• 关于 分布式数据库的用途 的搜索结果

回答

云数据库和云存储的区别: 一、从服务层面来说 这两者都可以做为PaaS服务暴露给用户,云数据库可以包括关系型数据库以及非关系型数据库等,而云存储则可以包含块存储(Block Storage)以及对象存储(Object Storage)等。 二、从数据的结构来说 一般云存储上存储的都是用户上传的比较零散的文件,每个文件的类型和组织的方式可以不一致,比如图片,音频,word文件之类的,而数据库中存储中的数据都由数据库进程来直接管理,包括表空间,表结构以及数据存储的方式,是有规则的。 三、从提供的服务来说 云存储:提供存储能力,更多面对的场景是非结构化类数据,如文件,图片,视频等。 云数据库:提供基础的数据库和数据对象管理能力,既包括oracle,mysql,sql server等关系型数据库,也可以包括类似mongodb , hbase等半结构化数据库。 四、从两者的关系来说 对于云存储当前基本都基于类似hdfs分布式文件系统进行封装,提供存储服务能力接口。也可以基于hdfs,上面再架构一层,形成一个数据库,再将数据库能力暴露出去,形成云数据库。 类似hbase,但是对于常见的关系型数据库,可以做为云数据库,但是他们底层不不是依赖的云存储能力。 扩展资料: 云存储的主要用途: 云存储通常意味着把主数据或备份数据放到企业外部不确定的存储池里,而不是放到本地数据中心或专用远程站点。支持者们认为,如果使用云存储服务,企业机构就能节省投资费用,简化复杂的设置和管理任务,把数据放在云中还便于从更多的地方访问数据。 数据备份、归档和灾难恢复是云存储可能的三个用途。 减少工作和费用是预计云服务在接下来几年会持续增长的一个主要原因。据研究公司IDC声称,全球IT开支当中有4%用于云服务;到2012年,这个比例会达到9%。 由于成本和空间方面的压力,数据存储非常适合使用云解决方案;IDC预测,在这同一期间,云存储在云服务开支中的比重会从8%增加到13%。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:17:41 0 浏览量 回答数 0

回答

  1、提高系统的并发能力  2、减轻数据库的负担  这两种用途其实非常容易理解。由于memcached高性能,所以可以同时服务于更多的连接,大大提高了系统的并发处理的能力。另外,memcached 通常部署在业务逻辑层(前台应用)和存储层(主指数据库)之间,作为数据库和前台应用的数据缓冲,因此可以快速的响应前端的请求,减少对数据库的访问。 或者使用分布式服务器,或者说云服务器,让不同地方的访客访问不同服务器,提高访问速度,降低服务器压力。 来源于网络,供您参考,如若满意,请点击右侧【采纳答案】,如若还有问题,请点击【追问】 希望我的回答对您有所帮助,望采纳! ~ O(∩_∩)O~

