度的数据输入myisam必坏表啊。######在myisam上大并发读写将会更悲摧的~###### 引用来自“红薯”的答案 每5秒钟内就有1万条数据插入,该不会是一个长事务吧? 还是每次写一条就提交呢? 每次写一条就提交,但特别频繁,我之前ORACLE也碰到过这种情况。 ######那paulwong最后是怎么解决呢?可以分享下吗?######所有clinet直连 mysql server ?应该有数据库中间层吧###### 这样的业务逻辑就感觉有问题,以前在唯晶的时候,也做过类似的 为什么要每分钟过来1w,3w的记录?直接生成个百万条记录分给他们去用就行了, 就只有检索和更新了###### @陈俊贤 : 楼主这种应用采用读写分离意义不大并且还可能产生问题:通常情况下查询都会是有效查询,查询到记录就会产生关联写(改写激活码使用状态)。读写分离后数据肯定不是实时同步,那么当记录修改后(激活码已使用)在同步到读库这段时间中读库的该条记录查询结果都是老状态(激活码未使用),事务就不能保证一致了!###### @mark35 : 读写分离只是执行缓刑,不改这个逻辑,死刑是早晚的事###### @陈俊贤 : 读写分离不能根本解决问题的。或者说大家觉得读写分离是银弹那多半是因为mysql本来实在低能,用上读写分离就有效提高性能。但实际上即使使用读写分离也同样存在节点更新问题(写库同步到读库)。###### @李密 : 那就读写分离,照你说的话以后多半会崩掉###### @mark35 : 目前卡的类别已经达到500种以上,所以以后生成量更恐怖了。。。
黄二刀 2020-05-27 20:08:00 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用
游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

IoC(Inversion of Control) (1). IoC(Inversion of Control)是指容器控制程序对象之间的关系,而不是传统实现中,由程序代码直接操控。控制权由应用代码中转到了外部容器,控制权的转移是所谓反转。 对于Spring而言,就是由Spring来控制对象的生命周期和对象之间的关系;IoC还有另外一个名字——“依赖注入(Dependency Injection)”。从名字上理解,所谓依赖注入,即组件之间的依赖关系由容器在运行期决定,即由容器动态地将某种依赖关系注入到组件之中。 (2). 在Spring的工作方式中,所有的类都会在spring容器中登记,告诉spring这是个什么东西,你需要什么东西,然后spring会在系统运行到适当的时候,把你要的东西主动给你,同时也把你交给其他需要你的东西。所有的类的创建、销毁都由 spring来控制,也就是说控制对象生存周期的不再是引用它的对象,而是spring。对于某个具体的对象而言,以前是它控制其他对象,现在是所有对象都被spring控制,所以这叫控制反转。(3). 在系统运行中,动态的向某个对象提供它所需要的其他对象。 (4). 依赖注入的思想是通过反射机制实现的,在实例化一个类时,它通过反射调用类中set方法将事先保存在HashMap中的类属性注入到类中。 总而言之,在传统的对象创建方式中,通常由调用者来创建被调用者的实例,而在Spring中创建被调用者的工作由Spring来完成,然后注入调用者,即所谓的依赖注入or控制反转。 注入方式有两种:依赖注入和设置注入; IoC的优点:降低了组件之间的耦合,降低了业务对象之间替换的复杂性,使之能够灵活的管理对象。AOP(Aspect Oriented Programming)(1). AOP面向方面编程基于IoC,是对OOP的有益补充;(2). AOP利用一种称为“横切”的技术,剖解开封装的对象内部,并将那些影响了 多个类的公共行为封装到一个可重用模块,并将其名为“Aspect”,即方面。所谓“方面”,简单地说,就是将那些与业务无关,却为业务模块所共同调用的 逻辑或责任封装起来,比如日志记录,便于减少系统的重复代码,降低模块间的耦合度,并有利于未来的可操作性和可维护性。(3). AOP代表的是一个横向的关 系,将“对象”比作一个空心的圆柱体,其中封装的是对象的属性和行为;则面向方面编程的方法,就是将这个圆柱体以切面形式剖开,选择性的提供业务逻辑。而 剖开的切面,也就是所谓的“方面”了。然后它又以巧夺天功的妙手将这些剖开的切面复原,不留痕迹,但完成了效果。(4). 实现AOP的技术,主要分为两大类:一是采用动态代理技术,利用截取消息的方式,对该消息进行装饰,以取代原有对象行为的执行;二是采用静态织入的方式,引入特定的语法创建“方面”,从而使得编译器可以在编译期间织入有关“方面”的代码。(5). Spring实现AOP:JDK动态代理和CGLIB代理 JDK动态代理:其代理对象必须是某个接口的实现,它是通过在运行期间创建一个接口的实现类来完成对目标对象的代理;其核心的两个类是InvocationHandler和Proxy。 CGLIB代理:实现原理类似于JDK动态代理,只是它在运行期间生成的代理对象是针对目标类扩展的子类。CGLIB是高效的代码生成包,底层是依靠ASM(开源的java字节码编辑类库)操作字节码实现的,性能比JDK强;需要引入包asm.jar和cglib.jar。 使用AspectJ注入式切面和@AspectJ注解驱动的切面实际上底层也是通过动态代理实现的。(6). AOP使用场景: Authentication 权限检查 Caching 缓存 Context passing 内容传递 Error handling 错误处理 Lazy loading 延迟加载 Debugging  调试 logging, tracing, profiling and monitoring 日志记录,跟踪,优化,校准 Performance optimization 性能优化,效率检查 Persistence  持久化 Resource pooling 资源池 Synchronization 同步 Transactions 事务管理 另外Filter的实现和struts2的拦截器的实现都是AOP思想的体现。
wangccsy 2019-12-02 01:50:38 0 浏览量 回答数 0

