• 关于 繁殖 的搜索结果

回答

在故障诊断的研究过程中,张大方等人提出集团诊断算法,将有相同故障属性的单元先划分为同一集团,再进行诊断,减少了诊断量:刘兵等在此基础设计于N,一种贪婪诊断算法,也取得有效的诊断结果:宣恒农等人提出的方程诊断算法,将系统级故障诊断问题以方程的形式表现出来,通过对测试症候矩阵的代数方程运算求得相容解,当系统中的故障单元数超过,,其他诊断算法无法使用时,方程诊断算法依然能取得较好的诊断效果。近年来,群体智能算法成为币要的研究热点之一这类算法通过观察自然界群体生物的全比织与协作,总结出宏观的智能行为特征,其机制适用解决绝大多数纽合优化问题。当发展较为成熟的群体能算法包括遗传(GA)算法、人工免疫(AI)算法、粒子群(PSO)算法等。近期,又有学者提出了一批优秀的群体智能算法,如萤火虫(FA)算法、布谷鸟搜索(CS)算法等等。其中CS算法模仿布谷鸟的巢寄生繁殖机理,与现有的诸多群体智能算法相比,其最大特征在于以Levy飞行的方式搜索全局解p。最优解不参与迭代,避免了当当前最优解陷入某个局部区域时,其余个体也被吸引至该局部区域的困境,因此具有较优的平衡搜索能力。相应的模拟仿真表明CS算法与PSO算法、AI算法相比,拥有更优越的收敛、平衡与寻优性能,更加适用于解决组合优化问题。(百度百科)

51干警网 2019-12-02 00:15:09 0 浏览量 回答数 0

回答

> db.test1.find().pretty() { "_id" : ObjectId("55dc145ef754a3342000002d"), "games" : [ { "id" : 1128, "name_zh" : "追击野兽", "customize_update_time" : "2015-05-18 00:00:00" }, { "id" : 3276, "name_zh" : "dasda", "customize_update_time" : "2015-05-15 00:00:00" }, { "id" : 3416, "name_zh" : "围剿外星客", "customize_update_time" : "2015-04-25 00:00:00" }, { "id" : 10357, "name_zh" : "合金弹头:防御", "customize_update_time" : "0000-00-00 00:00:00" }, { "id" : 10360, "name_zh" : "绿色忍者蛙年", "customize_update_time" : "2015-06-30 15:52:10" }, { "id" : 10364, "name_zh" : "杀死马里奥", "customize_update_time" : "2015-06-30 16:08:09" }, { "id" : 10366, "name_zh" : "通过繁殖征服世界", "customize_update_time" : "2015-06-30 16:21:22" }, { "id" : 10229, "name_zh" : "冰块切割", "customize_update_time" : "2014-11-04 00:00:00" }, { "id" : 10356, "name_zh" : "吃冰淇淋的怪房子", "customize_update_time" : "0000-00-00 00:00:00" }, { "id" : 10358, "name_zh" : "来杯果汁", "customize_update_time" : "0000-00-00 00:00:00" }, { "id" : 10362, "name_zh" : "梦游先生", "customize_update_time" : "2015-06-30 15:58:13" }, { "id" : 10363, "name_zh" : "清凉方冰冰", "customize_update_time" : "2015-06-30 16:04:56" }, { "id" : 10365, "name_zh" : "嗜血狂鲨2", "customize_update_time" : "2015-06-30 16:15:58" }, { "id" : 10367, "name_zh" : "外星人爱牛奶", "customize_update_time" : "2015-06-30 16:28:17" } ] } 取games的前3条数据: > db.test1.find({"_id" : ObjectId("55dc145ef754a3342000002d")},{"games":{ "$slice":[0,3]}}).pretty() { "_id" : ObjectId("55dc145ef754a3342000002d"), "games" : [ { "id" : 1128, "name_zh" : "追击野兽", "customize_update_time" : "2015-05-18 00:00:00" }, { "id" : 3276, "name_zh" : "dasda", "customize_update_time" : "2015-05-15 00:00:00" }, { "id" : 3416, "name_zh" : "围剿外星客", "customize_update_time" : "2015-04-25 00:00:00" } ] } 取第四条到第6条数据: > db.test1.find({"_id" : ObjectId("55dc145ef754a3342000002d")},{"games":{ "$slice":[3,3]}}).pretty() { "_id" : ObjectId("55dc145ef754a3342000002d"), "games" : [ { "id" : 10357, "name_zh" : "合金弹头:防御", "customize_update_time" : "0000-00-00 00:00:00" }, { "id" : 10360, "name_zh" : "绿色忍者蛙年", "customize_update_time" : "2015-06-30 15:52:10" }, { "id" : 10364, "name_zh" : "杀死马里奥", "customize_update_time" : "2015-06-30 16:08:09" } ] } 依次类推,即可。 "$slice":[3,3] 第一个3表示查询数组下标的起始位置,第二个3表示取的数据条数。建议games不要过多,不然会超出文档限制16M。不过这个可能是设计问题,我多想了。 第二种方法:就是用代码从数据库中取出来,将games里面的每一个子文档封装成model,放在缓存中做分页,而不是数据库级别的分页也可实现 第三种方法:从数据可看出games里面的子文档是按照id进行排序的,那么也就是说子文档是可比较的,那么就可以使用$gt和$lt,接合$size取数据,我没有试。你可以尝试一下。不过$slice获取数组子集更方便一点。

