• 关于

    算法 python

    的搜索结果

回答

Python数据结构篇数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。**这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**(1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)(2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现(3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆(4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现2.Python算法设计篇算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟****2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵****3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**(1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。(2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**(3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法(4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分**(5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**(7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**(9)[Python Algorithms - C9 Graphs](Python Algorithms) /question/19889750/answer/27901020有哪些用 Python 语言讲算法和数据结构的书

琴瑟 2019-12-02 01:22:41 0 浏览量 回答数 0

回答

1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。 **这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。** (1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突) (2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现 (3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆 (4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现 2.Python算法设计篇 算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。 这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。 本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟** **2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵** **3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~** (1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。 (2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。** (3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法 (4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分** (5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法** (6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法** (7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等** (8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比** (9)[Python Algorithms - C9 Graphs](Python Algorithms) **本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**

一键天涯 2019-12-02 01:23:49 0 浏览量 回答数 0

回答

1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。 **这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。** (1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突) (2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现 (3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆 (4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现 2.Python算法设计篇 算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。 这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。 本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟** **2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵** **3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~** (1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。 (2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。** (3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法 (4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分** (5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法** (6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法** (7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等** (8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比** (9)[Python Algorithms - C9 Graphs](Python Algorithms)

寒凝雪 2019-12-02 01:22:23 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms) 中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例 如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文 章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。 **这一部分是下 面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比 较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。** (1)[搜索](Python Data Structures) 简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突) (2)[排序](Python Data Structures) 简述各种排序算法的思想以及它的图示和实现 (3)[数据结构](Python Data Structures) 简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆 (4)[树总结](Python Data Structures) 简述二叉树,详述二叉搜索树和AVL树的思想和实现 2.Python算法设计篇 算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms), 内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排 序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并 没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但 是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来 了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过。 这里每篇文章都有实现代码,但是代码我一般都不会分 析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算 法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟 们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。 本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。 **1. 你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这 个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇 文章之后都还有一两道小题练手哟** **2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂 不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科 普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵** **3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~** (1)[Python Algorithms - C1 Introduction](Python Algorithms) 本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。 (2)[Python Algorithms - C2 The basics](Python Algorithms) **本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。** (3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法 (4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms) **本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分** (5)[Python Algorithms - C5 Traversal](Python Algorithms) **本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法** (6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法** (7)[Python Algorithms - C7 Greedy](Python Algorithms) **本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等** (8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比** (9)[Python Algorithms - C9 Graphs](Python Algorithms) https://www.zhihu.com/question/19889750/answer/27901020

青衫无名 2019-12-02 01:23:20 0 浏览量 回答数 0

回答

 1. 更加人性化的设计  Python的设计更加人性化,具有快速、坚固、可移植性、可扩展性的特点,十分适合人工智能;开源免费,而且学习简单,很容易实现普及;内置强大的库,可以轻松实现更大强大的功能。  2. 总体的AI库  AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法;  pyDatalog:Python中的逻辑编程引擎;  SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法,它专注于提供一个易于使用,有良好文档和测试的库;  EasyAI:一个双人AI游戏的python引擎。  3. 机器学习库  PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库,它也提供了多种预定义好的环境来测试和比较你的算法;  PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法,它支持Linux和Mac OS X;  scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具,它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包紧密联系在一起的;  MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法,流型学习方法,集中分类,概率方法,数据预处理方法等等。  4. 自然语言和文本处理库  NLTK开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析,有windows、Mac OSX和Linux版本。  Python具有丰富而强大的库,能够将其他语言制作的各种模块很轻松的联结在一起,对于性能要求高的功能,可以用C/C++进行重写,而后封装成Python可以调用的扩展类库,这是人工智能必备功能,因此,Python编程对人工智能是一门非常有用的语言。

