• 关于

    在Python中使用类

    的搜索结果

回答

print 在 Python3 中是函数必须加括号,Python2 中 print 为 class。 Python2 中使用 xrange,Python3 使用 range。 Python2 中默认的字符串类型默认是 ASCII,Python3 中默认的字符串类型是 Unicode。 Python2 中/的结果是整型,Python3 中是浮点类型。 Python2 中声明元类:metaclass = MetaClass,Python3 中声明元类:class newclass(metaclass=MetaClass):pass。

珍宝珠 2019-12-02 03:12:53 0 浏览量 回答数 0

回答

首先谈一点,为什么要在Android平台使用Python?Python拥有众多强大的第三方库和框架,在机器学习、大数据处理等诸多方面都有不俗的应用。另外,就语法而言,Python比Java更加简洁,同时又功能强大,既可面向过程亦可面向对象,而不像Java一样,是一种纯粹的面向对象语言,哪怕打印一句话也需要先创建类。Python作为一种脚本语言,可以边解释边执行,而不需编译,另外Python中存在的元类,可以使我们动态的创建类,如此可以在不需要重新编译安装apk的情况下,动态的由远程服务端为Android项目添加功能。我们还可以将Python已有的一些东西移植到Android平台,例如tornado、django等,总之玩法多多。 首先谈一点,为什么要在Android平台使用Python?Python拥有众多强大的第三方库和框架,在机器学习、大数据处理等诸多方面都有不俗的应用。另外,就语法而言,Python比Java更加简洁,同时又功能强大,既可面向过程亦可面向对象,而不像Java一样,是一种纯粹的面向对象语言,哪怕打印一句话也需要先创建类。Python作为一种脚本语言,可以边解释边执行,而不需编译,另外Python中存在的元类,可以使我们动态的创建类,如此可以在不需要重新编译安装apk的情况下,动态的由远程服务端为Android项目添加功能。我们还可以将Python已有的一些东西移植到Android平台,例如tornado、django等,总之玩法多多。

寒喵 2019-12-02 01:08:46 0 浏览量 回答数 0

回答

PyObjC的主要用例是从Python访问Objective-C代码,但是可以使用PyObjC为Python中的ObjC / Swift应用程序实现某些功能。 充其量只是很少记载。有两种解决方法: 实现对插件包的支持,并使用python代码创建插件包(使用py2app进行打包)。这是在一个非常古老的PyObjC教程中记录的:https ://pyobjc.readthedocs.io/en/latest/tutorials/embedded.html 为应用程序添加对Python扩展的显式支持。 我会选择第二个选项,因为最终这是更容易实现的选项。 要到达那里,您需要做一些事情: 初始化python解释器并运行一些启动代码。请参阅“ Py_Initialize()”和“ PyRun_SimpleString()”以进行此操作(或有关在应用程序中嵌入Python的教程)。 确保在运行启动代码后释放GIL(嵌入时通常不需要此操作,但在使用PyObjC时尤其是在不同线程可能调用Python代码的情况下则需要这样做) 将ObjC API公开给Python 这可能是容易的,也可能是困难的,这取决于两个部分之间的接口有多复杂。将ObjC类暴露给Python很容易:只需使用“ objc.lookUpClass(classname)”即可在Python中访问ObjC类。这也会自动公开类上的所有方法。 方法访问可能需要做更多的工作,尤其是在该方法具有传递引用自变量或使用块的情况下。 可以访问全局变量和C函数,但是还需要进行更多工作,因为PyObjC无法从ObjC运行时API中读取它们。PyObjC文档包含有关如何在需要时访问它们的信息。 在代码的Python和ObjC部分之间建立链接。我将在Python中创建Python对象,然后添加ObjC API(使用PyObjC)将其传递给应用程序的ObjC代码。 为了在ObjC方面获得更好的体验,您需要在ObjC中定义将由Python代码实现的协议。 最后,请注意:所有这些都是为了从Python(而不是Swift)访问Objective-C API。这也应该适用于Swift代码,但前提是您必须在swift(@objc)中实现ObjC接口。PyObjC不能用于访问任意Swift API。

祖安文状元 2020-02-21 17:55:46 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

【精品问答】python五十问第一期

问问小秘 2019-12-01 21:51:26 977 浏览量 回答数 1

回答

很多时候你可能希望你开发的程序能够同时兼容Python2+和Python3+。 试想你有一个非常出名的Python模块被很多开发者使用着,但并不是所有人都只使用Python2或者Python3。这时候你有两个办法。第一个办法是开发两个模块,针对Python2一个,针对Python3一个。还有一个办法就是调整你现在的代码使其同时兼容Python2和Python3。 本节中,我将介绍一些技巧,让你的脚本同时兼容Python2和Python3。 Future模块导入 第一种也是最重要的方法,就是导入__future__模块。它可以帮你在Python2中导入Python3的功能。这有一组例子: 上下文管理器是Python2.6+引入的新特性,如果你想在Python2.5中使用它可以这样做: from __future__ import with_statement 在Python3中print已经变为一个函数。如果你想在Python2中使用它可以通过__future__导入: print # Output: from __future__ import print_function print(print) # Output: <built-in function print> 模块重命名 首先,告诉我你是如何在你的脚本中导入模块的。大多时候我们会这样做: import foo # or from foo import bar 你知道么,其实你也可以这样做: import foo as foo 这样做可以起到和上面代码同样的功能,但最重要的是它能让你的脚本同时兼容Python2和Python3。现在我们来看下面的代码: try: import urllib.request as urllib_request # for Python 3 except ImportError: import urllib2 as urllib_request # for Python 2 让我来稍微解释一下上面的代码。 我们将模块导入代码包装在try/except语句中。我们是这样做是因为在Python 2中并没有urllib.request模块。这将引起一个ImportError异常。而在Python2中urllib.request的功能则是由urllib2提供的。所以,当我们试图在Python2中导入urllib.request模块的时候,一旦我们捕获到ImportError我们将通过导入urllib2模块来代替它。 最后,你要了解as关键字的作用。它将导入的模块映射到urllib.request,所以我们通过urllib_request这个别名就可以使用urllib2中的所有类和方法了。 过期的Python2内置功能 另一个需要了解的事情就是Python2中有12个内置功能在Python3中已经被移除了。要确保在Python2代码中不要出现这些功能来保证对Python3的兼容。这有一个强制让你放弃12内置功能的方法: from future.builtins.disabled import * 现在,只要你尝试在Python3中使用这些被遗弃的模块时,就会抛出一个NameError异常如下: from future.builtins.disabled import * apply() # Output: NameError: obsolete Python 2 builtin apply is disabled 标准库向下兼容的外部支持 有一些包在非官方的支持下为Python2提供了Python3的功能。例如,我们有: enum pip install enum34singledispatch pip install singledispatchpathlib pip install pathlib 想更多了解,在Python文档中有一个全面的指南可以帮助你让你的代码同时兼容Python2和Python3。