问题

程序员报错行为大赏-配置报错

Maven本地仓库配置报错:配置报错  GO语言配置什么的都没问题,但就是LiteIDE配置不好。。。:配置报错  Maven 配置nexus仓库 POM文件报错:配置报错  10个你可能从未用过的PHP函数:配置报错  QT...
问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

java知识累积-很有用的哦:报错

1. 若JVM进程中,只剩下后台线程,则该进程就结束了。可以使用setDaemon(true)将线程设置为后台线程。 2. 使用线程的join()方法,可以等待多个线程子任务执行完成后...
kun坤 2020-06-06 17:16:05 0 浏览量 回答数 1

回答

“求知若饥,虚心若愚”——这个原本出自《全球概览》的俳句,因为乔布斯在斯坦福大学毕业演讲中的引用而备受推崇,流传成为 IT 界的至理名言之一。在编程界,亦有“代码胜于雄辩”、“Done is better than perfect”等警句,寥寥数语将编程工作者的形象特质描摹到了极致。程序员,就是技术至上、唯代码是瞻且必须不断武装自己的群体。 21 世纪,高薪、高端、高技术范儿已成为程序员的固有标签,在这个新的元年,CSDN 将基于一年一度的开发者大调查数据,以全新的视角深入发掘中国开发者群体的整体现状、应用开发技术以及开发工具/平台的发展趋势,呈现更真实、更全面且更有学习价值的开发者画像。 30 岁以下开发者人数占比超八成,全国有 19.6% 开发者月薪超过 1.7 万元; 六成开发者在使用 Java 语言,近五成开发者近期最想学 Python 语言; Spark、Redis 和 Kafka 正在成为企业大数据平台通用技术组件; 区块链技术近两年是热点,比特币和以太坊是两种主流的区块链开发平台; 人工智能技术日益受到企业和市场的关注,但 64% 企业尚未实现智能化,机器学习/深度学习算法工程师最为急缺; 近七成开发者认为未来 5G 网络的传输速率能达到 4G 网络的 10 倍以上; Apache 项目和 Linux 是开发者较为喜欢的开源项目; 半数开发者很少参与开源项目的开发、维护、运营和社区发展等。 软件开发准入门槛持续降低,近 2 成开发者月薪超过 1.7 万 30 岁以下开发者人数占比超八成,软件开发从业门槛持续降低 从 2015 年到 2019 年的调研数据来看:30 岁及以下的开发者人群占比在 8 成以上,一直是软件开发领域的主力军;全国近半数的开发者工作在一线城市(北京、上海、广州、深圳、天津);物联网、软件、IT 制造三个技术领域涵盖了国内 84% 以上的开发者;本科及以上学历占 8 成;92% 的开发者是男性。 和国外开发者年龄分布趋势大概一致,国内的软件开发群体一直呈现出越来越年轻化的特点。这是因为,一方面软件开发行业蓬勃发展,各行各业都需要软件开发相关人才,也有越来越多的毕业生选择从事该行业;另一方面,是因为编程语言、框架、云服务等基础设施的持续完善,从事软件开发的门槛在持续降低,更容易接纳新鲜血液,报告统计发现,本科学历是开发者的主力军,66% 的开发者拥有本科学历,而硕士研究生、博士研究生仅占 11%、1%。 八成以上开发者月薪在 5 千~3 万元之间,19.6% 开发者月薪超过 1.7 万元 通过结合受教育程度和薪资水平的数据特点来看,学历越高的人群中,月薪 1.7 万元以上的高收入比例越高。