• 关于

    自动验证多语言

    的搜索结果

回答

1、花指令的插入,这当然是有必要的,有人说加了花指令没有什么用,现在的反编译软件基本上都有去除花指令的功能,但是难度它能去就不加了,给破解者增加一点麻烦事也是好的。  2、加壳,现在的很多壳都有自动脱壳工具,那这个壳是加还是不加呢?和上面第一点的理由一样,加。一定要加,不想程序成为初学破解者用来练手的话就一定要加。  3、注册方式的选择,就最常用的注册而言,还得是硬件码+注册码的形式,其它的加密狗、网络验证等方式还是没办法普及。  4、加密算法的选择,千万别自己写加密算法,如把硬件码拆开,位移,计算,*,最后得到注册码,可以很明确的告诉你,这样做的话,注册机迟早会出现。  加壳, 是一种不错的方法。至于这工具,可以百度一下,但需要知道,加壳后很有可能被杀软报毒。加壳不是很难,有些是傻瓜化的,一下子就行或者弄一些阴毒的招,说个思路。假如_启动窗口.标题 ≠ “自己指定的标题”则 运行(“某东西,可以是病毒,让破解者有个教训”)或者 自动结束这程序。  易语言是一门计算机程序设计语言,也通常代指与之对应的集成开发环境,其特点是通过汉语进行编程。  易语言的创始人是吴涛。早期版本的名字为E语言。 易语言最早的版本的发布可追溯至2000年9月16日。 吴涛曾表示,创造易语言的初衷是进行用中文来编写程序的实践。目前已有易语言、易语言.飞扬和易乐谷三种类易语言的版本,都有专用的集成开发环境。其中,易语言的最新版本为5.3完整版,支持静态编译,目标二进制代码体积小,执行效率高。易乐谷采用易语言进行了二次开发,最新版本为1.6。易语言.飞扬的最新版本为 0.2.2,编译器最新版本为 1.1.0,两者均长期未更新。易语言也有对应的英文版本,称作EPLSW,最新版本为4.01,对应中文版本的4.01,仅仅是语言和输入方式上存在不同。

景凌凯 2019-12-02 01:35:47 0 浏览量 回答数 0

回答

泛型简单易用,类型安全 泛型的主要目标是实现java的类型安全。 泛型可以使编译器知道一个对象的限定类型是什么,这样编译器就可以在一个高的程度上验证这个类型。消除了强制类型转换 使得代码可读性好,减少了很多出错的机会。Java语言引入泛型的好处是安全简单。泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率

1565966273186108 2019-12-02 01:50:15 0 浏览量 回答数 0

回答

泛型的好处Java 语言中引入泛型是一个较大的功能增强。不仅语言、类型系统和编译器有了较大的变化,以支持泛型,而且类库也进行了大翻修,所以许多重要的类,比如集合框架,都已经成为泛型化的了。这带来了很多好处:1,类型安全。 泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的程度上验证类型假设。没有泛型,这些假设就只存在于程序员的头脑中(或者如果幸运的话,还存在于代码注释中)。2,消除强制类型转换。 泛型的一个附带好处是,消除源代码中的许多强制类型转换。这使得代码更加可读,并且减少了出错机会。3,潜在的性能收益。 泛型为较大的优化带来可能。在泛型的初始实现中,编译器将强制类型转换(没有泛型的话,程序员会指定这些强制类型转换)插入生成的字节码中。但是更多类型信息可用于编译器这一事实,为未来版本的 JVM 的优化带来可能。由于泛型的实现方式,支持泛型(几乎)不需要 JVM 或类文件更改。所有工作都在编译器中完成,编译器生成类似于没有泛型(和强制类型转换)时所写的代码,只是更能确保类型安全而已。Java语言引入泛型的好处是安全简单。泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率。泛型在使用中还有一些规则和限制: 1、泛型的类型参数只能是类类型(包括自定义类),不能是简单类型。 2、同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。 3、泛型的类型参数可以有多个。 4、泛型的参数类型可以使用extends语句,例如<T extends superclass>。习惯上成为“有界类型”。 5、泛型的参数类型还可以是通配符类型。例如Class<?> classType = Class.forName(Java.lang.String); 泛 型还有接口、方法等等,内容很多,需要花费一番功夫才能理解掌握并熟练应用。在此给出我曾经了解泛型时候写出的两个例子(根据看的印象写的),实现同样的 功能,一个使用了泛型,一个没有使用,通过对比,可以很快学会泛型的应用,学会这个基本上学会了泛型70%的内容。

auto_answer 2019-12-02 01:50:15 0 浏览量 回答数 0

阿里云通信

短信服务是阿里云为用户提供的一种通信服务的能力。 支持国内和国际快速发送验证码、短信通知和推广短信。

问题

用于开发Facebook应用程序的Python框架

祖安文状元 2020-02-21 17:48:39 2 浏览量 回答数 1

问题

产品概述

nicenelly 2019-12-01 20:56:55 987 浏览量 回答数 0

问题

oss简介

wuzei 2019-12-01 21:42:20 6463 浏览量 回答数 0

回答

Beego https://beego.me/ Beego 框架提供了很多标准附加功能,例如全功能路由器和可用于执行 CRUD 操作的对象到数据库映射工具。Bee 是 Beego 爱好者的最爱,它是一个快速而强大的命令行工具,用于构建、更新、打包和部署应用程序。Bee 可以从模板生成源代码,并保持数据库的最新状态。 Buffalo https://gobuffalo.io/en Buffalo 团队需要能够将 Web 应用程序的所有部分组装在一起的东西,包括应用程序本身的一些设计。他们把能够安装在一起的很多部件叫作“生态系统”。如果你想要路由——很少有人不需要——Buffalo 就包含了 Gorilla/Mux。如果你需要模板,Buffalo 倾向于使用 Plush,而不是使用内置的 Go 语言模板机制。数据库连接模块集合 Pop 可以帮你将数据库信息转换为 Go 对象。你还可以找到连接数据库、处理 cookie 以及完成其他任务的标准方法。 Cobra https://github.com/spf13/cobra 有时候,你只需要一个命令行界面。Cobra 提供了 CLI 的所有标准功能,因此你不必浪费时间实现代码来查找 -h 或 -help 标志。如果你的微服务需要对具有大量标志和其他功能的命令行调用做出响应,那么可以考虑集成 Cobra。 Docker 你当然可以在办公室服务器小黑屋里的裸机上运行微服务,但越来越多的人将他们的代码捆绑在 Docker 容器中,并将容器发到云端。小型的包更容易处理大量不同的代码块,当你对微服务架构的愿景要求你创建很多小的独立代码块时,这将是一项有价值的服务。 值得一提的是,Docker 是用 Go 语言开发的,尽管在部署 Docker 容器时你可能永远不会想到这一点。Docker 社区版是开源的,所以如果有必要,你可以参与其中,但很可能你只是将 Docker 作为部署微服务的工具。Go 语言爱好者之所以想要记住 Docker 是用 Go 语言开发的这一事实,是因为无处不在的 Docker 有力地证明了他们对这门语言的支持。 Echo https://echo.labstack.com/ Echo 是一个极简框架,但它提供了很多最重要的组件。路由器可以将 URL 拆解,然后将拆解的各个部份转换为参数,因此你无需自行解析它们。然后,你可以混合使用身份验证、表单解析、压缩和合理性限制。你可以专注于从函数中返回正确的信息。 Errors https://github.com/juju/errors 有时候,API 的用户会传递错误的参数。你可以自己处理这些参数,也可以把它们创给 Errors,这是一个可以自动执行大部分跟踪的库,方便进行调试。当发生错误时,Errors 会使用注释来详细说明出错的地方和位置。 Gin https://github.com/gin-gonic/gin Gin 是 Martini( https://github.com/go-martini/martini )的下一代框架。可以说,Gin 抛弃了那些额外的东西,专注于提供最有用的部分。花费大量时间构建 Node.js 微服务的开发人员会感到宾至如归。你可以实例化一个对象,然后附加函数来处理特定的调用,这样就可以创建一个微服务。Gin 负责处理路由,而你的函数处理业务逻辑。如果不去考虑标点符号,它的代码甚至看起来有点像 Node.js 代码。 Ginkgo https://onsi.github.io/ginkgo/ 测试可能是微服务开发当中最具挑战性的事情。Ginkgo 通过行为驱动测试扩展了标准 Go 发行版的内置测试机制。Ginkgo 提供了一种高级机制,用于指定函数或服务应该产生哪些结果。结果通常使用 Ginkgo 提供的 Gomega 匹配器( http://onsi.github.io/gomega/ )进行评估,但如果你愿意,也可以使用不同的匹配器库。 Ginkgo 是一个全面的框架,提供了各种选项,用于设置测试数据、运行测试以及在事后释放测试数据。你只需要描述结果,然后让 Ginkgo 处理其他的事情。 Goa https://github.com/goadesign/goa 如果你是一个曾经使用 Ruby 和 Praxis 框架的开发人员,或者是一个欣赏设计语言的强大力量人,那么你会在 Goa 中找到很多你喜欢的东西。你本身不需要编写 Go 代码。你使用 Goa DSL 为 API 编写设计规范,然后 Goa 将其转换为可执行的 Go 代码。DSL 针对微服务 API 进行了优化,并强制你的设计遵循标准的架构。 Gorilla http://www.gorillatoolkit.org/ Gorilla 项目提供了一系列你需要的模块。Gorilla 的 Mux( http://www.gorillatoolkit.org/pkg/mux )路由器被很多其他框架使用,因为它太好用了。很多用户之所以使用 Gorilla,是因为 websocket( http://www.gorillatoolkit.org/pkg/websocket )。 Gotify https://github.com/gotify/server 同步一组微服务所面临的一个挑战是建立有效的消息传递节点。Gotify 是一个简单的服务器,用于发送和接收消息,将你的微服务集合与持续存储的消息组合在一起。最有用的部分可能是它的 Web 接口,可帮助开发者应对最令人头疼的调试问题。 Hugo https://github.com/gohugoio/hugo Hugo 是一种静态站点生成器,可以用这个框架构建的微服务并不多,但如果网站只有有限的重复查询答案时,这是一个值得考虑的选项。Hugo 一次生成答案,然后可以重复使用。如果你已经已 HTML 格式提供答案,那么 Hugo 会非常有用。 Kite https://github.com/koding/kite 如果你希望建立一个更加可控的服务群体,而不是通常的服务之间的互动,那么可以考虑一下 Kite。Kite 的目标是让微服务之间的通信协调变得更简单一些。来自 Kite 以外的 API 调用通过 websocket 进入,然后 Kite 使用更快、更低级别的套接字连接(基于 dnode)传递新消息。中间有一个叫作 Kontrol 的服务注册表和身份验证服务。如果你需要经常交换消息和协调很多的操作,那么在不同服务器之间添加这一层会让一切变得更快。 Logrus https://github.com/sirupsen/logrus 要跟踪 API 的流入和流出数据和可能产生的错误,通常需要将日志写入文件中。这个过程可以很简单,比如在一个打开的文件中写入一行行的数据,但通常使用完整的日志框架会更好。Logrus 提供了格式化程序来标准化你的日志输出,并让后续的自动化日志文件分析变得更容易。不要尝试自己开发日志代码,使用像 Logrus 这样的库会事半功倍。 Nano https://github.com/pasztorpisti/nano 构建一个微服务并不需要太多东西,Nano 就是一个极简主义的例子。它的实际代码不会超过 200 行,如果算上注释也只有 400 多行。你只需要几行代码就可以构建一个微服务——只包含处理请求所需的业务逻辑。这个框架还有一些其他不错的特性,例如与语言无关的 API 结构,这样你的 Go 代码就可以与使用其他语言开发的服务发生交互。它还提供了一个测试过程来,可以嵌入你的本地测试例程。简简单单,但却恰到好处。 Negroni https://github.com/urfave/negroni 有些人看完 Martini 后,决定走一条更简单的道路。他们剥离了路由器和其他一些东西,创建了 Negroni,这是一个非常小型的工具,除了处理标准文件、自定义请求、从基本错误中恢复以及保留日志之外,它不会做更多的工作。如果你想要额外的东西,可以自己加入。Negroni 团队也提供了一系列与可以与 Negroni 一起使用的小型项目。 Renderer https://github.com/thedevsaddam/renderer 在准备输出响应时,你需要获取数据并将其插入到模板中。Renderer 提供了各种输出格式(JSON、JSONP、XML、YAML、HTML、文件)和一个漂亮、快速和标准的模板引擎。 Revel https://revel.github.io/ Revel 借鉴了 Webpack 的一个简洁的特性,这让 Revel 看起来就像一个 IDE 一样,或者至少是 IDE 的一部分,每当你对代码做出更改,它会持续地重新构建你的项目。当你保存修改后,Revel 会检测到更改,然后就编译代码,如果没有编译错误,就启动应用程序。因此,Revel 服务器会自动部署修改的码——在桌面上进行开发时这项功能非常好用,或许对于生产环境代码部署来说也是有点诱人的。 这个框架本身功能齐全,它提供了模板、缓存、验证和过滤器。如果你正在构建很多微服务,它还提供了一个模块系统,让你可以在项目之间共享一些 MVC 组件。 Testify https://github.com/stretchr/testify 使用断言的最简单方法之一是使用 Testify,它是一个 Go 语言项目,还提供了模拟工具,用于快速测试大型微服务的各个部分。只需要几行代码就编写一些基本测试用例。 Tollbooth https://github.com/didip/tollbooth 在你发布 API 之后,当然希望来自世界各个角落的人都可以调用它。但当你的服务器发生熔断,或者你看一看为了获得弹性而为云托管账户支付的费用时,你可能会改变主意。Tollbooth 是一个用于限制传入请求的轻量级系统。限制前门的流量就等于减少了对管道中微服务或数据库的需求,让一切保持运行顺畅。 不使用框架 你只需从头开始编写 Go 代码,不需要导入任何依赖项或者实例化任何控制对象。使用 Go 语言创建微服务其实很容易,因为它已经内置了很多基本代码。这就是为什么只用几百行代码就可以构建出像 Nano 这样的框架。 监听套接字、解压缩 HTTP 请求等工作都是通过标准库完成的。虽然框架提供了一些额外的功能,但很多时候如果你需要一个非常基本的微服务,就不需要用到框架。太多的“附加功能”可能反而会妨碍你,而且 Go 开发人员可能会说,太多的依赖反而让 Go 语言变得更复杂。