montos 2020-04-16 21:37:10 0 浏览量 回答数 0

问题

如何在基于Python的Robot框架中包含Java测试库

祖安文状元 2020-02-23 16:35:13 0 浏览量 回答数 1

问题

【精品问答】python百大常见问题与答案详解

祖安文状元 2020-02-24 17:56:41 363 浏览量 回答数 1

回答

元类是类的类。类定义了类的实例(即对象)的行为,而元类定义了类的行为方式。类是元类的实例。 虽然在Python中你可以为元类使用任意的callables(比如Jerub节目),但更好的方法是让它成为一个真正的类本身。type是Python中常用的元类。type它本身就是一个类,它是它自己的类型。你将无法type在Python中重新创建纯粹的东西,但是Python会有所作为。要在Python中创建自己的元类,你真的只想要子类type。 元类最常用作类工厂。当您通过调用类创建对象时,Python通过调用元类创建一个新类(当它执行'class'语句时)。结合法线__init__和__new__方法,元类因此允许您在创建类时执行“额外的事情”,例如使用某些注册表注册新类或者完全替换其他类。 当class被执行的语句,Python的首先执行的主体class声明为代码的正常块。生成的命名空间(dict)保存了将要进行的类的属性。元类是通过查看待定类的基类(继承的元类),在待定类的__metaclass__属性(如果有)或__metaclass__全局变量来确定的。然后使用类的名称,基数和属性调用元类来实例化它。 但是,元类实际上定义了类的类型,而不仅仅是它的工厂,所以你可以用它们做更多的事情。例如,您可以在元类上定义常规方法。这些元类方法就像类方法一样,它们可以在没有实例的类上调用,但它们也不像类方法,因为它们不能在类的实例上调用。type.subclasses()是type元类的方法示例。您还可以定义常规的“魔术”方法,例如__add__,__iter__以及__getattr__实现或更改类的行为方式。

游客gsy3rkgcdl27k 2019-12-02 02:12:08 0 浏览量 回答数 0

问题

使用Boost Python从C ++向python中的类成员变量赋值

祖安文状元 2020-02-23 16:14:19 1 浏览量 回答数 1

问题

【精品问答集锦】Python热门问题

小六码奴 2019-12-01 19:41:33 92453 浏览量 回答数 41

回答

Python在过去的时间在国内的应用主要是胶水语言和Web开发,但大数据流行以后,在算法产品化之类的产品开发中,Python具有比较强的优势,可以预见在未来几年,Python的使用将会更进一步崛起。在PYPL语言排行榜中,Python居首位。

朝晖_ 2019-12-02 01:04:13 0 浏览量 回答数 0

问题

与动态二进制工具框架PIN的Python接口

祖安文状元 2020-02-23 16:40:52 0 浏览量 回答数 1

回答

准备使用time模块,使用time模块的localtime函数,使用range类 在已经分清模块,函数,类的情况下开始测试方法一在python命令行输入以下内容help(time) # 很详细的模块文档help(time.localtime()) # 很详细的函数文档help(range) # 很详细的类的文档123方法二在python命令行输入以下内容print(time.__doc__) # 较详细的模块文档print(time.localtime().__doc__) # 较详细的函数文档print(range.__doc__) # 较详细的类的文档123方法三在python命令行输入以下内容print(dir(time)) # 简略的模块函数显示print(dir(time.localtime())) # 简略的函数参数显示print(dir(range)) # 简略的类构造函数参数显示123方法四在python命令行中输入help(),然后再次输入time,可以获得很详细的模块文档 或者输入time.localtime,可以获得简略的函数参数显示 或者输入range,可以获得很详细的类的文档