保持可爱mmm 2019-12-02 03:03:51 0 浏览量 回答数 0

回答

一、基础篇 1.1、Java基础 面向对象的特征:继承、封装和多态 final, finally, finalize 的区别 Exception、Error、运行时异常与一般异常有何异同 请写出5种常见到的runtime exception int 和 Integer 有什么区别,Integer的值缓存范围 包装类,装箱和拆箱 String、StringBuilder、StringBuffer 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自定义注解的场景及实现 HTTP请求的GET与POST方式的区别 Session与Cookie区别 列出自己常用的JDK包 MVC设计思想 equals与==的区别 hashCode和equals方法的区别与联系 什么是Java序列化和反序列化,如何实现Java序列化?或者请解释Serializable 接口的作用 Object类中常见的方法,为什么wait notify会放在Object里边? Java的平台无关性如何体现出来的 JDK和JRE的区别 Java 8有哪些新特性 1.2、Java常见集合 List 和 Set 区别 Set和hashCode以及equals方法的联系 List 和 Map 区别 Arraylist 与 LinkedList 区别 ArrayList 与 Vector 区别 HashMap 和 Hashtable 的区别 HashSet 和 HashMap 区别 HashMap 和 ConcurrentHashMap 的区别 HashMap 的工作原理及代码实现,什么时候用到红黑树 多线程情况下HashMap死循环的问题 HashMap出现Hash DOS攻击的问题 ConcurrentHashMap 的工作原理及代码实现,如何统计所有的元素个数 手写简单的HashMap 看过那些Java集合类的源码 1.3、进程和线程 线程和进程的概念、并行和并发的概念 创建线程的方式及实现 进程间通信的方式 说说 CountDownLatch、CyclicBarrier 原理和区别 说说 Semaphore 原理 说说 Exchanger 原理 ThreadLocal 原理分析,ThreadLocal为什么会出现OOM,出现的深层次原理 讲讲线程池的实现原理 线程池的几种实现方式 线程的生命周期,状态是如何转移的 可参考:《Java多线程编程核心技术》 1.4、锁机制 说说线程安全问题,什么是线程安全,如何保证线程安全 重入锁的概念,重入锁为什么可以防止死锁 产生死锁的四个条件(互斥、请求与保持、不剥夺、循环等待) 如何检查死锁(通过jConsole检查死锁) volatile 实现原理(禁止指令重排、刷新内存) synchronized 实现原理(对象监视器) synchronized 与 lock 的区别 AQS同步队列 CAS无锁的概念、乐观锁和悲观锁 常见的原子操作类 什么是ABA问题,出现ABA问题JDK是如何解决的 乐观锁的业务场景及实现方式 Java 8并法包下常见的并发类 偏向锁、轻量级锁、重量级锁、自旋锁的概念 可参考:《Java多线程编程核心技术》 1.5、JVM JVM运行时内存区域划分 内存溢出OOM和堆栈溢出SOE的示例及原因、如何排查与解决 如何判断对象是否可以回收或存活 常见的GC回收算法及其含义 常见的JVM性能监控和故障处理工具类:jps、jstat、jmap、jinfo、jconsole等 JVM如何设置参数 JVM性能调优 类加载器、双亲委派模型、一个类的生命周期、类是如何加载到JVM中的 类加载的过程:加载、验证、准备、解析、初始化 强引用、软引用、弱引用、虚引用 Java内存模型JMM 1.6、设计模式 常见的设计模式 设计模式的的六大原则及其含义 常见的单例模式以及各种实现方式的优缺点,哪一种最好,手写常见的单利模式 设计模式在实际场景中的应用 Spring中用到了哪些设计模式 MyBatis中用到了哪些设计模式 你项目中有使用哪些设计模式 说说常用开源框架中设计模式使用分析 动态代理很重要!!! 1.7、数据结构 树(二叉查找树、平衡二叉树、红黑树、B树、B+树) 深度有限算法、广度优先算法 克鲁斯卡尔算法、普林母算法、迪克拉斯算法 什么是一致性Hash及其原理、Hash环问题 常见的排序算法和查找算法:快排、折半查找、堆排序等 1.8、网络/IO基础 BIO、NIO、AIO的概念 什么是长连接和短连接 Http1.0和2.0相比有什么区别,可参考《Http 2.0》 Https的基本概念 三次握手和四次挥手、为什么挥手需要四次 从游览器中输入URL到页面加载的发生了什么?可参考《从输入URL到页面加载发生了什么》 二、数据存储和消息队列 2.1、数据库 MySQL 索引使用的注意事项 DDL、DML、DCL分别指什么 explain命令 left join,right join,inner join 数据库事物ACID(原子性、一致性、隔离性、持久性) 事物的隔离级别(读未提交、读以提交、可重复读、可序列化读) 脏读、幻读、不可重复读 数据库的几大范式 数据库常见的命令 说说分库与分表设计 分库与分表带来的分布式困境与应对之策(如何解决分布式下的分库分表,全局表?) 说说 SQL 优化之道 MySQL遇到的死锁问题、如何排查与解决 存储引擎的 InnoDB与MyISAM区别,优缺点,使用场景 索引类别(B+树索引、全文索引、哈希索引)、索引的原理 什么是自适应哈希索引(AHI) 为什么要用 B+tree作为MySQL索引的数据结构 聚集索引与非聚集索引的区别 遇到过索引失效的情况没,什么时候可能会出现,如何解决 limit 20000 加载很慢怎么解决 如何选择合适的分布式主键方案 选择合适的数据存储方案 常见的几种分布式ID的设计方案 常见的数据库优化方案,在你的项目中数据库如何进行优化的 2.2、Redis Redis 有哪些数据类型,可参考《Redis常见的5种不同的数据类型详解》 Redis 内部结构 Redis 使用场景 Redis 持久化机制,可参考《使用快照和AOF将Redis数据持久化到硬盘中》 Redis 集群方案与实现 Redis 为什么是单线程的? 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级 使用缓存的合理性问题 Redis常见的回收策略 2.3、消息队列 消息队列的使用场景 消息的重发补偿解决思路 消息的幂等性解决思路 消息的堆积解决思路 自己如何实现消息队列 如何保证消息的有序性 三、开源框架和容器 3.1、SSM/Servlet Servlet的生命周期 转发与重定向的区别 BeanFactory 和 ApplicationContext 有什么区别 Spring Bean 的生命周期 Spring IOC 如何实现 Spring中Bean的作用域,默认的是哪一个 说说 Spring AOP、Spring AOP 实现原理 动态代理(CGLib 与 JDK)、优缺点、性能对比、如何选择 Spring 事务实现方式、事务的传播机制、默认的事务类别 Spring 事务底层原理 Spring事务失效(事务嵌套),JDK动态代理给Spring事务埋下的坑,可参考《JDK动态代理给Spring事务埋下的坑!》 