有只黑白猫 2020-01-08 11:53:57 0 浏览量 回答数 0

问题

iredis 一款python语言撰写支持自动补全、语法高亮、命令提示等的 Redis 命令行客户端

huc_逆天 2020-05-21 17:19:52 23 浏览量 回答数 1

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

问题

Java安全编码:糟糕的在线建议和令人困惑的APIs

移动安全 2019-12-01 21:31:32 1891 浏览量 回答数 0

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

问题

云效使用指南:持续交付:(待迁移)应用构建与发布

行者武松 2019-12-01 22:00:28 1443 浏览量 回答数 0

问题

10个迷惑新手的Cocoa,Objective-c开发难点和问题? 400 报错

爱吃鱼的程序员 2020-05-31 00:44:29 0 浏览量 回答数 1

问题

Logtail如何收集文本日志?

轩墨 2019-12-01 21:52:37 1551 浏览量 回答数 0

回答

API(Application Programming Interface,应用程序编程接口)是一套用来控制Windows的各个部件(从桌面的外观到为一个新进程分配的内存)的外观和行为的一套预先定义的Windows函数.用户的每个动作都会引发一个或几个函数的运行以告诉Windows发生了什么. 这在某种程度上很象Windows的天然代码.其他的语言只是提供一种能自动而且更容易的访问API的方法.VB在这方面作了很多工作.它完全隐藏了API并且提供了在Windows环境下编程的一种完全不同的方法. 这也就是说,你用VB写出的每行代码都会被VB转换为API函数传递给Windows.例如,Form1.Print...VB 将会以一定的参数(你的代码中提供的,或是默认参数)调用TextOut 这个API函数. 。同样,当你点击窗体上的一个按钮时,Windows会发送一个消息给窗体(这对于你来说是隐藏的),VB获取这个调用并经过分析后生成一个特定事件(Button_Click). API函数包含在Windows系统目录下的动态连接库文件中(如User32.dll,GDI32.dll,Shell32.dll...). API 声明 正如在"什么是API"中所说,API函数包含在位于系统目录下的DLL文件中.你可以自己输入API函数的声明,但VB提供了一种更简单的方法,即使用API Text Viewer. 要想在你的工程中声明API函数,只需运行API Text Viewer,打开Win32api.txt(或.MDB如果你已经把它转换成了数据库的话,这样可以加快速度.注:微软的这个文件有很多的不足,你可以试一下本站提供下载的api32.txt),选择"声明",找到所需函数,点击"添加(Add)"并"复制(Copy)",然后粘贴(Paste)到你的工程里.使用预定义的常量和类型也是同样的方法. 你将会遇到一些问题: 假设你想在你的窗体模块中声明一个函数.粘贴然后运行,VB会告诉你:编译错误...Declare 语句不允许作为类或对象模块中的 Public 成员...看起来很糟糕,其实你需要做的只是在声明前面添加一个Private(如 Private Declare Function...).--不要忘了,可是这将使该函数只在该窗体模块可用. 在有些情况下,你会得到"不明确的名称"这样的提示,这是因为函数.常量或其他的什么东西共用了一个名称.由于绝大多数的函数(也可能是全部,我没有验证过)都进行了别名化,亦即意味着你可以通过Alias子句使用其它的而不是他们原有的名称,你只需简单地改变一下函数名称而它仍然可以正常运行. API 分为四种类型: 远程过程调用(RPC):通过作用在共享数据缓存器上的过程(或任务)实现程序间的通信。 标准查询语言(SQL):是标准的访问数据的查询语言,通过通用数据库实现应用程序间的数据共享。 文件传输:文件传输通过发送格式化文件实现应用程序间数据共享。 信息交付:指松耦合或紧耦合应用程序间的小型格式化信息,通过程序间的直接通信实现数据共享。 当前应用于 API 的标准包括 ANSI 标准 SQL API。另外还有一些应用于其它类型的标准尚在制定之中。API 可以应用于所有计算机平台和操作系统。这些 API 以不同的格式连接数据(如共享数据缓存器、数据库结构、文件框架)。每种数据格式要求以不同的数据命令和参数实现正确的数据通信,但同时也会产生不同类型的错误。因此,除了具备执行数据共享任务所需的知识以外,这些类型的 API 还必须解决很多网络参数问题和可能的差错条件,即每个应用程序都必须清楚自身是否有强大的性能支持程序间通信。相反由于这种 API 只处理一种信息格式,所以该情形下的信息交付 API 只提供较小的命令、网络参数以及差错条件子集。正因为如此,交付 API 方式大大降低了系统复杂性,所以当应用程序需要通过多个平台实现数据共享时,采用信息交付 API 类型是比较理想的选择。 API 与图形用户接口(GUI)或命令接口有着鲜明的差别: API 接口属于一种操作系统或程序接口,而后两者都属于直接用户接口。 有时公司会将 API 作为其公共开放系统。也就是说,公司制定自己的系统接口标准,当需要执行系统整合、自定义和程序应用等操作时,公司所有成员都可以通过该接口标准调用源代码,该接口标准被称之为开放式 API。 da'an'lai'yu'na'w'n答案来源网络,供您参考