蛮大人123 2019-12-02 01:51:06 0 浏览量 回答数 0

问题

网贷实时数据出售

游客oicjp4phhw6fk 2019-12-01 19:47:10 1 浏览量 回答数 0

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

回答

迭代法  迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。   迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。   利用迭代算法解决问题,需要做好以下三个方面的工作:   一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。   二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。   三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。   例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。   分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有   u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……   根据这个规律,可以归纳出下面的递推公式:   u n = u n - 1 × 2 (n ≥ 2)   对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:   y=x*2   x=y   让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:   cls   x=1   for i=2 to 12   y=x*2   x=y   next i   print y   end   例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 220,220个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。   分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴2^ 20 个”,即阿米巴分裂 15 次以后得到的个数是 2^20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2^20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。   设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有   x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)   因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:   x=x/2 ( x 的初值为第 15 次分裂之后的个数 2^20 )   让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:   cls   x=2^20   for i=1 to 15   x=x/2   next i   print x   end   ps:java中幂的算法是Math.pow(2, 20);返回double,稍微注意一下   例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。   要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。   分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:   if n 为偶数 then   n=n/2   else   n=n*3+1   end if   这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:   cls   input "Please input n=";n   do until n=1   if n mod 2=0 then   rem 如果 n 为偶数,则调用迭代公式 n=n/2   n=n/2   print "—";n;   else   n=n*3+1   print "—";n;   end if   loop   end   迭代法   迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:   (1) 选一个方程的近似根,赋给变量x0;   (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;   (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。   若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:   【算法】迭代法求方程的根   { x0=初始近似根;   do {   x1=x0;   x0=g(x1); /*按特定的方程计算新的近似根*/   } while ( fabs(x0-x1)>Epsilon);   printf(“方程的近似根是%f\n”,x0);   }   迭代算法也常用于求方程组的根,令   X=(x0,x1,…,xn-1)   设方程组为:   xi=gi(X) (I=0,1,…,n-1)   则求方程组根的迭代算法可描述如下:   【算法】迭代法求方程组的根   { for (i=0;i   x=初始近似根;   do {   for (i=0;i   y=x;   for (i=0;i   x=gi(X);   for (delta=0.0,i=0;i   if (fabs(y-x)>delta) delta=fabs(y-x);   } while (delta>Epsilon);   for (i=0;i   printf(“变量x[%d]的近似根是 %f”,I,x);   printf(“\n”);   }   具体使用迭代法求根时应注意以下两种可能发生的情况:   (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;   (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。   递归   递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。   能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。   【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。   斐波那契数列为:0、1、1、2、3、……,即:   fib(0)=0;   fib(1)=1;   fib(n)=fib(n-1)+fib(n-2) (当n>1时)。   写成递归函数有:   int fib(int n)   { if (n==0) return 0;   if (n==1) return 1;   if (n>1) return fib(n-1)+fib(n-2);   }   递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。   在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。   在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。   由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。   【问题】 组合问题   问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1   (4)5、3、2 (5)5、3、1 (6)5、2、1   (7)4、3、2 (8)4、3、1 (9)4、2、1   (10)3、2、1   分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。   【程序】   # include   # define MAXN 100   int a[MAXN];   void comb(int m,int k)   { int i,j;   for (i=m;i>=k;i--)   { a[k]=i;   if (k>1)   comb(i-1,k-1);   else   { for (j=a[0];j>0;j--)   printf(“%4d”,a[j]);   printf(“\n”);   }   }   }   void main()   { a[0]=3;   comb(5,3);   }   【问题】 背包问题   问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。   设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。   对于第i件物品的选择考虑有两种可能:   (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。   (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。   按以上思想写出递归算法如下:   try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)   { /*考虑物品i包含在当前方案中的可能性*/   if(包含物品i是可以接受的)   { 将物品i包含在当前方案中;   if (i   try(i+1,tw+物品i的重量,tv);   else   /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   恢复物品i不包含状态;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (不包含物品i仅是可男考虑的)   if (i   try(i+1,tw,tv-物品i的价值);   else   /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   }

沉默术士 2019-12-02 01:25:10 0 浏览量 回答数 0

回答

  递归做为一种算法在程序设计语言中广泛应用.是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现像.   程序调用自身的编程技巧称为递归( recursion)。   一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。   一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。   注意:   (1) 递归就是在过程或函数里调用自身;   (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。   递归算法一般用于解决三类问题:   (1)数据的定义是按递归定义的。(Fibonacci函数)   (2)问题解法按递归算法实现。(回溯)   (3)数据的结构形式是按递归定义的。(树的遍历,图的搜索)   递归的缺点:   递归算法解题的运行效率较低。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。   例子:   #include <iostream.h>   void move (char getone,char putone)   {   cout <<getone<<"-->"<}   void hanoi(int n,char one ,char two ,char three)   {   void move (char getone,char putone );   if (n==1)   move (one,three);   else   {   hanoi(n-1,one,three,two);   move (one ,three);   hanoi(n-1,two,one,three);   }   }   void main()   {   void hanoi(int n ,char one ,char two ,char three);   int m ;   cout <<"Input the numberof disker:";   cin>>m;   cout<<"the steps to moving "<<m<<"diskes   :"<<endl;   hanoi(m,'A','B','C');   }   第二章 递归   2.1 递归的概念   2.2 如何设计递归算法   2.3 典型例题   递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写   程序能是程序变得简洁和清晰.   2.1 递归的概念   1.概念   一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).   如:   procedure a;   begin   .   .   .   a;   .   .   .   end;   这种方式是直接调用.   又如:   procedure b; procedure c;   begin begin   . .   . .   . .   c; b;   . .   . .   . .   end; end;   这种方式是间接调用.   例1计算n!可用递归公式如下:   1 当 n=0 时   fac(n)={n*fac(n-1) 当n>0时   可编写程序如下:   program fac2;   var   n:integer;   function fac(n:integer):real;   begin   if n=0 then fac:=1 else fac:=n*fac(n-1)   end;   begin   write('n=');readln(n);   writeln('fac(',n,')=',fac(n):6:0);   end.   例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.   设n阶台阶的走法数为f(n)   显然有   1 n=1   f(n)={2 n=2   f(n-1)+f(n-2) n>2   可编程序如下:   program louti;   var n:integer;   function f(x:integer):integer;   begin   if x=1 then f:=1 else   if x=2 then f:=2 else f:=f(x-1)+f(x-2);   end;   begin   write('n=');read(n);   writeln('f(',n,')=',f(n))   end.   2.2 如何设计递归算法   1.确定递归公式   2.确定边界(终了)条件   练习:   用递归的方法完成下列问题   1.求数组中的最大数   2.1+2+3+...+n   3.求n个整数的积   4.求n个整数的平均值   5.求n个自然数的最大公约数与最小公倍数   6.有一对雌雄兔,每两个月就繁殖雌雄各一对兔子.问n个月后共有多少对兔子?   7.已知:数列1,1,2,4,7,13,24,44,...求数列的第 n项.   2.3典型例题   例3 梵塔问题   如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子   从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上   不能出现大盘压小盘.找出移动次数最小的方案.   程序如下:   program fanta;   var   n:integer;   procedure move(n,a,b,c:integer);   begin   if n=1 then writeln(a,'--->',c)   else begin   move(n-1,a,c,b);   writeln(a,'--->',c);   move(n-1,b,a,c);   end;   end;   begin   write('Enter n=');   read(n);   move(n,1,2,3);   end.   例4 快速排序   快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.   程序如下:   program kspv;   const n=7;   type   arr=array[1..n] of integer;   var   a:arr;   i:integer;   procedure quicksort(var b:arr; s,t:integer);   var i,j,x,t1:integer;   begin   i:=s;j:=t;x:=b;   repeat   while (b[j]>=x) and (j>i) do j:=j-1;   if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end;   while (b<=x) and (i<j) do i:=i+1;   if i<j then begin t1:=b[j];b[j]:=b;b:=t1; end   until i=j;   b:=x;   i:=i+1;j:=j-1;   if s<j then quicksort(b,s,j);   if i<t then quicksort(b,i,t);   end;   begin   write('input data:');   for i:=1 to n do read(a);   writeln;   quicksort(a,1,n);   write('output data:');   for i:=1 to n do write(a:6);   writeln;   end.   练习:   1.计算ackerman函数值:   n+1 m=0   ack(m,n)={ ack(m-1,1) m<>0 ,n=0   ack(m-1,ack(m,n-1)) m<>0,n<>0   求ack(5,4)