世事皆空 2019-12-02 01:07:33 0 浏览量 回答数 0

回答

人工智能算法工程师,在开发算法过程中可能会用到很多种语言,比如c,c++,torch,python等,python语言只是其中一种,因此熟悉python语言并不一定就可以胜任算法开发工作,要熟悉人工智能算法才能成为人工智能算法工程师。

ariczhang 2019-12-02 01:21:25 0 浏览量 回答数 0

问题

请问MaxCompute > 快速开始 > 编写 UDF ,如果用java编写UDF,能不能把调用python或者js的jar也放到我这个UDFjar中,实现我的代码调用python文件执行python中的算法。

祁同伟 2019-12-01 20:18:39 1826 浏览量 回答数 1

回答

Python工程师与人工智能工程师的区别是什么?一是Python工程师主要是从事编程,只能算是程序员;人工智能工程师主要是从事算法研究,也称作是算法工程师。两者有本质的区别。二是Python工程师开发编程就像走业务流程一样,很多东西都是现有的,你只需要一步一步的去敲代码,去熟悉它,并不会创造出一些新的东西;人工智能算法工程师比Python工程师更需要有良好的数学基础,因为在人工智能算法研究中会运用到许多数学知识,还要学会如何灵活运用各种框架和优化神经网络,需要你去研发它,创造出新的东西。

琴瑟 2019-12-02 01:21:25 0 浏览量 回答数 0

回答

Python工程师与人工智能工程师的区别是什么?一是Python工程师主要是从事编程,只能算是程序员;人工智能工程师主要是从事算法研究,也称作是算法工程师。两者有本质的区别。二是Python工程师开发编程就像走业务流程一样,很多东西都是现有的,你只需要一步一步的去敲代码,去熟悉它,并不会创造出一些新的东西;人工智能算法工程师比Python工程师更需要有良好的数学基础,因为在人工智能算法研究中会运用到许多数学知识,还要学会如何灵活运用各种框架和优化神经网络,需要你去研发它,创造出新的东西。

玄学酱 2019-12-02 01:21:32 0 浏览量 回答数 0

回答

python没有必要讲数据结构。数据结构仅仅适合C,C++,JAVA, 甚至JAVA都不是必须的。 因为python有那几个基本的列表,字典,集合就足够应付绝大多数应用了。 学习数据结构就走歪了。 大部分常用算法,也都被封装成库,调用就可以。 另外在python里尝试传统的算法,效率很低的。所以你看不到python的数据结构与算法就对了。不适合。

liujae 2019-12-02 01:22:53 0 浏览量 回答数 0

问题

【教程免费下载】数据结构与算法:Python语言描述

沉默术士 2019-12-01 22:07:56 4103 浏览量 回答数 1

问题

反向传播算法(BP算法)的推导及其Python实现

珍宝珠 2019-12-01 22:05:05 19 浏览量 回答数 1

问题

【精品问答】Python3 实例80问(附源码解析)

珍宝珠 2020-02-17 13:11:47 1931 浏览量 回答数 3

问题

2018python技术问答集锦,希望能给喜欢python的同学一些帮助

技术小能手 2019-12-01 19:31:10 2040 浏览量 回答数 2

回答

《编程导论》,作者John V. Guttag,人民邮电出版社 本书涵盖了Python的大部分特性,但侧重点是如何使用这门语言,而不是语言本身。例如,前三章介绍了穷举的概念、猜测和验证算法、二分查找以及高效近 似算法,但只涉及一小部分Python知识。 有一本叫Data Structures and Algorithms with Object Oriented Design Patterns in Python,作者Bruno R. Preiss Problem Solving with Algorithms and Data Structures using Python 作者: Brad Miller and David Ranum

云篆 2019-12-02 01:22:23 0 浏览量 回答数 0

问题

Python 最小公倍数算法

游客ejnn55cgkof5g 2020-02-14 17:18:49 0 浏览量 回答数 1

问题

Python 最大公约数算法

游客ejnn55cgkof5g 2020-02-14 17:17:53 0 浏览量 回答数 1

回答

它是由三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。 需要python import 、python math 模块方法。