在一线城市(北京、上海、广州、深圳、天津)中,月薪超过 1.7 万元的开发者占比为 30%,该比例远高于国内其它城市。 开发者属于相对高薪的职业,尤其是在一线城市中,但不同开发者之间收入差距较大。软件开发是一个智力密集型的工作,不同开发者能够提供的价值差别很大,这就使得一个优秀开发者的收入远高于普通开发者:硕士和博士毕业的高收入者比率要远高于本科及以下的;金融和互联网行业的高收入比率最高。 自学是开发者持续学习的主要路径 软件开发行业日新月异,只有保持持续学习才能跟上技术变化的脚步,终身学习是现代人保持竞争力甚至是维持生存的必要手段。 从调研中可以看到,53% 的开发者会通过在未参加正式课程的情况下,自学一门新语言、框架或工具。但同时,也有半数的人参加过在职培训或者线下课程,相对于自学的灵活性而言,这类培训会更为系统和完整,对于长期的个人提升有所裨益,开发者可以适当选择。但与之相悖的是,只有不到 40% 的开发者,愿意为学习付费,这可能会导致参与的课程质量不够高。 Java 雄踞语言榜,Visual Studio 受开发者欢迎 Java 长盛:使用最多,开发者最想学 从编程语言来看,Java 是最多人使用的语言,而 JavaScript 和 SQL 分别是第二第三位。这三门语言,使用场景都很广泛,Java 一方面后端开发最常使用,生态成熟度无人可比;另一方面,Java 依然是 Android 上最重要的开发语言,与之相比 ,新兴的 Kotlin 只有 2% 的开发者在使用。而 JavaScript 不仅是前端开发的必备语言,还用在 Web 开发、小程序开发等场景下。 Java 和 Python 依然是开发者最希望学习的语言之一,只是相比之下,Python 的热度有所降低,这可能和机器学习没有去年那么火热有所关联。变化比较大的是 Go 语言,与去年相比,今年的调研中想学 Go 语言的开发者降低到了 4%,与之相似,Kotlin、R 的学习意愿也大幅降低。 从这个趋势也可以看到,如今的开发者更意愿去学习一些相对成熟度、用途更为广泛的语言,对一些代表新模式的语言乐衷程度有所降低。 七成以上在使用 Windows 操作系统,83% 在使用 MySQL 数据库 72% 开发者在使用 Windows 操作系统,18% 在使用 Linux 系列操作系统。在存储服务的使用上,MySQL 继续扩大其使用率到达了 83%,几乎是开发者必备的技能。和去年相比,Elasticsearch 出现在数据库使用的调研中,在大数据时代,Elasticsearch 作为提供搜索服务的第一选型,也必然会被越来越多的开发者学习和使用 Node.js 是相对使用普遍的技术框架 在 Web 开发上,前端使用 Vue.js 后端使用 Spring 是最常见的选型方案,与之相对应,Node.js 是最多被用到的框架,这和当今多端开发的趋势密不可分。后端用微服务架构,中间用 Node.js 粘合出适合 Web、Android、iOS 等不同端和场景使用的 APIs,是当下主流的部署方案之一,既可以前后端分离提高开发效率,又可以在保障服务稳定性的同时提升灵活性。而TensorFlow 成为开发者最期望学习的框架,这说明开发者依然对机器学习保持关注和热情。 Visual Studio 是最为普遍使用的开发环境 在开发环境的选择上,Visual Studio 是最为普遍使用的开发环境,这和微软对开发者的投入密不可分。