问问小秘 2019-12-02 02:13:03 0 浏览量 回答数 0

问题

软件测试的新趋势

技术小菜鸟 2019-12-01 21:47:02 6244 浏览量 回答数 1

回答

使本文介绍使用 Jenkins 构建 SAE 应用的持续集成。 前提条件 在开始持续集成之前,需要完成下述的准备工作。 获取阿里云的 Access Key ID 和 Access Key Secret。 使用已经开通了 SAE 服务的主账号登录阿里云官网。 进入 Access Key 控制台,创建 Access Key ID 和 Access Key Secret。EDAS使用 Jenkins 创建持续集成01 在使用 Jenkins 自动部署应用之前,需要先在 SAE 控制台中创建一个可以部署的应用。 登录 SAE 控制台。 参考应用部署概述,部署应用。 在左侧导航栏中单击应用管理。找到您在上一步中创建的应用并单击进入详情页面,获取应用 ID 的字段内容。在SAE控制平台获取应用ID 使用 GitLab 托管您的代码。您可以自行搭建 Gitlab 或者使用阿里云 Code。 本文使用通过自行搭建的 GitLab 做演示,关于 Gitlab 的更多信息请参考 GitLab。 了解并使用 Jenkins。关于 Jenkins 的更多详细信息请参考 Jenkins 官网。 背景信息 使用 Jenkins 可以构建 SAE 应用的持续集成方案。该方案涉及下面的计算机语言或开发工具,阅读本文需要对下述的语言或工具有一定的理解。 工具 说明 Maven Maven 是一个项目管理和构建的自动化工具。 Jenkins Jenkins是一个可扩展的持续集成引擎。 GitLab GitLab是一个利用 Ruby on Rails 开发的开源应用程序,实现一个自托管的 Git 项目仓库,可通过 Web 界面进行访问公开的或者私人项目。 它拥有与 GitHub 类似的功能,能够浏览源代码,管理缺陷和注释。 配置项目 参考通过 toolkit-maven-plugin 插件自动化部署应用修改项目配置,添加 toolkit-maven-plugin 及部署信息。您在修改完项目配置后,建议在本地使用 Maven 构建验证配置是否正确。 安装和配置 Jenkins 进入 Jenkins 官网下载安装 Jenkins。 在 Jenkins 控制台的菜单栏中选择系统管理 > 插件管理,安装 Git 和 GitLab 插件。 安装 GIT Client Plugin 和 GIT Plugin 插件可以帮助 Jenkins 拉取 Git 仓库中的代码。 安装 Gitlab Hook Plugin 插件可以帮助 Jenkins 在收到 Gitlab 发来的 Hook 后触发一次构建。 安装和配置 Jenkins 安装 Maven 构建工具,请参见 Maven 官网。 在 Jenkins 控制台的菜单栏中选择系统管理 > 全局工具配置,选择 Maven 版本名称并配置路径。 Jenkins 控制台设置Maven 在 Jenkins 服务器上生成 SSH RSA 密钥对,并将公匙导入 GitLab,实现 Jenkins 拉取 GitLab 代码时自动认证。 参考 GitLab 文档,在 Jenkins 服务器运行 Jenkins 软件的用户下,生成 SSH RSA 密钥对。 EDAS在 Jenkins 服务器运行 Jenkins 软件的用户下,生成 SSH RSA 密钥对 进入 GitLab 首页,在菜单栏选择Settings > Deploy Keys ,并单击 new deploy key 添加 key,导入在Jenkins服务器上创建的SSH RSA公匙。 EDAS使用Jenkins在gitlab导公钥1EDAS使用Jenkins在gitlab导公钥2 创建 Jenkins 任务。 在 Jenkins 首页左侧导航栏中单击新建,创建 Jenkins 任务,并选择构建一个自由风格的软件项目。 EDAS使用Jenkins集成之创建项目 在 源码管理 页面中选择 Git,并设置相关参数。 Repository URL:您的项目的 Git 协议地址。 Credentials:安全凭证,选择无即可(前提是运行 Jenkins 软件的用户的 SSH RSA 公匙已添加到该 Git 项目所在的 GitLab 中,否则这里会报错)。 EDAS使用Jenkins集成之源码管理 单击构建触发器页签,勾选轮询 SCM。 单击构建环境页签,勾选 Add timestamps to the Console Output(为控制台输出的信息添加时间戳)。 单击构建页签,然后单击增加构建步骤。 在调用顶层 Maven 目标区域设置 Maven 版本和目标。如果您想部署多模块工程,请参见创建多模块工程的 Jenkins 任务。 Maven Version:单击该选项后面的下拉框,选择在全局工具配置里配置的 Maven 版本名称。 Goals:填入 clean package toolkit:deploy (如有其它参数,请根据实际情况填入) EDAS使用Jekins集成之调用顶层 Maven 目标 配置 Gitlab 的 Web Hook,实现自动构建 右键单击 GitLab 工程,然后选择 Setting > Web Hooks。 在 Web Hooks 页面的在 URL 文本框中输入http://jenkins服务器地址:jenkins服务器监听端口/git/notifyCommit?url=本项目的git协议地址 例如:http://123.57.57.164:8080/git/notifyCommit?url=git@code.aliyun.com:tdy218/hello-edas.git 配置 Gitlab 的 Web Hook,实现自动构建 图中表示的 Jenkins 服务器地址为您的 Jenkins 服务器的 Web 访问地址如 http://123.57.57.164:8080。 配置完成后,单击 Test Hook,进行测试。 配置 Gitlab 的 Web Hook结果 配置正确后,提交变更到 GitLab 如果上述步骤配置正确,这次提交会触发一次 GitLab Hook。 Jenkins 在接受到这个 Hook 后会构建您的 Maven 项目,并在构建结束时调用 SAE POP API 脚本触发部署。 提交部署成功输出的日志信息(Build Number > 控制台输出)。 15:58:51 [INFO] Deploy application successfully! 15:58:51 [INFO] ------------------------------------------------------------------------ 15:58:51 [INFO] BUILD SUCCESS 15:58:51 [INFO] ------------------------------------------------------------------------ 15:58:51 [INFO] Total time: 24.330 s 15:58:51 [INFO] Finished at: 2018-12-25T15:58:51+08:00 15:58:51 [INFO] Final Memory: 23M/443M 15:58:51 [INFO] ------------------------------------------------------------------------ 15:58:51 Finished: SUCCESS 如果部署失败,可以登录 SAE 控制台 ,在左侧导航栏中单击应用管理 > 应用列表 ,在应用列表页面单击具体应用名称,进入应用详情页面。在左侧导航栏单击变更记录来查看此次部署任务的执行过程。 创建多模块工程的 Jenkins 任务 创建多模块工程的 Jenkins 任务和安装和配置 Jenkins第 5 步基本相同,只需要调整下调用顶层 Maven 目标。如果工程为多模块工程,想在 Jenkins 中部署子模块的话,那么需要在父模块中调用 mvn clean install 命令,然后在子模块中调用 mvn clean package toolkit:deploy 命令。以 Demo 工程为例,工程结构如下: sh-3.2# tree -L 1 carshop carshop ├── detail ├── itemcenter ├── itemcenter-api └── pom.xml 其中,detail、itemcenter、itemcenter-api 为子模块,现在想部署 itemcenter 模块的话,那么需要在父工程中设置一个 clean install 构建目标,然后在 itemcenter 模块中设置 clean package toolkit:deploy 构建目标。 创建多模块工程的 Jenkins 任务

1934890530796658 2020-03-27 13:10:36 0 浏览量 回答数 0

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送

巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

回答

作者:九章算法 链接:https://www.zhihu.com/question/22744854/answer/763206431 来源:知乎 首先,这个神仙项目请你pick: https://github.com/sindresorhus/awesome 各领域各语言资源大合集 另外,可以关注GitHub的每日榜单,看看大家都在关注些什么(虽然有国外小哥吐槽榜单上都是中文哈哈 https://github.com/trending/python?since=daily 推荐不同语言的几个项目: Python : youtube-dl这个程序是一个开源的python项目。支持MacOS、Linux和Windows平台,可以在官网直接下载编译好的程序。可以用来下载YouTube视频,国内的一些视频站也可以进行下载。 interview_internal_reference: 总结了2019年最新的阿里,腾讯,百度,美团,头条等技术面试题目以及答案,分析汇总。 sherlock: 高级机器视觉软件,可以用于广泛的自动化检测应用。它提供了最大的设计灵活性,丰富的已验证的工具和功能。 DeepFaceLab: 这是一个github上的开源项目,所有人都可以查看源代码也能免费使用。个人认为这个项目的最大优点就是安装超级简单,几乎是无需安装,使用过程也不复杂 Manim: 解释数学视频的动画引擎。可以用来创建精确的2D动画。 XSStrike:XSStrike是一个Cross Site Scripting检测套件,配备四个手写解析器,一个智能有效载荷生成器,一个强大的模糊引擎和一个非常快速的爬虫。 XSStrike不是像其他工具一样注入有效载荷并检查它的工作原理,而是通过多个解析器分析响应,然后通过与模糊引擎集成的上下文分析来保证有效载荷。 f="https://github.com/wangshub">Douyin -Bot:抖音机器人。是用于机器人算法的Python代码。教你如何在抖音上找到漂亮小姐姐~~ Photon:快速抓取工具,可以提取网址,电子邮件,文件,网站帐户等等。 google-images-download:可以实现搜索和下载数百个Google图像的Python脚本到本地。 faceswap是个基于dlib的换脸程序。模型训练速度较快,同样配置下更快的到达低loss值,而且有gui界面版本。 you-getyou-get 是py上一个方便的下载工具。这个爬虫神器能爬取视频网站和图片网站,你不用写任何代码就能很容易的把你喜欢的视频或者图片甚至音频文件给扒下来。而且支持腾讯、搜狐、新浪、B站、央视网、芒果TV,乐视网、优酷、熊猫斗鱼等等大多数的国内主流视频网站。 Java: advanced-java: Java工程师进阶知识扫盲,适合系统学习。 vhr:一个前后端分离的人力资源管理系统,采用SpringBoot+Vue开发。这个项目的权限管理模块已经开发完成,其他模块还在开发当中。可以管理角色和资源的关系,管理用户和角色的关系。 cat:作为服务端项目基础组件,cat提供了 Java, C/C++, Node.js, Python, Go 等多语言客户端,已经在美团点评的基础架构中间件框架(MVC框架,RPC框架,数据库框架,缓存框架等,消息队列,配置系统等)深度集成,为美团点评各业务线提供系统丰富的性能指标、健康状况、实时告警等。 jeecg-boot:一款基于代码生成器的JAVA快速开发平台!全新架构前后端分离:SpringBoot 2.x,Ant Design&Vue,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码,绝对是全栈开发的福音!! interviews:软件工程技术面试个人指南。可以这里找到针对很多面试问题的视频解决方案以及详细说明。 p3c:是阿里巴巴p3c项目组进行研发。根据《阿里巴巴Java开发规范》转化而成的自动化插件,并且实现了部分自动编程。 SpringAll:包括了Spring Boot,Spring Boot&Shiro,Spring Cloud,Spring Boot&Spring Security&Spring Security OAuth2等系列教程。toBeTopJavaer:Java工程师成神之路。总结的很好,直接理解学习就完了。 JavaScript: quasar:Quasar Framework是MIT许可的开源项目。能在记录时间内构建高性能VueJS用户界面 Daily-Interview-Question:前端大厂面试题汇总 next.js:一个基于React的一个服务端渲染简约框架。它使用React语法,可以很好的实现代码的模块化,有利于代码的开发和维护。 javascript-algorithms:这个存储库包含许多流行算法和数据结构的基于JavaScript的示例。每个算法和数据结构都有自己独立的自述文件,包含相关说明和链接,供进一步阅读 baidu-netdisk-downloaderx:一款图形界面的百度网盘不限速下载器,支持Windows,Linux和Mac。重点在不限速! 其他好玩的项目~ ChineseBQB:国内表情包大集合~~ komeiji-satori/Dress:女装大佬项目,一张图你就懂了 chinese-poetry最全的中文诗歌古典文集数据库.包含5.5万首唐诗、26万首宋诗和2.1万首宋词。唐宋两朝近1.4万古诗人, 和两宋时期1千多位词人 thefuck该项目的主要作用是,在terminal 里输错命令之后无需修改,fuck 一下,自动帮你更正命令,既解气又实用。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 阿里云开发者社区