聚小编 2019-12-02 01:26:40 0 浏览量 回答数 0

回答

作者:find goo链接:https://www.zhihu.com/question/20491745/answer/100741761来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 一、python虚拟机没有java强,java虚拟机是java的核心,python的核心是可以很方便地使用c语言函数或c++库。二、python是全动态性的,可以在运行时自己修改自己的代码,java只能通过变通方法实现。python的变量是动态的,而java的变量是静态的,需要事先声明,所以java ide的代码提示功能优于python ide。三,python的产生几十年了,几十年前面向过程是主流,所以用python有好多程序用的是面向过程设计方法,很多概念从c语言过来的,class在python中是后加入的,而java是为了实现没有指针的c++(当年com组件用的引用记数,java用的虚拟机),主要采用面向对象的设计方法,很多概念是oop的概念。面向过程,相对简洁直观,但容易设计出面条程序,面向对象,相对抽象优雅,但容易过度抽象。四,在实际使用的python入门简单,但要学会用python干活,需要再学习python各种库,pyhton的强大在于库,为什么python的库强大,原因是python的库可以用python,c语言,c++等设计,再提供给python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。而java没有python那么多的开源库,很多库是商业公司内部使用,或发布出来只是一个jar包,看不到原始代码。python虚拟机因为编译性没有java的支持的好(或者说故意这么设计的),一般直接使用源码(linux),或源码简单打个包(如pyexe)。五、python有很多虚拟机实现,如cython,Pyston,pypy,jython, IronPython等等,适合用于业务语言,或插件语言,或面向领域语言,而java因为虚拟机巨大,很少用于插件语言,发布也不方便。六、java主要用于商业逻辑强的领域,如商城系统,erp,oa,金融,保险等传统数据库事务领域,通过类似ssh框架事务代码,对商业数据库,如oralce,db2,sql server等支持较好,软件工程理念较强,适合软件工程式的多人开发模式。python主要用于web数据分析,科学计算,金融分析,信号分析,图像算法,数学计算,统计分析,算法建模,服务器运维,自动化操作,快速开发理念强,适合快速开发团队或个人敏捷模式。七、java的商业化公司支持多,如sap,oracle,ibm等,有商业化的容器,中间件,企业框架ejb。python的开源组织支持多,如qt,linux,google,很多开源程序都支持python, 如pyqt,redis,spark等。八、python用途最多的是脚本,java用途最多的是web,pyhotn是胶水,可以把各类不相关的东西粘在一起用,java是基佬,可以通过软件工程组成几百个人的团队和你pk,商业化气息重。不过我认为还是python强大,因为可以方便调用c或c++的库,但软件工程和商业化运作没有java好,适合快捷开发。九,关于钱。如果你想写程序卖软件用java,可用上ibm服务器,上oracle数据库,上EMC存储,价格高,商业采购公司喜欢这种高大上。如果你要直接用程序生成金钱用python,python可以实现宽客金融,数据回测,炒股,炒期权,炒黄金,炒比特币,对冲套利,统计套利,有很多开源库,数据分析库,机器学习库可以参考。十、java和python,都可以运行于linux操作系统,但很多linux可以原生支持python,java需要自行安装。java和python强于c#的原因大于支持linux,支持osx,支持unix,支持arm。java和python比c++受欢迎的原因在于不需要指针。十一、对于移动互联网,python只能通过运行库运行于安卓或ios,java原生支持安卓开发,但不能用ios中。十二、对于大数据,hadoop用java开的, spark用Scala开发,用python调用spark再分析更方便。 作者:find goo链接:https://www.zhihu.com/question/20491745/answer/100741761来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 区别一、python虚拟机没有java强,java虚拟机是java的核心,python的核心是可以很方便地使用c语言函数或c++库。二、python是全动态性的,可以在运行时自己修改自己的代码,java只能通过变通方法实现。python的变量是动态的,而java的变量是静态的,需要事先声明,所以java ide的代码提示功能优于python ide。三,python的产生几十年了,几十年前面向过程是主流,所以用python有好多程序用的是面向过程设计方法,很多概念从c语言过来的,class在python中是后加入的,而java是为了实现没有指针的c++(当年com组件用的引用记数,java用的虚拟机),主要采用面向对象的设计方法,很多概念是oop的概念。面向过程,相对简洁直观,但容易设计出面条程序,面向对象,相对抽象优雅,但容易过度抽象。四,在实际使用的python入门简单,但要学会用python干活,需要再学习python各种库,pyhton的强大在于库,为什么python的库强大,原因是python的库可以用python,c语言,c++等设计,再提供给python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。而java没有python那么多的开源库,很多库是商业公司内部使用,或发布出来只是一个jar包,看不到原始代码。python虚拟机因为编译性没有java的支持的好(或者说故意这么设计的),一般直接使用源码(linux),或源码简单打个包(如pyexe)。五、python有很多虚拟机实现,如cython,Pyston,pypy,jython, IronPython等等,适合用于业务语言,或插件语言,或面向领域语言,而java因为虚拟机巨大,很少用于插件语言,发布也不方便。六、java主要用于商业逻辑强的领域,如商城系统,erp,oa,金融,保险等传统数据库事务领域,通过类似ssh框架事务代码,对商业数据库,如oralce,db2,sql server等支持较好,软件工程理念较强,适合软件工程式的多人开发模式。python主要用于web数据分析,科学计算,金融分析,信号分析,图像算法,数学计算,统计分析,算法建模,服务器运维,自动化操作,快速开发理念强,适合快速开发团队或个人敏捷模式。七、java的商业化公司支持多,如sap,oracle,ibm等,有商业化的容器,中间件,企业框架ejb。python的开源组织支持多,如qt,linux,google,很多开源程序都支持python, 如pyqt,redis,spark等。八、python用途最多的是脚本,java用途最多的是web,pyhotn是胶水,可以把各类不相关的东西粘在一起用,java是基佬,可以通过软件工程组成几百个人的团队和你pk,商业化气息重。不过我认为还是python强大,因为可以方便调用c或c++的库,但软件工程和商业化运作没有java好,适合快捷开发。九,关于钱。如果你想写程序卖软件用java,可用上ibm服务器,上oracle数据库,上EMC存储,价格高,商业采购公司喜欢这种高大上。如果你要直接用程序生成金钱用python,python可以实现宽客金融,数据回测,炒股,炒期权,炒黄金,炒比特币,对冲套利,统计套利,有很多开源库,数据分析库,机器学习库可以参考。十、java和python,都可以运行于linux操作系统,但很多linux可以原生支持python,java需要自行安装。java和python强于c#的原因大于支持linux,支持osx,支持unix,支持arm。java和python比c++受欢迎的原因在于不需要指针。十一、对于移动互联网,python只能通过运行库运行于安卓或ios,java原生支持安卓开发,但不能用ios中。十二、对于大数据,hadoop用java开的, spark用Scala开发,用python调用spark再分析更方便。