如何自定义注解实现功能 Spring MVC 运行流程 Spring MVC 启动流程 Spring 的单例实现原理 Spring 框架中用到了哪些设计模式 Spring 其他产品(Srping Boot、Spring Cloud、Spring Secuirity、Spring Data、Spring AMQP 等) 有没有用到Spring Boot,Spring Boot的认识、原理 MyBatis的原理 可参考《为什么会有Spring》 可参考《为什么会有Spring AOP》 3.2、Netty 为什么选择 Netty 说说业务中,Netty 的使用场景 原生的 NIO 在 JDK 1.7 版本存在 epoll bug 什么是TCP 粘包/拆包 TCP粘包/拆包的解决办法 Netty 线程模型 说说 Netty 的零拷贝 Netty 内部执行流程 Netty 重连实现 3.3、Tomcat Tomcat的基础架构(Server、Service、Connector、Container) Tomcat如何加载Servlet的 Pipeline-Valve机制 可参考:《四张图带你了解Tomcat系统架构!》 四、分布式 4.1、Nginx 请解释什么是C10K问题或者知道什么是C10K问题吗? Nginx简介,可参考《Nginx简介》 正向代理和反向代理. Nginx几种常见的负载均衡策略 Nginx服务器上的Master和Worker进程分别是什么 使用“反向代理服务器”的优点是什么? 4.2、分布式其他 谈谈业务中使用分布式的场景 Session 分布式方案 Session 分布式处理 分布式锁的应用场景、分布式锁的产生原因、基本概念 分布是锁的常见解决方案 分布式事务的常见解决方案 集群与负载均衡的算法与实现 说说分库与分表设计,可参考《数据库分库分表策略的具体实现方案》 分库与分表带来的分布式困境与应对之策 4.3、Dubbo 什么是Dubbo,可参考《Dubbo入门》 什么是RPC、如何实现RPC、RPC 的实现原理,可参考《基于HTTP的RPC实现》 Dubbo中的SPI是什么概念 Dubbo的基本原理、执行流程 五、微服务 5.1、微服务 前后端分离是如何做的? 微服务哪些框架 Spring Could的常见组件有哪些?可参考《Spring Cloud概述》 领域驱动有了解吗?什么是领域驱动模型?充血模型、贫血模型 JWT有了解吗,什么是JWT,可参考《前后端分离利器之JWT》 你怎么理解 RESTful 说说如何设计一个良好的 API 如何理解 RESTful API 的幂等性 如何保证接口的幂等性 说说 CAP 定理、BASE 理论 怎么考虑数据一致性问题 说说最终一致性的实现方案 微服务的优缺点,可参考《微服务批判》 微服务与 SOA 的区别 如何拆分服务、水平分割、垂直分割 如何应对微服务的链式调用异常 如何快速追踪与定位问题 如何保证微服务的安全、认证 5.2、安全问题 如何防范常见的Web攻击、如何方式SQL注入 服务端通信安全攻防 HTTPS原理剖析、降级攻击、HTTP与HTTPS的对比 5.3、性能优化 性能指标有哪些 如何发现性能瓶颈 性能调优的常见手段 说说你在项目中如何进行性能调优 六、其他 6.1、设计能力 说说你在项目中使用过的UML图 你如何考虑组件化、服务化、系统拆分 秒杀场景如何设计 可参考:《秒杀系统的技术挑战、应对策略以及架构设计总结一二!》 6.2、业务工程 说说你的开发流程、如何进行自动化部署的 你和团队是如何沟通的 你如何进行代码评审 说说你对技术与业务的理解 说说你在项目中遇到感觉最难Bug,是如何解决的 介绍一下工作中的一个你认为最有价值的项目,以及在这个过程中的角色、解决的问题、你觉得你们项目还有哪些不足的地方 6.3、软实力 说说你的优缺点、亮点 说说你最近在看什么书、什么博客、在研究什么新技术、再看那些开源项目的源代码 说说你觉得最有意义的技术书籍 工作之余做什么事情、平时是如何学习的,怎样提升自己的能力 说说个人发展方向方面的思考 说说你认为的服务端开发工程师应该具备哪些能力 说说你认为的架构师是什么样的,架构师主要做什么 如何看待加班的问题

徐刘根 2020-03-31 11:22:08 0 浏览量 回答数 0

高校特惠专场

助力学生创业梦,0元体验,快速入门云计算!

问题

项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?【Java问答学堂】30期

剑曼红尘 2020-06-02 13:28:01 44 浏览量 回答数 1

问题

立足GitHub学编程:13个不容错过的Java项目

技术小菜鸟 2019-12-01 21:48:13 2674 浏览量 回答数 1

回答

我一直在做很多关于可用选项的阅读。我还亲自推荐了高性能MySQL第二版。 这是我设法拼凑而成的: 聚类 一般而言,集群是将负载分布在许多服务器上,这些服务器在外部应用程序中似乎是一台服务器。 MySQL NDB集群 MySQL NDB Cluster是一个具有同步复制和自动数据分割功能的分布式,无内存的,无共享的存储引擎(对不起,我从高性能书上借来的字面意思是,但它们放在那儿很好)。对于某些应用程序来说,这可能是一个高性能的解决方案,但是Web应用程序通常无法在其上很好地工作。 主要问题在于,除了非常简单的查询(仅涉及一个表)之外,群集通常还必须在多个节点上搜索数据,从而使网络延迟蔓延,并显着减慢查询的完成时间。由于该应用程序将群集视为一台计算机,因此无法告诉它从哪个节点获取数据。 此外,内存需求对于许多大型数据库而言并不可行。 连续红杉 这是MySQL的另一种群集解决方案,它充当MySQL服务器之上的中间件。它提供同步复制,负载平衡和故障转移。它还可以确保请求始终从最新副本中获取数据,并自动选择具有新数据的节点。 我读了一些不错的东西,总的来说,这听起来很有希望。 联邦 联合类似于集群,因此我也在这里进行了介绍。MySQL通过联合存储引擎提供联合。与NDB群集解决方案类似,它仅适用于简单查询-但对于复杂查询,群集甚至更糟(因为网络延迟要高得多)。 复制和负载平衡 MySQL具有在不同服务器上创建数据库复制的内置功能。这可用于许多用途-在服务器之间分配负载,热备份,创建测试服务器和故障转移。 复制的基本设置涉及一台主服务器主要处理写操作,而一个或多个从服务器仅处理读操作。master-master配置的更高级的变化是,它允许通过同时写入多个服务器来扩展写入。 每种配置都有其优缺点,但是它们共同面临的一个问题是复制滞后-由于MySQL复制是异步的,因此并非所有节点始终都具有最新数据。这要求应用程序了解复制,并结合复制感知查询才能按预期工作。对于某些应用程序来说,这可能不是问题,但是如果您始终需要最新的数据,事情就会变得有些复杂。 复制需要一些负载平衡以在节点之间分配负载。这可以像对应用程序代码进行某些修改一样简单,也可以使用专用的软件和硬件解决方案。 分片和分割 分片是扩展数据库解决方案的常用方法。您将数据拆分为较小的碎片,并将其散布在不同的服务器节点上。这需要应用程序知道对数据存储的修改才能有效地工作,因为它需要知道在哪里可以找到所需的信息。 有可用的抽象框架来帮助处理数据分片,例如Hibernate Shards,它是Hibernate ORM的扩展(不幸的是,它是Java的。我正在使用PHP)。HiveDB是另一个这样的解决方案,它也支持分片重新平衡。 其他 狮身人面像 Sphinx是全文搜索引擎,其功能远不止测试搜索。对于许多查询,它比MySQL快得多(尤其是对于分组和排序),并且可以并行查询远程系统并汇总结果-这使其在分片中非常有用。 通常,狮身人面像应与其他扩展解决方案一起使用,以获取更多可用的硬件和基础架构。不利的一面是,您再次需要应用程序代码来了解sphinx,以便明智地使用它。 摘要 伸缩解决方案因需要它的应用程序的需求而异。对于我们和大多数Web应用程序,我相信复制(可能是多主服务器)是负载平衡器分配负载的一种方式。为了能够水平扩展,还必须对特定问题区域(巨大的表)进行分片。 我还将对Continentant Sequoia进行一下测试,看看它是否能够真正实现它所承诺的目标,因为它将对应用程序代码进行的更改最少。来源:stack overflow