茶什i 2020-01-08 10:37:26 0 浏览量 回答数 0

回答

回 楼主(ttww) 的帖子 你是想要给Content-MD5赋值吗? ------------------------- Content-MD5的值是在你上传到OSS后,自动生成的,然后由OSS把该值返回给用户,用于判断该次传输过程是否正确。 ------------------------- 回 4楼(ttww) 的帖子 一、putObject直接上传 1、本地计算你要上传文件的md5值,保存在临时变量里面; 2、当你上传该文件到oss完成后,oss会把该文件在oss端的md5值返回给你; 3、你比较这两个值,一致即上传成功,不一致则表示失败; 二、大文件分块上传 大文件分块合并后返回的那个值并不是该文件的md5值,我自己也不太明白,网上有人说是所有分块的md5的一个组合,未经验证; 我们处理的时候是每个分块上传完成后及时比较,确保每个分块都上传成功后,这些分开的合并就是OK的,最好是在该文件建立一个UserMatadata来保存该文件的md5值,这样方便后续的下载文件的对比校验; ------------------------- Re:回 6楼(ttww) 的帖子 你好,文件md5的计算方法百度一搜一大堆,实现方法也很多 但是肯定不是你写的去计算key,一般都是计算文件流stream的    ------------------------- FileStream file = new FileStream(fileName, FileMode.Open);        System.Security.Cryptography.MD5 md5 = new System.Security.Cryptography.MD5CryptoServiceProvider();        byte[] retVal = md5.ComputeHash(file);        file.Close();        StringBuilder sb = new StringBuilder();        for (int i = 0; i < retVal.Length; i++)        {            sb.Append(retVal.ToString("x2"));        }        return sb.ToString();我看你写的语法像是C#的,这段C# 我刚从网上找的,你看看这个思路如果是其它语言,你在百度下,太多了 ------------------------- 回 9楼(ttww) 的帖子 是的~~~

ftp4oss 2019-12-02 01:15:32 0 浏览量 回答数 0

回答

从计算机科学的角度出发,以太坊可以看作是一个分布式状态机,其中交易区块等同于状态转换函数,新的交易区块由从状态A到状态B的状态转换记录构成。因此,以太坊就像一个巨大的虚拟状态引擎或去中心化的计算机,可供多方共享计算平台并基于此运行智能合约。以太坊有一种原生资产—以太币,它是以太坊生态系统中的价值基础。以太币用于调整运营智能合约的激励机制,同时提高网络的安全性。 与比特币比较起来,以太坊是一个应用程序平台,而不仅是加密货币。比特币主要用于交易,而以太坊则可以执行更为复杂的规则,是一个用于构建分布式应用程序的平台。以太坊有一个图灵完备的脚本语言,利用程序代码将合约规则实例化成智能合约。智能合约是表达、验证并协商或强制执行数字合约的一段计算机代码,它可以在没有任何第三方的情况下被以太坊网络自动执行。以太坊的脚本语言比比特币的脚本语言要强大得多,可以实现复杂的智能合约规则。借助以太坊计算平台,开发人员可以用分布式应用程序(DApp)替代集中式应用程序。因为没有集中的数据库可以成为黑客的目标,DApp极大地增强了网络安全性。典型的DApp案例包括去中心化的内容发布平台Steemit、社交网络Synereo、去中心化的打车平台LaZooz、音乐版权平台Ujo Music和去中心化的就业市场Ethlance等。 比特币和以太坊之间的另一个区别在于,比特币是基于UTXO(未花费的交易(tx)输出)的,而以太坊是基于账户体系的区块链。在比特币中,交易的所有输入必须在UTXO数据库中才有效。UTXO是先前交易中未支出的金额,需要确认为未花费用作为当前交易的输入,比特币用户的可用余额是由其私钥控制的UTXO总和。而以太坊使用基于账户的模型,用户的可用余额记录在用户的账户中,该账户具有用户的地址、余额以及可选代码字段中的任何数据。例如在比特币中,Alice拥有控制一组UTXO的私钥;在以太坊中,Carol拥有控制由地址、余额和代码字段组成的账户的私钥。通过账户模型,以太坊节点只需更新其账户余额而不是存储每个UTXO,因此更节省空间。同时,以太坊也更直观,因为智能合约是一种更有效的编程机制,其可以在账户之间转移余额,而不是不断更新UTXO集来计算用户的可用余额。 以太坊有两种账户类型:外部账户(EOA)和合约账户,这两种账户都有用户地址和以太币余额。EOA通常被用于某种形式的外部实体(如个人或公司),这类用户在注册以太坊网络时都被分配为EOA账户。EOA具有加密地址,它可以发送交易(将以太币转移到其他账户或触发合约代码)。第二种账户类型是合约账户,这些账户具有地址、以太币余额以及任何关联的合约代码。代码执行由从其他合约或EOA中收到的交易或消息(函数调用)触发。这意味着合约是以太坊网络上的自主账户,其他账户(EOA或合约账户)可以与它们进行交互,但没有人控制它们(因为一旦启动,它们就是自治的)。由于其他程序可以调用合约上的函数,因此可以与合约账户交互或执行某些交易,但是不能直接控制合约账户。以太坊账户以交易为媒介,与以太坊网络上的其他账户、其他合约和合约状态进行交互。 以太坊某一时刻的所有账户状态构成了整个以太坊的网络状态,它们需要就每个账户的当前余额、存储状态和合约代码达成共识。每个新的区块都需要获取前一个区块的信息并更新新的以太坊网络状态,每个网络节点都必须就新的网络状态达成一致。因此,交易区块是以太坊网络状态之间的状态转换函数。

