• 关于

    中断原理

    的搜索结果

回答

说实话这乱七八糟一堆文字我看了两边,然后发现真救不了你. ######回复 @刘子玄:操作系统不管理寄存器,现在都是抢占式多线程操作系统,都是在线程释放资源的时候切换到其他进程的(你调用某些api的时候会发生等待和切换操作,然后保存线程执行环境数据)看一下操作系统原理的书籍就知道了.直接切换那个只有纯正的分时操作系统才会去做.现在估计只剩下大型UNIX了######==######靠时钟中断,硬件一定会定时发起时钟中断,中断服务一定会执行,这样就可以进行调度或做其他事了,中断机制由硬件保证。找书看吧,这些问题不是几句说得清。######谢了######在中断产生时,寄存器压栈,在中断结束后,堆栈的数据弹回到寄存器。###### 寄存器操作是汇编级别的最小操作单元,即使是操作系统也不能够管理寄存器. 是计算机有一些指令,能够自己把所有寄存器保存到一个地方.######计算机基础如此博大精深,几十年高科技结晶,不是三天三夜就能说清的,更何况几句话###### 简单2个字压栈.OS的原理很简单,你可以找一些嵌入式的OS开源代码进行阅读,相信读完2个系统的代码后,就对OS核心部分很清楚了. 挑你的一个问题进行回答:" 操作系统是如何让一个程序在规定时间内执行再准确的暂停了?这是如何控制的?"      感觉你还不清楚调度算法的实现.简单的说:硬件中断将其打断,如果需要1ms的进程调度精度,那么就设置时钟中断为1ms. 你可以看下中断部分的代码.       CPU的PC指针即使软件不去设置它也不是固定不变只能向下跑的.当中断发生的时候,PC指针会自动修改到相应中断向量的物理地址上,并且中断时的重要寄存器的值被硬件自动保存. 于是我们就设置一个时钟中断向量(将这个地址上写入我们的代码函数的地址),每18msPC指针会被自动改到这个地方,在这个地方我们根据调度算法,看是继续执行被打断的线程还是切换到更合适的线程上.  感性上,线程/cpu的运行实际上是非常的不连贯, 中途不断的被各种中断疯狂的打断.尤其高响应的硬实时OS,打断应该更加频繁. 我们想干任何事情都可以在中断处理中去做.        此外除了硬件中断,因为硬件功能都是api提供,so程序代码实际上经常会很频繁调用一些系统API,既然调用了系统api,os也完全可以在系统api执行软中断,执行调度算法,把pc指针移到别处去,不再正常的函数返回了(保存好数据,下次调度它时,模拟这个函数返回,应用程序完全不知道发生了什么). ######一个嵌入式OS的代码不过几千行而已. 看完几个 你就精通OS的实现了.不过"知识改变命运", 懂得越多混得越惨, 个人建议你干点其他能赚钱的事情.底层实现的东西,除了吹牛,提升点技术素质,对赚钱来说毫无用处,面试时都没用!!(实际上现在面试都是看算法)  小正太, 根据赚钱来指导自己学习/背诵什么东西.(很心痛的经验)######回复 @MinGKai:haha.反正比赚1个亿简单多了.######“精通”OS有那么简单么…………######这个你放心,我只会把编程当成毕生的爱好,而不会用作工作。
优选2 2020-06-09 16:14:52 0 浏览量 回答数 0

回答

说实话这乱七八糟一堆文字我看了两边,然后发现真救不了你. ######回复 @刘子玄 : 操作系统不管理寄存器,现在都是抢占式多线程操作系统,都是在线程释放资源的时候切换到其他进程的(你调用某些api的时候会发生等待和切换操作,然后保存线程执行环境数据)看一下操作系统原理的书籍就知道了.直接切换那个只有纯正的分时操作系统才会去做.现在估计只剩下大型UNIX了######= =######靠时钟中断,硬件一定会定时发起时钟中断,中断服务一定会执行,这样就可以进行调度或做其他事了,中断机制由硬件保证。找书看吧,这些问题不是几句说得清。######谢了######在中断产生时,寄存器压栈,在中断结束后,堆栈的数据弹回到寄存器。###### 寄存器操作是汇编级别的最小操作单元,即使是操作系统也不能够管理寄存器. 是计算机有一些指令,能够自己把所有寄存器保存到一个地方. ######计算机基础如此博大精深,几十年高科技结晶,不是三天三夜就能说清的,更何况几句话###### 简单2个字 压栈. OS的原理很简单, 你可以找一些嵌入式的OS开源代码进行阅读, 相信读完2个系统的代码后, 就对OS核心部分很清楚了. 挑你的一个问题进行回答: "操作系统是如何让一个程序在规定时间内执行再准确的暂停了?这是如何控制的?"       感觉你还不清楚调度算法的实现.简单的说: 硬件中断将其打断,如果需要1ms的进程调度精度,那么就设置时钟中断为1ms.  你可以看下中断部分的代码.        CPU的PC指针即使软件不去设置它也不是固定不变只能向下跑的. 当中断发生的时候,PC指针会自动修改到相应中断向量的物理地址上,并且中断时的重要寄存器的值被硬件自动保存.  于是我们就设置一个时钟中断向量(将这个地址上写入我们的代码函数的地址), 每18ms PC指针会被自动改到这个地方,在这个地方 我们根据调度算法, 看是继续执行被打断的线程 还是切换到更合适的线程上.   感性上, 线程/cpu 的运行 实际上是非常的不连贯,  中途不断的被各种中断疯狂的打断. 尤其高响应的硬实时OS,打断应该更加频繁.  我们想干任何事情都可以在中断处理中去做.         此外除了硬件中断, 因为硬件功能都是api提供,so程序代码实际上经常会很频繁调用一些系统API, 既然调用了系统api, os也完全可以在系统api执行软中断, 执行调度算法, 把pc指针移到别处去, 不再正常的函数返回了(保存好数据, 下次调度它时,模拟这个函数返回, 应用程序完全不知道发生了什么). ######一个嵌入式OS的代码不过几千行而已.  看完几个  你就精通OS的实现了. 不过"知识改变命运",  懂得越多混得越惨,  个人建议你干点其他能赚钱的事情. 底层实现的东西, 除了吹牛, 提升点技术素质, 对赚钱来说毫无用处, 面试时都没用!! (实际上现在面试都是看算法)   小正太,  根据赚钱来指导自己学习/背诵 什么东西. (很心痛的经验)######回复 @MinGKai : haha. 反正比赚1个亿简单多了.######“精通”OS有那么简单么…………######这个你放心,我只会把编程当成毕生的爱好,而不会用作工作。
爱吃鱼的程序员 2020-05-30 22:45:50 0 浏览量 回答数 0

问题

druid mysql skip not validate connection

1.0.26时,就会报这个错!!现在用的1.0.29,依然报这个错!!这个错误原理很简单,druid检查池中链接时,并不是真的去测试,而是一般的检测而已,具体可以看源码!而导致这个错误的原因也很简单,防!火!墙!!我的环境是,自己电脑做中间...
lion666 2019-12-01 20:03:55 1970 浏览量 回答数 1

问题

target="_blank"与target="blank"原来是有区别的啊!

target="_blank"在新标签打开链接一直以为target="blank"是错误的写法,没想到这样写还有效果啊:当标签已经打开了,点击第二次就不会再打开新标签了,而是刷新之前的那个标签啊,怎么这么神奇,特异功能啊!去查了一下,tar...
杨冬芳 2019-12-01 20:07:31 1099 浏览量 回答数 1

问题

负载均衡实例增加重试机制公告

尊敬的阿里云用户, 您好! 为了减少机器故障或升级对用户业务的影响,负载均衡采用了集群部署架构,并支持会话同步,可最大限度保证客户端访问负载均衡实例不中断。但是ÿ...
行者武松 2019-12-01 21:43:20 1871 浏览量 回答数 0

回答

(1)线程的工作场景主要有两条: 一个是并发操作,避免阻塞和更有效利用资源。典型的例子有:在长时间工作的程序中使用工作线程避免界面失去响应。在网络下载程序中,使用多个线程提高对网络的使用效率,更快下载文件。 一个是并行,线程是处理器调度的最小单位。如果你的计算机配置了多个处理器或者内核,那么可以同时利用多个处理器同时计算,加快问题解决的速度。 (2)多线程的工作原理: 对于单处理器系统,操作系统会轮流调度每个线程执行一小段时间,然后切换另一个线程,在切换的时候,保存当前线程使用的寄存器上下文和堆栈,并且在下次调度的时候恢复。这样线程中的程序感觉不到自己被中断过。对于多处理器系统,操作系统会将不同的线程调度给多个处理器,让它们并行执行。
蛮大人123 2019-12-02 01:50:45 0 浏览量 回答数 0

回答

alert的东西放在$(function(){})里面试试你的script放在页面的什么位置?你可以试试把事件绑定放在$(function(){//事件绑定}) 放到启动函数里面 总的原因是for循环里面有错误,js停止执行。 第一种方法可以弹出,是因为script标签隔离,js错误只能影响当前script标签内的顺序执行,这个不知道原理,但知道这个现象。 第二种在一个script标签,for循环错误,js中断执行,所以下面的事件跟本没有注册。 在chrome浏览器,或者带调试的浏览器,按F12看下console,里面有详细错误。for循环错,应该是function,改不了了。。。
爱吃鱼的程序员 2020-06-08 10:40:17 0 浏览量 回答数 0

回答

写一些程序,尤其是比较底层的程序。就明白它们的用处了。 列举下我们当初的作业(其实是老师从UC Santa Barbara\UC Berkley CS作业直接copy来题目) (1)实现一个简单的 TCP 传输层的协议机制 自己去设计协议,不用照搬 RFC 的标准,其实就是数据结构的用场。 需要考虑到数据包丢失(Loss)、损坏(Corruption)、乱序(Disorder)这样的情况。 (2)实现操作系统的虚拟内存机制(基于Nachos系统) 如何去设计页表。如何使用置换算法。以及应用程序请求页的时候,发生缺页,从而导致的中断如何处理。 (3)实现一个简单的编译器(MiniJava) 词法:字符串匹配,表达式求值 等算法; 语法:生成抽象语法树; 语义:采用适当的设计模式(Visitor)来生成语义表、字典、然后转化为目标代码(可以是汇编、或者是类似的 Three-Address Code) 如果以上三个任务都完成并搞懂了,那么恭喜:你不仅掌握了数据结构、算法,而且也学习了计算机网络、操作系统、编译原理中大部分的知识。
知与谁同 2019-12-02 01:23:47 0 浏览量 回答数 0