知与谁同 2019-12-02 01:25:22 0 浏览量 回答数 0

回答

  迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。   利用迭代算法解决问题,需要做好以下三个方面的工作:   一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。   二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。   三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。   例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。   分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有   u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……   根据这个规律,可以归纳出下面的递推公式:   u n = u n - 1 × 2 (n ≥ 2)   对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:   y=x*2   x=y   让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:   cls   x=1   for i=2 to 12   y=x*2   x=y   next i   print y   end   例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。   分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。   设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有   x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)   因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:   x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 )   让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:   cls   x=2^20   for i=1 to 15   x=x/2   next i   print x   end   例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。   要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。   分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:   if n 为偶数 then   n=n/2   else   n=n*3+1   end if   这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:   cls   input "Please input n=";n   do until n=1   if n mod 2=0 then   rem 如果 n 为偶数,则调用迭代公式 n=n/2   n=n/2   print "—";n;   else   n=n*3+1   print "—";n;   end if   loop   end   迭代法   迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:   (1) 选一个方程的近似根,赋给变量x0;   (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;   (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。   若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:   【算法】迭代法求方程的根   { x0=初始近似根;   do {   x1=x0;   x0=g(x1); /*按特定的方程计算新的近似根*/   } while ( fabs(x0-x1)>Epsilon);   printf(“方程的近似根是%f\n”,x0);   }   迭代算法也常用于求方程组的根,令   X=(x0,x1,…,xn-1)   设方程组为:   xi=gi(X) (I=0,1,…,n-1)   则求方程组根的迭代算法可描述如下:   【算法】迭代法求方程组的根   { for (i=0;i   x=初始近似根;   do {   for (i=0;i   y=x;   for (i=0;i   x=gi(X);   for (delta=0.0,i=0;i   if (fabs(y-x)>delta) delta=fabs(y-x);   } while (delta>Epsilon);   for (i=0;i   printf(“变量x[%d]的近似根是 %f”,I,x);   printf(“\n”);   }   具体使用迭代法求根时应注意以下两种可能发生的情况:   (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;   (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。   递归   递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。   能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。   【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。   斐波那契数列为:0、1、1、2、3、……,即:   fib(0)=0;   fib(1)=1;   fib(n)=fib(n-1)+fib(n-2) (当n>1时)。   写成递归函数有:   int fib(int n)   { if (n==0) return 0;   if (n==1) return 1;   if (n>1) return fib(n-1)+fib(n-2);   }   递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。   在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。   在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。   由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。   【问题】 组合问题   问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1   (4)5、3、2 (5)5、3、1 (6)5、2、1   (7)4、3、2 (8)4、3、1 (9)4、2、1   (10)3、2、1   分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。   【程序】   # include   # define MAXN 100   int a[MAXN];   void comb(int m,int k)   { int i,j;   for (i=m;i>=k;i--)   { a[k]=i;   if (k>1)   comb(i-1,k-1);   else   { for (j=a[0];j>0;j--)   printf(“%4d”,a[j]);   printf(“\n”);   }   }   }   void main()   { a[0]=3;   comb(5,3);   }   【问题】 背包问题   问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。   设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。   对于第i件物品的选择考虑有两种可能:   (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。   (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。   按以上思想写出递归算法如下:   try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)   { /*考虑物品i包含在当前方案中的可能性*/   if(包含物品i是可以接受的)   { 将物品i包含在当前方案中;   if (i   try(i+1,tw+物品i的重量,tv);   else   /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   恢复物品i不包含状态;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (不包含物品i仅是可男考虑的)   if (i   try(i+1,tw,tv-物品i的价值);   else   /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/   以当前方案作为临时最佳方案保存;   }   为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:   物品 0 1 2 3   重量 5 3 2 1   价值 4 4 3 1   并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。   按上述算法编写函数和程序如下:   【程序】   # include   # define N 100   double limitW,totV,maxV;   int option[N],cop[N];   struct { double weight;   double value;   }a[N];   int n;   void find(int i,double tw,double tv)   { int k;   /*考虑物品i包含在当前方案中的可能性*/   if (tw+a.weight<=limitW)   { cop=1;   if (i   else   { for (k=0;k   option[k]=cop[k];   maxv=tv;   }   cop=0;   }   /*考虑物品i不包含在当前方案中的可能性*/   if (tv-a.value>maxV)   if (i   else   { for (k=0;k   option[k]=cop[k];   maxv=tv-a.value;   }   }   void main()   { int k;   double w,v;   printf(“输入物品种数\n”);   scanf((“%d”,&n);   printf(“输入各物品的重量和价值\n”);   for (totv=0.0,k=0;k   { scanf(“%1f%1f”,&w,&v);   a[k].weight=w;   a[k].value=v;   totV+=V;   }   printf(“输入限制重量\n”);   scanf(“%1f”,&limitV);   maxv=0.0;   for (k=0;k find(0,0.0,totV);   for (k=0;k   if (option[k]) printf(“%4d”,k+1);   printf(“\n总价值为%.2f\n”,maxv);   }   作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。   【程序】   # include   # define N 100   double limitW;   int cop[N];   struct ele { double weight;   double value;   } a[N];   int k,n;   struct { int ;   double tw;   double tv;   }twv[N];   void next(int i,double tw,double tv)   { twv.=1;   twv.tw=tw;   twv.tv=tv;   }   double find(struct ele *a,int n)   { int i,k,f;   double maxv,tw,tv,totv;   maxv=0;   for (totv=0.0,k=0;k   totv+=a[k].value;   next(0,0.0,totv);   i=0;   While (i>=0)   { f=twv.;   tw=twv.tw;   tv=twv.tv;   switch(f)   { case 1: twv.++;   if (tw+a.weight<=limitW)   if (i   { next(i+1,tw+a.weight,tv);   i++;   }   else   { maxv=tv;   for (k=0;k   cop[k]=twv[k].!=0;   }   break;   case 0: i--;   break;   default: twv.=0;   if (tv-a.value>maxv)   if (i   { next(i+1,tw,tv-a.value);   i++;   }   else   { maxv=tv-a.value;   for (k=0;k   cop[k]=twv[k].!=0;   }   break;   }   }   return maxv;   }   void main()   { double maxv;   printf(“输入物品种数\n”);   scanf((“%d”,&n);   printf(“输入限制重量\n”);   scanf(“%1f”,&limitW);   printf(“输入各物品的重量和价值\n”);   for (k=0;k   scanf(“%1f%1f”,&a[k].weight,&a[k].value);   maxv=find(a,n);   printf(“\n选中的物品为\n”);   for (k=0;k   if (option[k]) printf(“%4d”,k+1);   printf(“\n总价值为%.2f\n”,maxv);   }   递归的基本概念和特点   程序调用自身的编程技巧称为递归( recursion)。   一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。   一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。   注意:   (1) 递归就是在过程或函数里调用自身;   (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