xuning715 2019-12-02 01:10:22 0 浏览量 回答数 0

回答

许多Python初学者都会问:我应该学习哪个版本的Python。对于这个问题,我的回答通常是“先选择一个最适合你的Python教程,教程中使用哪个版本的Python,你就用那个版本。等学得差不多了,再来研究不同版本之间的差别”。 许多Python初学者都会问:我应该学习哪个版本的Python。对于这个问题,我的回答通常是“先选择一个最适合你的Python教程,教程中使用哪个版本的Python,你就用那个版本。等学得差不多了,再来研究不同版本之间的差别”。但如果想要用Python开发一个新项目,那么该如何选择Python版本呢?我可以负责任的说,大部分Python库都同时支持Python 2.7.x和3.x版本的,所以不论选择哪个版本都是可以的。但为了在使用Python时避开某些版本中一些常见的陷阱,或需要移植某个Python项目时,依然有必要了解一下Python两个常见版本之间的主要区别。__future__模块Python 3.x引入了一些与Python 2不兼容的关键字和特性,在Python 2中,可以通过内置的__future__模块导入这些新内容。如果你希望在Python 2环境下写的代码也可以在Python 3.x中运行,那么建议使用__future__模块。例如,如果希望在Python 2中拥有Python 3.x的整数除法行为,可以通过下面的语句导入相应的模块。from future import division 下表列出了__future__中其他可导入的特性:特性 可选版本 强制版本 效果nested_scopes 2.1.0b1 2.2 PEP 227:Statically Nested Scopesgenerators 2.2.0a1 2.3 PEP 255:Simple Generatorsdivision 2.2.0a2 3.0 PEP 238:Changing the Division Operatorabsolute_import 2.5.0a1 3.0 PEP 328:Imports: Multi-Line and Absolute/Relativewith_statement 2.5.0a1 2.6 PEP 343:The “with” Statementprint_function 2.6.0a2 3.0 PEP 3105:Make print a functionunicode_literals 2.6.0a2 3.0 PEP 3112:Bytes literals in Python 3000(来源: https://docs.python.org/2/library/future.html)示例:from platform import python_version print函数虽然print语法是Python 3中一个很小的改动,且应该已经广为人知,但依然值得提一下:Python 2中的print语句被Python 3中的print()函数取代,这意味着在Python 3中必须用括号将需要输出的对象括起来。在Python 2中使用额外的括号也是可以的。但反过来在Python 3中想以Python2的形式不带括号调用print函数时,会触发SyntaxError。Python 2print 'Python', python_version() print 'Hello, World!' print('Hello, World!') print "text", ; print 'print more text on the same line' Python 2.7.6 Hello, World! Hello, World! text print more text on the same line Python 3print('Python', python_version()) print('Hello, World!') print("some text,", end="") print(' print more text on the same line') Python 3.4.1 Hello, World! some text, print more text on the same line print 'Hello, World!' File "", line 1 print 'Hello, World!' ^ SyntaxError: invalid syntax 注意:在Python中,带不带括号输出”Hello World”都很正常。但如果在圆括号中同时输出多个对象时,就会创建一个元组,这是因为在Python 2中,print是一个语句,而不是函数调用。print 'Python', python_version() print('a', 'b') print 'a', 'b' Python 2.7.7 ('a', 'b') a b 整数除法由于人们常常会忽视Python 3在整数除法上的改动(写错了也不会触发Syntax Error),所以在移植代码或在Python 2中执行Python 3的代码时,需要特别注意这个改动。所以,我还是会在Python 3的脚本中尝试用float(3)/2或 3/2.0代替3/2,以此来避免代码在Python 2环境下可能导致的错误(或与之相反,在Python 2脚本中用from future import division来使用Python 3的除法)。Python 2print 'Python', python_version() print '3 / 2 =', 3 / 2 print '3 // 2 =', 3 // 2 print '3 / 2.0 =', 3 / 2.0 print '3 // 2.0 =', 3 // 2.0 Python 2.7.6 3 / 2 = 1 3 // 2 = 1 3 / 2.0 = 1.5 3 // 2.0 = 1.0 Python 3print('Python', python_version()) print('3 / 2 =', 3 / 2) print('3 // 2 =', 3 // 2) print('3 / 2.0 =', 3 / 2.0) print('3 // 2.0 =', 3 // 2.0) Python 3.4.1 3 / 2 = 1.5 3 // 2 = 1 3 / 2.0 = 1.5 3 // 2.0 = 1.0 UnicodePython 2有基于ASCII的str()类型,其可通过单独的unicode()函数转成unicode类型,但没有byte类型。而在Python 3中,终于有了Unicode(utf-8)字符串,以及两个字节类:bytes和bytearrays。Python 2print 'Python', python_version() Python 2.7.6 print type(unicode('this is like a python3 str type')) print type(b'byte type does not exist') print 'they are really' + b' the same' they are really the same print type(bytearray(b'bytearray oddly does exist though')) Python 3print('Python', python_version()) print('strings are now utf-8 u03BCnicou0394é!') Python 3.4.1 strings are now utf-8 μnicoΔé! print('Python', python_version(), end="") print(' has', type(b' bytes for storing data')) Python 3.4.1 has print('and Python', python_version(), end="") print(' also has', type(bytearray(b'bytearrays'))) and Python 3.4.1 also has 'note that we cannot add a string' + b'bytes for data' TypeError Traceback (most recent call last) in () ----> 1 'note that we cannot add a string' + b'bytes for data' TypeError: Can't convert 'bytes' object to str implicitly xrange在Python 2.x中,经常会用xrange()创建一个可迭代对象,通常出现在“for循环”或“列表/集合/字典推导式”中。这种行为与生成器非常相似(如”惰性求值“),但这里的xrange-iterable无尽的,意味着可能在这个xrange上无限迭代。由于xrange的“惰性求知“特性,如果只需迭代一次(如for循环中),range()通常比xrange()快一些。不过不建议在多次迭代中使用range(),因为range()每次都会在内存中重新生成一个列表。在Python 3中,range()的实现方式与xrange()函数相同,所以就不存在专用的xrange()(在Python 3中使用xrange()会触发NameError)。import timeit n = 10000 def test_range(n): return for i in range(n): pass def test_xrange(n): for i in xrange(n): pass Python 2print 'Python', python_version() print 'ntiming range()' %timeit test_range(n) print 'nntiming xrange()' %timeit test_xrange(n) Python 2.7.6 timing range() 1000 loops, best of 3: 433 µs per loop timing xrange() 1000 loops, best of 3: 350 µs per loop Python 3print('Python', python_version()) print('ntiming range()') %timeit test_range(n) Python 3.4.1 timing range() 1000 loops, best of 3: 520 µs per loop print(xrange(10)) NameError Traceback (most recent call last) in () ----> 1 print(xrange(10)) NameError: name 'xrange' is not defined Python 3中的range对象中的__contains__方法另一个值得一提的是,在Python 3.x中,range有了一个新的__contains__方法。