保持可爱mmm 2020-05-17 13:02:45 0 浏览量 回答数 0

回答

面试官心理分析 这个问题,互联网公司必问,要是一个人连缓存都不太清楚,那确实比较尴尬。 只要问到缓存,上来第一个问题,肯定是先问问你项目哪里用了缓存?为啥要用?不用行不行?如果用了以后可能会有什么不良的后果? 这就是看看你对缓存这个东西背后有没有思考,如果你就是傻乎乎的瞎用,没法给面试官一个合理的解答,那面试官对你印象肯定不太好,觉得你平时思考太少,就知道干活儿。 面试题剖析 项目中缓存是如何使用的? 这个,需要结合自己项目的业务来。 为什么要用缓存? 用缓存,主要有两个用途:高性能、高并发。 高性能 假设这么个场景,你有个操作,一个请求过来,吭哧吭哧你各种乱七八糟操作 mysql,半天查出来一个结果,耗时 600ms。但是这个结果可能接下来几个小时都不会变了,或者变了也可以不用立即反馈给用户。那么此时咋办? 缓存啊,折腾 600ms 查出来的结果,扔缓存里,一个 key 对应一个 value,下次再有人查,别走 mysql 折腾 600ms 了,直接从缓存里,通过一个 key 查出来一个 value,2ms 搞定。性能提升 300 倍。 就是说对于一些需要复杂操作耗时查出来的结果,且确定后面不怎么变化,但是有很多读请求,那么直接将查询出来的结果放在缓存中,后面直接读缓存就好。 高并发 mysql 这么重的数据库,压根儿设计不是让你玩儿高并发的,虽然也可以玩儿,但是天然支持不好。mysql 单机支撑到 2000QPS 也开始容易报警了。 所以要是你有个系统,高峰期一秒钟过来的请求有 1万,那一个 mysql 单机绝对会死掉。你这个时候就只能上缓存,把很多数据放缓存,别放 mysql。缓存功能简单,说白了就是 key-value 式操作,单机支撑的并发量轻松一秒几万十几万,支撑高并发 so easy。单机承载并发量是 mysql 单机的几十倍。 缓存是走内存的,内存天然就支撑高并发。 用了缓存之后会有什么不良后果? 常见的缓存问题有以下几个: 缓存与数据库双写不一致缓存雪崩、缓存穿透、缓存击穿缓存并发竞争 点击超链接,可直接查看缓存相关问题及解决方案。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少?

剑曼红尘 2020-04-30 13:03:26 0 浏览量 回答数 0

问题

E-MapReduce产品概述是什么?

nicenelly 2019-12-01 21:20:24 874 浏览量 回答数 0

问题

【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?

剑曼红尘 2020-04-30 13:03:14 0 浏览量 回答数 1

问题

E-MapReduce产品概述是什么?

nicenelly 2019-12-01 21:16:42 1160 浏览量 回答数 0

回答

网络性能主要有主动测试,被动式测试以及主动被动相结合测试三种方法 1.主动测量是在选定的测量点上利用测量工具有目的地主动产生测量流量注入网络,并根据测量数据流的传送情况来分析网络的性能。 主动测量在性能参数的测量中应用十分广泛,因为它可以以任何希望的数据类型在所选定的网络端点间进行端到端性能参数的测量。最为常见的主动测量工具就是“Ping”,它可以测量双向时延,IP 包丢失率以及提供其它一些信息,如主机的可达性等。主动测量可以测量端到端的IP 网络可用性、延迟和吞吐量等。因为一次主动测量只是查验了瞬时的网络质量,因此有必要重复多次,用统计的方法获得更准确的数据。 要对一个网络进行主动测量,则需要一个面向网络的测量系统,这种主动测量系统应包括以下几个部分: - 测量节点:它们分布在网络的不同端点上,进行测量数据包的发送和接收,若要进行单向性能的测量,则它们之间应进行严格的时钟同步; - 中心服务器:它与各个测量节点通信,进行整个测量的控制以及测量节点的配置工作; - 中心数据库:存储各个节点所收集的测量数据; - 分析服务器:对中心数据库中的数据进行分析,得到网络整体的或具体节点间的性能状况 在实际中,中心服务器,中心数据库和分析服务器可能位于同一台主机中。 主动测量法依赖于向网络注入测量包,利用这些包测量网络的性能,因此这种方法肯定会产生额外的流量。另一方面,测量中所使用的流量大小以及其他参数都是可调的。主动测量法能够明确地控制测量中所产生的流量的特征,如流量的大小、抽样方法、发包频率、测量包大小和类型(以仿真各种应用)等,并且实际上利用很小的流量就可以获得很有意义的测量结果。主动测量意味着测量可以按测量者的意图进行,容易进行场景的仿真,检验网络是否满足QoS 或SLA 非常简单明了。 总之,主动测量的优点在于可以主动发送测量数据,对测量过程的可控制性比较高,比较灵活机动,并易于对端到端的性能进行直观的统计;其缺点是注入测量流量本身就改变了网络的运行情况,即改变了被测对象本身,使得测量的结果与实际情况存在一定的偏差,而且注入网络的测量流量还可能会增加网络的负担。 2.被动测量是指在链路或设备(如路由器,交换机等)上对网络进行监测,而不需要产生流量的测量方法。 被动测量利用测量设备监视经过它的流量。这些设备可以是专用的,如Sniffer,也可以是嵌入在其它设备(如路由器、防火墙、交换机和主机)之中的,如RMON, SNMP 和netflow 使能设备等。控制者周期性地轮询被动监测设备并采集信息(在SNMP 方式时,从MIB 中采集),以判断网络性能和状态。被动测量主要有三种方式: - 通过SNMP 协议采集网络上的数据信息,并提交至服务器进行处理。 - 在一条指定的链路上进行数据监测,此时数据的采集和分析是两个独立的处理过程。这种方法的问题是OC48(2.5Gbit/s)以上的链路速度超过了 PCI 总线(64bit,33MHz)的能力,因此对这些高速链路的数据采集只能采用数据压缩,聚合等方式,这样会损失一定的准确性。 - 在一台主机上有选择性的进行数据的采集和分析。这种工具只是用来采集分析网络上数据包的内容特性,并不能进行性能参数的测量,如Ethereal 等工具。 被动测量非常适合用来测量和统计链路或设备上的流量,但它并不是一个真正的 QoS 参数,因为流量只是当前网络(设备)上负载情况的一个反映,通过它并不能得到网络实际的性能情况,如果要通过被动测量的方法得到终端用户所关心的时延,丢包,时延抖动等性能参数,只能采用在被测路径的两个端点上同时进行被动测量,并进行数据分析,但这种分析将是十分复杂的,并且由于网络上数据流量特征的不确定性,这种分析在一定程度上也是不够准确的。只有链路带宽这个流量参数可以通过被动测量估算出来。 被动测量法在测量时并不增加网络上的流量,测量的是网络上的实际业务流量,理论上说不会增加网络的负担。但是被动测量设备需要用轮询的方法采集数据、陷阱(trap)和告警(利用SNMP 时),所有这些都会产生网络流量,因此实际测量中产生的流量开销可能并不小。 另外,在做流分析或试图对所有包捕捉信息时,所采集的数据可能会非常大。被动测量的方法在网络排错时特别有价值,但在仿真网络故障或隔离确切的故障位置时其作用会受到限制。 总之,被动测量的优点在于理论上它不产生流量,不会增加网络的负担;其缺点在于被动测量基本上是基于对单个设备的监测,很难对网络端到端的性能进行分析,并且可能实时采集的数据量过大,且存在用户数据泄漏等安全性问题。 3.主动、被动相结合测试 主动测量与被动测量各有其有缺点,而且对于不同的参数来说,主动测量和被动测量也都有其各自的用途。对端到端的时延,丢包,时延变化等参数比较适于进行主动测量;而对于路径吞吐量等流量参数来说,被动测量则更适用。因此,对网络性能进行全面的测量需要主动测量与被动测量相结合,并对两种测量结果进行对比和分析,以获得更为全面科学的结论。 来自百度知道初夏0535