小哇 2019-12-02 01:25:19 0 浏览量 回答数 0

回答

迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。 分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n = u n - 1 × 2 (n ≥ 2) 对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下: cls x=1 for i=2 to 12 y=x*2 x=y next i print y end 例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。 分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。 设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有 x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1) 因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 ) 让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下: cls x=2^20 for i=1 to 15 x=x/2 next i print x end 例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。 要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。 分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是: if n 为偶数 then n=n/2 else n=n*3+1 end if 这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下: cls input "Please input n=";n do until n=1 if n mod 2=0 then rem 如果 n 为偶数,则调用迭代公式 n=n/2 n=n/2 print "—";n; else n=n*3+1 print "—";n; end if loop end 迭代法 迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1) 选一个方程的近似根,赋给变量x0; (2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; (3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特定的方程计算新的近似根*/ } while ( fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\n”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 设方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 { for (i=0;i x=初始近似根; do { for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon); for (i=0;i printf(“变量x[%d]的近似根是 %f”,I,x); printf(“\n”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: (1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; (2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 递归 递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib(1)=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。 写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1 (4)5、3、2 (5)5、3、1 (6)5、2、1 (7)4、3、2 (8)4、3、1 (9)4、2、1 (10)3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include # define MAXN 100 int a[MAXN]; void comb(int m,int k) { int i,j; for (i=m;i>=k;i--) { a[k]=i; if (k>1) comb(i-1,k-1); else { for (j=a[0];j>0;j--) printf(“%4d”,a[j]); printf(“\n”); } } } void main() { a[0]=3; comb(5,3); } 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: (1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 (2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) { /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) { 将物品i包含在当前方案中; if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW) { cop=1; if (i else { for (k=0;k option[k]=cop[k]; maxv=tv; } cop=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV) if (i else { for (k=0;k option[k]=cop[k]; maxv=tv-a.value; } } void main() { int k; double w,v; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值\n”); for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量\n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k find(0,0.0,totV); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include # define N 100 double limitW; int cop[N]; struct ele { double weight; double value; } a[N]; int k,n; struct { int ; double tw; double tv; }twv[N]; void next(int i,double tw,double tv) { twv.=1; twv.tw=tw; twv.tv=tv; } double find(struct ele *a,int n) { int i,k,f; double maxv,tw,tv,totv; maxv=0; for (totv=0.0,k=0;k totv+=a[k].value; next(0,0.0,totv); i=0; While (i>=0) { f=twv.; tw=twv.tw; tv=twv.tv; switch(f) { case 1: twv.++; if (tw+a.weight<=limitW) if (i { next(i+1,tw+a.weight,tv); i++; } else { maxv=tv; for (k=0;k cop[k]=twv[k].!=0; } break; case 0: i--; break; default: twv.=0; if (tv-a.value>maxv) if (i { next(i+1,tw,tv-a.value); i++; } else { maxv=tv-a.value; for (k=0;k cop[k]=twv[k].!=0; } break; } } return maxv; } void main() { double maxv; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入限制重量\n”); scanf(“%1f”,&limitW); printf(“输入各物品的重量和价值\n”); for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value); maxv=find(a,n); printf(“\n选中的物品为\n”); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 递归的基本概念和特点 程序调用自身的编程技巧称为递归( recursion)。 一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。 一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。 注意: (1) 递归就是在过程或函数里调用自身; (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。