__contains__方法可以有效的加快Python 3.x中整数和布尔型的“查找”速度。x = 10000000 def val_in_range(x, val): return val in range(x) def val_in_xrange(x, val): return val in xrange(x) print('Python', python_version()) assert(val_in_range(x, x/2) == True) assert(val_in_range(x, x//2) == True) %timeit val_in_range(x, x/2) %timeit val_in_range(x, x//2) Python 3.4.1 1 loops, best of 3: 742 ms per loop 1000000 loops, best of 3: 1.19 µs per loop 根据上面的timeit的结果,查找整数比查找浮点数要快大约6万倍。但由于Python 2.x中的range或xrange没有__contains__方法,所以在Python 2中的整数和浮点数的查找速度差别不大。print 'Python', python_version() assert(val_in_xrange(x, x/2.0) == True) assert(val_in_xrange(x, x/2) == True) assert(val_in_range(x, x/2) == True) assert(val_in_range(x, x//2) == True) %timeit val_in_xrange(x, x/2.0) %timeit val_in_xrange(x, x/2) %timeit val_in_range(x, x/2.0) %timeit val_in_range(x, x/2) Python 2.7.7 1 loops, best of 3: 285 ms per loop 1 loops, best of 3: 179 ms per loop 1 loops, best of 3: 658 ms per loop 1 loops, best of 3: 556 ms per loop 下面的代码证明了Python 2.x中没有__contain__方法:print('Python', python_version()) range.__contains__ Python 3.4.1 print('Python', python_version()) range.__contains__ Python 2.7.7 AttributeError Traceback (most recent call last) in () 1 print 'Python', python_version() ----> 2 range.__contains__ AttributeError: 'builtin_function_or_method' object has no attribute '__contains__' print('Python', python_version()) xrange.__contains__ Python 2.7.7 AttributeError Traceback (most recent call last) in () 1 print 'Python', python_version() ----> 2 xrange.__contains__ AttributeError: type object 'xrange' has no attribute '__contains__' 关于Python 2中xrange()与Python 3中range()之间的速度差异的一点说明:有读者指出了Python 3中的range()和Python 2中xrange()执行速度有差异。由于这两者的实现方式相同,因此理论上执行速度应该也是相同的。这里的速度差别仅仅是因为Python 3的总体速度就比Python 2慢。def test_while(): i = 0 while i < 20000: i += 1 return print('Python', python_version()) %timeit test_while() Python 3.4.1 %timeit test_while() 100 loops, best of 3: 2.68 ms per loop print 'Python', python_version() %timeit test_while() Python 2.7.6 1000 loops, best of 3: 1.72 ms per loop 触发异常Python 2支持新旧两种异常触发语法,而Python 3只接受带括号的的语法(不然会触发SyntaxError):Python 2print 'Python', python_version()Python 2.7.6 raise IOError, "file error" IOError Traceback (most recent call last) in ()----> 1 raise IOError, "file error" IOError: file error raise IOError("file error") IOError Traceback (most recent call last) in ()----> 1 raise IOError("file error") IOError: file errorPython 3print('Python', python_version())Python 3.4.1raise IOError, "file error"File "", line 1raise IOError, "file error"^SyntaxError: invalid syntaxThe proper way to raise an exception in Python 3:print('Python', python_version())raise IOError("file error")Python 3.4.1 OSError Traceback (most recent call last) in ()1 print('Python', python_version())----> 2 raise IOError("file error") OSError: file error异常处理Python 3中的异常处理也发生了一点变化。在Python 3中必须使用“as”关键字。Python 2print 'Python', python_version()try: let_us_cause_a_NameError except NameError, err: print err, '--> our error message' Python 2.7.6name 'let_us_cause_a_NameError' is not defined --> our error messagePython 3print('Python', python_version())try: let_us_cause_a_NameError except NameError as err: print(err, '--> our error message') Python 3.4.1name 'let_us_cause_a_NameError' is not defined --> our error messagenext()函数和.next()方法由于会经常用到next()(.next())函数(方法),所以还要提到另一个语法改动(实现方面也做了改动):在Python 2.7.5中,函数形式和方法形式都可以使用,而在Python 3中,只能使用next()函数(试图调用.next()方法会触发AttributeError)。Python 2print 'Python', python_version()my_generator = (letter for letter in 'abcdefg')next(my_generator)my_generator.next()Python 2.7.6'b'Python 3print('Python', python_version())my_generator = (letter for letter in 'abcdefg')next(my_generator)Python 3.4.1'a' my_generator.next() AttributeError Traceback (most recent call last) in ()----> 1 my_generator.next() AttributeError: 'generator' object has no attribute 'next'For循环变量与全局命名空间泄漏好消息是:在Python 3.x中,for循环中的变量不再会泄漏到全局命名空间中了!这是Python 3.x中做的一个改动,在“What’s New In Python 3.0”中有如下描述:“列表推导不再支持[… for var in item1, item2, …]这样的语法,使用[… for var in (item1, item2, …)]代替。还要注意列表推导有不同的语义:现在列表推导更接近list()构造器中的生成器表达式这样的语法糖,特别要注意的是,循环控制变量不会再泄漏到循环周围的空间中了。”