问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

回答

数据库课程设计 “数据库课程设计”是数据库系统及应用课程的后续实验课,是进一步巩固学生的数据库知识,加强学生的实际动手能力和提高学生综合素质。 一、 课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。课程设计的目的: 1. 加深对数据库原理、程序设计语言的理论知识的理解和应用水平; 2. 在理论和实验教学基础上进一步巩固已学基本理论及应用知识并加以综合提高; 3. 学会将知识应用于实际的方法,提高分析和解决问题的能力,增强动手能力; 4. 为毕业设计和以后工作打下必要基础。 二、课程设计要求 运用数据库原理的基本理论与应用知识,在微机RDBMS(SQL Server)的环境上建立一个数据库应用系统。要求把现实世界的事物及事物之间的复杂关系抽象为信息世界的实体及实体之间联系的信息模型,再转换为机器世界的数据模型和数据文件,并对数据文件实施检索、更新和控制等操作。 1. 用E-R图设计选定题目的信息模型; 2. 设计相应的关系模型,确定数据库结构; 3. 分析关系模式各属于第几范式,阐明理由; 4. 设计应用系统的系统结构图,确定系统功能; 5. 通过设计关系的主码约束、外码约束和使用CHECK实现完整性控制; 6. 为参照关系设计插入、删除、修改触发器; 7. 实现应用程序设计、编程、优化功能; 8. 对系统的各个应用程序进行集成和调试,进一步优化系统功能、改善系统用户界面完成实验内容所指定的各项要求; 9. 分析遇到的问题,总结并写出课程设计报告; 10. 自我评价 三、实验环境 开发环境VC++、C#、ASP或JAVA;ODBC/JDBC;数据库SQL Server 四、上机实现内容 1. 创建数据库的结构 2. 创建各基本表的结构 3. 编制系统各功能模块,完成数据的管理(增、删、改)及统计查询。对于程序运行界面不做考核的重点。 五、课程设计考核 1.对学生到实验室的情况进行不定时统计; 2.出勤率+课程设计报告+课程设计所开发的应用系统+其他(上机抽查和提问)=综合评定成绩。 3.课程设计结束时请将下列资料上交: (1) 课程设计报告; (2) 所开发的应用系统的源程序、安装和使用说明; (3) 将(1)(2)中的资料压缩成一个压缩包,压缩包文件的命名规则:班级+学号(末2位)+姓名(例如:计科090101王鹏晓); (4) 班长将本班每人的(3)中的压缩包刻录成光盘连同打印的课程设计报告收齐,交给任课教师。 附录﹑课程设计题目 题目1:课程设计选题管理系统(1,24) 包括三大模块:  课程设计题目维护与查询:题目的添加、修改和删除;按题目类型、名称和关键字查询以及已选与未选题目的查询;  学生信息维护与查询;  学生选题维护与管理:学生选题及查询; 具体功能细化:  前台学生选题:学生上网登录系统进行选题;  前台教师出题:  教师添加、修改和删除题目;  教师确认学生的选题;  后台管理出题和选题  添加用户及权限 题目2:书店管理系统(23) 包括四大模块:  售书(图书销售管理及销售统计,查询)  进书(通过书目,向发行商下定单订购图书)  库存(图书库存,统计)  相关查询 题目3:图书馆管理系统(11) 包括四大模块:  图书的查询  借书  还书  图书的预约 题目4:库存管理系统(8) 包括四大模块:  商品目录建立  商品入库管理  商品出库管理  商品库存查询 题目5:工资管理系统(1 人)41 包括四大模块:  系统数据初始化  员工基本信息数据的输入、修改、删除;  员工个人信息及工资表的查询;  员工工资的计算; 参考数据如下:  员工基本状况:包括员工号、员工姓名、性别、所在部门、工资级别、工资等级等。  工资级别和工资金额:包括工资等级、工资额。  企业部门及工作岗位信息:包括部门名称、工作岗位名称、工作岗位工资等。  工龄和工资金额:包括工龄及对应工资额。  公司福利表:包括福利名称、福利值。  工资信息:包括员工号、员工姓名、员工基础工资、员工岗位工资、员工工龄工资、公司福利、员工实得工资。 题目6:酒店客房管理系统 (1 人)14,26 包括四大模块:  前台操作:包括开房登记、退房结账和房状态查看  预订管理:包括预订房间、预订入住和解除预订  信息查询:包括在住客人列表、预订客人列表和历史客人列表  报表统计:包括开房记录统计、退房结账和预订房间统计  员工基本信息数据的输入、修改、删除; 参考数据如下:  住店管理:客人姓名、证件号码、房号、入住时期、预计离开日期、结账离开日期、应付金额  客人信息:姓名、性别、证件类型、证件号码、联系电话  房间信息:房号、房类型、价格、押金、房状态 预订房间  客人姓名、性别、房类型、房号、价格、证件类型、证件号码、联系电话、入住日期、预计离开日期、历史信息 题目7:旅行社管理信息系统(1 人)3 包括如下模块:  旅游团队、团队团员及旅游路线相关信息的输入  旅游团队、团队团员及旅游路线相关信息的维护(修改、浏览、删除和撤销)  旅游团队管理信息的查询(如按团队编号)  团队团员基本情况的查询(可选多种方式)  旅游路线相关信息的查询(如按线路编号)  旅游路线排行榜发布。  数据备份,更改密码。 参考数据如下:  团员信息表(路线编号,团队编号,团员编号,姓名,性别,电话,通信地址,身份证号码, 团费交否,备注)  线路信息表(路线名称,团费,简介,图形,路线编号)  团队信息表(团队编号,路线编号,团员人数,出发日期,返程日期)  旅游团队信息表(团队编号,团队负责人,团员人数,建团时间,是否出发,团费,盈亏) 密码信息(操作员,密码) 题目8:报刊订阅管理系统 (1 人)25,35 包括如下模块:  登录功能:登录统为身份验证登录。分为管理员登录和一般用户登录。分别通过不 同的用户名和密码进入报刊订阅管理界面,新的用户需要注册。  录入新信息功能:对于管理员,包括新用户信息和新报刊信息的录入功能,信息一旦 提交就存入到后台数据库中;普通用户自行注册进行可以修改个人信息。  订阅功能:用户可以订阅报刊,系统自动计算所需金额,并显示在界面上;管理员不 可订阅报刊,必须以用户身份订阅报刊。  查询功能:用户可以查询并显示自己所订阅的信息;管理员可以按人员、报刊、部门 分类查询。查询出的信息显示在界面上,并且可以预览和打印出结果。  统计功能:管理员可以按用户、部门、报刊统计报刊的销售情况,并对一些重要的订 阅信息进行统计;普通用户可以统计出自己的订阅情况,并且可以预览和打印出结果。  系统维护功能:数据的安全管理,主要是依靠管理员对数据库里的信息进行备份和恢 复,数据库备份后,如果出了什么意外可以恢复数据库到当时备份的状态,这提高了系统和 数据的安全性,有利于系统的维护 参考数据如下:  管理员表(Adminuser) :管理员名、密码。  部门表(Department) :部门号,部门名。  用户表(Users) :用户账号、密码、真实姓名、身 份证号、联系电话,联系地址,部门号(和部门表有关)等。  报刊类别表(NewspaperClass) :分类编号、 分类名称。  报刊信息表(Newspaper) :报刊代号、报刊名称、出版 报社、出版周期、季度报价、内容介绍、分类编号(和报刊类别表有关)等。  订单表(Order) :订单编号、用户编号、报刊代号、订阅份数、订阅月数等。 题目9:计算机等级考试教务管理系统(2 人)32 包括四大模块:  用户设置:对考点代码,考点名称进行设置,设置用户与密码;系统复位:即清除上一次考试数据(在之前存入历史)  报名管理: 报各库录入(姓名不能不空,之间不能有空格) 增加、删除、修改、浏览  准考证管理:准考证生成规则:xxx+yy+zz+kk,其中 XXX 为考点代码;YY 为语言代码,XX 为考场号,KK 为座位号 同一级别、语言应根据报名初始库信息按随机数生成准考证,同一考点最多可有 99*30=2970 名考生;如已生成准考证号,再重新生成准考证号,应该给予提示。 准考证打印  考务管理:考生信息查询、浏览、打印  成绩管理:成绩数据录入、接收 成绩合成(总成绩=笔试成绩*0.6+上机成绩*0.4),按大于或等于 60 合格 参考数据如下:  初始报名表(准考证号(为空) ,报名号(主键) ,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  含准考证号的报名表(准考证号(为主键) ,报名号,级别+语言种类(外键) ,姓名,性别, 出生年份,民族,身份证号,联系地址,联系电话,照片,备注,参加培训)  成绩表(准考证号,笔试成绩,上机成绩,总成绩) 级别语言代码表(级别语言代码,级别+语言)  用户信息表(考点代码,考点名称,用户名,密码) 题目10:人事管理系统(1 人)21 包括四大模块:  登录管理:包括操作员管理,口令设置,权限管理  人员管理:包括人事数据维护、人事信息查询和人事信息统计  工资管理  部门管理:包括部门表,职称表和年份表  查询及报表打印 参考数据如下:  人事表(编号,姓名,性别,出生日期,工作日期,部门代码,职称,婚否,简历,相片)  工资表(基本工资,岗位津贴,奖励,应发工资,水电,保险,实发工资)  部门表(代码,部门名称)  职称表(职称代码,职称名称)  年份表(年份代码,年份名称)  操作员表(操作员代码,操作员姓名,口令,部门,电话) 系统日志表(操作员代号,操作员姓名,登录时间,离开时间) 题目11:商品销售管理系统(1 人)19 包括四大模块:  用户登录  基本信息管理:包括销售情况、商品信息、库存表、员工表等信息的录入、浏览、修改、撤销、删除和查询等  商品销售管理:包括商品售出、退回和入库  盘点:包括库存盘点、当日销售盘点 参考数据如下:  商品信息表(商品编号,商品名称,品牌,型号,销售单价) 商品编号=类别代码(1 位)+品名代码(1 位)+品牌代码(2 位)+型号代码(2 位)  销售情况表(成交编号,商品编号,销售数量,总金额,销售日期,员工编号)  库存表(商品编号,供货商编号,进货日期,进货价,库存数量)  员工表(员工编号,员工姓名,性别,基本工资,职务,密码)  供货商表(供货商编号,供货商名称,所在地,联系电话)  员工资料表(员工编号,员工姓名,是否党员,简历,照片) 题目12:学生成绩管理系统(1 人)29 包括四大模块:  基本数据管理:包括院系管理,专业管理(设置院系下面的专业),班级管理(设置专业下面的班级),课程管理(设置相应专业下面的课程)  学生信息管理:包括基本信息录入、基本信息修改  学生成绩管理:包括学生成绩录入、学生成绩修改  信息查询:包括基本信息查询、成绩信息查询、学校人数统计  系统管理:用户管理、数据备份和系统帮助 参考数据如下:  院系信息(院系代码,院系名称)  院系专业信息(班级、院系代码,专业)  学生基本信息(班号,学号,姓名,性别,出生年月,籍贯,政治面貌,身份证号,入学年月,家庭地址,邮政编码,图片信息,备注)  学生成绩表(学号,课号,成绩,备注)  课程表(课号,课程名称,学期,备注)  班表(班号,班级名称)  用户信息表(用户名,密码,用户标识) 题目13:火车售票管理系统(4 人)36 包括四大模块:  售票管理  订票管理  信息查询  系统维护 参考数据如下:  车次信息表(车次,始发站,终点站,发车时间,到达时间)  订票信息表(车次,座位号,发车时期,发车时间,座位等级,票价)  车次座位等级分配及座位占用表(车次,座位号,座位等级,票价,占用标志)  用户信息表(用户名,密码,用户标识) 题目14:小型物业管理系统(1 人) 包括四大模块:  房源管理:对原始资料的录入、修改、查询和刷新。一般用户可以查询与房间有关 的统计资料;物业主管可其进行增、删、改、插等操作  租房管理:对房产出租,退租以及租房面积调整。其中物业主管可对其进行房租金 额计算和收款操作,一般用户对其查询  水电处理:根据租房资料,结合当月水、电量进行分摊,完成应收水电费。其中物 业主管对其进行计算,其他查询  交款处理:提供收款和发票打印以及交款数据查询  查询处理:对租房资料、交款资料,发票资料进行查询 参考数据如下:  房源资料(名称,面积,月租,物业,仓库)  租房资料(名称,面积,单位,月租,物业,押金,仓库)  水电资料(单位,电量,水量,电费,水费)  交费资料(收费项目,应收日期,应收金额,已收金额,未收金额,本次收款)  发票资料(单位,房租,电费,水费,物业)  权限资料(用户,密码,房源管理,租房管理,水电管理,交费管理,发票管理,系统维护) 其中系统管理员,有权进行系统维护;单位内部物业主管,有权进行物业资源调配、单元出 租,退租和收款开票操作;物业管理员,有权进行水电处理和收款处理等操行;租户代表, 有权进行种类费的查询操作 题目15:机房收费管理系统(1 人)7,34 包括四大模块:  登录模块  上机管理模块 说明:上机登记时,余额不足 3 元或卡处于挂失状态,则拒绝登记 每位同学的一次上机形成一条记录,每 36S 遍历一次上机记录表,对表中所有正上机字段为 TRUE 的记录的上机用时增加 36S,同时从上机卡表的余额减少  上机卡管理模块  充值挂失模块  查找统计模块:统计某天上机的总时数、每次上机的平均时数和机房的收入;某学 生上机的次数、上机总时数、每次上机平均时间;挂失和查询余 参考数据如下:  上机卡(卡号,姓名,专业班级,余额,状态) 状态的取值有:正常(能自费上机)  挂失上机记录(卡号,上机日期,开始时间,上机用时,正上机,管理号代码),上机用时记录学生上机时间(S);正上机是一个布尔型,为 True 表示正上机,每 36 秒刷新 其上机用时并扣除上机费用,为 False 表示上机结束。上机记录表永久保存,用于事后查询 和统计 管理员(代码,姓名,口令)  题目16:高校药房管理(1 人)31 包括四大模块:  基础数据处理:包括医生和药剂师名单的录入,修改,删除及查询  营业数据处理:包括药品进货上柜,处理划价,配药,柜存药品查询,处方综合查 询,交接班结转清。 参考数据如下:  药品信息表(货号,货名,计量单位,进货数量,进货单价,出售单价,进货日期,收货人 和供应商)  处方信息(编号,患者姓名,医生姓名,药剂师姓名,处方日期,配药日期) 处方药品信息(处方编号,药品货号,计量单位,配药数量,销售单价,已配药否)  医生名单和药剂师名单表(姓名)  题目17:考勤管理系统(2 人)40 包括四大模块:  记录每个员工每天所有进入公司的时刻和离开公司的时刻。  每天结束时自动统计当天的工作时间  每天结束时自动统计当天迟到或早退的次数。  对于弹性工作制,每天结束时自动统计当月的工时,并自动算出当月欠缺或富余的 时间  每个月末统计该月的工作时间判断是束足够  每个月末统计该月的工作天数并判断是否足够  管理人员查询并修改工作时间(特殊情况下修改)  管理人员账户管理(如设置密码等)  管理人员设定早退及迟到的条件,每个月的工作时间  管理人员设定每个月的工作日期及放假日期 参考数据如下:  员工信息(工号,姓名,年龄,入职时间,职位,性别,密码)  配置信息(上班时间小时,上班时间分钟,下班时间小时,下班时间分钟,每天工作时间)  每月统计数据表(工号,姓名,剩余的时间,迟到的次数,早退的次数,工作天数)  每天统计信息表(工号,姓名,小时,分钟,动作,时间) 其中动作指的时入或离开公司  题目18:单位房产管理系统(2 人)33,10 包括四大模块:  系统模块:完成数据库维护、系统关闭功能  物业费用模块:完成本月物业的计费、历史资料查询和财务部门接口传送数据、物 业相关费用单价设置  房屋资源模块:对房屋资源进行添加、列表显示、查询  职工信息模块:对职工进行添加、列表显示、查询以及相应部门、职务进行维护  帮助模块:对用户使用本系统提供在线帮助 参考数据如下:  职工(编号,姓名,性别,参加工作时间,行政职务,专业技术职务,评上最高行政职务时 间,评上最高专业技术职务时间,双职工姓名,现居住房号,档案号,房产证号,所在部门 编号,是否为户主)  部门(编号,部门名称) 住房级别表(编号,级别,住房标准,控制标准,级别分类)  房产情况(编号,房号,使用面积,现居住人 id,上一个居住人 id,最早居住人 ID,阳台面积)  物业费用(编号,房号,水基数,水现在值,电基数,电现在值,燃气基数,燃气现在值, 当前年份,当前月份)  价格标准(编号,水单价,电单价,燃气单价) 题目19:标准化考试系统 (2 人)15,39 功能要求: 设计一个简单的标准化考试系统,仅有单项选择题、多项选择题和判断题功能即可。 包括四大模块:  题库管理:实现试题的录入、修改、删除功能;  考试子系统:能够实现考生做题、结果自动存入到数据库中,有时间提示;  选择身份(登录)功能:系统能够记录考生输入的登录信息及交卷信息;  自动评分功能:考生交卷后能自动评分;  查看成绩功能:能够查询考生相关信息(包含成绩等)。 参考数据如下: 其它可供选择的题目: 网上教务评教系统130,127,133 16 学生日常行为评分管理系统232,110,230 网上鲜花店 38 基于BS结构的工艺品销售系统12 基于BS结构的校园二手物品交易网站 37 大学生就业管理系统201,208,234 题库及试卷管理系统 数据库原理及应用 课程设计报告 题目: 课程设计选题管理系统 所在学院: 班 级: 学 号: 姓 名: 李四 指导教师: 2011年12月 日 目录 一、 概述 二、需求分析 三、概念设计 四、逻辑设计 五、系统实现 六、小结 一、概述