回答

技术原理 数据迁移 数据传输服务DTS在数据迁移的过程中,通过数据的全量迁移和增量迁移结合,迁移的源端数据库无需在迁移过程中停机,应用服务不会因为数据迁移出现中断。 数据迁移的技术原理如下图所示。 数据迁移过程: 结构迁移:将源实例中的结构对象定义一键迁移至目标实例。 全量迁移:源实例中的历史存量数据迁移至目标实例。 增量数据迁移:全量迁移的同时进行增量数据拉取迁移,保障被迁移数据的完整性和一致性。 数据迁移 阿里云数据迁移支持: 多种迁移类型:结构对象迁移、全量数据迁移以及增量数据迁移。 不停服迁移,迁移过程需要经历: 结构对象迁移 全量迁移 增量数据迁移 通过有效的规划和演练,整个数据迁移的中断时间可以缩短至应用流量的切换时间,从而实现秒级切换。 数据订阅 数据订阅支持实时拉取RDS实例的增量日志,用户可以通过DTS SDK来数据订阅服务端订阅增量日志,根据业务需求,实现数据定制化消费。 地持久化。 日志抓取模块通过数据库协议连接并实时拉取源实例的增量日志。例如源实例为RDS For MySQL,那么数据抓取模块通过Binlog dump协议连接源实例。 数据同步 数据传输服务的实时同步功能能够实现任何两个RDS实例之间的增量数据实时同步,并支持RDS实例到ADS和ODPS等分析型数据库的数据实时同步。 同步链路的创建过程包括: 1. 同步初始化, 同步初始化主要将源实例的历史存量数据在目标实例初始化一份。 2. 增量数据实时同步, 当初始化完成后进入两边增量数据实时同步阶段,在这个阶段,DTS会实现源实例跟目标实例之间数据动态同步过程。 增量数据实时同步过程,DTS的底层实现模块主要包括: 1. 日志读取模块 2. 日志读取模块从源实例读取原始数据,经过解析、过滤及标准格式化,最终将数据在本地持久化。日志读取模块通过数据库协议连接并读取源实例的增量日志。如果源DB为RDS MySQL,那么数据抓取模块通过Binlog dump协议连接源库。 3. 日志回放模块 4. 日志回放模块从日志读取模块中请求增量数据,并根据用户配置的同步对象进行数据过滤,然后在保证事务时序性及事务一致性的前提下,将日志记录同步到目标实例。 DTS实现了日志读取模块、日志回放模块的高可用,DTS容灾系统一旦检测到链路异常,就会在健康服务节点上断点重启链路,从而有效保证同步链路的高可用。
剑曼红尘 2020-03-23 13:53:47 0 浏览量 回答数 0

回答

计算机科学与技术专业课程 课程简介 1.数字逻辑电路: “数字逻辑”是计算机专业本科生的一门主要课程,具有自身的理论体系和很强的实践性。它是计算机组成原理的主要先导课程之一,是计算机应用专业关于计算机系统结构方面的主干课程之一。 课程的主要目的是使学生了解和掌握从对数字系统提出要求开始,一直到用集成电路实现所需逻辑功能为止的整个过程的完整知识。内容有数制和编码、布尔代数和逻辑函数、组合逻辑电路的分析和设计,时序逻辑电路的分析和设计,中、大规模集成电路的应用。通过对该课程的学习,可以为计算机组成原理、微型计算机技术、计算机系统结构等课程打下坚实的基础。 2.计算机组成原理: 本课程是计算机系本科生的一门重要专业基础课。在各门硬件课程中占有举足轻重的地位。它的先修课程是《数字逻辑电路》,后继课程有《微机接口技术》、《计算机系统结构》。从课程地位来说,本课程在先修课和后继课中起着承上启下的作用。主要讲解计算机五大部件的组成及工作原理,逻辑设计与实现方法,整机的互连技术,培养学生具有初步的硬件系统分析、设计、开发和使用的能力。具体内容包括:数制与码制、基本逻辑部件、运算方法与运算器、指令系统与寻址方式,中央处理器(CPU)的工作原理及设计方法。存储系统和输入/输出(I/O)系统等。通过该课程的学习,可以使学生较深地掌握单台计算机的组成及工作原理,进一步加深对先修课程的综合理解及灵活应用,为后继课程的学习建立坚实的基础知识。 3.微机接口技术: 本课程是计算机科学与技术专业学生必修的核心课程之一,它的先修课程为数字逻辑、计算机组成原理。本课程对于训练学生掌握硬件接口设计技术,熟悉微处理器和各种接口芯片的硬件设计和软件调试技术都有重要作用,在软件方面要求掌握汇编语言,在硬件方面要掌握中断、DMA、计数器/定时器等设计技术。通过该课程的学习使学生学会微机接口设计的基本方法和技能。 4.计算机系统结构: 计算机系统结构主要是研究高性能计算机组织与结构的课程。主要包括:计算机系统结构的基本概念、指令的流水处理与向量计算机、高性能微处理器技术、并行处理机结构及算法和多处理机技术。结合现代计算机系统结构的新发展,介绍近几年来计算机系统结构所出现的一些新概念和新技术。 5.数据库概论: 数据库已是计算机系本科生不可缺少的专业基础课,它是计算机应用的重要支柱之一。该课程讲授数据库技术的特点,数据库系统的结构,三种典型数据模型及系统(以关系型系统为主)、数据库规范化理论,数据库的设计与管理,以及数据库技术的新进展等。通过本课程学习,掌握基本概念、理论和方法,学会使用数据库管理系统设计和建立数据库的初步能力,为以后实现一个数据库管理系统及进行系统的理论研究打下基础。 6.算法与数据结构: “数据结构”是计算机程序设计的重要理论技术基础,是计算机科学与技术专业的必修课,是计算机学科其它专业课的先修课程。通过学习本课程使学生掌握数据结构的基本逻辑结构和存储结构及其基本算法的设计方法,并在实际应用中能灵活使用。学会分析研究数据对象的特性,选择合适的逻辑结构、存储结构及设计相应的算法。初步掌握算法的时空分析技巧,同时进行程序设计训练。使学生学会应用抽象数据类型概念进行抽象设计。主要内容有:线性表、链表、栈、队列、数组、广义表、树与二叉树、图、查找、排序、内存管理、文件存储管理。 7.离散数学: “离散数学”是计算机科学与技术专业必修课程,其主要内容包括:命题逻辑;一阶命题逻辑;集合、关系与映射;代数系统、布尔代数 ;图论等。这些内容为学习计算机专业课程,如编译原理、数据结构提供重要的理论工具,同时也是计算机应用不可缺少的理论基础。 离散数学主要培养学生对事物的抽象思维能力和逻辑推理能力,为今后处理离散信息,从事计算机软件的开发和设计,以及计算机的其它实际应用打好数学基础。 8.操作系统: 操作系统是现代计算机系统中不可缺少的重要组成部分。它的先修课程是数据结构和计算机基础,在此基础上讲解操作系统的主要内容:CPU管理、存储器管理、作业管理、I/O设备管理和文件管理。这些基本原理告诉人们作为计算机系统中各种资源的管理者和各种活动的组织者、指挥者,操作系统是如何使整个计算机系统有条不率地高效工作,以及它为用户使用计算机系统提供了哪些便利手段。掌握了这些知识,人们就会对计算机系统的总体框架、工作流程和使用方法有了一个全面的认识,就会清楚后续专业课程所述内容在计算机系统中所处的地位和作用,这样不仅便于理解后续课程内容,而且能使人们把计算机的各部分知识有机地联系起来。此外,由于多处理机系统和计算机网络的盛行,本课程中也包含了对多处理机操作系统和网络操作系统的概述,从而使学习者可以跟上计算机技术的发展速度。 9.数据通信与计算机网: 该课程主要介绍网络基本理论和网络最新实用技术,分基础理论、实用技术和新技术三部分进行讲述。主要讲解计算机网络的功能和组成,数据传输,链路控制,多路复用,差错检测,网络体系结构,网络分层协议及局域网、广域网等。要求学生掌握数据通信的基本原理和计算机网络的体系结构,打下坚实的理论基础,培养实际应用的能力,为今后从事计算机网络的科研和设计工作打下基础。 10.高级语言程序设计: 本课程介绍了C与C++的全集。它从语法入手,同时强调程序设计的基本方法,以使学生能在较短的时间内,掌握C语言的结构化程序设计方法与C++语言的面向对象程序设计方法。主要内容有:1、过程初步;2、过程组织和管理;3、C++的数据类型;4、类与对象;5、继承;6、I/O流。 11.软件工程: 软件工程课程是计算机专业的一门主要专业课程,是培养高水平软件研制和开发人员的一门重程。该课程主要介绍软件工程的概念、原理及典型的方法技术,进述软件生存周期各阶段的任务、过程、方法和工具,讨论了软件工程使用的科学管理技术。 12.数据库应用: 通过实践方式使学生进一步掌握数据库知识和技术,掌握C/S(客户/服务)模式下的大型数据库的设计与实现,培养同行间的合作精神,学习应用合作方法。 13.软件编程实践: 主要介绍最新的常规的软件编程平台、工具和方法。本课程面向应用技术和实用技术,培养学生自学新技术的能力,在WINDOWS下的综合编程能力,实际解决问题能力。 14.计算机网络工程: 计算机技术与通信技术相结合导致了计算机网络的产生。计算机网络已成为当今大型信息系统的基础。-------------------------高等数学、大学英语、概率统计、离散数学、电路、模拟电子、数字电子、数据结构、操作系统、编译原理、计算机网络、数据库原理、软件工程、汇编语言、C++程序设计、接口技术、Java、VC++、计算机病毒分析、信息安全、等。 高数学的是微积分,线性代数,概率论与数理统计。英语是大学英语上下。还有就是专业的计算机知识,数据分析,c语言,java,还有计算机的系统分析,各种软件技术,学会写代码,程序等。
琴瑟 2019-12-02 01:22:34 0 浏览量 回答数 0