马铭芳 2019-12-02 01:24:44 0 浏览量 回答数 0

回答

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法,即一次性解决问题。迭代法又分为精确迭代和近似迭代。“二分法”和“牛顿迭代法”属于近似迭代法。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。 一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。显然x*就是此方程组的解,否则称为迭代法发散。 跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。一般如果可能,直接解法总是优先考虑的。但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),这时候或许可以通过迭代法寻求方程(组)的近似解。 最常见的迭代法是牛顿法。其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。 利用迭代算法解决问题,需要做好以下三个方面的工作: 确定迭代变量 在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以顺推或倒推的方法来完成。 对迭代过程进行控制 在 什么时候结束迭代过程。这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数 是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需 要进一步分析出用来结束迭代过程的条件。 举例 例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只。 分析:这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有 u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,…… 根据这个规律,可以归纳出下面的递推公式: u n = u(n - 1)× 2 (n ≥ 2) 对应 u n 和 u(n - 1),定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系: y=x*2 x=y 让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下: cls x=1 for i=2 to 12 y=x*2 x=y next i print y end 例 2 :阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 220,220个。试问,开始的时候往容器内放了多少个阿米巴。请编程序算出。 分析:根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴2^ 20 个”,即阿米巴分裂 15 次以后得到的个数是 2^20。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2^20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。 设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有 x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1) 因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 (x 的初值为第 15 次分裂之后的个数 2^20) 让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下: cls x=2^20 for i=1 to 15 x=x/2 next i print x end ps:java中幂的算法是Math.pow(2,20);返回double,稍微注意一下 例 3 :验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1。如此经过有限次运算后,总可以得到自然数 1。人们把谷角静夫的这一发现叫做“谷角猜想”。 要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。 分析:定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1。用 QBASIC 语言把它描述出来就是: if n 为偶数 then n=n/2 else n=n*3+1 end if 这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为:n=1。参考程序如下: cls input "Please input n=";n do until n=1 if n mod 2=0 then rem 如果 n 为偶数,则调用迭代公式 n=n/2 n=n/2 print "—";n; else n=n*3+1 print "—";n; end if loop end 迭代法开平方: #include<stdio.h> #include<math.h> void main() { double a,x0,x1; printf("Input a:\n"); scanf("%lf",&a);//为什么在VC6.0中不能写成“scanf("%f",&a);”。 if(a<0) printf("Error!\n"); else { x0=a/2; x1=(x0+a/x0)/2; do { x0=x1; x1=(x0+a/x0)/2; }while(fabs(x0-x1)>=1e-6); } printf("Result:\n"); printf("sqrt(%g)=%g\n",a,x1); } 求平方根的迭代公式:x1=1/2*(x0+a/x0)。 算法:1.先自定一个初值x0,作为a的平方根值,在我们的程序中取a/2作为a的初值;利用迭代公式求出一个x1。此值与真正的a的平方根值相比,误差很大。 ⒉把新求得的x1代入x0中,准备用此新的x0再去求出一个新的x1. ⒊利用迭代公式再求出一个新的x1的值,也就是用新的x0又求出一个新的平方根值x1,此值将更趋近于真正的平方根值。 ⒋比较前后两次求得的平方根值x0和x1,如果它们的差值小于我们指定的值,即达到我们要求的精度,则认为x1就是a的平方根值,去执行步骤5;否则执行步骤2,即循环进行迭代。 迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: ⑴ 选一个方程的近似根,赋给变量x0; ⑵ 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0; ⑶ 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤⑵的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为: 【算法】迭代法求方程的根 { x0=初始近似根; do { x1=x0; x0=g(x1); /*按特定的方程计算新的近似根*/ } while (fabs(x0-x1)>Epsilon); printf(“方程的近似根是%f\n”,x0); } 迭代算法也常用于求方程组的根,令 X=(x0,x1,…,xn-1) 设方程组为: xi=gi(X) (I=0,1,…,n-1) 则求方程组根的迭代算法可描述如下: 【算法】迭代法求方程组的根 { for (i=0;i x=初始近似根; do { for (i=0;i y=x; for (i=0;i x=gi(X); for (delta=0.0,i=0;i if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon); for (i=0;i printf(“变量x[%d]的近似根是 %f”,I,x); printf(“\n”); } 具体使用迭代法求根时应注意以下两种可能发生的情况: ⑴ 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制; ⑵ 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。 递归 递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。 能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。 【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。 斐波那契数列为:0、1、1、2、3、……,即: fib(0)=0; fib⑴=1; fib(n)=fib(n-1)+fib(n-2) (当n>1时)。 写成递归函数有: int fib(int n) { if (n==0) return 0; if (n==1) return 1; if (n>1) return fib(n-1)+fib(n-2); } 递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问 题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算 fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib⑴和fib(0),分别能 立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。 在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib⑴和fib(0)后,返回得到fib⑵的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。 在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。 由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为:⑴5、4、3 ⑵5、4、2 ⑶5、4、1 ⑷5、3、2 ⑸5、3、1 ⑹5、2、1 ⑺4、3、2 ⑻4、3、1 ⑼4、2、1 ⑽3、2、1 分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递 归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。 【程序】 # include # define MAXN 100 int a[MAXN]; void comb(int m,int k) { int i,j; for (i=m;i>=k;i--) { a[k]=i; if (k>1) comb(i-1,k-1); else { for (j=a[0];j>0;j--) printf(“%4d”,a[j]); printf(“\n”); } } } void main() { a[0]=3; comb(5,3); } 【问题】 背包问题 问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。 设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并 保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达 到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止 当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。 对于第i件物品的选择考虑有两种可能: ⑴ 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。 ⑵ 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 按以上思想写出递归算法如下: try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv) { /*考虑物品i包含在当前方案中的可能性*/ if(包含物品i是可以接受的) { 将物品i包含在当前方案中; if (i try(i+1,tw+物品i的重量,tv); else /*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; 恢复物品i不包含状态; } /*考虑物品i不包含在当前方案中的可能性*/ if (不包含物品i仅是可男考虑的) if (i try(i+1,tw,tv-物品i的价值); else /*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/ 以当前方案作为临时最佳方案保存; } 为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表: 物品 0 1 2 3 重量 5 3 2 1 价值 4 4 3 1 并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。 按上述算法编写函数和程序如下: 【程序】 # include # define N 100 double limitW,totV,maxV; int option[N],cop[N]; struct { double weight; double value; }a[N]; int n; void find(int i,double tw,double tv) { int k; /*考虑物品i包含在当前方案中的可能性*/ if (tw+a.weight<=limitW) { cop=1; if (i else { for (k=0;k option[k]=cop[k]; maxv=tv; } cop=0; } /*考虑物品i不包含在当前方案中的可能性*/ if (tv-a.value>maxV) if (i else { for (k=0;k option[k]=cop[k]; maxv=tv-a.value; } } void main() { int k; double w,v; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入各物品的重量和价值\n”); for (totv=0.0,k=0;k { scanf(“%1f%1f”,&w,&v); a[k].weight=w; a[k].value=v; totV+=V; } printf(“输入限制重量\n”); scanf(“%1f”,&limitV); maxv=0.0; for (k=0;k find(0,0.0,totV); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); } 作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是 从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选 解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在 候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。 对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。 【程序】 # include # define N 100 double limitW; int cop[N]; struct ele { double weight; double value; } a[N]; int k,n; struct { int ; double tw; double tv; }twv[N]; void next(int i,double tw,double tv) { twv.=1; twv tw=tw; twv tv=tv; } double find(struct ele *a,int n) { int i,k,f; double maxv,tw,tv,totv; maxv=0; for (totv=0.0,k=0;k totv+=a[k].value; next(0,0.0,totv); i=0; While (i>=0) { f=twv.; tw=twv tw; tv=twv tv; switch(f) { case 1: twv.++; if (tw+a.weight<=limitW) if (i { next(i+1,tw+a.weight,tv); i++; } else { maxv=tv; for (k=0;k cop[k]=twv[k].!=0; } break; case 0: i--; break; default: twv.=0; if (tv-a.value>maxv) if (i { next(i+1,tw,tv-a.value); i++; } else { maxv=tv-a.value; for (k=0;k cop[k]=twv[k].!=0; } break; } } return maxv; } void main() { double maxv; printf(“输入物品种数\n”); scanf((“%d”,&n); printf(“输入限制重量\n”); scanf(“%1f”,&limitW); printf(“输入各物品的重量和价值\n”); for (k=0;k scanf(“%1f%1f”,&a[k].weight,&a[k].value); maxv=find(a,n); printf(“\n选中的物品为\n”); for (k=0;k if (option[k]) printf(“%4d”,k+1); printf(“\n总价值为%.2f\n”,maxv); }