YDYK 2020-03-26 09:42:40 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 35864 浏览量 回答数 11

问题

【精品问答】Python二级考试题库

珍宝珠 2019-12-01 22:03:38 1146 浏览量 回答数 2

回答

Java Java核心技术·卷 I(原书第10版)| Core Java Volume 讲的很全面,书中的代码示例都很好,很适合Java入门。 但是作者不太厚道的是把现在没人用的GUI编程放在了第一卷,基本上10~13章是可以不用读的。 Java性能权威指南|Java Performance: The Definitive Guide 市面上介绍Java的书有很多,但专注于Java性能的并不多,能游刃有余地展示Java性能优化难点的更是凤毛麟角,本书即是其中之一。 通过使用JVM和Java平台,以及Java语言和应用程序接口,本书详尽讲解了Java性能调优的相关知识,帮助读者深入理解Java平台性能的各个方面,最终使程序如虎添翼。 实战Java高并发程序设计|葛一鸣 由部分段落的行文来看,搬了官方文档。 也有一些第一人称的叙述和思考,也能看出作者也是花了一点心思的。胜在比较基础,涉及到的知识点也还很全面(讲到了流水线计算和并发模型这些边边角角的),但是由于是编著,全书整体上不够统一和深入,适合作为学习高并发的第一本工具书。 Java 8实战 对Java8的新特性讲解的十分到位,尤其是lamdba表达式和流的操作。 再者对于Java8并发处理很有独到见解。对于并行数据处理和组合式异步编程还需要更深的思考才能更加掌握。 推荐给再用java8但没有去真正了解的人看,有很多你不知道的细节、原理和类库设计者的用心良苦在里面、内容没有很难,抽出几个小时就能看完,花费的时间和收获相比,性价比很高。 Java并发编程实战 先不谈本书的内容如何,光书名就足够吸引不少目光。“并发”这个词在Java世界里往往和“高级、核心”等字眼相联系起来,就冲着这两个字,都将勾起软件工程师们埋藏在心底那种对技术的探索欲和对高级API的驾驭感。 程序员嘛,多少都有点职业病。其实Java对“并发”优化从未停止过,从5.0到7.0,几乎每个版本的新特性里,都会针对前一版本在“并发”上有所改进。这种改进包括提供更丰富的API接口、JVM底层性能优化等诸多方面。 Thinking in Java 很美味的一本书,不仅有icecreamm,sundae,sandwich,还有burrito!真是越看越饿啊~ Effective Java中文版(第3版)|Effective Java Third Edition Java 高阶书籍,小白劝退。介绍了关于Java 编程的90个经验技巧。 作者功力非常强悍,导致这本书有时知识面迁移很广。总之,非常适合有一定Java开发经验的人阅读提升。 深入理解Java虚拟机(第3版)| 周志明 浅显易懂。最重要的是开启一扇理解虚拟机的大门。 内存管理机制与Java内存模型、高效并发这三章是特别实用的。 Java虚拟机规范(Java SE 8版)|爱飞翔、周志明 整本书就觉得第二章的方法字节码执行流程,第四章的前8节和第五章能看懂一些。其他的过于细致和琐碎了。 把Java字节码讲的很清楚了,本质上Java虚拟机就是通过字节码来构建的一套体系罢了。所以字节码说的非常细致深入。 数据&大数据 数据结构与算法分析|Data Structures and Algorithm Analysis in Java 数据结构是计算机的核心,这部书以java语言为基础,详细的介绍了基本数据结构、图、以及相关的排序、最短路径、最小生成树等问题。 但是有一些高级的数据结构并没有介绍,可以通过《数据结构与算法分析——C语言描述》来增加对这方面的了解。 MySQL必知必会 《MySQL必知必会》MySQL是世界上最受欢迎的数据库管理系统之一。 书中从介绍简单的数据检索开始,逐步深入一些复杂的内容,包括联结的使用、子查询、正则表达式和基于全文本的搜索、存储过程、游标、触发器、表约束,等等。通过重点突出的章节,条理清晰、系统而扼要地讲述了读者应该掌握的知识,使他们不经意间立刻功力大增。 数据库系统概念|Datebase System Concepts(Fifth Edition) 从大学读到现在,每次拿起都有新的收获。而且这本书还是对各个数据相关领域的概览,不仅仅是数据库本身。 高性能MySQL 对于想要了解MySQL性能提升的人来说,这是一本不可多得的书。 书中没有各种提升性能的秘籍,而是深入问题的核心,详细的解释了每种提升性能的原理,从而可以使你四两拨千斤。授之于鱼不如授之于渔,这本书做到了。 高可用MySQL 很实用的书籍,只可惜公司现有的业务和数据量还没有达到需要实践书中知识的地步。 利用Python进行数据分析|唐学韬 内容还是跟不上库的发展速度,建议结合里面讲的库的文档来看。 内容安排上我觉得还不错,作者是pandas的作者,所以对pandas的讲解和设计思路都讲得很清楚。除此以外,作者也是干过金融数据分析的,所以后面专门讲了时间序列和金融数据的分析。 HBase 看完影印版第一遍,开始以为会是大量讲API,实际上除了没有将HBase源代码,该讲的都讲了,CH8,9章留到最后看的,确实有点顿悟的感觉,接下来需要系统的看一遍Client API,然后深入代码,Come ON! Programming Hive Hive工具书,Hive高级特性。 Hadoop in Practice| Alex Holmes 感觉比action那本要强 像是cookbook类型的 整个过完以后hadoop生态圈的各种都接触到了 这本书适合当参考手册用。 Hadoop技术内幕|董西成 其实国人能写这样的书,感觉还是不错的,不过感觉很多东西不太深入,感觉在深入之前,和先有整体,带着整体做深入会更好一点, jobclient,jobtracer,tasktracer之间的关系最好能系统化 Learning Spark 很不错,core的原理部分和api用途解释得很清楚,以前看文档和代码理解不了的地方豁然开朗。 不足的地方是后几章比较弱,mllib方面没有深入讲实现原理。graphx也没有涉及 ODPS权威指南 基本上还算一本不错的入门,虽然细节方面谈的不多,底层也不够深入,但毕竟是少有的ODPS书籍,且覆盖面很全,例子也还行。 数据之巅|徐子沛 从一个新的视角(数据)切入,写美国历史,统计学的发展贯穿其中,草蛇灰线,伏脉千里,读起来波澜壮阔。 消息队列&Redis RabbitMQ实战 很多年前的书了,书中的例子现在已经不适用了,推荐官方教程。 一些基础还是适用,网上也没有太多讲rab的书籍,将就看下也行,我没用过所以…. Apache Kafka源码剖析|徐郡明 虽然还没看,但知道应该不差。我是看了作者的mybatis源码分析,再来看这本的,相信作者。 作者怎么有这么多时间,把框架研究的这么透彻,佩服,佩服。 深入理解Kafka:核心设计与实践原理|朱忠华 通俗易懂,图文并茂,用了很多图和示例讲解kafka的架构,从宏观入手,再讲到细节,比较好,值得推荐。 深入理解Kafka是市面上讲解Kafka核心原理最透彻的,全书都是挑了kafka最核心的细节在讲比如分区副本选举、分区从分配、kafka数据存储结构、时间轮、我认为是目前kafka相关书籍里最好的一本。 Kafka 认真刷了 kafka internal 那章,看了个talk,算是入了个门。 系统设计真是门艺术。 RocketMQ实战与原理解析|杨开元 对RocketMQ的脉络做了一个大概的说明吧,深入细节的东西还是需要自己看代码 Redis设计与实现|黄健宏 部分内容写得比较啰嗦,当然往好了说是对新手友好,不厌其烦地分析细节,但也让整本书变厚了,个人以为精炼语言可以减少20%的内容。 对于有心一窥redis实现原理的读者来说,本书展露了足够丰富的内容和细节,却不至于让冗长的实现代码吓跑读者——伪代码的意义在此。下一步是真正读源码了。 Redis 深度历险:核心原理与应用实践|钱文品 真心不错,数据结构原理+实际应用+单线程模型+集群(sentinel, codis, redis cluster), 分布式锁等等讲的都十分透彻。 一本书的作用不就是系统性梳理,为读者打开一扇窗,读者想了解更多,可以自己通过这扇窗去Google。这本书的一个瑕疵是最后一章吧,写的仓促了。不过瑕不掩瑜。 技术综合 TCP/IP详解 卷1:协议 读专业性书籍是一件很枯燥的事,我的建议就是把它作为一本手册,先浏览一遍,遇到问题再去详细查,高效。 Netty in Action 涉及到很多专业名词新概念看英文原版顺畅得多,第十五章 Choosing the right thread model 真是写得太好了。另外结合Ron Hitchens 写的《JAVA NIO》一起看对理解JAVA NIO和Netty还是很有帮助的 ZooKeeper 值得使用zookeeper的人员阅读, 对于zookeeper的内部机制及api进行了很详细的讲解, 后半部分深入地讲解了zookeeper中ensemble互相协作的流程, 及group等高级配置, 对zookeeper的高级应用及其它类似系统的设计都很有借鉴意义. 从Paxos到Zookeeper|倪超 分布式入门鼻祖,开始部分深入阐述cap和base理论,所有的分布式框架都是围绕这个理论的做平衡和取舍,中间 zk的原理、特性、实战也讲的非常清晰,同时讲cap理论在zk中是如何体现,更加深你对cap的理解. 深入理解Nginx(第2版)|陶辉 云里雾里的快速读了一遍,主要是读不懂,读完后的感受是设计的真好。 原本是抱着了解原理进而优化性能的想法来读的,却发现书中的内容都是讲源码,作者对源码的注释超级详细,非常适合开发者,但不适合使用者,给个五星好评是因为不想因为我这种菜鸡而埋没了高质量内容。 另外别人的代码写的真好看,即便是过程式语言程序也吊打我写的面向对象语言程序。 作者是zookeeper的活跃贡献者,而且是很资深的研究员,内容比较严谨而且较好的把握住了zk的精髓。书很薄,但是没有废话,选题是经过深思熟虑的。 深入剖析Tomcat 本书深入剖析Tomcat 4和Tomcat 5中的每个组件,并揭示其内部工作原理。通过学习本书,你将可以自行开发Tomcat组件,或者扩展已有的组件。 Tomcat是目前比较流行的Web服务器之一。作为一个开源和小型的轻量级应用服务器,Tomcat 易于使用,便于部署,但Tomcat本身是一个非常复杂的系统,包含了很多功能模块。这些功能模块构成了Tomcat的核心结构。本书从最基本的HTTP请求开始,直至使用JMX技术管理Tomcat中的应用程序,逐一剖析Tomcat的基本功能模块,并配以示例代码,使读者可以逐步实现自己的Web服务器。 深入理解计算机系统 | 布莱恩特 无论是内容还是纸张印刷,都是满分。计算机学科的集大成之作。引导你如何练内功的,算是高配版本的计算机导论,目的是釜底抽薪引出来操作系统、组成原理这些专业核心的课程。帮助我们按图索骥,点亮一个一个技能树。 架构探险分布式服务框架 | 李业兵 刚看前几章的时候,心里满脑子想得都是这特么贴一整页pom文件代码上来干鸡毛,又是骗稿费的,买亏了买亏了,后来到序列化那章开始,诶?还有那么点意思啊。 到服务注册中心和服务通讯,60块钱的书钱已经赚回来了。 知识是无价的,如果能花几十块钱帮你扫了几个盲区,那就是赚了。 深入分析JavaWeb技术内幕 | 许令波 与这本书相识大概是四年前是在老家的北方图书城里,当时看到目录的感觉是真的惊艳,对当时刚入行的自己来说,这简直就是为我量身定做的扫盲科普集啊。 但是可惜的是,这本书在后来却一直没机会读上。然后经过四年的打怪升级之后,这次的阅读体验依旧很好。 其中,java编译原理、 Servlet工作原理、 Tomcat、spring和iBatis这几章的收获很大。 前端 jQuery 技术内幕| 高云 非常棒的一本书,大大降低了阅读jquery源码的难度(虽然还是非常难)。 Head First HTML与CSS(第2版) 翻了非常久的时间 断断续续 其实从头翻到尾 才发现一点都不难。 可我被自己的懒惰和畏难情绪给拖累了 简单说 我成了自己往前探索的负担。网页基础的语法基本都涵盖了 限于文本形态 知识点都没法像做题一样被反复地运用和复习到。通俗易懂 这不知算是多高的评价? 作为入门真心算不错了 如果更有耐心 在翻完 HTML 后 对 CSS 部分最好是可以迅速过一遍 找案例练习估计更好 纸上得来终觉浅 总是这样。 JavaScript高级程序设计(第3版) JavaScript最基础的书籍,要看认真,慢慢地看,累计接近1000小时吧。而且对象与继承,性能优化,HTML5 api由于没有实践或缺乏代码阅读量导致看的很糊涂,不过以后可以遇到时再翻翻,或者看更专业的书。 深入理解ES6 Zakas的又一部杰作,他的作品最优秀的地方在于只是阐述,很少评价,这在帮助我们夯实基础时十分有意义,我也喜欢这种风格。 我是中英文参照阅读的,译本后半部分有一些文字上的纰漏,但是总体来说忠实原文,水平还是相当不错,希望再版时可以修复这些文字问题。 高性能JavaScript 还是挺不错的。尤其是对初学者。总结了好多程序方面的好习惯。 不过对于老手来说,这些常识已经深入骨髓了。 深入浅出Node.js|朴灵 本书是我看到现在对Node.JS技术原理和应用实践阐述的最深入,也最全面的一本书。鉴于作者也是淘宝的一位工程师,在技术总是国外好的大环境下,没有理由不给本书五颗星。 作者秉着授人于鱼不如授人于渔的精神,细致入微的从V8虚拟机,内存管理,字符串与Buffer的应用,异步编程的思路和原理这些基础的角度来解释Node.JS是如何工作的,比起市面上众多教你如何安装node,用几个包编写一些示例来比,本书绝对让人受益匪浅。 认真看完本书,几乎可以让你从一个Node的外行进阶到专家的水平。赞! 总结 其实我觉得在我们现在这个浮躁的社会,大家闲暇时间都是刷抖音,逛淘宝,微博……他们都在一点点吞噬你的碎片时间,如果你尝试着去用碎片的时间看看书,我想时间久了你自然能体会这样的好处。 美团技术团队甚至会奖励读完一些书本的人,很多公司都有自己的小图书馆,我觉得挺好的。 文章来自:敖丙