回答

一:C语言 嵌入式Linux工程师的学习需要具备一定的C语言基础,C语言是嵌入式领域最重要也是最主要的编程语言,通过大量编程实例重点理解C语言的基础编程以及高级编程知识。包括:基本数据类型、数组、指针、结构体、链表、文件操作、队列、栈等。 二:Linux基础 Linux操作系统的概念、安装方法,详细了解Linux下的目录结构、基本命令、编辑器VI ,编译器GCC,调试器GDB和 Make 项目管理工具, Shell Makefile脚本编写等知识,嵌入式开发环境的搭建。 三:Linux系统编程 重点学习标准I/O库,Linux多任务编程中的多进程和多线程,以及进程间通信(pipe、FIFO、消息队列、共享内存、signal、信号量等),同步与互斥对共享资源访问控制等重要知识,主要提升对Linux应用开发的理解和代码调试的能力。 四:Linux网络编程 计算机网络在嵌入式Linux系统应用开发过程中使用非常广泛,通过Linux网络发展、TCP/IP协议、socket编程、TCP网络编程、UDP网络编程、Web编程开发等方面入手,全面了解Linux网络应用程序开发。重点学习网络编程相关API,熟练掌握TCP协议服务器的编程方法和并发服务器的实现,了解HTTP协议及其实现方法,熟悉UDP广播、多播的原理及编程方法,掌握混合C/S架构网络通信系统的设计,熟悉HTML,Javascript等Web编程技术及实现方法。 五:数据结构与算法 数据结构及算法在嵌入式底层驱动、通信协议、及各种引擎开发中会得到大量应用,对其掌握的好坏直接影响程序的效率、简洁及健壮性。此阶段的学习要重点理解数据结构与算法的基础内容,包括顺序表、链表、队列、栈、树、图、哈希表、各种查找排序算法等应用及其C语言实现过程。 六:C++ 、QT C++是Linux应用开发主要语言之一,本阶段重点掌握面向对象编程的基本思想以及C++的重要内容。图形界面编程是嵌入式开发中非常重要的一个环节。由于QT具有跨平台、面向对象、丰富API、支持2D/3D渲染、支持XML、多国语等强大功能,在嵌入式领域的GUI开发中得到了广范的应用,在本阶段通过基于QT图形库的学习使学员可以熟练编写GUI程序,并移植QT应用程序到Cortex-A8平台。包括IDE使用、QT部件及布局管理器、信息与槽机制的应用、鼠标、键盘及绘图事件处理及文件处理的应用。 七:Cortex A8 、Linux 平台开发 通过基于ARM Cortex-A8处理s5pv210了解芯片手册的基本阅读技巧,掌握s5pv210系统资源、时钟控制器、电源管理、异常中断控制器、nand flash控制器等模块,为底层平台搭建做好准备。Linux平台包括内核裁减、内核移植、交叉编译、GNU工具使用、内核调试、Bootloader介绍、制作与原理分析、根文件系统制作以及向内核中添加自己的模块,并在s5pv210实验平台上运行自己制作的Linux系统,集成部署Linux系统整个流程。同时了解Android操作系统开发流程。Android系统是基于Linux平台的开源操作系统,该平台由操作系统、中间件、用户界面和应用软件组成,是首个为移动终端打造的真正开放和完整的移动软件,目前它的应用不再局限于移动终端,还包括数据电视、机顶盒、PDA等消费类电子产品。 八:驱动开发 驱动程序设计是嵌入式Linux开发工作中重要的一部分,也是比较困难的一部分。本阶段的学习要熟悉Linux的内核机制、驱动程序与用户级应用程序的接口,掌握系统对设备的并发操作。熟悉所开发硬件的工作原理,具备ARM硬件接口的基础知识,熟悉ARM Cortex-A8处理器s5pv210各资源、掌握Linux设备驱动原理框架,熟悉工程中常见Linux高级字符设备、块设备、网络设备、USB设备等驱动开发,在工作中能独立胜任底层驱动开发。 以上就是列出的关于一名合格嵌入式Linux开发工程师所必学的理论知识,其实,作为一个嵌入式开发人员,专业知识和项目经验同样重要,所以在我们的理论学习中也要有一定的项目实践,锻炼自己的项目开发能力。
知与谁同 2019-12-02 01:22:27 0 浏览量 回答数 0

回答

GPS卫星信号由24颗卫星组成(21颗工作卫星,3颗备用卫星),它位于距地表20200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能在卫星中预存的导航信息。GPS的卫星因为大气摩擦等问题,随着时间的推移,导航精度会逐渐降低。 GPS 信号接收机。其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。GPS 接收机的结构分为天线单元和接收单元两部分。接收机一般采用机内和机外两种直流电源。设置机内电源的目的在于更换外电源时不中断连续观测。在用机外电源时机内电池自动充电。关机后,机内电池为RAM存储器供电,以防止数据丢失。目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。其次则为使用者接收器,现有单频与双频两种,但由于价格因素,一般使用者所购买的多为单频接收器。我们通常所说的GPS往往仅只用户设备部分,它通过接受天空不同位置的三颗以上的卫星信号,测定手持机所在的位置,简单来说是利用了数学上三条线确定一个点的原理。
晚来风急 2019-12-02 01:17:07 0 浏览量 回答数 0

问题

在牛顿方法的PyTorch实现中更新步骤

我试图通过实现牛顿求解x = cos(x)的方法来了解PyTorch的工作原理。这是一个有效的版本:x = Variable(DoubleTensor([1]), requires_grad=True)for i in range(5):...
一码平川MACHEL 2019-12-01 19:32:17 619 浏览量 回答数 1

问题

工作原理:注意事项

伸缩规则 在计算和执行过程中,伸缩规则可以根据伸缩组的 MinSize、MaxSize 进行自动调整其需要增加或减少的 ECS 实例数(例:如伸缩规则中指定将伸缩组的 ECS 实例数调整至 50...
青蛙跳 2019-12-01 21:31:31 479 浏览量 回答数 0

回答

您可以通过容器服务管理控制台,可视化升级您集群的 Kubernetes 版本。升级集群的过程包含升级前置检查、升级Master(独占版会展示当前正在升级的 Master 编号)、升级 Node(会展示已经升级的节点数和总节点数)。 背景信息 您可以在 Kubernetes 集群列表页面查看您的集群的 Kubernetes 版本,以及当前是否有新的版本可供升级。 待升级版本 功能原理 下面主要为您介绍集群升级过程中的相关功能及实现原理。功能原理 集群升级策略 集群升级策略定义了您将使用怎样的策略对集群进行升级。目前默认策略为分批升级。分批升级会在升级 Node 阶段对集群内的节点进行分批升级。其具体策略为: 第一批升级的节点数为 1,后续的批次以 2 的幂数进行增长。暂停后重新恢复升级的第一批次为 1,后续也是以 2 的幂数进行增长。 每一批节点的最大数量不会超过节点总数的 10%。 集群升级前置检查 在您开始集群升级之后,我们会为您自动启动集群升级前置检查。该检查会对集群进行多项健康检查,以确保您的集群可以顺利的完成此次升级。 如果您的集群存在不合理配置或者潜在风险,则无法通过前置检查,如下图所示。 单击查看详情按钮。跳转到集群运维页面,查看具体的失败原因。查看报错 说明 如果遇到前置检查失败请自行修复,或者提交工单申请。 升级检查仅针对集群升级前进行的前置检查,即使不通过也不会影响当前集群的运行及集群状态。 如果您的集群顺利通过升级检查。则可以进入集群升级环节。 集群升级暂停 通过集群升级暂停功能,您可以在集群升级的任意阶段对其升级进程进行暂停。 说明 暂停升级之后,当前批次已经开始升级的节点会完成升级。还未开始升级的节点不会升级。 集群暂停状态为集群升级的中间状态,建议您不要在此时对集群进行操作,并尽快完成升级过程。 您可以在集群成功暂停之后,单击继续,恢复集群的升级进程。 如果集群升级过程中发生错误,集群升级进程会被系统所暂停。具体失败原因会展示在页面下方详情中。您可根据报错进行排查或者提交工单申请。 集群升级取消 您可以在暂停升级后,单击取消,对本次升级进行取消操作。 说明 取消升级之后,当前批次已经开始升级的节点会完成升级。还未开始升级的节点不会升级。 已经完成升级的节点不受影响。 注意事项 集群升级需要机器可以公网访问,以便下载升级所需的软件包。 集群升级 Kubernetes 过程中,可能会有升级失败的情况,为了您的数据安全,强烈建议您先打快照然后再升级。有关 ECS 打快照的操作参见创建快照。 集群升级 Kubernetes 过程中,集群上的应用不会中断。如果应用强依赖于 API Server 可能会有短暂影响。 由于老版本的 FlexVolume(v1.11.2.5 及以前)挂载的 OSS 卷在升级的时候会重新挂载,使用 OSS 卷的 Pod 在集群升级后需要重建。 如果您对 Kubernetes 集群有过任何的配置更改(例如打开了 swap 分区),则升级过程有可能失败。 集群升级过程中您可以在一批节点升级完成后中断进程,此时集群处于升级的中间状态,我们建议您不要对集群进行操作,并尽快完成升级过程。处于中间状态的集群会在 15 日之后关闭升级过程,同时清理一切升级相关的事件和日志信息。 集群升级过程中,如非发生错误,请勿修改 kube-upgrade 命名空间下面的相关资源。 如集群升级失败,升级过程会暂停,您需要分析失败原因并清理 kube-upgrade 命名空间下失败的 Pod,确认修复成功后重启升级过程。如需帮助,请联系在线客服。 准备工作 说明 如果您在非生产环境中有待升级的集群,我们强烈建议您先对该集群进行升级验证,再在生产环境中启动集群升级。 请在集群升级前检查集群的健康状况,确保集群已具备升级条件。 登录容器服务管理控制台。 单击集群 > 集群进入Kubernetes集群列表。在目标集群右侧操作列,单击更多 > 集群检查。 在容器服务(集群运维)菜单下,单击左侧导航栏中的测评 > 升级检查。 在升级检查页面单击执行升级检查。 在弹出升级检查页面,勾选注意事项后,单击执行检查。 升级集群 检查完成后,单击查看详情。 当检查报告中检查结果为正常时,表示升级检查成功,您可以进行集群升级操作。 如果检查结果异常可以自行修复,也可以通过提交工单,请阿里云工程师协助修复。 操作步骤 登录容器服务管理控制台。 在 Kubernetes 菜单下,单击左侧导航栏中的集群 > 集群,在目标集群右侧操作列单击集群升级,进入 Kubernetes 集群升级页面。 集群列表 单击升级。 升级界面 弹出升级提示页面,单击确定。 此时,您可以可视化的看到升级的全过程。升级过程监控
1934890530796658 2020-03-26 11:48:26 0 浏览量 回答数 0

问题

HBase运维基础——元数据逆向修复原理

转载自:http://www.hbase.group/article/9 背景 鉴于上次一篇文章——“云HBase小组成功抢救某公司自建HBase集群,挽救30+T数据”的读者反馈,对HB...
pandacats 2019-12-18 15:08:35 3 浏览量 回答数 0

问题

大文件传输软件的优势是什么!