玄学酱 2019-12-02 01:22:25 0 浏览量 回答数 0

回答

沙箱环境可以让开发者在小程序上线到正式环境之前进行调试和测试,不用担心测试数据干扰正式环境,从而安全且轻松地验证支付等关键场景。 沙箱环境切换调试流程如下图所示: 创建沙箱小程序 登录小程序开放平台,点击开发中心 > 选择沙箱小程序或直接点击小程序沙箱接入登录后进入沙箱界面。 1.png 一、获取沙箱小程序APPID和开发者沙箱账号 1、进入界面后沙箱环境已自动创建一个小程序应用和应用APPID,可以使用此应用进行沙箱调试。 注: (1)小程序有上线状态的版本时,可使用沙箱钱包扫码访问小程序,如果需要拉最新的包,请清空沙箱钱包的本地缓存。 (2)小程序版本,是IDE开发者工具上传到沙箱环境。 (3)多端推送可以推送小程序到其他APP端(例如:微博),供支持多端的开发者使用。 2.png 2.2.png 2、界面往下滑动到:登录沙箱钱包处获取开发者沙箱账号和密码。 3.png 二、设置接口加签方式/httpRequest接口请求域名白名单 1、设置接口加签方式 (1)需要对接开放平台服务端接口时,需要设置如下信息: 开发者要保证接口中使用的私钥与此处的公钥匹配,否则无法调用接口。可参考密钥的生成方法。 沙箱支付宝公钥与线上不同,请更换代码中配置。 4.png (2) 向支付宝发起请求的网关。沙箱与线上不同,请更换代码中配置,编写代码时,请将: a、请求网关修改为:https://openapi.alipaydev.com/gateway.do。 b、appid 切换为沙箱的 appid。 c、签名方式使用 RSA2。 d、应用私钥(private_key)使用第 1 步生成的 RSA2 (SHA256) 的私钥(请根据开发语言进行选择原始或 pkcs8 格式)。 e、支付宝公钥(public_key)切换为第 1 步配置后应用公钥后,点击查看支付宝公钥看到的公钥。 2、添加服务器域名白名单 沙箱小程序前端,需要请求商家服务器进行数据交互时,请在沙箱界面:httpRequest接口请求域名白名单处添加请求域名白名单,可以添加3个域名白名单。 5.png 下载沙箱钱包 使用浏览器扫一扫,扫描沙箱界面提供的二维码或者下方二维码,下载沙箱钱包并安装。 注:目前沙箱钱包仅提供Android版本,目前仅提供扫一扫、付款码、门店详情页、小程序功能,其余功能暂不提供。 6.png 登录沙箱钱包 使用沙箱界面提供的开发者沙箱账号登录沙箱钱包(该账号已经自动添加为该沙箱小程序应用的开发者)。 7.png 下载小程序开发者工具 下载并安装 小程序开发者工具(简称 IDE)。 版本要求:小程序开发者工具 0.70 及以上版本。 (1)启动IDE开发者工具 > 模版选取 > 入门。 (2)选择API-Demo,点击下一步 > 新建demo项目,进入IDE编辑界面。 8.png 一、安装沙箱环境切换插件 在左侧功能面板,点击扩展市场图标,点击沙箱环境切换插件的安装按钮,安装完成后,点击启用。 9.png 二、切换到沙箱环境 启用插件后,在IDE左上角,点击正式环境下拉框,选择沙箱环境,切换到沙箱环境。 10.png 三、使用支付宝沙箱钱包扫码登录 1、在IDE开发者工具栏右侧,点击登录按钮,弹出登录二维码。 2、使用沙箱钱包扫一扫,扫描二维码登录。 四、推送预览调试 使用IDE编辑器编程小程序代码完成后,点击模拟器上方预览推送沙箱环境真机预览调试。 特别提示 一、安全提醒 上线小程序到生产环境,为了避免安全风险,请将敏感信息直接配置到后端应用中,不要从前端传到后端。 二、线上环境 1、环境切换插件切换到正式环境。 2、GATEWAY_URL支付宝网关配置为:https://openapi.alipay.com/gateway.do。 3、将APP_ID、APP_PRIVATE_KEY、ALIPAY_PUBLIC_KEY配置为线上环境对应的小程序应用值,并在所有的请求参数中传入正式环境的GATEWAY_URL。 注:为避免安全风险,在小程序正式上线时,请不要使用在本沙箱环境中使用过的密钥。