xuning715 2019-12-02 01:10:32 0 浏览量 回答数 0

问题

智能算法工程师用python多吗

知与谁同 2019-12-01 20:13:30 482 浏览量 回答数 2

问题

python 排序算法哪种最快

知与谁同 2019-12-01 20:11:13 489 浏览量 回答数 2

问题

Python 哪些可以代替递归的算法

知与谁同 2019-12-01 20:15:58 431 浏览量 回答数 2

问题

通信算法工程师需要学python吗

知与谁同 2019-12-01 20:13:46 344 浏览量 回答数 1

问题

对于python数据结构与算法重要吗

知与谁同 2019-12-01 20:15:19 512 浏览量 回答数 3

问题

python 2.7怎样实现dct算法

知与谁同 2019-12-01 20:11:01 547 浏览量 回答数 1

问题

对于python数据结构与算法重要吗

知与谁同 2019-12-01 20:14:30 444 浏览量 回答数 2

问题

写python的算法工程师算程序猿么

知与谁同 2019-12-01 20:13:50 406 浏览量 回答数 1

问题

数据结构与算法python语言描述 怎么样

知与谁同 2019-12-01 20:14:41 574 浏览量 回答数 2

问题

如何用python实现rsa算法加密字符串

知与谁同 2019-12-01 20:17:11 505 浏览量 回答数 1

问题

如何用python实现rsa算法加密字符串

知与谁同 2019-12-01 20:17:15 995 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