2012年以来, 大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。数据正在迅速膨胀并变大&...
云语科技 2019-12-01 21:47:46 2277 浏览量 回答数 0

回答

Re求助阿里云服务器不适合软件运营吗 运营不运营我就不懂了,我挂了二天旺旺,有没有断线不知,断了也自个重连了吧? 你指的是挂旺旺吗? 这个有时也要看你系统的,WIN2003和WIN2008估计不一样,还有不同的机房也不一样,还有运气。有时给你分配到了一台很差的主机上,那用户太多到时就卡死 ------------------------- Re求助阿里云服务器不适合软件运营吗 如果你指的是大量旺旺挂机,10个,100个旺旺,阿里的硬盘IO很差的,你开多了光是聊天记录存取就会卡死的,再说应用程序的内存占用,CPU占用变化很大,有时100%,一旦CPU超标或内存不够,多个旺旺也会崩的,建议装一下旧版旺旺试下,换个操作系统WIN2003试下,再不行就再买几个硬盘,10G一个,不同软件装不同硬盘上,比方一个硬盘装一套旺旺。总的来说,硬盘太差,不大适合运行数据库,挂大程序软件等。像QQ聊天记录很大,经常要读取也不太适合。毕竟人家的硬盘并不是真正的硬盘,原理上就相当于一个共享文件夹一样,这和本机硬盘速度,稳定性相差太多了。 ------------------------- 回4楼逆转的帖子 如果有这种情况的话,那你就弄2个服务程序试下,要是一个断开了,另一个备用的就开始服务,也有可能是你客户端数量太多,阿里云盾给拦截所以中断了?
服务器插件 2019-12-02 03:15:08 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。
封神 2019-12-02 02:00:50 0 浏览量 回答数 0

回答

一.Lock接口(java.util.concurrent.locks): void lock():获取锁,阻塞方式;如果资源已被其他线程锁定,那么lock将会阻塞直到获取锁,锁阻塞期间不受线程的Interrupt的影响,在获取锁成功后,才会检测线程的interrupt状态,如果interrupt=true,则抛出异常。 unlock():释放锁 tryLock():尝试获取锁,并发环境中"闯入"行为,如果有锁可用,直接获取锁并返回true,否则范围false. lockInterruptibly():尝试获取锁,并支持"中断"请求。与lock的区别时,此方法的开始、结束和执行过程中,都会不断检测线程的interrupt状态,如果线程被中断,则立即抛出异常;而不像lock方法那样只会在获取锁之后才检测。 二.Lock接口实现类 Lock直接实现,只有3个类:ReentrantLock和WriteLock/ReadLock;这三种锁;Lock和java的synchronized(内置锁)的功能一致,均为排他锁. ReentrantLock为重入排他锁,对于同一线程,如果它已经持有了锁,那么将不会再次获取锁,而直接可以使用. ReentrantReadWriteLock并没有继承ReentrantLock,而是一个基于Lock接口的单独实现.它实现了 ReadWriteLock,即读写分离锁,是一种采用锁分离技巧的API. 尽管在API级别ReentrantReadWriteLock和ReentrantLock没有直接继承关系,但是ReentrantReadWriteLock中的ReadLock和WriteLock都具有ReentrantLock的全部语义(简单说,就是把ReentrantLock的代码copy了一下.),即锁的可重入性.WriteLock支持Condition(条件),ReadLock不支持. Lock的实现类中,都包含了2中锁等待策略:公平和非公平;其实他们的实现也非常简单,底层都是使用了queue来维持锁请求顺序.[参考:http://shift-alt-ctrl.iteye.com/blog/1839142] 公平锁,就是任何锁请求,首先将请求加入队列,然后再有队列机制来决定,是阻塞还是分配锁. 非公平,就是允许"闯入",当然公平锁,也无法干扰"闯入",对于任何锁请求,首先检测锁状态是否可用,如果可用直接获取,否则加入队列.. ReentrantLock本质上和synchronized修饰词是同一语义,如果一个线程lock()之后,其他线程进行lock时必须阻塞,直到当前线程的前续线程unlock.[执行lock操作时,将会被队列化(假如在公平模式下),获取lock的线程都将具有前续/后继线程,前续线程就是当前线程之前执行lock操作而阻塞的线程,后继线程就是当前线程之后执行lock操作的线程;那么对于unlock操作就是"解锁"信号的传递,如果当前线程unlock,那么将会触发后继线程被"唤醒",即它因为lock操作阻塞状态被解除.];这是ReentrantLock的基本原理,但是当ReentrantLock在Conditon情况下,事情就变得更加复杂.[参加下述] 三.Condition:锁条件 Condition与Lock形成happen-before关系。Condition将Object的监视器方法(wait,notify,notifyAll)分解成截然不同的对象,以便通过这些对象与任意Lock实现组合。使Lock具有等待“集合”的特性,或者“类型”;Lock替代了synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。(synchronized + object.wait对应Lock + Condition.await) Condition又称条件队列,为线程提供了一个含义,以便在某种状态条件现在可能为true的其他线程通知它之前,一直挂起该线程。即多个线程,其中一个线程因为某个条件而阻塞,其他线程当“条件”满足时,则“通知”哪些阻塞的线程。这,几乎和object中wait和notify的机制一样。 Condition和wait一样,阻塞时也将原子性的释放锁(间接执行了release()方法)。并挂起线程。Condition必须与Lock形成关系,只有获取lock权限的,才能进行Condition操作。Condition底层基于AQS实现,条件阻塞,将以队列的方式,LockSupport支持。其实现类有ConditionObject,这也是Lock.newCondition()的返回实际类型,在等待 Condition 时,允许发生“虚假唤醒”,这通常作为对基础平台语义的让步。对于大多数应用程序,这带来的实际影响很小,因为 Condition 应该总是在一个循环中被等待,并测试正被等待的状态声明。某个实现可以随意移除可能的虚假唤醒,但建议应用程序程序员总是假定这些虚假唤醒可能发生,因此总是在一个循环中等待。 void await() throws InterruptedException:当前线程阻塞,并原子性释放对象锁。如下条件将触发线程唤醒: 当线程被中断(支持中断响应), 其他线程通过condition.signal()方法,且碰巧选中当前线程唤醒 其他线程通过condition.signalAll()方法 发生虚假唤醒 底层实现,await()方法将当前线程信息添加到Conditon内部维护的"await"线程队列的尾部(此队列的目的就是为singal方法保持亟待唤醒的线程的顺序),然后释放锁(执行tryRelease()方法,注意此处释放锁,仅仅是释放了锁信号,并不是unlock,此时其他线程仍不能获取锁--lock方法阻塞),然后使用LockSupport.park(this)来强制剥夺当前线程执行权限。await方法会校验线程的中断标记。 由此可见,await()方法执行之后,因为已经"归还"了锁信号,那么其他线程此时执行lock方法,将不再阻塞.. void awaitUninterruptibly():阻塞,直到被唤醒。此方法不响应线程中断请求。即当线程被中断时,它将继续等待,直到接收到signal信号(你应该能想到"陷阱"),当最终从此方法返回时,仍然将设置其中断状态。 void signal()/signalAll():唤醒一个/全部await的线程。 对于signal()方法而言,底层实现为,遍历await"线程队列,找出此condition上最先阻塞的线程,并将此阻塞线程unpark.至此为止,我们似乎发现"锁信号"丢失了,因为在线程await时通过tryRelease时释放了一次信号.那么被signal成功的线程,首先执行一次acquire(增加锁信号),然后校验自己是否被interrupted,如果锁信号获取成功且线程状态正常,此时才正常的从await()方法退出.经过这么复杂的分析,终于明白了ReentrantLock + Condition情况下,锁状态变更和线程控制的来龙去脉... Java代码 收藏代码 //////例子: private Lock lock = new ReentrantLock(); private Condition full = lock.newCondition(); private Condition empty = lock.newCondition(); public Object take(){ lock.lock(); try{ while(isEmpty()){ empty.await() } Object o = get() full.signalAll(); return o; }finally{ lock.unlock(); } } public void put(Object o){ lock.lock(); try{ while(isFull()){ full.await(); } put(o); empty.signalAll(); }finally{ lock.unlock(); } } 四.机制 Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。此实现允许更灵活的结构,可以具有差别很大的属性,可以支持多个相关的 Condition 对象。注意,Lock 实例只是普通的对象,其本身可以在 synchronized 语句中作为目标使用。获取 Lock 实例的监视器锁与调用该实例的任何 lock() 方法没有特别的关系。为了避免混淆,建议除了在其自身的实现中之外,决不要以这种方式使用 Lock 实例。 Lock接口具有的方法: void lock():获取锁,阻塞直到获取。 void lockInterruptibly() throws InterrutedException:获取锁,阻塞直到获取成功,支持中断响应。 boolean tryLock():尝试获取锁,返回是否获取的结果。如果碰巧获取成功,则返回true,此时已经持有锁。 boolean tryLock(long time,TimeUnit) throws InterruptedException:尝试获取锁,获取成功返回true,超时时且没有获取锁则返回false。 void unlock():释放锁。约定只有持有锁者才能释放锁,否则抛出异常。 void newCondition():返回绑定到lock的条件。 五.ReadWriteLock ReadWriteLock 维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有 writer(写锁),读取锁可以由多个 reader 线程同时保持(共享锁)。写入锁是独占的。所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。 与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问。虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点。从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高。在实践中,只有在多处理器上并且只在访问模式适用于共享数据时,才能完全实现并发性增强。 Lock readLock():返回读锁。 Lock writeLock():返回写锁。 六.ReentrantLock ReentrantLock,重入排它锁,它和synchronized具有相同的语义以及在监视器上具有相同的行为,但是功能更加强大。 ReetrantLock将由最近成功获得锁且还没有释放锁的线程标记为“锁占有者”;当锁没有被线程持有时,调用lock方法将会成功获取锁并返回,如果当前线程为锁持有者,再次调用lock将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。 ReentrantLock的构造方法,允许接收一个“公平策略”参数,“公平策略”下,多个线程竞争获取锁时,将会以队列化锁请求者,并将锁授予队列的head。在“非公平策略”下,则不完全保证锁获取的顺序,允许闯入行为(tryLock)。 ReentrantLock基于AQS机制,锁信号量为1,如果信号量为1且当前锁持有者不为自己,则不能获取锁。释放锁时,如果当前锁持有者不是自己,也将抛出“IllegalMonitorStateException”。由此可见,对于ReentrantLock,lock和release方法是需要组合出现。 七.ReentrantReadWriteLock:可重入读写分离锁 重入性 :当前线程可以重新获取相应的“读锁”或者“写锁”,在写入线程保持的所有写入锁都已经释放后,才允许重入reader(读取线程)使用它们。writer线程可以获取读锁,但是reader线程却不能直接获取写锁。 锁降级:重入还允许写入锁降级为读锁,其实现方式为:先获取写入锁,然后获取读取锁,最后释放写入锁。但是读取锁不能升级为写入锁。 Conditon的支持:只有写入锁支持conditon,对于读取锁,newConditon方法直接抛出UnsupportedOperationException。 ReentrantReadWriteLock目前在java api中无直接使用。ReentrantReadWriteLock并没有继承自 ReentrantLock,而是单独重新实现。其内部仍然支持“公平性”“非公平性”策略。 ReentrantReadWriteLock基于AQS,但是AQS只有一个state来表示锁的状态,所以如果一个state表示2种类型的锁状态,它做了一个很简单的策略,“位运算”,将一个int类型的state拆分为2个16位段,左端表示readlock锁引用计数,右端16位表示write锁。在readLock、writeLock进行获取锁或者释放锁时,均是通过有效的位运算和位控制,来达到预期的效果。 八.ReadLock void lock():获取读取锁,伪代码如下: Java代码 收藏代码 //如果当前已经有“写锁”,且持有写锁者不是当前线程(如果是当前线程,则支持写锁,降级为读锁),则获取锁失败 //即任何读锁的获取,必须等待队列中的写锁释放 //c为实际锁引用量(exclusiveCount方法实现为:c & ((1<<16) -1) if (exclusiveCount(c) != 0 &&getExclusiveOwnerThread() != current) return -1; //CAS操作,操作state的左端16位。 if(CAS(c,c + (1<<16))){ return 1; } void unlock():释放read锁,即共享锁,伪代码如下: Java代码 收藏代码 //CAS锁引用 for (;;) { int c = getState(); int nextc = c - (1<<16);//位操作,释放一个锁。 if (compareAndSetState(c, nextc)) return nextc == 0; } 九.WriteLock void lock():获取写入锁,伪代码如下: Java代码 收藏代码 //当前线程 Thread current = Thread.currentThread(); //实际的锁引用state int c = getState(); //右端16位,通过位运算获取“写入锁”的state int w = exclusiveCount(c); //如果有锁引用 if (c != 0) { //且所引用不是自己 if (w == 0 || current != getExclusiveOwnerThread()){ return false; } } //如果写入锁state为0,且CAS成功,则设置state和独占线程信息 if ((w == 0 && writerShouldBlock(current)) ||!compareAndSetState(c, c + acquires)){ return false; } setExclusiveOwnerThread(current); return true; void unlock():释放写入锁,伪代码如下: Java代码 收藏代码 //计算释放锁的信号量 int nextc = getState() - releases; //对于写入锁,则校验当前线程是否为锁持有者,否则不可以释放(死锁) if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); //释放锁,且重置独占线程信息 if (exclusiveCount(nextc) == 0) { setExclusiveOwnerThread(null); setState(nextc); return true; } else { setState(nextc); return false; } 十.LockSupport:用来创建锁和其他同步类的基本线程阻塞原语。 底层基于hotspot的实现unsafe。park 和 unpark 方法提供了阻塞和解除阻塞线程的有效方法。三种形式的 park(即park,parkNanos(Object blocker,long nanos),parkUntil(Object blocker,long timestamp)) 还各自支持一个 blocker 对象参数。此对象在线程受阻塞时被记录,以允许监视工具和诊断工具确定线程受阻塞的原因。(这样的工具可以使用方法 getBlocker(java.lang.Thread) 访问 blocker。)建议最好使用这些形式,而不是不带此参数的原始形式。 在锁实现中提供的作为 blocker 的普通参数是 this。 static void park(Object blocker):阻塞当前线程,直到如下情况发生: 其他线程,调用unpark方法,并将此线程作为目标而唤醒 其他线程中断当前线程此方法不报告,此线程是何种原因被放回,需要调用者重新检测,而且此方法也经常在while循环中执行 Java代码 收藏代码 while(//condition,such as:queue.isEmpty){ LockSupport.park(queue);//此时queue对象作为“阻塞”点传入,以便其他监控工具查看,queue的状态 //检测当前线程是否已经中断。 if(Thread.interrupted()){ break; } } void getBlocker(Thread t):返回提供最近一次尚未解除阻塞的park的阻塞点。可以返回null。 void unpark(Thread t):解除指定线程阻塞,使其可用。参数null则无效果。 LockSupport实例(不过不建议在实际代码中直接使用LockSupport,很多时候,你可以使用锁来控制): Java代码 收藏代码 /////////////Demo public class LockSupportTestMain { /** * @param args */ public static void main(String[] args) throws Exception{ System.out.println("Hear!"); BlockerObject blocker = new BlockerObject(); LThread tp = new LThread(blocker, false); LThread tt = new LThread(blocker, true); tp.start(); tt.start(); Thread.sleep(1000); } static class LThread extends Thread{ private BlockerObject blocker; boolean take; LThread(BlockerObject blocker,boolean take){ this.blocker = blocker; this.take = take; } @Override public void run(){ if(take){ while(true){ Object o = blocker.take(); if(o != null){ System.out.println(o.toString()); } } }else{ Object o = new Object(); System.out.println("put,,," + o.toString()); blocker.put(o); } } } static class BlockerObject{ Queue<Object> inner = new LinkedList<Object>(); Queue<Thread> twaiters = new LinkedList<Thread>(); Queue<Thread> pwaiters = new LinkedList<Thread>(); public void put(Object o){ inner.offer(o); pwaiters.offer(Thread.currentThread()); Thread t = twaiters.poll(); if(t != null){ LockSupport.unpark(t); } System.out.println("park"); LockSupport.park(Thread.currentThread()); System.out.println("park is over"); } public Object take(){ Thread t = pwaiters.poll(); if(t != null){ System.out.println("unpark"); LockSupport.unpark(t); System.out.println("unpark is OK"); } //twaiters.offer(Thread.currentThread()); return inner.poll(); } } } 备注:有时候会疑惑wait()/notify() 和Unsafe.park()/unpark()有什么区别?区别是wait和notify是Object类的方法,它们首选需要获得“对象锁”,并在synchronized同步快中执行。park和unpark怎不需要这么做。wait和park都是有当前线程发起,notify和unpark都是其他线程发起。wait针对的是对象锁,park针对的线程本身,但是最终的效果都是导致当前线程阻塞。Unsafe不建议开发者直接使用。
景凌凯 2020-04-24 16:41:16 0 浏览量 回答数 0