Python 2print 'Python', python_version() i = 1print 'before: i =', i print 'comprehension: ', [i for i in range(5)] print 'after: i =', iPython 2.7.6before: i = 1comprehension: [0, 1, 2, 3, 4]after: i = 4Python 3print('Python', python_version()) i = 1print('before: i =', i) print('comprehension:', [i for i in range(5)]) print('after: i =', i)Python 3.4.1before: i = 1comprehension: [0, 1, 2, 3, 4]after: i = 1比较无序类型Python 3中另一个优秀的改动是,如果我们试图比较无序类型,会触发一个TypeError。Python 2print 'Python', python_version()print "[1, 2] > 'foo' = ", [1, 2] > 'foo'print "(1, 2) > 'foo' = ", (1, 2) > 'foo'print "[1, 2] > (1, 2) = ", [1, 2] > (1, 2)Python 2.7.6[1, 2] > 'foo' = False(1, 2) > 'foo' = True[1, 2] > (1, 2) = FalsePython 3print('Python', python_version())print("[1, 2] > 'foo' = ", [1, 2] > 'foo')print("(1, 2) > 'foo' = ", (1, 2) > 'foo')print("[1, 2] > (1, 2) = ", [1, 2] > (1, 2)) Python 3.4.1 TypeError Traceback (most recent call last) in ()1 print('Python', python_version())----> 2 print("[1, 2] > 'foo' = ", [1, 2] > 'foo')3 print("(1, 2) > 'foo' = ", (1, 2) > 'foo')4 print("[1, 2] > (1, 2) = ", [1, 2] > (1, 2))TypeError: unorderable types: list() > str()通过input()解析用户的输入幸运的是,Python 3改进了input()函数,这样该函数就会总是将用户的输入存储为str对象。在Python 2中,为了避免读取非字符串类型会发生的一些危险行为,不得不使用raw_input()代替input()。Python 2Python 2.7.6[GCC 4.0.1 (Apple Inc. build 5493)] on darwinType "help", "copyright", "credits" or "license" for more information. my_input = input('enter a number: ') enter a number: 123 type(my_input) my_input = raw_input('enter a number: ') enter a number: 123 type(my_input) Python 3Python 3.4.1[GCC 4.2.1 (Apple Inc. build 5577)] on darwinType "help", "copyright", "credits" or "license" for more information. my_input = input('enter a number: ') enter a number: 123 type(my_input) 返回可迭代对象,而不是列表在xrange一节中可以看到,某些函数和方法在Python中返回的是可迭代对象,而不像在Python 2中返回列表。由于通常对这些对象只遍历一次,所以这种方式会节省很多内存。然而,如果通过生成器来多次迭代这些对象,效率就不高了。此时我们的确需要列表对象,可以通过list()函数简单的将可迭代对象转成列表。Python 2print 'Python', python_version() print range(3)print type(range(3))Python 2.7.6[0, 1, 2]Python 3print('Python', python_version())print(range(3))print(type(range(3)))print(list(range(3)))Python 3.4.1range(0, 3)[0, 1, 2]下面列出了Python 3中其他不再返回列表的常用函数和方法:zip()map()filter()字典的.key()方法字典的.value()方法字典的.item()方法 __future__模块 [回到目录] Python 3.x引入了一些与Python 2不兼容的关键字和特性,在Python 2中,可以通过内置的__future__模块导入这些新内容。如果你希望在Python 2环境下写的代码也可以在Python 3.x中运行,那么建议使用__future__模块。例如,如果希望在Python 2中拥有Python 3.x的整数除法行为,可以通过下面的语句导入相应的模块。 ? 1 from future import division 下表列出了__future__中其他可导入的特性: 特性 可选版本 强制版本 效果 nested_scopes 2.1.0b1 2.2 PEP 227:Statically Nested Scopes generators 2.2.0a1 2.3 PEP 255:Simple Generators division 2.2.0a2 3.0 PEP 238:Changing the Division Operator absolute_import 2.5.0a1 3.0 PEP 328:Imports: Multi-Line and Absolute/Relative with_statement 2.5.0a1 2.6 PEP 343:The “with” Statement print_function 2.6.0a2 3.0 PEP 3105:Make print a function unicode_literals 2.6.0a2 3.0 PEP 3112:Bytes literals in Python 3000 (来源: https://docs.python.org/2/library/future.html) 示例: ? 1 from platform import python_version print函数 [回到目录] 虽然print语法是Python 3中一个很小的改动,且应该已经广为人知,但依然值得提一下:Python 2中的print语句被Python 3中的print()函数取代,这意味着在Python 3中必须用括号将需要输出的对象括起来。 在Python 2中使用额外的括号也是可以的。但反过来在Python 3中想以Python2的形式不带括号调用print函数时,会触发SyntaxError。 Python 2 ? 1234 print 'Python', python_version()print 'Hello, World!'print('Hello, World!')print "text", ; print 'print more text on the same line' ? 1234 Python 2.7.6Hello, World!Hello, World!text print more text on the same line Python 3 ? 12345 print('Python', python_version())print('Hello, World!') print("some text,", end="") print(' print more text on the same line') ? 123 Python 3.4.1Hello, World!some text, print more text on the same line ? 1 print 'Hello, World!' ? File "", line 1print 'Hello, World!'^SyntaxError: invalid syntax 注意: 在Python中,带不带括号输出”Hello World”都很正常。但如果在圆括号中同时输出多个对象时,就会创建一个元组,这是因为在Python 2中,print是一个语句,而不是函数调用。 ? 123 print 'Python', python_version()print('a', 'b')print 'a', 'b' Python 2.7.7('a', 'b')a b 整数除法 [回到目录] 由于人们常常会忽视Python 3在整数除法上的改动(写错了也不会触发Syntax Error),所以在移植代码或在Python 2中执行Python 3的代码时,需要特别注意这个改动。 所以,我还是会在Python 3的脚本中尝试用float(3)/2或 3/2.0代替3/2,以此来避免代码在Python 2环境下可能导致的错误(或与之相反,在Python 2脚本中用from future import division来使用Python 3的除法)。 Python 2 ? 12345 print 'Python', python_version()print '3 / 2 =', 3 / 2print '3 // 2 =', 3 // 2print '3 / 2.0 =', 3 / 2.0print '3 // 2.0 =', 3 // 2.0 Python 2.7.63 / 2 = 13 // 2 = 13 / 2.0 = 1.53 // 2.0 = 1.0 Python 3 ? 12345 print('Python', python_version())print('3 / 2 =', 3 / 2)print('3 // 2 =', 3 // 2)print('3 / 2.0 =', 3 / 2.0)print('3 // 2.0 =', 3 // 2.0) Python 3.4.13 / 2 = 1.53 // 2 = 13 / 2.0 = 1.53 // 2.0 = 1.0 Unicode [回到目录] Python 2有基于ASCII的str()类型,其可通过单独的unicode()函数转成unicode类型,但没有byte类型。 而在Python 3中,终于有了Unicode(utf-8)字符串,以及两个字节类:bytes和bytearrays。 