剑曼红尘 2020-03-20 14:52:22 0 浏览量 回答数 0

回答

“求知若饥,虚心若愚”——这个原本出自《全球概览》的俳句,因为乔布斯在斯坦福大学毕业演讲中的引用而备受推崇,流传成为 IT 界的至理名言之一。在编程界,亦有“代码胜于雄辩”、“Done is better than perfect”等警句,寥寥数语将编程工作者的形象特质描摹到了极致。程序员,就是技术至上、唯代码是瞻且必须不断武装自己的群体。 21 世纪,高薪、高端、高技术范儿已成为程序员的固有标签,在这个新的元年,CSDN 将基于一年一度的开发者大调查数据,以全新的视角深入发掘中国开发者群体的整体现状、应用开发技术以及开发工具/平台的发展趋势,呈现更真实、更全面且更有学习价值的开发者画像。 30 岁以下开发者人数占比超八成,全国有 19.6% 开发者月薪超过 1.7 万元; 六成开发者在使用 Java 语言,近五成开发者近期最想学 Python 语言; Spark、Redis 和 Kafka 正在成为企业大数据平台通用技术组件; 区块链技术近两年是热点,比特币和以太坊是两种主流的区块链开发平台; 人工智能技术日益受到企业和市场的关注,但 64% 企业尚未实现智能化,机器学习/深度学习算法工程师最为急缺; 近七成开发者认为未来 5G 网络的传输速率能达到 4G 网络的 10 倍以上; Apache 项目和 Linux 是开发者较为喜欢的开源项目; 半数开发者很少参与开源项目的开发、维护、运营和社区发展等。 软件开发准入门槛持续降低,近 2 成开发者月薪超过 1.7 万 30 岁以下开发者人数占比超八成,软件开发从业门槛持续降低 从 2015 年到 2019 年的调研数据来看:30 岁及以下的开发者人群占比在 8 成以上,一直是软件开发领域的主力军;全国近半数的开发者工作在一线城市(北京、上海、广州、深圳、天津);物联网、软件、IT 制造三个技术领域涵盖了国内 84% 以上的开发者;本科及以上学历占 8 成;92% 的开发者是男性。 和国外开发者年龄分布趋势大概一致,国内的软件开发群体一直呈现出越来越年轻化的特点。这是因为,一方面软件开发行业蓬勃发展,各行各业都需要软件开发相关人才,也有越来越多的毕业生选择从事该行业;另一方面,是因为编程语言、框架、云服务等基础设施的持续完善,从事软件开发的门槛在持续降低,更容易接纳新鲜血液,报告统计发现,本科学历是开发者的主力军,66% 的开发者拥有本科学历,而硕士研究生、博士研究生仅占 11%、1%。 八成以上开发者月薪在 5 千~3 万元之间,19.6% 开发者月薪超过 1.7 万元 通过结合受教育程度和薪资水平的数据特点来看,学历越高的人群中,月薪 1.7 万元以上的高收入比例越高。在一线城市(北京、上海、广州、深圳、天津)中,月薪超过 1.7 万元的开发者占比为 30%,该比例远高于国内其它城市。 开发者属于相对高薪的职业,尤其是在一线城市中,但不同开发者之间收入差距较大。软件开发是一个智力密集型的工作,不同开发者能够提供的价值差别很大,这就使得一个优秀开发者的收入远高于普通开发者:硕士和博士毕业的高收入者比率要远高于本科及以下的;金融和互联网行业的高收入比率最高。 自学是开发者持续学习的主要路径 软件开发行业日新月异,只有保持持续学习才能跟上技术变化的脚步,终身学习是现代人保持竞争力甚至是维持生存的必要手段。 从调研中可以看到,53% 的开发者会通过在未参加正式课程的情况下,自学一门新语言、框架或工具。但同时,也有半数的人参加过在职培训或者线下课程,相对于自学的灵活性而言,这类培训会更为系统和完整,对于长期的个人提升有所裨益,开发者可以适当选择。但与之相悖的是,只有不到 40% 的开发者,愿意为学习付费,这可能会导致参与的课程质量不够高。 Java 雄踞语言榜,Visual Studio 受开发者欢迎 Java 长盛:使用最多,开发者最想学 从编程语言来看,Java 是最多人使用的语言,而 JavaScript 和 SQL 分别是第二第三位。这三门语言,使用场景都很广泛,Java 一方面后端开发最常使用,生态成熟度无人可比;另一方面,Java 依然是 Android 上最重要的开发语言,与之相比 ,新兴的 Kotlin 只有 2% 的开发者在使用。而 JavaScript 不仅是前端开发的必备语言,还用在 Web 开发、小程序开发等场景下。 Java 和 Python 依然是开发者最希望学习的语言之一,只是相比之下,Python 的热度有所降低,这可能和机器学习没有去年那么火热有所关联。变化比较大的是 Go 语言,与去年相比,今年的调研中想学 Go 语言的开发者降低到了 4%,与之相似,Kotlin、R 的学习意愿也大幅降低。 从这个趋势也可以看到,如今的开发者更意愿去学习一些相对成熟度、用途更为广泛的语言,对一些代表新模式的语言乐衷程度有所降低。 七成以上在使用 Windows 操作系统,83% 在使用 MySQL 数据库 72% 开发者在使用 Windows 操作系统,18% 在使用 Linux 系列操作系统。在存储服务的使用上,MySQL 继续扩大其使用率到达了 83%,几乎是开发者必备的技能。和去年相比,Elasticsearch 出现在数据库使用的调研中,在大数据时代,Elasticsearch 作为提供搜索服务的第一选型,也必然会被越来越多的开发者学习和使用 Node.js 是相对使用普遍的技术框架 在 Web 开发上,前端使用 Vue.js 后端使用 Spring 是最常见的选型方案,与之相对应,Node.js 是最多被用到的框架,这和当今多端开发的趋势密不可分。后端用微服务架构,中间用 Node.js 粘合出适合 Web、Android、iOS 等不同端和场景使用的 APIs,是当下主流的部署方案之一,既可以前后端分离提高开发效率,又可以在保障服务稳定性的同时提升灵活性。而TensorFlow 成为开发者最期望学习的框架,这说明开发者依然对机器学习保持关注和热情。 Visual Studio 是最为普遍使用的开发环境 在开发环境的选择上,Visual Studio 是最为普遍使用的开发环境,这和微软对开发者的投入密不可分。微软投入了大量的研发力量,使得 Visual Studio 可以在各种操作系统进行各种编程语言的开发,其强大且完善的插件系统可以满足开发者的各种需求,使其可以超过 IntelliJ。 大数据平台以私有云部署为主,Spark 使用率高达 44% 私有云部署解决方案是企业构建大数据平台的主要方式 随着分布式计算和云平台的逐步成熟,目前大部分公司都有能力搭建自己的大数据平台。调研数据显示,81% 企业在进行大数据相关的开发和应用,50% 的企业选择私有云解决方案来部署大数据应用,28% 的企业选择自主研发。 仅 19% 企业使用商业发行版 Hadoop 版本搭建数据平台 调查报告发现,有 30% 以上的企业并没有使用相对成熟的 Hadoop 技术搭建数据平台,这些企业的算法性能会很大程度上受限于低效的平台,更不可能开发出更高效的数据分析算法。但幸运的是大部分企业都基于商业版或者社区版 Hadoop 搭建了数据平台,这些公司的侧重点主要在应用发现和算法的设计层面,更有可能在不久的将来实现大数据的价值。 Spark 是企业大数据平台最普遍的组件 Apache Spark 是一个处理大规模数据的快速通用引擎,它可以独立运行,也可以在 Hadoop、Mesos、云端运行,它可以访问各种数据源包括 HDFS、Cassandra、HBase 和 S3,可以提升 Hadoop 集群中的应用在内存和磁盘上的运行速度。Spark 生态系统中除了核心 API 之外,还包括其他附加库,可以为大数据分析和机器学习领域提供更多的能力。本次调研中,Spark 是使用最普遍的大数据平台组件,使用率达到44%,而MapReduce使用率仅为21%。 