回答

1,架构师是什么?要想往架构师的方向发展首先要知道架构师是什么?架构师是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。一个架构师得需要足够的想像力,能把各种目标需求进行不同维度的扩展,为目标客户提供更为全面的需求清单。架构师在软件开发的整个过程中起着很重要的作用。说的详细一些,架构师就是确认和评估系统需求,给出开发规范,搭建系统实现的核心构架,并澄清技术细节、扫清主要难点的技术人员。主要着眼于系统的“技术实现”。2,架构师的任务架构师的主要任务不是从事具体的软件程序的编写,而是从事更高层次的开发构架工作。他必须对开发技术非常了解,并且需要有良好的组织管理能力。可以这样说,一个架构师工作的好坏决定了整个软件开发项目的成败。在成为Java架构师之前,应当先成为Java工程师。熟练使用各种框架,并知道它们实现的原理。jvm虚拟机原理、调优,懂得jvm能让你写出性能更好的代码;池技术,什么对象池,连接池,线程池……Java反射技术,写框架必备的技术,遇到有严重的性能问题,替代方案java字节码技术;nio,没什么好说的,值得注意的是"直接内存"的特点,使用场景;java多线程同步异步;java各种集合对象的实现原理,了解这些可以让你在解决问题时选择合适的数据结构,高效的解决问题,比如hashmap的实现原理,好多五年以上经验的人都弄不清楚,还有为什扩容时有性能问题?不弄清楚这些原理,就写不出高效的代码,还会认为自己做的很对;总之一句话,越基础的东西越重要,很多人认为自己会用它们写代码了,其实仅仅是知道如何调用api而已,离会用还差的远。如果你立志做架构,首先打好基础,从最底层开始。然后发展到各种技术和语言,什么都要懂两点,要全面且不肤浅。为什么不是懂一点?你要看得透彻,必须尽量深入一些。别人懂一点,你要做架构师,必须再多懂一点。比如你发现golang很流行,别人可能写一个helloworld就说自己玩过golang,但你至少要尝试写一个完整的应用。不肯下苦功,如何高人一头?另外你要非常深入地了解至少一门语言,如果你的目标是java,就学到极致,作为敲门砖,先吃饱了才能谈理想。3,架构师都是从码农过来的而Java学到极致势必涉及到设计模式,算法和数据结构,多线程,文件及网络IO,数据库及ORM,不一而足。这些概念放之一切语言都适用。先精一门,为全面且不肤浅打基础。另外就是向有经验的架构师学习,和小伙伴们讨论辩论争论。其实最重要的能力就是不断学习。在思考新的技术是否能更好地解决你们遇到的问题之前,你首先得知道并了解新的技术。架构师都是从码农过来的,媳妇熬成婆。千万不要成为不写代码的架构师,有些公司专门产不写技术的架构师。所谓架构师,只是功底深厚的程序员而已。个人认为应该扎扎实实学习基础知识,学习各种规范,架构,需要广泛的知识面,懂的东西越多视野越开阔,设计的东西当然会越好越全面。成为架构师需要时间的积累的,不但要知其然还要知其所以然。平时的一点一滴你感觉不到特别用处,但某天你会发现所有东西都没有白学的。4,架构师知识体系下面是我总结多年经验开发的架构师知识体系一、分布式架构架构分布式的英文( Distributed computing 分布式计算技术)的应用和工具,成熟目前的技术包括 J2EE,CORBA 和 .NET(DCOM),这些技术牵扯的内容非常广,相关的书籍也非常多。本文不介绍这些技术的内容,也没有涉及这些技术的细节,只是从各种分布式系统平台产生的背景和在软件开发中应用的情况来探讨它们的主要异同。分布式系统是一个古老而宽泛的话题,而近几年因为“大数据”概念的兴起,又焕发出了新的青春与活力。除此之外,分布式系统也是一门理论模型与工程技法。并重的学科内容相比于机器学习这样的研究方向,学习分布式系统的同学往往会感觉:“入门容易,深入难”的确,学习分布式系统几乎不需要太多数学知识。分布式系统是一个复杂且宽泛的研究领域,学习一两门在线课程,看一两本书可能都是不能完全覆盖其所有内容的。总的来说,分布式系统要做的任务就是把多台机器有机的组合,连接起来,让其协同完成一件任务,可以是计算任务,也可以是存储任务。如果一定要给近些年的分布式系统研究做一个分类的话,我个人认为大概可以包括三大部分:分布式存储系统分布式计算系统分布式管理系统二、微服务当前微服务很热,大家都号称在使用微服务架构,但究竟什么是微服务架构?微服务架构是不是发展趋势?对于这些问题,我们都缺乏清楚的认识。为解决单体架构下的各种问题,微服务架构应运而生。与其构建一个臃肿庞大,难以驯服的怪兽,还不如及早将服务拆分。微服务的核心思想便是服务拆分与解耦,降低复杂性。微服务强调将功能合理拆解,尽可能保证每个服务的功能单一,按照单一责任原则(Single Responsibility Principle)明确角色。将各个服务做轻,从而做到灵活,可复用,亦可根据各个服务自身资源需求,单独布署,单独作横向扩展。微服务架构(Microservice Architecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。你可以将其看作是在架构层次而非获取服务的类上应用很多 SOLID 原则。微服务架构是个很有趣的概念,它的主要作用是将功能分解到离散的各个服务当中,从而降低系统的耦合性,并提供更加灵活的服务支持。概念:把一个大型的单个应用程序和服务拆分为数个甚至数十个的支持微服务,它可扩展单个组件而不是整个的应用程序堆栈,从而满足服务等级协议。定义:围绕业务领域组件来创建应用,这些应用可独立地进行开发,管理和迭代在分散的组件中使用云架构和平台式部署,管理和服务功能,使产品交付变得更加简单。本质:用一些功能比较明确,业务比较精练的服务去解决更大,更实际的问题。三、源码分析从字面意义上来讲,源文件的英文指一个文件,指源代码的集合。源代码则是一组具有特定意义的可以实现特定功能的字符(程序开发代码)。源码分析是一种临界知识,掌握了这种临界知识,能不变应万变,源码分析对于很多人来说很枯燥,生涩难懂。源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心。我认为是阅读源码的最核心驱动力我见到绝大多数程序员,对学习的态度,基本上就是这几个层次(很偏激哦):1,只关注项目本身,不懂就百度一下。2,除了做好项目,还会阅读和项目有关的技术书籍,看维基百科。3,除了阅读和项目相关的书外,还会阅读IT行业的书,比如学的Java的时,还会去了解函数语言,如LISP。4,找一些开源项目看看,大量试用第三方框架,还会写写演示。5,阅读基础框架,J2EE 规范,调试服务器内核。大多数程序都是第1种,到第5种不光需要浓厚的兴趣,还需要勇气:?我能读懂吗其实,你能够读懂的耐心,真的很重要。因为你极少看到阅读源码的指导性文章或书籍,也没有人要求或建议你读。你读的过程中经常会卡住,而一卡主可能就陷进了迷宫这时,你需要做的,可能是暂时中断一下,再从外围看看它:如API结构,框架的设计图。四、工具使用工欲善其事必先利其器,工具对 Java 的的程序员的重要性不言而喻现在有很多库,实用工具和程序任的 Java 的开发人员选择。下图列出的工具都是程序员必不可少的工具五、性能优化不管是应付前端面试还是改进产品体验,性能优化都是躲不开的话题。优化的目的是让用户有“快”的感受,那如何让用户感受到快呢?加载速度真的很快,用户打开输入网址按下回车立即看到了页面加载速度并没有变快,但用户感觉你的网站很快性能优化取决于多个因素,包括垃圾收集,虚拟机和底层操作系统(OS)设置。有多个工具可供开发人员进行分析和优化时使用,你可以通过阅读爪哇工具的源代码优化和分析来学习和使用它们。必须要明白的是,没有两个应用程序可以使用相同的优化方式,也没有完美的优化的 Java 应用程序的参考路径。使用最佳实践并且坚持采用适当的方式处理性能优化。想要达到真正最高的性能优化,你作为一个 Java 的开发人员,需要对 Java 的虚拟机(JVM)和底层操作系统有正确的理解。性能优化,简而言之,就是在不影响系统运行正确性的前提下,使之运行地更快,完成特定功能所需的时间更短。性能问题永远是永恒的主题之一,而优化则更需要技巧。Java程序员如何学习才能快速入门并精通呢?当真正开始学习的时候难免不知道从哪入手,导致效率低下影响继续学习的信心。但最重要的是不知道哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以有一套实用的视频课程用来跟着学习是非常有必要的。为了让学习变得轻松、高效,今天给大家免费分享一套阿里架构师传授的一套教学资源。帮助大家在成为架构师的道路上披荆斩棘。这套视频课程详细讲解了(Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化、分布式架构)等这些成为架构师必备的内容!而且还把框架需要用到的各种程序进行了打包,根据基础视频可以让你轻松搭建分布式框架环境,像在企业生产环境一样进行学习和实践。
auto_answer 2019-12-02 01:51:27 0 浏览量 回答数 0