Python 2 ? 1 print 'Python', python_version() Python 2.7.6 ? 1 print type(unicode('this is like a python3 str type')) ? 1 print type(b'byte type does not exist') ? 1 print 'they are really' + b' the same' they are really the same ? 1 print type(bytearray(b'bytearray oddly does exist though')) Python 3 ? 12 print('Python', python_version())print('strings are now utf-8 u03BCnicou0394é!') Python 3.4.1strings are now utf-8 μnicoΔé! ? 12 print('Python', python_version(), end="")print(' has', type(b' bytes for storing data')) Python 3.4.1 has ? 12 print('and Python', python_version(), end="")print(' also has', type(bytearray(b'bytearrays'))) and Python 3.4.1 also has ? 1 'note that we cannot add a string' + b'bytes for data' TypeError Traceback (most recent call last) in ()----> 1 'note that we cannot add a string' + b'bytes for data' TypeError: Can't convert 'bytes' object to str implicitly xrange [回到目录] 在Python 2.x中,经常会用xrange()创建一个可迭代对象,通常出现在“for循环”或“列表/集合/字典推导式”中。 这种行为与生成器非常相似(如”惰性求值“),但这里的xrange-iterable无尽的,意味着可能在这个xrange上无限迭代。 由于xrange的“惰性求知“特性,如果只需迭代一次(如for循环中),range()通常比xrange()快一些。不过不建议在多次迭代中使用range(),因为range()每次都会在内存中重新生成一个列表。 在Python 3中,range()的实现方式与xrange()函数相同,所以就不存在专用的xrange()(在Python 3中使用xrange()会触发NameError)。 ? 12345678910 import timeit n = 10000def test_range(n): return for i in range(n): pass def test_xrange(n): for i in xrange(n): pass Python 2 ? 1234567 print 'Python', python_version() print 'ntiming range()'%timeit test_range(n) print 'nntiming xrange()'%timeit test_xrange(n) Python 2.7.6 timing range()1000 loops, best of 3: 433 µs per loop timing xrange()1000 loops, best of 3: 350 µs per loop Python 3 ? 1234 print('Python', python_version()) print('ntiming range()')%timeit test_range(n) Python 3.4.1 timing range()1000 loops, best of 3: 520 µs per loop ? 1 print(xrange(10)) NameError Traceback (most recent call last)in ()----> 1 print(xrange(10)) NameError: name 'xrange' is not defined Python 3中的range对象中的__contains__方法 另一个值得一提的是,在Python 3.x中,range有了一个新的__contains__方法。__contains__方法可以有效的加快Python 3.x中整数和布尔型的“查找”速度。 ? 123456789101112 x = 10000000def val_in_range(x, val): return val in range(x) def val_in_xrange(x, val): return val in xrange(x) print('Python', python_version())assert(val_in_range(x, x/2) == True)assert(val_in_range(x, x//2) == True)%timeit val_in_range(x, x/2)%timeit val_in_range(x, x//2) Python 3.4.11 loops, best of 3: 742 ms per loop1000000 loops, best of 3: 1.19 µs per loop 根据上面的timeit的结果,查找整数比查找浮点数要快大约6万倍。但由于Python 2.x中的range或xrange没有__contains__方法,所以在Python 2中的整数和浮点数的查找速度差别不大。 ? 12345678910 print 'Python', python_version() assert(val_in_xrange(x, x/2.0) == True)assert(val_in_xrange(x, x/2) == True)assert(val_in_range(x, x/2) == True)assert(val_in_range(x, x//2) == True)%timeit val_in_xrange(x, x/2.0)%timeit val_in_xrange(x, x/2)%timeit val_in_range(x, x/2.0)%timeit val_in_range(x, x/2) Python 2.7.71 loops, best of 3: 285 ms per loop1 loops, best of 3: 179 ms per loop1 loops, best of 3: 658 ms per loop1 loops, best of 3: 556 ms per loop 下面的代码证明了Python 2.x中没有__contain__方法: ? 12 print('Python', python_version())range.__contains__ Python 3.4.1 ? 12 print('Python', python_version())range.__contains__ Python 2.7.7 AttributeError Traceback (most recent call last) in ()1 print 'Python', python_version()----> 2 range.__contains__ AttributeError: 'builtin_function_or_method' object has no attribute '__contains__' ? 12 print('Python', python_version())xrange.__contains__ Python 2.7.7 AttributeError Traceback (most recent call last)in ()1 print 'Python', python_version()----> 2 xrange.__contains__ AttributeError: type object 'xrange' has no attribute '__contains__' 关于Python 2中xrange()与Python 3中range()之间的速度差异的一点说明: 有读者指出了Python 3中的range()和Python 2中xrange()执行速度有差异。由于这两者的实现方式相同,因此理论上执行速度应该也是相同的。这里的速度差别仅仅是因为Python 3的总体速度就比Python 2慢。 ? 12345 def test_while(): i = 0 while i < 20000: i += 1 return ? 12 print('Python', python_version())%timeit test_while() Python 3.4.1%timeit test_while()100 loops, best of 3: 2.68 ms per loop ? 12 print 'Python', python_version()%timeit test_while() Python 2.7.61000 loops, best of 3: 1.72 ms per loop 触发异常 [回到目录] Python 2支持新旧两种异常触发语法,而Python 3只接受带括号的的语法(不然会触发SyntaxError): Python 2 ? 1 print 'Python', python_version() Python 2.7.6 ? 1 raise IOError, "file error" IOError Traceback (most recent call last) in ()----> 1 raise IOError, "file error" IOError: file error ? 1 raise IOError("file error") IOError Traceback (most recent call last) in ()----> 1 raise IOError("file error") IOError: file error Python 3 ? 1 print('Python', python_version()) Python 3.4.1 ? 