云篆 2019-12-02 01:25:10 0 浏览量 回答数 0

问题

详解递归 6月18日【今日算法】

游客ih62co2qqq5ww 2020-06-20 12:04:38 2 浏览量 回答数 0

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

回答

一、软件篇 1、设定虚拟内存 硬盘中有一个很宠大的数据交换文件,它是系统预留给虚拟内存作暂存的地方,很多应用程序都经常会使用到,所以系统需要经常对主存储器作大量的数据存取,因此存取这个档案的速度便构成影响计算机快慢的非常重要因素!一般Windows预设的是由系统自行管理虚拟内存,它会因应不同程序所需而自动调校交换档的大小,但这样的变大缩小会给系统带来额外的负担,令系统运作变慢!有见及此,用户最好自定虚拟内存的最小值和最大值,避免经常变换大小。要设定虚拟内存,在“我的电脑”上按右键选择“属性”,在“高级”选项里的“效能”的对话框中,对“虚拟内存”进行设置。 3、检查应用软件或者驱动程序 有些程序在电脑系统启动会时使系统变慢。如果要是否是这方面的原因,我们可以从“安全模式”启动。因为这是原始启动,“安全模式”运行的要比正常运行时要慢。但是,如果你用“安全模式”启动发现电脑启动速度比正常启动时速度要快,那可能某个程序是导致系统启动速度变慢的原因。 4、桌面图标太多会惹祸 桌面上有太多图标也会降低系统启动速度。Windows每次启动并显示桌面时,都需要逐个查找桌面快捷方式的图标并加载它们,图标越多,所花费的时间当然就越多。同时有些杀毒软件提供了系统启动扫描功能,这将会耗费非常多的时间,其实如果你已经打开了杀毒软件的实时监视功能,那么启动时扫描系统就显得有些多余,还是将这项功能禁止吧! 建议大家将不常用的桌面图标放到一个专门的文件夹中或者干脆删除! 5、ADSL导致的系统启动变慢 默认情况下Windows XP在启动时会对网卡等网络设备进行自检,如果发现网卡的IP地址等未配置好就会对其进行设置,这可能是导致系统启动变慢的真正原因。这时我们可以打开“本地连接”属性菜单,双击“常规”项中的“Internet协议”打开“TCP/IP属性”菜单。将网卡的IP地址配置为一个在公网(默认的网关是192.168.1.1)中尚未使用的数值如192.168.1.X,X取介于2~255之间的值,子网掩码设置为255.255.255.0,默认网关和DNS可取默认设置。 6、字体对速度的影响 虽然 微软 声称Windows操作系统可以安装1000~1500种字体,但实际上当你安装的字体超过500 种时,就会出现问题,比如:字体从应用程序的字体列表中消失以及Windows的启动速度大幅下降。在此建议最好将用不到或者不常用的字体删除,为避免删除后发生意外,可先进行必要的备份。 7、删除随机启动程序 何谓随机启动程序呢?随机启动程序就是在开机时加载的程序。随机启动程序不但拖慢开机时的速度,而且更快地消耗计算机资源以及内存,一般来说,如果想删除随机启动程序,可去“启动”清单中删除,但如果想详细些,例如是QQ、popkiller 之类的软件,是不能在“启动”清单中删除的,要去“附属应用程序”,然后去“系统工具”,再去“系统信息”,进去后,按上方工具列的“工具”,再按“系统组态编辑程序”,进去后,在“启动”的对话框中,就会详细列出在启动电脑时加载的随机启动程序了!XP系统你也可以在“运行”是输入Msconfig调用“系统配置实用程序”才终止系统随机启动程序,2000系统需要从XP中复制msconfig程序。 8、取消背景和关闭activedesktop 不知大家有否留意到,我们平时一直摆放在桌面上漂亮的背景,其实是很浪费计算机资源的!不但如此,而且还拖慢计算机在执行应用程序时的速度!本想美化桌面,但又拖慢计算机的速度,这样我们就需要不在使用背景了,方法是:在桌面上按鼠标右键,再按内容,然后在“背景”的对话框中,选“无”,在“外观”的对话框中,在桌面预设的青绿色,改为黑色......至于关闭activedesktop,即是叫你关闭从桌面上的web画面,例如在桌面上按鼠标右键,再按内容,然后在“背景”的对话框中,有一幅背景,名为Windows XX,那副就是web画面了!所以如何系统配置不高就不要开启。 10、把Windows变得更苗条 与DOS系统相比,Windows过于庞大,而且随着你每天的操作,安装新软件、加载运行库、添加新游戏等等使得它变得更加庞大,而更为重要的是变大的不仅仅是它的目录,还有它的 注册表 和运行库。因为即使删除了某个程序,可是它使用的DLL文件仍然会存在,因而随着使用日久,Windows的启动和退出时需要加载的DLL动态链接库文件越来越大,自然系统运行速度也就越来越慢了。这时我们就需要使用一些彻底删除DLL的程序,它们可以使Windows恢复苗条的身材。建议极品玩家们最好每隔两个月就重新安装一遍Windows,这很有效。 11、更改系统开机时间 虽然你已知道了如何新增和删除一些随机启动程序,但你又知不知道,在开机至到进入Windows的那段时间,计算机在做着什么呢?又或者是,执行着什么程序呢?那些程序,必定要全部载完才开始进入Windows,你有否想过,如果可删除一些不必要的开机时的程序,开机时的速度会否加快呢?答案是会的!想要修改,可按"开始",选"执行",然后键入win.ini,开启后,可以把以下各段落的内容删除,是删内容,千万不要连标题也删除!它们包括:[compatibility]、[compatibility32]、[imecompatibility]、[compatibility95]、[modulecompatibility]和[embedding]。 二、硬件篇 1、Windows系统自行关闭硬盘DMA模式 硬盘的DMA模式大家应该都知道吧,硬盘的PATA模式有DMA33、DMA66、DMA100和DMA133,最新的SATA-150都出来了!一般来说现在大多数人用的还是PATA模式的硬盘,硬盘使用DMA模式相比以前的PIO模式传输的速度要快2~8倍。DMA模式的起用对系统的性能起到了实质的作用。但是你知道吗?Windows 2000、XP、2003系统有时会自行关闭硬盘的DMA模式,自动改用PIO模式运行!这就造成在使用以上系统中硬盘性能突然下降,其中最明显的现象有:系统起动速度明显变慢,一般来说正常Windows XP系统启动时那个由左向右运动的滑条最多走2~4次系统就能启动,但这一问题发生时可能会走5~8次或更多!而且在运行系统时进行硬盘操作时明显感觉变慢,在运行一些大的软件时CPU占用率时常达到100%而产生停顿,玩一些大型3D游戏时画面时有明显停顿,出现以上问题时大家最好看看自己硬盘的DMA模式是不是被Windows 系统自行关闭了。查看自己的系统是否打开DMA模式: a. 双击“管理工具”,然后双击“计算机管理”; b. 单击“系统工具”,然后单击“设备管理器”; c. 展开“IDE ATA/ATAPI 控制器”节点; d. 双击您的“主要IDE控制器”; 2、CPU 和风扇是否正常运转并足够制冷 当CPU风扇转速变慢时,CPU本身的温度就会升高,为了保护CPU的安全,CPU就会自动降低运行频率,从而导致计算机运行速度变慢。有两个方法检测CPU的温度。你可以用“手指测法”用手指试一下处理器的温度是否烫手,但是要注意的是采用这种方法必须先拔掉电源插头,然后接一根接地线来防止身上带的静电击穿CPU以至损坏。