微软投入了大量的研发力量,使得 Visual Studio 可以在各种操作系统进行各种编程语言的开发,其强大且完善的插件系统可以满足开发者的各种需求,使其可以超过 IntelliJ。 大数据平台以私有云部署为主,Spark 使用率高达 44% 私有云部署解决方案是企业构建大数据平台的主要方式 随着分布式计算和云平台的逐步成熟,目前大部分公司都有能力搭建自己的大数据平台。调研数据显示,81% 企业在进行大数据相关的开发和应用,50% 的企业选择私有云解决方案来部署大数据应用,28% 的企业选择自主研发。 仅 19% 企业使用商业发行版 Hadoop 版本搭建数据平台 调查报告发现,有 30% 以上的企业并没有使用相对成熟的 Hadoop 技术搭建数据平台,这些企业的算法性能会很大程度上受限于低效的平台,更不可能开发出更高效的数据分析算法。但幸运的是大部分企业都基于商业版或者社区版 Hadoop 搭建了数据平台,这些公司的侧重点主要在应用发现和算法的设计层面,更有可能在不久的将来实现大数据的价值。 Spark 是企业大数据平台最普遍的组件 Apache Spark 是一个处理大规模数据的快速通用引擎,它可以独立运行,也可以在 Hadoop、Mesos、云端运行,它可以访问各种数据源包括 HDFS、Cassandra、HBase 和 S3,可以提升 Hadoop 集群中的应用在内存和磁盘上的运行速度。Spark 生态系统中除了核心 API 之外,还包括其他附加库,可以为大数据分析和机器学习领域提供更多的能力。本次调研中,Spark 是使用最普遍的大数据平台组件,使用率达到44%,而MapReduce使用率仅为21%。 分布式文件系统 HDFS 作为核心组件之一,使用率也达到了 39%。企业对大数据平台应用最多的场景是统计分析、报表生成及数据可视化,38% 企业使用ELK(ElasticSearch + Logstash + Kibana)实时日志分析平台。 综上所述,目前大数据的发展热潮令人欢欣鼓舞。一个优秀的大数据团队,需要有对产品开发具有高敏感性同时对技术有一定理解的人才,同时需要理论基础极其扎实,能对实际问题进行抽象建模和算法设计的人才。只有双管齐下,在产品和技术方面进行深层次探索,才能真正实现大数据产业的繁荣。 区块链质变,比特币逆袭以太坊成 TOP 1 开发平台 22% 的开发者正在用或者准备用区块链技术解决技术问题 区块链技术的发展,是一个量变到质变的过程。相比于 2018 年,对区块链和加密货币了解的人从 22% 增长到 32%,准备尝试用区块链技术解决一些问题的人数从 14% 增长到 16%,仅有 4% 的人对区块链完全不了解。 43% 的受访者在从事公有链(比特币、以太坊等)的开发 本次调研中,43% 的受访者在从事公有链(比特币、以太坊等)的开发。目前行业侧重发展的方向为解决方案、公链及联盟链,公有链由于其自带激励机制,对于普通开发者有直接的回馈,所以上面开发者占比高也比较合情理。行业解决方案从去年的 27% 增加到今年的 36%,说明传统行业开发者对区块链的认可度在增加。 区块链本质上是技术,落地场景及实际应用才是连接社会效益的关键。 比特币和以太坊是当前两种主流的区块链开发平台 在行业开发者的印象中,以太坊一直是开发平台领域的头号玩家。