回答

由于只是个人文件,您可以将它们存储在S3中。 为了确保文件上传安全,只需在上传之前检查文件的mime类型,即可选择所需的存储空间。 http://php.net/manual/zh/function.mime-content-type.php 只需对上传的文件进行快速检查: $mime = mime_content_type($file_path); if($mime == 'image/jpeg') return true; 没什么大不了的! 将文件保留在数据库中是不好的做法,这应该是您的最后资源。S3非常适合许多用例,但对于高使用率而言则很昂贵,并且本地文件应仅用于Intranet和非公共可用的应用程序。 我认为,请转到S3。 亚马逊的sdk易于使用,您可以免费使用1GB的存储空间进行测试。您也可以使用自己的服务器,只是将其保留在数据库之外。 在文件系统上存储图像的解决方案 假设您有100.000个用户,每个用户都有10张图片。您如何处理本地存储? 问题:成千上万个映像后,Linux文件系统中断,因此您应该使文件结构避免这种情况 解决方案: 将文件夹名称设置为“ abs(userID / 1000)* 1000” / userID 这样,当您的用户ID为989787时,其图像将存储在文件夹989000/989787 / img1.jpeg 989000/989787 / img2.jpeg 989000/989787 / img3.jpeg上 这样就可以为一百万个用户存储图像而不会破坏UNIX文件系统。 存储大小如何? 上个月,我不得不为自己从事的电子商务压缩130万jpeg。上传图像时,请使用具有无损标记和80%质量的imagick进行压缩。这将消除不可见的像素并优化存储。由于我们的图片从40x40(缩略图)到1500x1500(缩放图片)不等,因此我们平均获得700x700的图片,是130万张图片的总和,约占120GB的存储空间。 是的,可以将它们全部存储在文件系统中。 当事情开始变慢时,您可以租用CDN。 那将如何工作? CDN位于映像服务器的前面,每当CDN被要求提供文件时,如果在其存储中找不到文件(缓存未命中),它将从映像服务器复制它。稍后,当再次请求CDN get时,它将从其自己的缓存中传递图像。 这样,无需任何代码即可迁移到CDN映像交付,您所需要做的就是更改站点中的URL并租用CDN,这与S3存储桶的工作原理相同。 它不是一项便宜的服务,但是比cloudfront便宜,而且当您需要它时,您可能可以负担得起。来源:stack overflow
保持可爱mmm 2020-05-11 12:00:44 0 浏览量 回答数 0

回答

浏览器断开了网络连接吧!###### 引用来自“天道无为”的答案 浏览器断开了网络连接吧! 没有啊,就是访问那个网址,没做过什么。socket服务端自动报错断开的。 ###### 你把   s = ss.accept();         这里的s打印出来看看,看它出错前最后一次是什么?###### 引用来自“天道无为”的答案 你把   s = ss.accept();         这里的s打印出来看看,看它出错前最后一次是什么? 输入网址回车后先出来这三行: s=Socket[addr=/127.0.0.1,port=63669,localport=9999] userName=中国人,orderNo=1354,areaNo=2  s=Socket[addr=/127.0.0.1,port=63670,localport=9999] 然后就还是一样的报错。 ######这应该是浏览器的原因,因为很明显浏览器建立了两次连接,但是第二次连接没有发送数据,这从打印的两个socket就能看出来。因为我对浏览器的底层不是特别熟悉,所以手工写了一个socket客户端进行测试,证明了一下这个猜测,至于原理我也不是很清楚。######应该是浏览器关闭了socket连接,这是有可能的,和它的实现方式有关。但有一点,你这个 String data = in.readLine(); 的data怎么可以不做空值校验呢!非常严重的代码质量问题,你用findbug扫一下,它都会给你红X的。###### 引用来自“天道无为”的答案 你把   s = ss.accept();         这里的s打印出来看看,看它出错前最后一次是什么? 好像是浏览器建立两次连接,为什么会这样?怎么解决?能说一下吗? ###### @天道无为 空值校验做了,但是http不断开,卡死在那里,如果强行停止就会报空指针异常。如果不停止的话再打开网页访问就访问不到。######不用理,做个空值校验就好了,应该是http短连接问题,每完成一次报文收发就断开了连接,下次再发时会创新新的连接。######大哥,我也遇到这个问题,搞了一两天, 前辈给我提供了思路,感觉是这个问题:http1.1之后默认使用长连接keep alive,在http请求里的connection头信息那里,防止socket中断。感觉可能是这个问题。可以尝试着解决下。
爱吃鱼的程序员 2020-06-03 20:35:05 0 浏览量 回答数 0

问题

怎样实现数据存储的管理维护

    如何确保所有数据能够得到可靠备份,及时进行灾难恢复是存储管理软件的核心任务。此外数据存储的管理维护软件还存在以下一些基本功能,诸如改进系统和应用I/O性能及存储管理能力,提高数据和应用系统的...
elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

问题

健康检查原理

概述 负载均衡通过健康检查来判断后端服务器(ECS实例)的业务可用性。健康检查机制提高了前端业务整体可用性,避免了后端ECS异常对总体服务的影响。 开启健康检查功能后,当后端某台E...
行者武松 2019-12-01 21:36:16 1626 浏览量 回答数 0

回答

Change Stream即变更流,是MongoDB向应用发布数据变更的一种方式。即当数据库中有任何数据发生变化,应用端都可以得到通知。我们可以将其理解为在应用中执行的触发器。至于应用想得到什么数据,以什么形式得到数据,则可以通过聚合框架加以过滤和转换。这点将在后文中讨论。  Change Stream 的原理  我们先来回顾一下MongoDB复制集大致是如何工作的: 应用通过驱动向数据库发起写入请求; 在同一个事务中,MongoDB完成oplog和集合的修改; oplog被其他从节点拉走; 从节点应用得到的oplog,同样在一个事务中完成对oplog和集合的修改; 至此,复制集同步完成。可以发现,整个同步过程是依赖于oplog来进行的。也就是说oplog实际上已经包含了我们需要的所有变更数据。如果观测oplog的变化,是否就能够得到所有变更的数据了呢?对,change stream正是基于这个原理实现的。但事情并没有这么简单!我们来看一下问题有可能出在什么地方。 如何从断点恢复 现实世界中,没有哪个应用是可以不间断运行的。不考虑bug导致的问题,正常的应用升级也会导致应用中断运行。那么在应用恢复的时候,从哪里开始继续获取变更呢?oplog当然是可以帮我们做到这点的,但你必须对MongoDB足够了解,才知道有oplogReplay这样的参数,以及其他一些问题。 如何有效地处理订阅 假设在一个应用中需要订阅10个不同集合的变更情况,是否需要开10个tailable cursor去获取oplog的变更呢?如果是100个集合呢?出于效率考虑显然不应该这么做。那么整个过程就会变成一个生产者-消费者模式,由一个线程负责从oplog获取变更,由订阅的线程负责消费这些变更。虽然实现也不是那么复杂,并且多半可以找到开源实现,但是涉及多线程就已经足够让初学者头疼一阵的了。 公平地说,上面这些还不算严重的问题,下面这些问题可能会更让人头疼。 如何管理权限 想要tail oplog,必须对local.oplog.rs有读权限。实际上这相当于对整个数据库都有了读权限,因为所有的变更都会在这里体现出来。DBA可能会阻止你这么做,因为这实在不是一个很安全的做法。 如何数据回滚 极端情况下,如果应用处理不当,MongoDB中可能发生数据回滚rollback的问题。如果仅仅通过跟踪oplog,则会出现已经通知出去的变更被回滚的情况。 幸运的是上面这些问题现在都不是问题了,因为change stream帮我们规避了这些复杂的细节。 使用方法 由于各种驱动都会有不同的语法和API,从shell中尝试使用change stream可能是最简便的方法。这并不妨碍你随后在各种驱动中的使用,因为shell中能实现的功能在驱动中一定有对应的语法。下面就以shell为例看看change stream应该如何使用。 打开一个shell,订阅你需要关注的集合 比如: var cursor = db.bar.watch(); 为了便于演示,我们在这个shell中不断遍历这个游标以获取新数据: while(true) {    if (cursor.hasNext()) {        print(JSON.stringify(cursor.next()));    } } 打开另一个shell,向bar集合中插入一条数据: db.bar.insert({y: 1}) 此时第一个shell中会立即输出变更数据: {"_id":{"_data": {"$binary":"glzquiIAAAACRmRfaWQAZFzquiK0lDNo+K0DpwBaEARUMrm0ruVACoftuxjt1RtCBA==","$type":"00"}}, "operationType":"insert","fullDocument":{"_id":{"$oid":"5ceaba22b4943368f8ad03a7"},"y":1},"ns": {"db":"test","coll":"bar"},"documentKey":{"_id":{"$oid":"5ceaba22b4943368f8ad03a7"}}} 这里的一些字段的简单介绍。更完整的介绍请查阅文档change events: _id: 用于恢复断点时使用。即知道这个值,应用断开后下次重启里就可以从这个断点之后开始恢复获得变更; operationType: 操作类型,常见的值包括: insert update delete ns: 正在操作的命名空间 fullDocument: 完整的文档 从断点恢复 var cursor = db.bar.watch([], {resumeAfter: <_id>}) 此时使用hasNext()/next()即可获取到随后的变更。
1748847708358317 2019-12-02 03:11:13 0 浏览量 回答数 0