分布式文件系统 HDFS 作为核心组件之一,使用率也达到了 39%。企业对大数据平台应用最多的场景是统计分析、报表生成及数据可视化,38% 企业使用ELK(ElasticSearch + Logstash + Kibana)实时日志分析平台。 综上所述,目前大数据的发展热潮令人欢欣鼓舞。一个优秀的大数据团队,需要有对产品开发具有高敏感性同时对技术有一定理解的人才,同时需要理论基础极其扎实,能对实际问题进行抽象建模和算法设计的人才。只有双管齐下,在产品和技术方面进行深层次探索,才能真正实现大数据产业的繁荣。 区块链质变,比特币逆袭以太坊成 TOP 1 开发平台 22% 的开发者正在用或者准备用区块链技术解决技术问题 区块链技术的发展,是一个量变到质变的过程。相比于 2018 年,对区块链和加密货币了解的人从 22% 增长到 32%,准备尝试用区块链技术解决一些问题的人数从 14% 增长到 16%,仅有 4% 的人对区块链完全不了解。 43% 的受访者在从事公有链(比特币、以太坊等)的开发 本次调研中,43% 的受访者在从事公有链(比特币、以太坊等)的开发。目前行业侧重发展的方向为解决方案、公链及联盟链,公有链由于其自带激励机制,对于普通开发者有直接的回馈,所以上面开发者占比高也比较合情理。行业解决方案从去年的 27% 增加到今年的 36%,说明传统行业开发者对区块链的认可度在增加。 区块链本质上是技术,落地场景及实际应用才是连接社会效益的关键。 比特币和以太坊是当前两种主流的区块链开发平台 在行业开发者的印象中,以太坊一直是开发平台领域的头号玩家。但今年数据显示,以太坊从 2018 年的 44% 占比第一,降到 24%;比特币从 2018 年的 28%,上升到 35%,占比第一。比特币在行业内外仍然拥有最强共识,在闪电网络的加持下,大家也似乎感受到比特币离商用也不再遥远了。 金融是普遍认为的行业应用方向 金融行业是普遍认为的行业应用方向,占 36%。区块链本身具备的防篡改、可追溯的特点,能大大降低金融行业监管成本,不过金融的进入门槛相对也较高,需要各方面技术的配合。其次,智能硬件和物联网也被认为是主流应用方向,占 14%。不过相比其他众多已经很成熟的技术,依托区块链的解决方案在实际使用中,往往面临必要性缺失的问题,因此区块链应用发展仍任重道远。 在区块链结合行业之前,更加要重视与其他新技术的结合和协同:物联网设备能够提供大量数据,5G 能够提供高速传输,存储可以解决区块存放的问题等。 算法工程师最急缺,TensorFlow 占据 AI 深度学习框架榜首 64% 的企业尚未实现智能化 在经历了 2019 年的行业低谷期之后,无论是行业巨头还是新兴独角兽,都开始审视 AI 能够切实落地的场景。调研数据显示,14% 的企业尚无信息化基础,27% 的企业实现了事务处理数字化,22% 的企业具备商业智能基础设施,实现描述性分析。使用机器学习实现预测性分析和决策优化的企业占 16%,而在业务中全面使用 机器学习/深度学习算法工程师最急缺 在岗位分布上,由于深度学习是以大数据为基础的,而感知智能中的计算机视觉又是目前深度学习较为成熟的应用,所以,机器学习和深度学习工程师,以及数据工程师、计算机视觉工程师排行在前三位。当前最急缺的岗位也是机器学习/深度学习算法工程师、数据科学家/数据分析师/数据挖掘工程师岗位。 53% 的开发者表示其团队急缺机器学习/深度学习算法工程师,37% 表示急缺数据科学家/数据分析师/数据挖掘工程师。 TensorFlow是人工智能领域主流深度学习框架 此次调研中,TensorFlow 使用普及率达到 48%。从技术本身的角度来看,较为成熟的 TensorFlow 成为 AI 工程师的首选深度学习框架,Torch/PyTorch由于其开发效率较高,也得到了较多支持。 35% 开发者选用国产 AI 芯片应用于自己的 AI 开发 在 AI 芯片领域,国内厂商也开始弯道超车,越来越多的开发者也开始关注国内 AI 芯片的进展。调查数据显示,选用国产 AI 芯片应用于自己的 AI 开发时最看重的因素方面,对主流 AI 框架的支持能力是最普遍的因素,占 35%。 物联网云平台三足鼎立:阿里物联、华为云、百度 IoT 69% 的开发者认为未来 5G 网络的传输速率能达到 4G 的 10 倍以上 每一代新型的通信系统总是能带来更大的带宽。据报告显示,近七成开发者认为未来 5G 网络的传输速率能够达到 4G 网络的 10 倍以上。 影响 5G 普及的三大因素:5G 套餐价格未定、运营商的开发程度、需要更换手机 由于目前 5G 网络使用者较少,费用较低廉的套餐还没有推出,第一代 5G 终端不太成熟等原因,目前 87% 的开发者认为 5G 套餐费用过高,并且大部分开发者认为 5G 网络目前覆盖范围有限,因此将近 40% 的开发者正处于观望阶段。 值得一提的是,本次调查中 62% 的开发者认为,5G 时代应该加强对个人隐私的保护,这反映出目前社会对数据隐私越来越重视的整体趋势。 阿里物联和华为云是应用相对普遍的 IoT 云平台 根据调查,2019 年物联网云平台呈现三足鼎立的趋势:阿里物联、华为云、百度 IoT 成为用户最多的三种物联网平台,并且和第四名中移物联远远拉开了差距,这和我们的实际使用体验一致。 未来的基础物联网平台可能会继续呈现以偏硬件实现为主的华为云和以偏软件体验为主的阿里、百度物联平台的三足鼎立局面。 物联网技术开发:Linux 和 Windows 是使用较多的操作系统 Linux 和 Windows 是较普遍的操作系统,使用率分别为 51%、44%。目前在物联网设备开发过程中,Linux、Windows 和 Android 较为普遍,依然延续了 PC 平台的开发者操作系统份额。虽然华为、阿里等公司在 2019 年均发布了自己的物联网专用操作系统,但还并未得到开发者的大规模认可,大公司的物联网操作系统发展之路依然任重而道远。 Wi-Fi 是应用最普遍的物联网通信技术 在本次调研中,近距离通信(比如 Wi-Fi 和蓝牙)是现存物联网开发者最主要的通信方式。然而这种比重可能会随着未来 3~4 年内车联网的大规模商业化产生变化,汽车、工业物联、智能电网这类高移动性、高可靠和低延迟物联网场景会更适合需要整体规划的运营商网络。 六成开源开发者无收入,Apache 项目最受喜欢 77% 开发者每周在开源上投入时间不超过 5 小时 无论是大数据、区块链、人工智能还是物联网领域,其中最为重要的、最受欢迎的技术都是开源的。但是报告统计发现,有超过一半的开发者很少参与开源项目,每周在开源上投入不超过 5 小时的占 77%,其中,1 小时以内的占 31%。此外,65% 的开发者不曾在开源上获得收入,获得不错收入的仅占一成。 开发者最喜欢的开源项目是 Apache 25% 开发者最喜欢 Apache,24% 开发者最喜欢 Linux。作为全球最大的软件基金会,开发者用过的诸多项目,例如 Dubbo、Log4j、Maven、RocketMQ 和 Tomcat 等,均孵化自 Apache。 国内开源的现状虽然近年来已经有了很大的发展,但是一个残酷的事实是,老兵正在离开这个行业,离开一线开发的队伍:报告数据显示,30 岁以下的开发者人数超过 82%,接触开源的时间在 5 年以内的开发者超过 83%。随着那些经验丰富的老兵转行或是进入管理层,不再写代码、也不再参与开源的事实也就凸显出来.....未来开源的建设,依然任重而道远。 在数据中寻找共性,《2019 - 2020 中国开发者调查报告》全面且真实地展现中国开发者及技术现状,希望对您的学习或工作有所帮助。 ———————————————— 版权声明:本文为CSDN博主「CSDN资讯」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/csdnnews/article/details/104538091