但今年数据显示,以太坊从 2018 年的 44% 占比第一,降到 24%;比特币从 2018 年的 28%,上升到 35%,占比第一。比特币在行业内外仍然拥有最强共识,在闪电网络的加持下,大家也似乎感受到比特币离商用也不再遥远了。 金融是普遍认为的行业应用方向 金融行业是普遍认为的行业应用方向,占 36%。区块链本身具备的防篡改、可追溯的特点,能大大降低金融行业监管成本,不过金融的进入门槛相对也较高,需要各方面技术的配合。其次,智能硬件和物联网也被认为是主流应用方向,占 14%。不过相比其他众多已经很成熟的技术,依托区块链的解决方案在实际使用中,往往面临必要性缺失的问题,因此区块链应用发展仍任重道远。 在区块链结合行业之前,更加要重视与其他新技术的结合和协同:物联网设备能够提供大量数据,5G 能够提供高速传输,存储可以解决区块存放的问题等。 算法工程师最急缺,TensorFlow 占据 AI 深度学习框架榜首 64% 的企业尚未实现智能化 在经历了 2019 年的行业低谷期之后,无论是行业巨头还是新兴独角兽,都开始审视 AI 能够切实落地的场景。调研数据显示,14% 的企业尚无信息化基础,27% 的企业实现了事务处理数字化,22% 的企业具备商业智能基础设施,实现描述性分析。使用机器学习实现预测性分析和决策优化的企业占 16%,而在业务中全面使用 机器学习/深度学习算法工程师最急缺 在岗位分布上,由于深度学习是以大数据为基础的,而感知智能中的计算机视觉又是目前深度学习较为成熟的应用,所以,机器学习和深度学习工程师,以及数据工程师、计算机视觉工程师排行在前三位。当前最急缺的岗位也是机器学习/深度学习算法工程师、数据科学家/数据分析师/数据挖掘工程师岗位。 53% 的开发者表示其团队急缺机器学习/深度学习算法工程师,37% 表示急缺数据科学家/数据分析师/数据挖掘工程师。 TensorFlow是人工智能领域主流深度学习框架 此次调研中,TensorFlow 使用普及率达到 48%。从技术本身的角度来看,较为成熟的 TensorFlow 成为 AI 工程师的首选深度学习框架,Torch/PyTorch由于其开发效率较高,也得到了较多支持。 35% 开发者选用国产 AI 芯片应用于自己的 AI 开发 在 AI 芯片领域,国内厂商也开始弯道超车,越来越多的开发者也开始关注国内 AI 芯片的进展。调查数据显示,选用国产 AI 芯片应用于自己的 AI 开发时最看重的因素方面,对主流 AI 框架的支持能力是最普遍的因素,占 35%。 物联网云平台三足鼎立:阿里物联、华为云、百度 IoT 69% 的开发者认为未来 5G 网络的传输速率能达到 4G 的 10 倍以上 每一代新型的通信系统总是能带来更大的带宽。据报告显示,近七成开发者认为未来 5G 网络的传输速率能够达到 4G 网络的 10 倍以上。 影响 5G 普及的三大因素:5G 套餐价格未定、运营商的开发程度、需要更换手机 由于目前 5G 网络使用者较少,费用较低廉的套餐还没有推出,第一代 5G 终端不太成熟等原因,目前 87% 的开发者认为 5G 套餐费用过高,并且大部分开发者认为 5G 网络目前覆盖范围有限,因此将近 40% 的开发者正处于观望阶段。 值得一提的是,本次调查中 62% 的开发者认为,5G 时代应该加强对个人隐私的保护,这反映出目前社会对数据隐私越来越重视的整体趋势。 