回答

HTTPS基本原理 一、http为什么不安全。 http协议没有任何的加密以及身份验证的机制,非常容易遭遇窃听、劫持、篡改,因此会造成个人隐私泄露,恶意的流量劫持等严重的安全问题。 国外很多网站都支持了全站https,国内方面目前百度已经在年初完成了搜索的全站https,其他大型的网站也在跟进中,百度最先完成全站https的最大原因就是百度作为国内最大的流量入口,劫持也必然是首当其冲的,造成的有形的和无形的损失也就越大。关于流量劫持问题,我在另一篇文章中也有提到,基本上是互联网企业的共同难题,https也是目前公认的比较好的解决方法。但是https也会带来很多性能以及访问速度上的牺牲,很多互联网公司在做大的时候都会遇到这个问题:https成本高,速度又慢,规模小的时候在涉及到登录和交易用上就够了,做大以后遇到信息泄露和劫持,想整体换,代价又很高。 2、https如何保证安全 要解决上面的问题,就要引入加密以及身份验证的机制。 这时我们引入了非对称加密的概念,我们知道非对称加密如果是公钥加密的数据私钥才能解密,所以我只要把公钥发给你,你就可以用这个公钥来加密未来我们进行数据交换的秘钥,发给我时,即使中间的人截取了信息,也无法解密,因为私钥在我这里,只有我才能解密,我拿到你的信息后用私钥解密后拿到加密数据用的对称秘钥,通过这个对称密钥来进行后续的数据加密。除此之外,非对称加密可以很好的管理秘钥,保证每次数据加密的对称密钥都是不相同的。 但是这样似乎还不够,如果中间人在收到我的给你公钥后并没有发给你,而是自己伪造了一个公钥发给你,这是你把对称密钥用这个公钥加密发回经过中间人,他可以用私钥解密并拿到对称密钥,此时他在把此对称密钥用我的公钥加密发回给我,这样中间人就拿到了对称密钥,可以解密传输的数据了。为了解决此问题,我们引入了数字证书的概念。我首先生成公私钥,将公钥提供给相关机构(CA),CA将公钥放入数字证书并将数字证书颁布给我,此时我就不是简单的把公钥给你,而是给你一个数字证书,数字证书中加入了一些数字签名的机制,保证了数字证书一定是我给你的。 所以综合以上三点: 非对称加密算法(公钥和私钥)交换秘钥 + 数字证书验证身份(验证公钥是否是伪造的) + 利用秘钥对称加密算法加密数据 = 安全 3、https协议简介 为什么是协议简介呢。因为https涉及的东西实在太多了,尤其是一些加密算法,非常的复杂,对于这些算法面的东西就不去深入研究了,这部分仅仅是梳理一下一些关于https最基本的原理,为后面分解https的连接建立以及https优化等内容打下理论基础。 3.1 对称加密算法 对称加密是指加密和解密使用相同密钥的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信至关重要。 对称加密又分为两种模式:流加密和分组加密。 流加密是将消息作为位流对待,并且使用数学函数分别作用在每一个位上,使用流加密时,每加密一次,相同的明文位会转换成不同的密文位。流加密使用了密钥流生成器,它生成的位流与明文位进行异或,从而生成密文。现在常用的就是RC4,不过RC4已经不再安全,微软也建议网络尽量不要使用RC4流加密。 分组加密是将消息划分为若干位分组,这些分组随后会通过数学函数进行处理,每次一个分组。假设需要加密发生给对端的消息,并且使用的是64位的分组密码,此时如果消息长度为640位,就会被划分成10个64位的分组,每个分组都用一系列数学公式公式进行处理,最后得到10个加密文本分组。然后,将这条密文消息发送给对端。对端必须拥有相同的分组密码,以相反的顺序对10个密文分组使用前面的算法解密,最终得到明文的消息。比较常用的分组加密算法有DES、3DES、AES。其中DES是比较老的加密算法,现在已经被证明不安全。而3DES是一个过渡的加密算法,相当于在DES基础上进行三重运算来提高安全性,但其本质上还是和DES算法一致。而AES是DES算法的替代算法,是现在最安全的对称加密算法之一。分组加密算法除了算法本身外还存在很多种不同的运算方式,比如ECB、CBC、CFB、OFB、CTR等,这些不同的模式可能只针对特定功能的环境中有效,所以要了解各种不同的模式以及每种模式的用途。这个部分后面的文章中会详细讲。 对称加密算法的优、缺点: 优点:算法公开、计算量小、加密速度快、加密效率高。 缺点:(1)交易双方都使用同样钥匙,安全性得不到保证; (2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。 (3)能提供机密性,但是不能提供验证和不可否认性。 3.2 非对称加密算法 在非对称密钥交换算法出现以前,对称加密一个很大的问题就是不知道如何安全生成和保管密钥。非对称密钥交换过程主要就是为了解决这个问题,使得对称密钥的生成和使用更加安全。 密钥交换算法本身非常复杂,密钥交换过程涉及到随机数生成,模指数运算,空白补齐,加密,签名等操作。 常见的密钥交换算法有RSA,ECDHE,DH,DHE等算法。涉及到比较复杂的数学问题,下面就简单介绍下最经典的RSA算法。RSA:算法实现简单,诞生于1977年,历史悠久,经过了长时间的破解测试,安全性高。缺点就是需要比较大的素数也就是质数(目前常用的是2048位)来保证安全强度,很消耗CPU运算资源。RSA是目前唯一一个既能用于密钥交换又能用于证书签名的算法。我觉得RSA可以算是最经典的非对称加密算法了,虽然算法本身都是数学的东西,但是作为最经典的算法,我自己也花了点时间对算法进行了研究,后面会详细介绍。 非对称加密相比对称加密更加安全,但也存在两个明显缺点: 1,CPU计算资源消耗非常大。一次完全TLS握手,密钥交换时的非对称解密计算量占整个握手过程的90%以上。而对称加密的计算量只相当于非对称加密的0.1%,如果应用层数据也使用非对称加解密,性能开销太大,无法承受。 2,非对称加密算法对加密内容的长度有限制,不能超过公钥长度。比如现在常用的公钥长度是2048位,意味着待加密内容不能超过256个字节。 所以公钥加密(极端消耗CPU资源)目前只能用来作密钥交换或者内容签名,不适合用来做应用层传输内容的加解密。 3.3 身份认证 https协议中身份认证的部分是由数字证书来完成的,证书由公钥、证书主体、数字签名等内容组成,在客户端发起SSL请求后,服务端会将数字证书发给客户端,客户端会对证书进行验证(验证查看这张证书是否是伪造的。也就是公钥是否是伪造的),并获取用于秘钥交换的非对称密钥(获取公钥)。 数字证书有两个作用: 1,身份授权。确保浏览器访问的网站是经过CA验证的可信任的网站。 2,分发公钥。每个数字证书都包含了注册者生成的公钥(验证确保是合法的,非伪造的公钥)。在SSL握手时会通过certificate消息传输给客户端。 申请一个受信任的数字证书通常有如下流程: 1,终端实体(可以是一个终端硬件或者网站)生成公私钥和证书请求。 2,RA(证书注册及审核机构)检查实体的合法性。如果个人或者小网站,这一步不是必须的。 3,CA(证书签发机构)签发证书,发送给申请者。 4,证书更新到repository(负责数字证书及CRL内容存储和分发),终端后续从repository更新证书,查询证书状态等。 数字证书验证: 申请者拿到CA的证书并部署在网站服务器端,那浏览器发起握手接收到证书后,如何确认这个证书就是CA签发的呢。怎样避免第三方伪造这个证书。答案就是数字签名(digital signature)。数字签名是证书的防伪标签,目前使用最广泛的SHA-RSA(SHA用于哈希算法,RSA用于非对称加密算法)数字签名的制作和验证过程如下: 1,数字签名的签发。首先是使用哈希函数对待签名内容进行安全哈希,生成消息摘要,然后使用CA自己的私钥对消息摘要进行加密。 2,数字签名的校验。使用CA的公钥解密签名,然后使用相同的签名函数对待签名证书内容进行签名并和服务端数字签名里的签名内容进行比较,如果相同就认为校验成功。 需要注意的是: 1)数字签名签发和校验使用的密钥对是CA自己的公私密钥,跟证书申请者提交的公钥没有关系。 2)数字签名的签发过程跟公钥加密的过程刚好相反,即是用私钥加密,公钥解密。 3)现在大的CA都会有证书链,证书链的好处一是安全,保持根CA的私钥离线使用。第二个好处是方便部署和撤销,即如果证书出现问题,只需要撤销相应级别的证书,根证书依然安全。 4)根CA证书都是自签名,即用自己的公钥和私钥完成了签名的制作和验证。而证书链上的证书签名都是使用上一级证书的密钥对完成签名和验证的。 5)怎样获取根CA和多级CA的密钥对。它们是否可信。当然可信,因为这些厂商跟浏览器和操作系统都有合作,它们的公钥都默认装到了浏览器或者操作系统环境里。 3.4 数据完整性验证 数据传输过程中的完整性使用MAC算法来保证。为了避免网络中传输的数据被非法篡改,SSL利用基于MD5或SHA的MAC算法来保证消息的完整性。 MAC算法是在密钥参与下的数据摘要算法,能将密钥和任意长度的数据转换为固定长度的数据。发送者在密钥的参与下,利用MAC算法计算出消息的MAC值,并将其加在消息之后发送给接收者。接收者利用同样的密钥和MAC算法计算出消息的MAC值,并与接收到的MAC值比较。如果二者相同,则报文没有改变;否则,报文在传输过程中被修改,接收者将丢弃该报文。 由于MD5在实际应用中存在冲突的可能性比较大,所以尽量别采用MD5来验证内容一致性。SHA也不能使用SHA0和SHA1,中国山东大学的王小云教授在2005年就宣布破解了 SHA-1完整版算法。微软和google都已经宣布16年及17年之后不再支持sha1签名证书。MAC算法涉及到很多复杂的数学问题,这里就不多讲细节了。 专题二--【实际抓包分析】 抓包结果: fiddler: wireshark: 可以看到,百度和我们公司一样,也采用以下策略: (1)对于高版本浏览器,如果支持 https,且加解密算法在TLS1.0 以上的,都将所有 http请求重定向到 https请求 (2)对于https请求,则不变。 【以下只解读https请求】 1、TCP三次握手 可以看到,我们访问的是 http://www.baidu.com/ , 在初次建立 三次握手的时候, 用户是去 连接 8080端口的(因为公司办公网做了代理,因此,我们实际和代理机做的三次握手,公司代理机再帮我们去连接百度服务器的80端口) 2、CONNECT 建立 由于公司办公网访问非腾讯域名,会做代理,因此,在进行https访问的时候,我们的电脑需要和公司代理机做 " CONNECT " 连接(关于 " CONNECT " 连接, 可以理解为虽然后续的https请求都是公司代理机和百度服务器进行公私钥连接和对称秘钥通信,但是,有了 " CONNECT " 连接之后,可以认为我们也在直接和百度服务器进行公私钥连接和对称秘钥通信。 ) fiddler抓包结果: CONNECT之后, 后面所有的通信过程,可以看做是我们的机器和百度服务器在直接通信 3、 client hello 整个 Secure Socket Layer只包含了: TLS1.2 Record Layer内容 (1)随机数 在客户端问候中,有四个字节以Unix时间格式记录了客户端的协调世界时间(UTC)。协调世界时间是从1970年1月1日开始到当前时刻所经历的秒数。在这个例子中,0x2516b84b就是协调世界时间。在他后面有28字节的随机数( random_C ),在后面的过程中我们会用到这个随机数。 (2)SID(Session ID) 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 (3) 密文族(Cipher Suites): RFC2246中建议了很多中组合,一般写法是"密钥交换算法-对称加密算法-哈希算法,以“TLS_RSA_WITH_AES_256_CBC_SHA”为例: (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 浏览器支持的加密算法一般会比较多,而服务端会根据自身的业务情况选择比较适合的加密组合发给客户端。(比如综合安全性以及速度、性能等因素) (4) Server_name扩展:( 一般浏览器也支持 SNI(Server Name Indication)) 当我们去访问一个站点时,一定是先通过DNS解析出站点对应的ip地址,通过ip地址来访问站点,由于很多时候一个ip地址是给很多的站点公用,因此如果没有server_name这个字段,server是无法给与客户端相应的数字证书的,Server_name扩展则允许服务器对浏览器的请求授予相对应的证书。 还有一个很好的功能: SNI(Server Name Indication)。这个的功能比较好,为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。一句话简述它的工作原理就是,在连接到服务器建立SSL连接之前先发送要访问站点的域名(Hostname),这样服务器根据这个域名返回一个合适的CA证书。目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8已经内置这一功能,据说新版的nginx也支持SNI。) 4、 服务器回复(包括 Server Hello, Certificate, Certificate Status) 服务器在收到client hello后,会回复三个数据包,下面分别看一下: 1)Server Hello 1、我们得到了服务器的以Unix时间格式记录的UTC和28字节的随机数 (random_S)。 2、Seesion ID,服务端对于session ID一般会有三种选择 (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) : 1)恢复的session ID:我们之前在client hello里面已经提到,如果client hello里面的session ID在服务端有缓存,服务端会尝试恢复这个session; 2)新的session ID:这里又分两种情况,第一种是client hello里面的session ID是空值,此时服务端会给客户端一个新的session ID,第二种是client hello里面的session ID此服务器并没有找到对应的缓存,此时也会回一个新的session ID给客户端; 3)NULL:服务端不希望此session被恢复,因此session ID为空。 3、我们记得在client hello里面,客户端给出了21种加密族,而在我们所提供的21个加密族中,服务端挑选了“TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256”。 (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 这就意味着服务端会使用ECDHE-RSA算法进行密钥交换,通过AES_128_GCM对称加密算法来加密数据,利用SHA256哈希算法来确保数据完整性。这是百度综合了安全、性能、访问速度等多方面后选取的加密组合。 2)Certificate 在前面的https原理研究中,我们知道为了安全的将公钥发给客户端,服务端会把公钥放入数字证书中并发给客户端(数字证书可以自签发,但是一般为了保证安全会有一个专门的CA机构签发),所以这个报文就是数字证书,4097 bytes就是证书的长度。 我们打开这个证书,可以看到证书的具体信息,这个具体信息通过抓包报文的方式不是太直观,可以在浏览器上直接看。 (点击 chrome 浏览器 左上方的 绿色 锁型按钮) 3)Server Hello Done 我们抓的包是将 Server Hello Done 和 server key exchage 合并的包: 4)客户端验证证书真伪性 客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证包括如下: 证书链的可信性trusted certificate path,方法如前文所述; 证书是否吊销revocation,有两类方式离线CRL与在线OCSP,不同的客户端行为会不同; 有效期expiry date,证书是否在有效时间范围; 域名domain,核查证书域名是否与当前的访问域名匹配,匹配规则后续分析; 5)秘钥交换 这个过程非常复杂,大概总结一下: (1)首先,其利用非对称加密实现身份认证和密钥协商,利用非对称加密,协商好加解密数据的 对称秘钥(外加CA认证,防止中间人窃取 对称秘钥) (2)然后,对称加密算法采用协商的密钥对数据加密,客户端和服务器利用 对称秘钥 进行通信; (3)最后,基于散列函数验证信息的完整性,确保通信数据不会被中间人恶意篡改。 此时客户端已经获取全部的计算协商密钥需要的信息:两个明文随机数random_C和random_S与自己计算产生的Pre-master(由客户端和服务器的 pubkey生成的一串随机数),计算得到协商对称密钥; enc_key=Fuc(random_C, random_S, Pre-Master) 6)生成 session ticket 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 后续建立新的https会话,就可以利用 session ID 或者 session Tickets , 对称秘钥可以再次使用,从而免去了 https 公私钥交换、CA认证等等过程,极大地缩短 https 会话连接时间。 7) 利用对称秘钥传输数据 【半分钟后,再次访问百度】: 有这些大的不同: 由于服务器和浏览器缓存了 Session ID 和 Session Tickets,不需要再进行 公钥证书传递,CA认证,生成 对称秘钥等过程,直接利用半分钟前的 对称秘钥 加解密数据进行会话。 1)Client Hello 2)Server Hello
玄学酱 2019-12-02 01:27:08 0 浏览量 回答数 0