另一个比较科学的方法是用带感温器的万用表来检测处理器的温度。 因为处理器的种类和型号不同,合理温度也各不相同。但是总的来说,温度应该低于 110 度。如果你发现处理器的测试高于这处温度,检查一下机箱内的风扇是否正常运转。 3、USB和扫描仪造成的影响 由于Windows 启动时会对各个驱动器(包括光驱)进行检测,因此如果光驱中放置了光盘,也会延长电脑的启动时间。所以如果电脑安装了扫描仪等设备,或在启动时已经连接了USB硬盘,那么不妨试试先将它们断开,看看启动速度是不是有变化。一般来说,由于USB接口速度较慢,因此相应设备会对电脑启动速度有较明显的影响,应该尽量在启动后再连接USB设备。如果没有USB设备,那么建议直接在BIOS设置中将USB功能关闭。 4、是否使用了磁盘压缩 因为“磁盘压缩”可能会使电脑性能急剧下降,造成系统速度的变慢。所以这时你应该检测一下是否使用了“磁盘压缩”,具体操作是在“我的电脑”上点击鼠标右键,从弹出的菜单选择“属性”选项,来检查驱动器的属性。 5、网卡造成的影响 只要设置不当,网卡也会明显影响系统启动速度,你的电脑如果连接在局域网内,安装好网卡驱动程序后,默认情况下系统会自动通过DHCP来获得IP地址,但大多数公司的局域网并没有DHCP服务器,因此如果用户设置成“自动获得IP地址”,系统在启动时就会不断在网络中搜索DHCP 服务器,直到获得IP 地址或超时,自然就影响了启动时间,因此局域网用户最好为自己的电脑指定固定IP地址。 6、文件夹和打印机共享 安装了Windows XP专业版的电脑也会出现启动非常慢的时候,有些时候系统似乎给人死机的感觉,登录系统后,桌面也不出现,电脑就像停止反应,1分钟后才能正常使用。这是由于使用了Bootvis.exe 程序后,其中的Mrxsmb.dll文件为电脑启动添加了67秒的时间! 要解决这个问题,只要停止共享文件夹和打印机即可:选择“开始→设置→网络和拨号连接”,右击“本地连接”,选择“属性”,在打开的窗口中取消“此连接使用下列选定的组件”下的“ Microsoft 网络的文件和打印机共享”前的复选框,重启电脑即可。 7、系统配件配置不当 一些用户在组装机器时往往忽略一些小东西,从而造成计算机整体配件搭配不当,存在着速度上的瓶颈。比如有些朋友选的CPU档次很高,可声卡等却买了普通的便宜货,其实这样做往往是得不偿失。因为这样一来计算机在运行游戏、播放影碟时由于声卡占用CPU资源较高且其数据传输速度较慢,或者其根本无硬件解码而需要采用软件解码方式,常常会引起声音的停顿,甚至导致程序的运行断断续续。又如有些朋友的机器是升了级的,过去老机器上的一些部件如内存条舍不得抛弃,装在新机器上照用,可是由于老内存的速度限制,往往使新机器必须降低速度来迁就它,从而降低了整机的性能,极大地影响了整体的运行速度。 9、断开不用的网络驱动器 为了消除或减少 Windows 必须重新建立的网络连接数目,建议将一些不需要使用的网络驱动器断开,也就是进入“我的电脑”,右击已经建立映射的网络驱动器,选择“断开”即可。 10、缺少足够的内存 Windows操作系统所带来的优点之一就是多线性、多任务,系统可以利用CPU来进行分时操作,以便你同时做许多事情。但事情有利自然有弊,多任务操作也会对你的机器提出更高的要求。朋友们都知道即使是一个最常用的WORD软件也要求最好有16MB左右的内存,而运行如3D MAX等大型软件时,64MB的内存也不够用。所以此时系统就会自动采用硬盘空间来虚拟主内存,用于运行程序和储存交换文件以及各种临时文件。由于硬盘是机械结构,而内存是电子结构,它们两者之间的速度相差好几个数量级,因而使用硬盘来虚拟主内存将导致程序运行的速度大幅度降低。 11、硬盘空间不足 使用Windows系统平台的缺点之一就是对文件的管理不清楚,你有时根本就不知道这个文件对系统是否有用,因而Windows目录下的文件数目越来越多,容量也越来越庞大,加之现在的软件都喜欢越做越大,再加上一些系统产生的临时文件、交换文件,所有这些都会使得硬盘可用空间变小。当硬盘的可用空间小到一定程度时,就会造成系统的交换文件、临时文件缺乏可用空间,降低了系统的运行效率。更为重要的是由于我们平时频繁在硬盘上储存、删除各种软件,使得硬盘的可用空间变得支离破碎,因此系统在存储文件时常常没有按连续的顺序存放,这将导致系统存储和读取文件时频繁移动磁头,极大地降低了系统的运行速度。 12、硬盘分区太多也有错 如果你的Windows 2000没有升级到SP3或SP4,并且定义了太多的分区,那么也会使启动变得很漫长,甚至挂起。所以建议升级最新的SP4,同时最好不要为硬盘分太多的区。因为Windows 在启动时必须装载每个分区,随着分区数量的增多,完成此操作的时间总量也会不断增长。 三、病毒篇 如果你的计算机感染了病毒,那么系统的运行速度会大幅度变慢。病毒入侵后,首先占领内存这个据点,然后便以此为根据地在内存中开始漫无休止地复制自己,随着它越来越庞大,很快就占用了系统大量的内存,导致正常程序运行时因缺少主内存而变慢,甚至不能启动;同时病毒程序会迫使CPU转而执行无用的垃圾程序,使得系统始终处于忙碌状态,从而影响了正常程序的运行,导致计算机速度变慢。下面我们就介绍几种能使系统变慢的病毒。 1、使系统变慢的bride病毒 病毒类型:黑客程序 发作时间:随机 传播方式:网络 感染对象:网络 警惕程度:★★★★ 病毒介绍: 此病毒可以在Windows 2000、Windows XP等操作系统环境下正常运行。运行时会自动连接 www.hotmail.com网站,如果无法连接到此网站,则病毒会休眠几分钟,然后修改注册表将自己加入注册表自启动项,病毒会释放出四个病毒体和一个有漏洞的病毒邮件并通过邮件系统向外乱发邮件,病毒还会释放出FUNLOVE病毒感染局域网计算机,最后病毒还会杀掉已知的几十家反病毒软件,使这些反病毒软件失效。 病毒特征 如果用户发现计算机中有这些特征,则很有可能中了此病毒。 ·病毒运行后会自动连接 www.hotmail.com网站。 ·病毒会释放出Bride.exe,Msconfig.exe,Regedit.exe三个文件到系统目录;释放出:Help.eml, Explorer.exe文件到桌面。 ·病毒会在注册表的HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionRun项中加入病毒Regedit.exe的路径。 ·病毒运行时会释放出一个FUNLOVE病毒并将之执行,而FUNLOVE病毒会在计算机中大量繁殖,造成系统变慢,网络阻塞。 ·病毒会寻找计算机中的邮件地址,然后按照地址向外大量发送标题为:<被感染的计算机机名>(例:如果用户的计算机名为:张冬, 则病毒邮件的标题为:张冬)的病毒邮件。 ·病毒还会杀掉几十家国外著名的反病毒软件。 用户如果在自己的计算机中发现以上全部或部分现象,则很有可能中了Bride(Worm.bride)病毒,请用户立刻用手中的杀毒软件进行清除。 2、使系统变慢的阿芙伦病毒 病毒类型:蠕虫病毒 发作时间:随机 传播方式:网络/文件 感染对象:网络 警惕程度:★★★★ 病毒介绍: 此病毒可以在Windows 9X、Windows NT、Windows 2000、Windows XP等操作系统环境下正常运行。病毒运行时将自己复到到TEMP、SYSTEM、RECYCLED目录下,并随机生成文件名。