1 raise IOError, "file error" File "", line 1raise IOError, "file error"^SyntaxError: invalid syntaxThe proper way to raise an exception in Python 3: ? 12 print('Python', python_version())raise IOError("file error") Python 3.4.1 OSError Traceback (most recent call last) in ()1 print('Python', python_version())----> 2 raise IOError("file error") OSError: file error 异常处理 [回到目录] Python 3中的异常处理也发生了一点变化。在Python 3中必须使用“as”关键字。 Python 2 ? 12345 print 'Python', python_version()try: let_us_cause_a_NameErrorexcept NameError, err: print err, '--> our error message' Python 2.7.6name 'let_us_cause_a_NameError' is not defined --> our error message Python 3 ? 12345 print('Python', python_version())try: let_us_cause_a_NameErrorexcept NameError as err: print(err, '--> our error message') Python 3.4.1name 'let_us_cause_a_NameError' is not defined --> our error message next()函数和.next()方法 [回到目录] 由于会经常用到next()(.next())函数(方法),所以还要提到另一个语法改动(实现方面也做了改动):在Python 2.7.5中,函数形式和方法形式都可以使用,而在Python 3中,只能使用next()函数(试图调用.next()方法会触发AttributeError)。 Python 2 ? 1234 print 'Python', python_version()my_generator = (letter for letter in 'abcdefg')next(my_generator)my_generator.next() Python 2.7.6'b' Python 3 ? 123 print('Python', python_version())my_generator = (letter for letter in 'abcdefg')next(my_generator) Python 3.4.1'a' ? 1 my_generator.next() AttributeError Traceback (most recent call last) in ()----> 1 my_generator.next() AttributeError: 'generator' object has no attribute 'next' For循环变量与全局命名空间泄漏 [回到目录] 好消息是:在Python 3.x中,for循环中的变量不再会泄漏到全局命名空间中了! 这是Python 3.x中做的一个改动,在“What's New In Python 3.0”中有如下描述: “列表推导不再支持[... for var in item1, item2, ...]这样的语法,使用[... for var in (item1, item2, ...)]代替。还要注意列表推导有不同的语义:现在列表推导更接近list()构造器中的生成器表达式这样的语法糖,特别要注意的是,循环控制变量不会再泄漏到循环周围的空间中了。” Python 2 ? 12345678 print 'Python', python_version() i = 1print 'before: i =', i print 'comprehension: ', [i for i in range(5)] print 'after: i =', i Python 2.7.6before: i = 1comprehension: [0, 1, 2, 3, 4]after: i = 4 Python 3 ? 12345678 print('Python', python_version()) i = 1print('before: i =', i) print('comprehension:', [i for i in range(5)]) print('after: i =', i) Python 3.4.1before: i = 1comprehension: [0, 1, 2, 3, 4]after: i = 1 比较无序类型 [回到目录] Python 3中另一个优秀的改动是,如果我们试图比较无序类型,会触发一个TypeError。 Python 2 ? 1234 print 'Python', python_version()print "[1, 2] > 'foo' = ", [1, 2] > 'foo'print "(1, 2) > 'foo' = ", (1, 2) > 'foo'print "[1, 2] > (1, 2) = ", [1, 2] > (1, 2) Python 2.7.6[1, 2] > 'foo' = False(1, 2) > 'foo' = True[1, 2] > (1, 2) = False Python 3 ? 1234 print('Python', python_version())print("[1, 2] > 'foo' = ", [1, 2] > 'foo')print("(1, 2) > 'foo' = ", (1, 2) > 'foo')print("[1, 2] > (1, 2) = ", [1, 2] > (1, 2)) Python 3.4.1 TypeError Traceback (most recent call last) in ()1 print('Python', python_version())----> 2 print("[1, 2] > 'foo' = ", [1, 2] > 'foo')3 print("(1, 2) > 'foo' = ", (1, 2) > 'foo')4 print("[1, 2] > (1, 2) = ", [1, 2] > (1, 2))TypeError: unorderable types: list() > str() 通过input()解析用户的输入 [回到目录] 幸运的是,Python 3改进了input()函数,这样该函数就会总是将用户的输入存储为str对象。在Python 2中,为了避免读取非字符串类型会发生的一些危险行为,不得不使用raw_input()代替input()。 Python 2 ? 1234567891011121314151617 Python 2.7.6[GCC 4.0.1 (Apple Inc. build 5493)] on darwinType "help", "copyright", "credits" or "license" for more information. my_input = input('enter a number: ') enter a number: 123 type(my_input) my_input = raw_input('enter a number: ') enter a number: 123 type(my_input) Python 3 ? 12345678 Python 3.4.1[GCC 4.2.1 (Apple Inc. build 5577)] on darwinType "help", "copyright", "credits" or "license" for more information. my_input = input('enter a number: ') enter a number: 123 type(my_input) 返回可迭代对象,而不是列表 [回到目录] 在xrange一节中可以看到,某些函数和方法在Python中返回的是可迭代对象,而不像在Python 2中返回列表。 由于通常对这些对象只遍历一次,所以这种方式会节省很多内存。然而,如果通过生成器来多次迭代这些对象,效率就不高了。 此时我们的确需要列表对象,可以通过list()函数简单的将可迭代对象转成列表。 Python 2 ? 1234 print 'Python', python_version() print range(3)print type(range(3)) Python 2.7.6[0, 1, 2] Python 3 ? 1234 print('Python', python_version())print(range(3))print(type(range(3)))print(list(range(3))) Python 3.4.1range(0, 3)[0, 1, 2] 下面列出了Python 3中其他不再返回列表的常用函数和方法:•zip()•map()•filter()•字典的.key()方法•字典的.value()方法•字典的.item()方法 更多关于Python 2和Python 3的文章 [回到目录] 下面列出了其他一些可以进一步了解Python 2和Python 3的优秀文章, //迁移到 Python 3•Should I use Python 2 or Python 3 for my development activity?•What's New In Python 3.0•Porting to Python 3•Porting Python 2 Code to Python 3•How keep Python 3 moving forward // 对Python 3的褒与贬•10 awesome features of Python that you can't use because you refuse to upgrade to Python 3•关于你不想知道的所有Python3 unicode特性•Python 3 正在毁灭 Python•Python 3 能振兴 Python•Python 3 is fine