问题

Vue面试题汇总【精品问答】

是一套用于构建用户界面的渐进式JavaScript框架。与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层,方便与第三方库或既有项目整合。 从0到1自己构架一个vue项目...
问问小秘 2020-05-25 18:02:28 20475 浏览量 回答数 4

回答

Java内存模型 按照官方的说法:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。 JVM主要管理两种类型内存:堆和非堆,堆内存(Heap Memory)是在 Java 虚拟机启动时创建,非堆内存(Non-heap Memory)是在JVM堆之外的内存。 堆是Java代码可及的内存,留给开发人员使用的;非堆是JVM留给自己用的,包含方法区、JVM内部处理或优化所需的内存(如 JIT Compiler,Just-in-time Compiler,即时编译后的代码缓存)、每个类结构(如运行时常数池、字段和方法数据)以及方法和构造方法的代码。 JVM 内存包含如下几个部分: 堆内存(Heap Memory): 存放Java对象 非堆内存(Non-Heap Memory): 存放类加载信息和其它meta-data 其它(Other): 存放JVM 自身代码等 Java内存分配 Java的内存管理实际上就是变量和对象的管理,其中包括对象的分配和释放。 JVM内存申请过程如下: JVM 会试图为相关Java对象在Eden中初始化一块内存区域 当Eden空间足够时,内存申请结束;否则到下一步 JVM 试图释放在Eden中所有不活跃的对象(这属于1或更高级的垃圾回收),释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区 Survivor区被用来作为Eden及OLD的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区 当OLD区空间不够时,JVM 会在OLD区进行完全的垃圾收集(0级) 完全垃圾收集后,若Survivor及OLD区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现”out of memory”错误 GC基本原理 GC(Garbage Collection),是JAVA/.NET中的垃圾收集器。 编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显式操作方法。所以,Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放。 对于程序员来说,分配对象使用new关键字;释放对象时,只要将对象所有引用赋值为null,让程序不能够再访问到这个对象,我们称该对象为”不可达的”.GC将负责回收所有”不可达”对象的内存空间。 对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是”可达的”,哪些对象是”不可达的”.当GC确定一些对象为”不可达”时,GC就有责任回收这些内存空间。 为了保证 GC能够在不同平台实现的问题,Java规范对GC的很多行为都没有进行严格的规定。例如,对于采用什么类型的回收算法、什么时候进行回收等重要问题都没有明确的规定。 GC分代划分 JVM内存模型中Heap区分两大块,一块是 Young Generation,另一块是Old Generation 在Young Generation中,有一个叫Eden Space的空间,主要是用来存放新生的对象,还有两个Survivor Spaces(from、to),它们的大小总是一样,它们用来存放每次垃圾回收后存活下来的对象。 在Old Generation中,主要存放应用程序中生命周期长的内存对象。 在Young Generation块中,垃圾回收一般用Copying的算法,速度快。每次GC的时候,存活下来的对象首先由Eden拷贝到某个SurvivorSpace,当Survivor Space空间满了后,剩下的live对象就被直接拷贝到OldGeneration中去。因此,每次GC后,Eden内存块会被清空。 在Old Generation块中,垃圾回收一般用mark-compact的算法,速度慢些,但减少内存要求。 垃圾回收分多级,0级为全部(Full)的垃圾回收,会回收OLD段中的垃圾;1级或以上为部分垃圾回收,只会回收Young中的垃圾,内存溢出通常发生于OLD段或Perm段垃圾回收后,仍然无内存空间容纳新的Java对象的情况。增量式GC 增量式GC(Incremental GC),是GC在JVM中通常是由一个或一组进程来实现的,它本身也和用户程序一样占用heap空间,运行时也占用CPU。 当GC进程运行时,应用程序停止运行。当GC运行时间较长时,用户能够感到Java程序的停顿,另外一方面,如果GC运行时间太短,则可能对象回收率太低. 增量式GC就是通过一定的回收算法,把一个长时间的中断,划分为很多个小的中断,通过这种方式减少GC对用户程序的影响。 Sun JDK提供的HotSpot JVM就能支持增量式GC。HotSpot JVM缺省GC方式为不使用增量GC,为了启动增量GC,我们必须在运行Java程序时增加-Xincgc的参数。 HotSpot JVM增量式GC的实现是采用Train GC算法,它的基本想法就是:将堆中的所有对象按照创建和使用情况进行分组(分层),将使用频繁高和具有相关性的对象放在一队中,随着程序的运行,不断对组进行调整。当GC运行时,它总是先回收最老的(最近很少访问的)的对象,如果整组都为可回收对象,GC将整组回收。这样,每次GC运行只回收一定比例的不可达对象,保证程序的顺畅运行。 详解函数finalize 更多内容: https://chenhx.blog.csdn.net/article/details/83957456 https://chenhx.blog.csdn.net/article/details/84294481
谙忆 2019-12-02 03:08:20 0 浏览量 回答数 0

问题

SSH 无法远程登录问题的处理思路是什么

您在购买云服务器 ECS(后续简称 ECS)Linux 服务器后,首先面临的就是如何登录和使用的问题。而由于服务器在云端,所以日常运维中通常都会基于 SSH 客户端登录服务器进行相关操...
boxti 2019-12-01 22:00:30 1833 浏览量 回答数 0

云产品推荐

上海奇点人才服务相关的云产品 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务