该病毒运行后,会使消耗大量的系统资源,使系统明显变慢,并且杀掉一些正在运行的反病毒软件,建立四个线程在局域网中疯狂传播。 病毒特征 如果用户发现计算机中有这些特征,则很有可能中了此病毒: ·病毒运行时会将自己复到到TEMP、SYSTEM、RECYCLED目录下,文件名随机 ·病毒运行时会使系统明显变慢 ·病毒会杀掉一些正在运行的反病毒软件 ·病毒会修改注册表的自启动项进行自启动 ·病毒会建立四个线程在局域网中传播 用户如果在自己的计算机中发现以上全部或部分现象,则很有可能中了“阿芙伦(Worm.Avron)”病毒,由于此病毒没有固定的病毒文件名,所以,最好还是选用杀毒软件进行清除。 3、恶性蠕虫 震荡波 病毒名称: Worm.Sasser 中文名称: 震荡波 病毒别名: W32/Sasser.worm [Mcafee] 病毒类型: 蠕虫 受影响系统:WinNT/Win2000/WinXP/Win2003 病毒感染症状: ·莫名其妙地死机或重新启动计算机; ·系统速度极慢,cpu占用100%; ·网络变慢; ·最重要的是,任务管理器里有一个叫"avserve.exe"的进程在运行! 破坏方式: ·利用WINDOWS平台的 Lsass 漏洞进行广泛传播,开启上百个线程不停攻击其它网上其它系统,堵塞网络。病毒的攻击行为可让系统不停的倒计时重启。 ·和最近出现的大部分蠕虫病毒不同,该病毒并不通过邮件传播,而是通过命令易受感染的机器 下载特定文件并运行,来达到感染的目的。 ·文件名为:avserve.exe 解决方案: ·请升级您的操作系统,免受攻击 ·请打开个人防火墙屏蔽端口:445、5554和9996,防止名为avserve.exe的程序访问网络 ·手工解决方案: 首先,若系统为WinMe/WinXP,则请先关闭系统还原功能; 步骤一,使用进程程序管理器结束病毒进程 右键单击任务栏,弹出菜单,选择“任务管理器”,调出“Windows任务管理器”窗口。在任务管理器中,单击“进程”标签,在例表栏内找到病毒进程“avserve.exe”,单击“结束进程按钮”,点击“是”,结束病毒进程,然后关闭“Windows任务管理器”; 步骤二,查找并删除病毒程序 通过“我的电脑”或“资源管理器”进入 系统安装目录(Winnt或windows),找到文件“avser ve.exe”,将它删除;然后进入系统目录(Winntsystem32或windowssystem32),找 到文件"*_up.exe", 将它们删除; 步骤三,清除病毒在注册表里添加的项 打开注册表编辑器: 点击开始——>运行, 输入REGEDIT, 按Enter; 在左边的面板中, 双击(按箭头顺序查找,找到后双击): HKEY_CURRENT_USERSOFTWAREMicrosoftWindowsCurrentVersionRun 在右边的面板中, 找到并删除如下项目:"avserve.exe" = %SystemRoot%avserve.exe 关闭注册表编辑器。 第二部份 系统加速 一、Windows 98 1、不要加载太多随机启动程序 不要在开机时载入太多不必要的随机启动程序。选择“开始→程序→附件→系统工具→系统信息→系统信息对话框”,然后,选择“工具→系统配置实用程序→启动”,只需要internat.exe前打上钩,其他项都可以不需要,选中后确定重起即可。 2、转换系统文件格式 将硬盘由FAT16转为FAT32。 3、不要轻易使用背景 不要使用ActiveDesktop,否则系统运行速度会因此减慢(右击屏幕→寻显示器属性→Web标签→将其中关于“活动桌面”和“频道”的选项全部取消)。 4、设置虚拟内存 自己设定虚拟内存为机器内存的3倍,例如:有32M的内存就设虚拟内存为96M,且最大值和最小值都一样(此设定可通过“控制面板→系统→性能→虚拟内存”来设置)。 5、一些优化设置 a、到控制面板中,选择“系统→性能→ 文件系统”。将硬盘标签的“计算机主要用途”改为网络服务器,“预读式优化"调到全速。 b、将“软盘”标签中“每次启动就搜寻新的软驱”取消。 c、CD-ROM中的“追加高速缓存”调至最大,访问方式选四倍速或更快的CD-ROM。 6、定期对系统进行整理 定期使用下列工具:磁盘扫描、磁盘清理、碎片整理、系统文件检查器(ASD)、Dr?Watson等。 二、Windows 2000 1、升级文件系统 a、如果你所用的操作系统是win 9x与win 2000双重启动的话,建议文件系统格式都用FAT32格式,这样一来可以节省硬盘空间,二来也可以9x与2000之间能实行资源共享。 提醒:要实现这样的双重启动,最好是先在纯DOS环境下安装完9x在C区,再在9x中或者用win 2000启动盘启动在DOS环境下安装2000在另一个区内,并且此区起码要有800M的空间以上 b、如果阁下只使用win 2000的话,建议将文件系统格式转化为NTFS格式,这样一来可节省硬盘空间,二来稳定性和运转速度更高,并且此文件系统格式有很好的纠错性;但这样一来,DOS和win 9x系统就不能在这文件系统格式中运行,这也是上面所说做双启动最好要用FAT32格式才能保证资源共享的原因。而且,某些应用程序也不能在此文件系统格式中运行,大多是DOS下的游戏类。 提醒:在win 2000下将文件系统升级为NTFS格式的方法是,点击“开始-程序-附件”选中“命令提示符”,然后在打开的提示符窗口输入"convert drive_letter:/fs:ntfs",其中的"drive"是你所要升级的硬盘分区符号,如C区;还需要说明的是,升级文件系统,不会破坏所升级硬盘分区里的文件,无需要备份。 · 再运行“添加-删除程序”,就会看见多出了个“添加/删除 Windows 组件”的选项; b、打开“文件夹选项”,在“查看”标签里选中“显示所有文件和文件夹”,此时在你安装win 2000下的区盘根目录下会出现Autoexec.bat和Config.sys两个文件,事实上这两个文件里面根本没有任何内容,可以将它们安全删除。 c、右击“我的电脑”,选中“管理”,在点“服务和应用程序”下的“服务”选项,会看见win 2000上加载的各个程序组见,其中有许多是关于局域网设置或其它一些功能的,你完全可以将你不使用的程序禁用; 如:Alertr,如果你不是处于局域网中,完全可以它设置为禁用;还有Fax Service,不发传真的设置成禁用;Print Spooler,没有打印机的设置成制用;Uninterruptible power Supply,没有UPS的也设置成禁用,这些加载程序你自己可以根据自己实际情况进行设置。 各个加载程序后面都有说明,以及运行状态;选中了要禁用的程序,右击它,选“属性”,然后单击停止,并将“启动类型”设置为“手动”或者“已禁用”就行了 d、关掉调试器Dr. Watson; 运行drwtsn32,把除了“转储全部线程上下文”之外的全都去掉。否则一旦有程序出错,硬盘会响很久,而且会占用很多空间。如果你以前遇到过这种情况,请查找user.dmp文件并删掉,可能会省掉几十兆的空间。这是出错程序的现场,对我们没用。另外蓝屏时出现的memory.dmp也可删掉。可在我的电脑/属性中关掉 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:15:52 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播