问问小秘 2020-03-11 16:46:19 0 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

云效使用指南:持续交付:(待迁移)团队开发模式介绍

行者武松 2019-12-01 22:00:31 1200 浏览量 回答数 0

回答

最近,我问了我一个朋友他对"智能合约"的看法。他是一名开发者,我想他可能会有一些有趣的见解。令我惊讶的是,他并不知道智能合约是什么。我感到特别惊讶,因为我们讨论了一年多的加密货币、美国证券交易委员会(SEC)以及许多与区块链相关的其他事情。在计算机领域深耕的人怎么可能会不知道智能合约是什么? 事实上,相比区块链行业的其它概念,智能合约可能会更令加密货币爱好者们感到困惑。因此,要解释这个概念并不容易,尤其是向那些刚刚理解区块链是什么的人解释更不容易。因此,这一概念依旧十分神秘。希望这篇文章可以清楚地解释好这一概念。 什么是智能合约? 想象一下,如果你需要卖掉一栋房子,那么这将是一个复杂而艰巨的过程,不但需要处理大量的文书工作、与不同公司和人员进行沟通,而且还得冒着各类高风险。这就是为什么绝大多数房屋卖家决定寻找房地产经纪,来帮助处理所有文书工作、推销房产,并在协商开始时充当中介、监督交易直至交易结束。 此外,该经纪机构还提供委托付款服务,这在此类交易中尤其有用,因为此类交易所涉及的金额通常很大,你将无法完全信任将要与你进行交易的人。然而,在交易成功完成之后,卖方和买方的经纪机构将获得房产卖出价格的7%作为佣金。这对卖方来说是相当大的经济损失。 在这种情况下,智能合约就可以真正派上用场,可以有效地变革整个行业,同时也减少了所需流程。或许最重要的是,智能合约能解决信任问题。智能合约基于"If-Then"("如果-那么")原则,这意味着只有商定的金额被发送到系统时,房屋的所有权才会被转移给买方。 智能合约也可以作为委托付款服务,这意味着资金和所有权都将被存储在系统中,并在同一时间被分发给各参与方。此外,该交易被数百人见证和验证,因此保证了交付是无差错的。由于双方之间不再存在信任问题,因此也不再需要中介。所有房地产经纪能做的都可以预先编程为智能合约,这同时也为卖方和买方节省了大量资金。 这只是智能合约潜在用途的一个例子。智能合约能够帮助货币、财产和其他任何有价值的东西的交易,确保交易过程完全透明,其不但无需中介服务及其附带费用,还消除了双方之间的信任问题。特定智能合约的代码包括了各方商定的所有条款和条件,有关交易本身的信息则被记录在区块链中,即去中心化的分布式公共账本。 智能合约是如何运作的? 简而言之,智能合约很像自动售货机。你只需将所需数量的加密货币放入智能合约中,而你所交易的,房屋所有权等就会自动存入你的账户。所有的规则和处罚不仅在智能合约预先定义了,而且也由智能合约强制执行。 相互依存 智能合约可以独立运行,但也可以与任何其他智能合约一起运行。当它们彼此依赖时,它们可以以某种方式被设置。例如,成功完成一个特定的智能合约可以触发另一个智能合约的启动,依此类推。从理论上讲,整个系统和组织完全可以依靠智能合约运行。某种程度上,这已经在各种加密货币系统中实现了,在这些系统中,所有的规则都是预先定义好的,因此,网络本身可以独立自主地运行。 智能合约的对象 从本质上讲,每个智能合约都有三个不可或缺的部分(也称为对象)。第一个对象是签署方(两方或多方使用智能合约,同意或不同意使用数字签名的协议条款)。 第二个对象是合约的主题。它只能是智能合约环境中存在的对象。或者,智能合约必须可以不受阻碍地直接访问该对象。尽管智能合约早在1996年就被讨论过,但正是这一特定对象阻碍了智能合约的发展。这个问题直到2009年出现第一个加密货币后才得到部分解决。 最后,任何智能合约都必须包含特定条款。这些条款都需要使用数学方法及适用于特定智能合约环境的编程语言进行完整描述。这些条款包括了所有参与方的预期要求以及与所述条款相关的所有规则、奖励与惩罚。 环境 为了使智能合约能够正常运行,智能合约必须在特定的合适环境中运行。首先,智能合约环境需要支持公钥加密,这使得用户能够使用其独特的、专门生成的加密代码来签署交易。这正是绝大多数现有加密货币所用的系统。 其次,它们需要一个开源和去中心化的数据库,合同各方都可以彼此完全信任,并且履约流程完全自动化。此外,为了实现智能合约,整个环境必须自身是去中心化的。区块链,尤其是以太坊区块链,是运行智能合约的理想环境。 最后,智能合约所使用的数据,来源必须完全可靠。这就需要使用根SSL安全证书、HTTPS和其他已经广泛被使用并在大多数现代软件上自动实现的安全连接协议。 智能合约带来了什么? 自治 智能合约消除了对第三方中介的需求,基本上使你能够完全控制合约。 信任 任何人都无法窃取或弄丢你的文件,因为它们已被加密并安全地存储在一个安全的公开账本中。此外,你不必信任你正与之交易的人,也不必指望他们会信任你,因为公正的智能合约系统基本上解决了信任问题。 节约 由于使用了智能合约,你就不需要公证人、房地产经纪人、顾问及其他众多中介机构的援助。这样也就与他们的服务相关的高额费用无关了。 安全 如果智能合约正确执行,它将是极难破解的。此外,智能合约的完美环境受到复杂的加密保护,它可确保你文档的安全。 高效 通过使用智能合约,你将节省通常浪费在手动处理大量纸质文档并将其发送或运送到特定地点等的大量时间。 谁发明了智能合约?谁在使用智能合约? 1996年,计算机科学家和密码学家Nick Szabo首次提出了智能合约。几年后,Szabo重新定义了这一概念并发布了几篇相关文章,他阐述了通过在互联网上陌生人之间设计的电子商务协议来建立合同法相关商业实践的概念。 然而,智能合约的概念直到2009年才被实现,当时第一个加密货币比特币连同它的区块链一齐出现,后者则最终为智能合约提供了合适的环境。有趣的是,Nick Szabo在1998年设计了一种称为比特黄金(Bit Gold)的去中心化数字货币。虽然它没有被实现,但它已经具备了10年后比特币可吹嘘的许多功能。 如今,智能合约主要与加密货币有关。而且,可以公平地说,它们彼此互相依赖,因为去中心化的加密货币协议本质上是具有去中心化安全性的加密智能合约。智能合约现在被广泛应用于大多数加密货币网络中,并且其也是以太坊最杰出和最被大肆宣传的特点之一。 你知道什么是智能合约吗?币圈聚贤庄来跟你分析一下! 智能合约用例 虽然世界各国政府、金融监管机构和银行对加密货币的立场从极其谨慎变成谨慎接受,但加密货币背后的技术,区块链和智能合约,已被广泛认为是具有革命性的,并且正在各个层面实现这些技术。 例如,美国信托与清算公司(DTCC)和四大银行(美银美林、花旗、瑞士信贷和摩根大通)成功地使用Axoni开发的智能合约交易区块链信用违约掉期。智能合约使用了诸如个人交易详情及相应风险指标之类的信息,据一篇新闻稿称,这提高了合作伙伴和监管机构信息处理上的透明度。 类似的事情到处都在发生。由61家日本银行和韩国银行组成的财团一直在测试Ripple的区块链和智能合约,以实现两国之间的跨境资金转移。这一新系统将于今年推出。就连俄罗斯政府控制的俄罗斯联邦储蓄银行(Sberbank),都在俄罗斯这样一个众所周知的反加密货币国家测试以太坊区块链及其智能合约。 测试结果是俄罗斯联邦储蓄银行加入了以太坊企业联盟(EEA),这是一个由100多家企业组成的联盟,其中包括了思科、英国石油、荷兰国际集团(ING)、微软等顶级企业。该联盟旨在开发一种面向商业用途的区块链,用它可以开发和实现这些公司所需的智能合约。 由于智能合约是与加密货币相关联的,因此它们仍主要被应用到金融领域和银行业。尽管如此,世界各国政府都可以使用这项技术,使得投票系统更加便利而透明。供应链可以使用它来监控货物并自动执行所涉及的所有任务和支付。房地产、医疗保健、税收、保险及其他众多行业都可以受益于智能合约的使用。 智能合约的缺点 智能合约仍是一项未成熟的技术,仍然容易出现问题。例如,构成合约的代码必须是完美无漏洞的。它也会出现错误,有时候,这些错误会被欺诈者所利用。就像DAO被黑事件一样,把资金存放在代码有漏洞的智能合约中资金就可能被盗走。 此外,这项新奇的技术也带来了很多问题。政府将如何决定监管此类合约?他们将如何进行征税?如果合约无法访问其主题,或者发生了任何意外情况,将会是什么情况?这是在传统合约签订时可能发生的,传统合同可以在法庭上被撤销,但区块链要求智能合约无论如何都要按照"代码即法律"的规则去执行。 然而,大多数这些问题的存在纯粹是因为智能合约仍未是一项成熟的技术。但这项技术肯定会随着时间的推移而逐渐完善。毫无疑问,智能合约将会成为我们社会不可或缺的一部分。

问问小秘 2019-12-02 03:07:11 0 浏览量 回答数 0

问题

全栈测试:平衡单元测试和端到端测试

技术小菜鸟 2019-12-01 21:30:35 3268 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播