阿里物联和华为云是应用相对普遍的 IoT 云平台 根据调查,2019 年物联网云平台呈现三足鼎立的趋势:阿里物联、华为云、百度 IoT 成为用户最多的三种物联网平台,并且和第四名中移物联远远拉开了差距,这和我们的实际使用体验一致。 未来的基础物联网平台可能会继续呈现以偏硬件实现为主的华为云和以偏软件体验为主的阿里、百度物联平台的三足鼎立局面。 物联网技术开发:Linux 和 Windows 是使用较多的操作系统 Linux 和 Windows 是较普遍的操作系统,使用率分别为 51%、44%。目前在物联网设备开发过程中,Linux、Windows 和 Android 较为普遍,依然延续了 PC 平台的开发者操作系统份额。虽然华为、阿里等公司在 2019 年均发布了自己的物联网专用操作系统,但还并未得到开发者的大规模认可,大公司的物联网操作系统发展之路依然任重而道远。 Wi-Fi 是应用最普遍的物联网通信技术 在本次调研中,近距离通信(比如 Wi-Fi 和蓝牙)是现存物联网开发者最主要的通信方式。然而这种比重可能会随着未来 3~4 年内车联网的大规模商业化产生变化,汽车、工业物联、智能电网这类高移动性、高可靠和低延迟物联网场景会更适合需要整体规划的运营商网络。 六成开源开发者无收入,Apache 项目最受喜欢 77% 开发者每周在开源上投入时间不超过 5 小时 无论是大数据、区块链、人工智能还是物联网领域,其中最为重要的、最受欢迎的技术都是开源的。但是报告统计发现,有超过一半的开发者很少参与开源项目,每周在开源上投入不超过 5 小时的占 77%,其中,1 小时以内的占 31%。此外,65% 的开发者不曾在开源上获得收入,获得不错收入的仅占一成。 开发者最喜欢的开源项目是 Apache 25% 开发者最喜欢 Apache,24% 开发者最喜欢 Linux。作为全球最大的软件基金会,开发者用过的诸多项目,例如 Dubbo、Log4j、Maven、RocketMQ 和 Tomcat 等,均孵化自 Apache。 国内开源的现状虽然近年来已经有了很大的发展,但是一个残酷的事实是,老兵正在离开这个行业,离开一线开发的队伍:报告数据显示,30 岁以下的开发者人数超过 82%,接触开源的时间在 5 年以内的开发者超过 83%。随着那些经验丰富的老兵转行或是进入管理层,不再写代码、也不再参与开源的事实也就凸显出来.....未来开源的建设,依然任重而道远。 在数据中寻找共性,《2019 - 2020 中国开发者调查报告》全面且真实地展现中国开发者及技术现状,希望对您的学习或工作有所帮助。 ———————————————— 版权声明:本文为CSDN博主「CSDN资讯」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/csdnnews/article/details/104538091
问问小秘 2020-03-11 16:46:19 0 浏览量 回答数 0

问题

随手科技拥抱OneAPM:打造高标准真实用户体验

近期OneAPM 与随手科技达成战略合作。OneAPM 通过探针技术帮助随手科技实现对产品整个系统的全面监控,并帮助开发人员快速解决移动应用的性能瓶颈。 据了解,随手科技是国内最大的个人理财应用服务提供商。旗下拥...
sunny夏筱 2019-12-01 21:42:04 7083 浏览量 回答数 4
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板