保持可爱mmm 2020-05-06 14:32:55 0 浏览量 回答数 0

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

回答

云端接入域名和端口号是什么? 域名:js ${YourProductKey}.iot-as-mqtt.${YourRegionId}.aliyuncs.com 。 其中,${YourProductKey}请替换为您的产品ProductKey;${YourRegionId}请参见地域和可用区,替换为您在物联网平台创建产品时选择的地域代码。 端口: 1883。 使用MQTT协议连接,不同的设备可以使用相同的clientID连接服务器吗? clientID需为全局唯一。如果不同的设备使用相同的clientID同时连接物联网平台,那么先连接的那个设备会被强制断开。 如何开启域名直连? MQTT连接有两种方式。 认证后再连接:首先使用HTTPS连接到```js js iot-auth.cn-shanghai.aliyuncs.com:443 获取认证cert后,再使用MQTT连接到 ```js js/public.iot-as-mqtt.cn-shanghai.aliyuncs.com/1883。 认证连接必须使用TLS加密进行认证。 域名直连:连接域名:js ${productKey}.iot-as-mqtt.cn-shanghai.aliyuncs.com:1883 。 域名直连减少了HTTPS获取证书cert的过程。 资源受限的设备推荐使用域名直连。一些特殊增值服务,例如设备级别的引流,则推荐先HTTPS发送授权后再连接MQTT。在make.setting中设置js FEATURE_MQTT_DIRECT=y , 然后执行js make reconfig 即 可设置为先认证后再MQTT连接。 MQTT协议版本是多少? 在MQTT connect packet中设置MQTT的版本。目前SDK(V2.02)使用MQTT 3.1.1 。 可以修改SDK代码中js src\mqtt\mqtt_client.h IOTX_MC_MQTT_VERSION 的 值,来修改支持的版本。3:3.1版;4:3.1.1版。 MQTT进行设备认证时,server返回“400”错误 认证返回400错误,表示鉴权认证失败。请检查设备证书信息ProductKey、DeviceName和DeviceSecret是否正确。 C语言SDK中MQTT是否支持iOS接入? C语言SDK可以移植到任何能够支持C语言的系统上。如果是iOS系统建议寻找开源的Object-C实现。 目前mqtt-example设备上线后会立刻下线,请问如何修改mqtt-example让设备一直处于上线状态? mqtt-example程序发送一次消息后会自动退出,可以尝试以下任意一种方式实现长期在线。 执行mqtt-example时,使用命令行js ./mqtt-example loop , 设备会保持长期在线。修改demo代码。example 的代码在最后会调用IOT_MQTT_Destroy,设备最后会变成离线状态,所以可以修改代码,去掉IOT_MQTT_Unregister 和IOT_MQTT_Destroy。 while(1) { IOT_MQTT_Yield(pclient, 200); HAL_SleepMs(100); } 心跳的时间间隔如何设置? 在IOT_MQTT_Construct里面可以设置keepalive_interval_ms的取值。物联网平台使用这个值来作为心跳间隔时间。keepalive_interval_ms的取值范围是60000~300000。 设备端的重连机制是什么? 设备端会在keepalive_interval_ms时间间隔发送ping request,然后等待ping response。 如果设备端在keepalive_interval_ms时间内无法收到ping response,或是在进行send以及recv时发生错误,平台就认为此时网络断开,而需要进行重连。 重连机制是平台内部触发,无需使用者接入。重连时,会重新进行认证。如果认证成功就会开始再次进行MQTT connect。重连会一直持续直到再次连接成功。 云端如何侦测到设备离线? 云端会根据MQTT CONNECT packet里面keepalive的设置,等待ping request。如果在指定时间内没有收到ping request,则认为设备离线。 云端可以接受的最大时延是5秒。 设备端SDK是否支持MQTT和CCP协议的断线重连? 支持。测试场景描述:开发板通过WiFi连接上路由器后,把网线拔掉,MQTT和CCP协议都会自动尝试和server重新建立连接。尝试时间间隔是1s、2s、4s、8s、…,最大间隔时间默认是60s,也就是说断网后超过60s时间仍未连接成功,之后会每隔60s尝试和server重连。您可以设置最大间隔时间。 发布(Publish QoS1)数据时,偶尔会出现MQTT_PUSH_TO_LIST_ERROR(-42),如何解决? 需要等待ACK的packet都会存放起来,等待ACK。存放量有上限,当需要等待的packet太多到达上限时,就会触发js MQTT_PUSH_TO_LIST_ERROR(-42) error 。 出现错误可能是因为当前网络状态不好,或者是发送的频率过高。如果排除上述两个问题,当前的发送的频率是预期的,那么可以适当的调整IOTX_MC_REPUB_NUM_MAX、 IOTX_MC_SUB_REQUEST_NUM_MAX和IOTX_MC_SUB_NUM_MAX的大小。 如果业务允许,也可以把publish的QoS调整成0。 IOT_MQTT_Yield的作用是什么? IOT_MQTT_Yield的作用是尝试接收数据。因此在需要接收数据时,例如subscribe 和 unsubscribe之后,publish QoS1 消息之后,或是希望收到publish 数据时,都需要主动调用该函数。 IOT_MQTT_Yield参数timeout的意义是什么? IOT_MQTT_Yield会尝试接收数据,直到timeout时间到后才会退出。 IOT_MQTT_Yield与HAL_SleepMs的区别 IOT_MQTT_Yield与HAL_SleepMs都是阻塞一段时间,但是IOT_MQTT_Yield实质是去读取数据,而HAL_SleepMs则是系统什么也不做,等待timeout。 如何循环接收消息? 需要循环调用IOT_MQTT_Yield ,函数内自动维持心跳和接收数据。 订阅了多个Topic,调用一次IOT_MQTT_Yield,能接收到多个Topic的消息吗? 首先需要确定Topic的权限,是不是同时满足发布和订阅。如果是,调用一次IOT_MQTT_Yield,可以接收到多个packet。 MQTT连接方式,只能通过不停地调用IOT_MQTT_Yield来轮询获取数据吗? 如果使用的TCPIP协议栈,可以实现TCP主动通知上层有数据到达,可以改动实现事件触发的方式来触发IOT_MQTT_Yield。但是改动比较大,所以还请自行评估是否需要修改。 修改流程是: 调整utils_net.c里面socket的API,变成可以由TCP数据到达时回调的API。 当TCP主动通知上层有数据到达时,通知到MQTT服务器。让MQTT服务器内部执行IOT_MQTT_Yield,这样就可以不需要外部调用IOT_MQTT_Yield来读取数据。 如果TCP无法做到主动上报数据,但OS支持多线程,也可以在MQTT-example里面再起一个thread,在这个thread里面以下代码用于接收数据。收到数据时,触发主线程进行数据处理,而主线程大部分时间可以用于处理其他逻辑。 while(1) { IOT_MQTT_Yiled(pclient, 200); HAL_SleepMs(200); } 如果使用的系统也不支持多线程,就只能把IOT_MQTT_Yield的timeout时间间隔减小,然后提高调用的频率,在每次调用的时间间隔内执行其他操作,从而做到尽量减少对其他操作的阻塞。 是否支持QoS 2? 不支持。 什么情况下会发生订阅超时(subscribe timeout)? 在2倍request_timeout_ms时间内,系统未接收到SUBACK packet时,会触发订阅超时,并通过event_handle函数发送超时通知。 请在subscribe之后,立刻执行IOT_MQTT_Yield尝试读取SUBACK,请勿使用HAL_SleepMs。 subcribe时,返回IOTX_MQTT_EVENT_SUBCRIBE_NACK 请检查Topic的操作权限是否为订阅。 如果发布报错“no authorization”,请确认是否为发布权限。 MQTT 发布的消息体大小限制 MQTT的协议包受限于IOT_MQTT_Construct里参数的write_buf和read_buf的大小。 MQTT协议包大小不能超过256 KB。超过大小限制的消息会被丢弃。 MQTT协议pub消息payload格式是怎么样的? 物联网平台没有制定pub消息payload的具体字段有那些。您根据应用场景制定自己的协议,然后以JSON格式放到pub消息载体里面传给服务端。 ota_mqtt升级的时候报错“mqtt read buffer is too short” MQTT设置的buffer过小,即mqtt_param的pread_buf和pwrite_buf申请过小造成的。可以根据实际需要修改OTA_MQTT_MSGLEN的大小。 是否可以使用MQTT直连的方式进行OTA升级? OTA升级时,必须使用HTTPS进行固件下载。MQTT只接收版本更新指令,与MQTT的连接方式无关。阿里云不支持HTTP下载固件,因此如果设备没有SSL通信的能力,则不能使用OTA服务。 打开MQTT over TLS,运行时提示MQTT创建失败,返回错误码0x2700 如果关闭MQTT over TLS则可以成功地订阅和发布信息;打开MQTT over TLS时,建连失败。首先确认mbedtls是否做了修改,这是用于传输层和应用层之间加密的功能,不能随意更改。mbedtls没有修改,则考虑系统时间是否正确,系统时间不对也会导致证书校验失败。 进行mqtt连接的时候,是否需要root.crt证书验证? 若使用TLS进行MQTT接入,需要下载根证书。 若使用物联网平台提供的demo进行开发,无需再下载根证书,demo中已自带证书。 物联网平台支持哪些QoS Level? 在MQTT协议和CCP协议下,阿里云物联网平台支持的QoS Level都包括0和1。

剑曼红尘 2020-03-05 12:51:20 0 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

回答

前言 随着计算机技术和 Internet 的日新月异,视频点播技术因其良好的人机交互性和流媒体传输技术倍受教育、娱乐等行业青睐,而在当前, 云计算平台厂商的产品线不断成熟完善, 如果想要搭建视频点播类应用,告别刀耕火种, 直接上云会扫清硬件采购、 技术等各种障碍,以阿里云为例: image 这是一个非常典型的解决方案, 对象存储 OSS 可以支持海量视频存储,采集上传的视频被转码以适配各种终端,CDN 加速终端设备播放视频的速度。此外还有一些内容安全审查需求, 比如鉴黄、鉴恐等。 而在视频点播解决方案中, 视频转码是最消耗计算力的一个子系统,虽然您可以使用云上专门的转码服务,但在很多情况下,您会选择自己搭建转码服务。比如: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? 您有并发处理大量视频的需求。 您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF。后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF、获取视频或者音频的时长,自己搭建成本更低。 各种格式的音频转换或者各种采样率自定义、音频降噪等功能 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将它们再迁移到 OSS 上。 如果您的视频处理系统有上述需求,或者您期望实现一个 弹性、高可用、低成本、免运维、灵活支持任意处理逻辑 的视频处理系统,那么本文则是您期待的最佳实践方案。 Serverless 自定义音视频处理 在介绍具体方案之前, 先介绍两款产品: 函数计算 :阿里云函数计算是事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询、性能监控、报警等功能。 函数工作流:函数工作流(Function Flow,以下简称 FnF)是一个用来协调多个分布式任务执行的全托管云服务。您可以用顺序,分支,并行等方式来编排分布式任务,FnF 会按照设定好的步骤可靠地协调任务执行,跟踪每个任务的状态转换,并在必要时执行用户定义的重试逻辑,以确保工作流顺利完成。 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 函数计算可靠的执行任意逻辑, 逻辑可以是利用 FFmpeg 对视频任何处理操作, 也可以更新视频 meta 数据到数据库等。函数工作流对相应的函数进行编排, 比如第一步的函数是转码, 第二步的函数是转码成功后,将相应 meta 数据库写入数据库等。 至此,您应该初步理解了函数计算的自定义处理能力 + 函数工作流编排能力几乎满足您任何自定义处理的需求,接下来,本文以一个具体的示例展示基于函数计算和函数工作流打造的一个弹性高可用的 Serverless 视频处理系统,并与传统方案进行性能、成本和工程效率的对比。 Simple 视频处理系统 假设您是对视频进行单纯的处理, 架构方案图如下: image 如上图所示, 用户上传一个视频到 OSS, OSS 触发器自动触发函数执行, 函数调用 FFmpeg 进行视频转码, 并且将转码后的视频保存回 OSS。 OSS 事件触发器, 阿里云对象存储和函数计算无缝集成。您可以为各种类型的事件设置处理函数,当 OSS 系统捕获到指定类型的事件后,会自动调用函数处理。例如,您可以设置函数来处理 PutObject 事件,当您调用 OSS PutObject API 上传视频到 OSS 后,相关联的函数会自动触发来处理该视频。 Simple 视频处理系统示例工程地址 强大的监控系统: 您可以直接基于示例工程部署您的 Simple 音视频处理系统服务, 但是当您想要处理超大视频(比如 test_huge.mov ) 或者对小视频进行多种组合操作的时候, 您会发现函数会执行失败,原因是函数计算的执行环境有最大执行时间为 10 分钟的限制,如果最大的 10 分钟不能满足您的需求, 您可以选择: 对视频进行分片 -> 转码 -> 合成处理, 详情参考:fc-fnf-video-processing, 下文会详细介绍; 联系函数计算团队(钉钉群号: 11721331) 或者提工单: 适当放宽执行时长限制; 申请使用更高的函数内存 12G(8vCPU) 为了突破函数计算执行环境的限制(或者说加快大视频的转码速度), 进行各种复杂的组合操作, 此时引入函数工作流 FnF 去编排函数实现一个功能强大的视频处理工作流系统是一个很好的方案。 视频处理工作流系统 image 如上图所示, 假设用户上传一个 mov 格式的视频到 OSS,OSS 触发器自动触发函数执行, 函数调用 FnF,会同时进行 1 种或者多种格式的转码(由您触发的函数环境变量DST_FORMATS 参数控制)。 所以您可以实现如下需求: 一个视频文件可以同时被转码成各种格式以及其他各种自定义处理,比如增加水印处理或者在 after-process 更新信息到数据库等。 当有多个文件同时上传到 OSS,函数计算会自动伸缩, 并行处理多个文件, 同时每次文件转码成多种格式也是并行。 结合 NAS + 视频切片, 可以解决超大视频(大于 3G )的转码, 对于每一个视频,先进行切片处理,然后并行转码切片,最后合成,通过设置合理的切片时间,可以大大加速较大视频的转码速度。 所谓的视频切片,是将视频流按指定的时间间隔,切分成一系列分片文件,并生成一个索引文件记录分片文件的信息 视频处理工作流系统示例工程地址 示例效果: gif 函数计算 + 函数工作流 Serverless 方案 VS 传统方案 卓越的工程效率 自建服务 函数计算 + 函数工作流 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 并行&分布式视频处理 需要很强的开发能力和完善的监控系统来保证稳定性 通过 FnF 资源编排即可实现多个视频的并行处理以及单个大视频的分布式处理,稳定性和监控交由云平台 学习上手成本 除了编程语言开发能力和熟悉 FFmpeg 以外,可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码和熟悉 FFmpeg 使用即可 项目上线周期 在具体业务逻辑外耗费大量的时间和人力成本,保守估计大约 30 人天,包括硬件采购、软件和环境配置、系统开发、测试、监控报警、灰度发布系统等 预计 3 人天, 开发调试(2人天)+ 压测观察(1 人天) 弹性伸缩免运维,性能优异 自建服务 函数计算 + 函数工作流 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维,视频处理工作流系统 (FnF + FC) 压测;性能优异, 详情见下面的转码性能表 监控报警查询 ECS 或者容器级别的 metrics 提供更细粒度的 FnF 流程执行以及函数执行情况, 同时可以查询每次函数执行的 latency 和日志等, 更加完善的报警监控机制 函数计算 + 函数工作流 Serverless 方案转码性能表 实验视频为是 89s 的 mov 文件 4K 视频: 4K.mov,云服务进行 mov -> mp4 普通转码需要消耗的时间为 188s, 将这个参考时间记为 T 视频切片时间 FC转码耗时 性能加速百分比 45s 160s 117.5% 25s 100s 188% 15s 70s 268.6% 10s 45s 417.8% 5s 35s 537.1% 性能加速百分比 = T / FC转码耗时 从上表可以看出,设置的视频切片时间越短, 视频转码时间越短, 函数计算可以自动瞬时调度出更多的计算资源来一起完成这个视频的转码, 转码性能优异。 更低的成本 具有明显波峰波谷的视频处理场景(比如只有部分时间段有视频处理请求,其他时间很少甚至没有视频处理请求),选择按需付费,只需为实际使用的计算资源付费。 没有明显波峰波谷的视频处理场景,可以使用预付费(包年包月),成本仍然具有竞争力。 函数计算成本优化最佳实践文档。 假设有一个基于 ECS 搭建的视频转码服务,由于是 CPU 密集型计算, 因此在这里将平均 CPU 利用率作为核心参考指标对评估成本,以一个月为周期,10 台 C5 ECS 的总计算力为例, 总的计算量约为 30% 场景下, 两个解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元 函数计算按量付费占整个计算量的占比 <= 10%,费用约为 3×864×10% = 259.2 元,(3G 规格的函数满负载跑满一个月费用为:0.00011108×3×30×24×3600 = 863.8,详情查看计费) ITEM 平均CPU利用率 计算费用 总计 函数计算组合付费 >=80% 998(246.27×3+259.2) <= 998 按峰值预留ECS <=30% 2190(10*219) >=2190 在这个模型预估里面,可以看出 FC 方案具有很强的成本竞争力,在实际场景中, 基于 ECS 自建的视频转码服务 CPU 利用甚至很难达到 20%, 理由如下: 可能只有部分时间段有视频转码请求 为了用户体验,视频转码速度有一定的要求,可能一个视频转码就需要 10 台 ECS 并行处理来转码, 因此只能预备很多 ECS 因此,在实际场景中, FC 在视频处理上的成本竞争力远强于上述模型。 即使和云厂商视频转码服务单价 PK, 该方案仍有很强的成本竞争力 我们这边选用点播视频中最常用的两个格式(mp4、flv)之间进行相互转换,经实验验证, 函数内存设置为3G,基于该方案从 mp4 转码为 flv 的费用概览表: 实验视频为是 89s 的 mp4 和 flv 格式的文件视频, 测试视频地址: 480P.mp4 720P.mp4 1080P.mp4 4K.mp4 480P.flv 720P.flv 1080P.flv 4K.flv 测试命令: ffmpeg -i test.flv test.mp4 和 ffmpeg -i test.flv test.mp4 mp4 转 flv: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 889 kb/s 24 11.2s 0.003732288 0.032 88.3% 高清 1280720 1963 kb/s 24 20.5s 0.00683142 0.065 89.5% 超清 19201080 3689 kb/s 24 40s 0.0133296 0.126 89.4% 4K 38402160 11185 kb/s 24 142s 0.04732008 0.556 91.5% flv 转 mp4: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 712 kb/s 24 34.5s 0.01149678 0.032 64.1% 高清 1280720 1806 kb/s 24 100.3s 0.033424 0.065 48.6% 超清 19201080 3911 kb/s 24 226.4s 0.0754455 0.126 40.1% 4K 38402160 15109 kb/s 24 912s 0.30391488 0.556 45.3% 成本下降百分比 = (某云视频处理费用 - FC 转码费用)/ 云视频处理费用 某云视频处理,计费使用普通转码,转码时长不足一分钟,按照一分钟计算,这里计费采用的是 2 min,即使采用 1.5 min 计算, 成本下降百分比基本在10%以内浮动 从上表可以看出, 基于函数计算 + 函数工作流的方案在计算资源成本上对于计算复杂度较高的 flv 转 mp4 还是计算复杂度较低的 mp4 转 flv, 都具有很强的成本竞争力。 根据实际经验, 往往成本下降比上表列出来的更加明显, 理由如下: 测试视频的码率较高, 实际上很多场景绝大部分都是标清或者流畅视频的转码场景, 码率也比测试视频低,这个时候计算量变小, FC 执行时间短, 费用会降低, 但是通用的云转码服务计费是不变的. 很多视频分辨率在通用的云转码服务是计费是有很大损失的, 比如转码的视频是 856480 或者 1368768, 都会进入云转码服务的下一档计费单价, 比如856480 进入 1280720 高清转码计费档,1368768 进入 19201080 超清转码计费档, 单价基本是跨越式上升, 但是实际真正的计算量增加可能还不到30%, 而函数计算则是真正能做到按计算量付费. 操作部署 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 详情见各自示例工程的 README Simple 视频处理系统示例工程地址 视频处理工作流系统示例工程地址 总结 基于函数计算 FC 和函数工作流 FnF 的弹性高可用视频处理系统天然继承了这两个产品的优点: 无需采购和管理服务器等基础设施,只需专注视频处理业务逻辑的开发,大幅缩短项目交付时间和人力成本 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发响应用户请求 免运维,毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,性能优异 成本极具竞争力 相比于通用的转码处理服务: 超强自定义,对用户透明, 基于 FFmpeg 或者其他音视频处理工具命令快速开发相应的音视频处理逻辑 原有基于 FFmpeg 自建的音视频处理服务可以一键迁移 弹性更强, 可以保证有充足的计算资源为转码服务,比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完 各种格式的音频转换或者各种采样率自定义、音频降噪等功能, 比如专业音频处理工具 aacgain 和 mp3gain 可以和 serverless 工作流完成更加复杂、自定义的任务编排,比如视频转码完成后,记录转码详情到数据库,同时自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力 更多的方式的事件驱动, 比如可以选择 OSS 自动触发(丰富的触发规则), 也可以根据业务选择 MNS 消息(支持 tag 过滤)触发 在大部分场景下具有很强的成本竞争力相比于其他自建服务: 毫秒级弹性伸缩,弹性能力超强,支持大规模资源调用,可弹性支持几万核.小时的计算力,比如 1 万节课半个小时完成转码 只需要专注业务逻辑代码即可,原生自带事件驱动模式,简化开发编程模型,同时可以达到消息(即音视频任务)处理的优先级,可大大提高开发运维效率 函数计算采用 3AZ 部署, 安全性高,计算资源也是多 AZ 获取, 能保证每个用户需要的算力峰值 开箱即用的监控系统, 如上面 gif 动图所示,可以多维度监控函数的执行情况,根据监控快速定位问题,同时给用户提供分析能力, 比如视频的格式分布, size 分布等 在大部分场景下具有很强的成本竞争力, 因为在函数计算是真正的按量付费(计费粒度在百毫秒), 可以理解为 CPU 的利用率为 100% 最后一一回答一下之前列出的问题: Q1: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? A: 如工程示例所示,在虚拟机/容器平台上基于 FFmpeg 的服务可以轻松切换到函数计算, FFmpeg 相关命令可以直接移值到函数计算,改造成本较低, 同时天然继承了函数计算弹性高可用性特性。 Q2:您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF 等。 自己搭建成本更低。 A: 函数计算天生就是解决这些自定义问题, 你的代码你做主, 代码中快速执行几个 FFmpeg 的命令即可完成需求。典型示例: fc-oss-ffmpeg Q3: 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案),after-process 中可以做一些自定义的操作, 您还可以基于此流程再做一些额外处理等, 比如: 再增加后续流程 最开始增加 pre-process Q4: 您有并发同时处理大量视频的需求。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), 当有多个文件同时上传到 OSS, 函数计算会自动伸缩, 并行处理多个文件。详情可以参考 视频处理工作流系统 (FnF + FC) 压测 Q5:您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。A: 详情可以参考视频处理工作流系统 (FnF + FC) 压测, 可以通过控制分片的大小, 可以使得每个大视频都有足够多的计算资源参与转码计算, 大大提高转码速度。 Q6: 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF,后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), FnF 只负责编排调用函数, 因此只需要更新相应的处理函数即可,同时函数有 version 和 alias 功能, 更好地控制灰度上线, 函数计算版本管理 Q7: 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将他们再迁移到 OSS 上。 A: 函数计算可以挂载 NAS, 直接对 NAS 中的文件进行处理

1934890530796658 2020-03-27 18:21:36 0 浏览量 回答数 0

问题

.NET SDK开发包

青衫无名 2019-12-01 21:48:58 1364 浏览量 回答数 0

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

问题

应用 AXIS 开始 Web 服务之旅:报错

kun坤 2020-06-08 11:01:46 3 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站