xuning715 2019-12-02 01:10:35 0 浏览量 回答数 0

问题

【python问答学堂】8期 字典排序

剑曼红尘 2020-04-28 14:22:52 0 浏览量 回答数 1

问题

【教程免费下载】数据结构与算法:Python语言描述

沉默术士 2019-12-01 22:07:56 4103 浏览量 回答数 1

问题

为什么IoC / DI在Python中不常见?

祖安文状元 2020-02-21 16:08:51 0 浏览量 回答数 1

问题

为什么IoC / DI在Python中不常见?

祖安文状元 2020-02-22 15:17:07 0 浏览量 回答数 1

回答

Python 简史 开发 Python 3 的想法是实现一些重大的改变,如摆脱了 Python 的遗留问题:将所有字符串都呈现为 Unicode。正如 Python 的核心开发人员之一布雷特·坎农(Brett Cannon)写道: 人们有时会忘记 Python 诞生的年代。 Guido 于 1989 年 12 月开始对 Python 进行编码,并于 1991 年 2 月首次以开源形式发布。这意味着 Python 本身早于 1991 年 10 月发布的 Unicode 标准的第一版。在随后的几年中,Unicode 标准化后创建的语言选择使用基于 Unicode 编码字符串的实现。 支持任何语言的 Unicode 和文本非常重要。 Python 是一种世界语言,不仅是支持 ASCII 覆盖的罗马字母的语言,这就是 Python 3 在处理文本时将其默认设为“ Unicode”的原因。它保证了所有 Python 3 代码都将支持世界上的每个人,无论编写该代码的开发人员是否明确为其指定 Unicode 编码。 不幸的是,该团队假设每个人都将立即进行大的切换,并使 Python 3 向后不兼容,并将 Python 2 设置为维护分支。但是,许多人不想切换,因为正如改进的 PEP 所说,Python 3 是“相对于 Python 2 的温和的改进。”许多人并没有因为这些带来的不便而切换。当时,Python2、3 最大的区别是将 print 语句更改为 print() 函数语法,这破坏了很多 Python 2 代码。 结果,此后很多年 Python 2 还继续处于积极的开发中。 不过,在 2019 年,Python 3 终于成为了新 Python 软件工程师(大部分)开发的默认语言版本,现在许多公司和项目都在使用 Python 3 的主要功能:f- 字符串、Path、类型提示、异步,当然还包括 Unicode 编码。 缓慢的迭代过程 自从新的版本于 2008 年宣布以来,Python 3 市场份额增长一直很漫长: 最初,有很多理由不采用 Python 3:最重要的是,它与 Python 2 并没有向后兼容。结果导致一些 Python2 的主要库往 Python3 迁移都犹豫不决。2 向 3 转换的转折点发生在大约 2016 年左右的 Python 3.5 发行版中,该版本具有矩阵乘法、asyncio 的引入、OrderedDict 的速度改进以及类型提示的实现,这些提示为 Python3 带来了一些类似于静态语言的实用功能。 Python3 更高版本包含更多功能,例如 Pathlib 库和 f- 字符串操作。通过这些更改,人们使用了许多库(例如用于机器学习的 scikit-learn)开始了向 Python 3 的迁移。 随着越来越多的依赖关系开始升级,一些公司也开始迁移 Python3。 从互联网上的状况来看,您可能以为每个人都完成了 Python3 迁移。 在 Jetbrains 进行的一项调查中,他们制作了 IntelliJ 和 PyCharm 之类的 IDE,有 75%的个人受访者表示他们已经迁移到 Python3。一连串的博客文章都显示了相同的内容,例如,Dropbox 于 2018 年秋季详细说明了他们的迁移 Python3、Instagram 于 2017 年迁移 Python3、Facebook 于 2014 年开始迁移 Python3。在客户的敦促下,Splunk 最近也这样做了 – 往 Python3 迁移。 但是,仅仅因为 Python 2 即将到期,并不意味着公司会在一夜之间停止使用它。我们怎么知道 Python 2 仍在大量的使用?我们可以直接检查 Python 包库 PyPI 的运行情况。2016 年,PyPI 核心开发人员开始将日志发送到 Google 的 BigQuery,以便能够针对它们运行 SQL,这使得根据使用情况做出体系结构决策变得更加容易。 例如,如果要查看过去 30 天内通过 Python 版本下载了哪些库,则可以在 BigQuery 中创建一个新项目(每月查询的前 1TB 是免费的),然后运行: SELECT REGEXP_EXTRACT(details.python, r"^([^\.]+\.[^\.]+)") as python_version, COUNT(*) as download_count, FROM TABLE_DATE_RANGE( [the-psf:pypi.downloads], DATE_ADD(CURRENT_TIMESTAMP(), -31, "day"), DATE_ADD(CURRENT_TIMESTAMP(), -1, "day") ) GROUP BY python_version, ORDER BY download_count DESC LIMIT 100 尽管 Python 3 一直是社区中的主导版本至少一年,但从 PyPI 下载的单个软件包的最新数量显示,2019 年 9 月所有软件包下载中至少有 40%为 2.7 版本。诚然,这比年初的 60%有所下降,但是鉴于 EOL 距离只有数月之遥,所以这个数据仍然很重要。 在每个库的基础上,它变得有些棘手:大多数 Flask 下载都是使用 Python 3 版本完成的,但是只有 26%的 botocore 下载(适用于 Python 的 AWS 开发工具包)正在使用 Python 3。 而且,有几个库需要进行迁移:Twisted 和 PyPy(常用的 JIT 编译器)将无限期保留版本 2。 任何给定软件的寿命终止通常并不意味着该软件不再可用。这确实意味着它不再针对任何安全漏洞或添加任何其他错误修复程序进行更新。但是,不更新到 Python 3 会带来很多风险 - 最重要的是,可能会丢失安全更新,无法利用类型提示和速度提升等新功能。 为什么 Python3 迁移速度这么慢? 开个玩笑,在我写本文的时候,我的 IT 系统还在 Java 8 上运行(按今天的标准,这已经很古老了。但是根据 2018 年的 JVM 生态系统报告,Java 8 仍然是主要的开发环境。) 这就是答案:大多数大型组织,在技术新闻发布的炒作周期之外,其行动要比新闻媒体或博客想像的要慢得多。例如,大多数主要银行仍在运行 FORTRAN 和 COBOL 的编程语言系统。 因此,尽管许多公司描述了他们的迁移策略,但更多的应用软件将长期保留在 Python 2 上。 为什么会这样呢? 在所有决策中,政治发挥的作用和技术指导一样重要 例如,为了在 Facebook 上使用 Python 3,Jason Fried 从 2014 年开始重写 Python3 服务。一路走来,他犯了很多错误,更改了很多代码,并做了很多修改以使其广为人知人们正在做 Facebook 之类的事情,例如参加新的开发人员培训,从而开始使用 Python 3。然后,他与ŁukaszLanga 合作,后者将 Instagram 转换为 Python 3: 2016 年,他和 Langa 在 Facebook 上组建了一个全新的团队,以在公司内部管理 Python3。由于他们是“ Python 团队”,因此他先前提到的“公认权威”起作用。人们认为他们可以在 Facebook 上做出有关 Python 的决定。实际上,Instagram 的迁移项目本身耗时 10 个月。 Guido 和 Langa 现在工作的 Dropbox 花费了三年时间,而直到 Guido 几周前退休为止,它仍在进行中。 诚然,上面这些案例都是巨大的 Python 代码库,但您必须怀疑:如果 Python 的高层人员从事此工作需要花费这么长时间,那么对于一家公司非高层做决策来说可能要花费更多的时间。 安全问题是一个很重要的考量问题 具有讽刺意味的是,您会认为不升级将是更大的风险。但是在较大的组织中,不允许升级 Python3:管理员或安全团队向他们推送更新。在某些情况下,也不允许下载更新 PIP。如果 Python 2 是安全团队同意的默认协议,那么它可能需要做出巨大的努力才能说服人们将其切换到 3,尤其是在受到严格监管(例如医疗保健或金融)和政府的 IT 环境中。 惯性 尽管许多版本的 Linux(例如 RHEL)在 Python 2 和 Python 3 之间都包括了 Python 3,但这绝不是默认值,在 2 和 3 之间切换时,经常发现一些问题,尤其是指向系统版本的链接默认使用 Python2。Python 经历了从 2 到 3 的漫漫长路,个人和具有前瞻性的创业公司都采用了它。现在,第二大迁移将发生在大型企业从 2 开始迁移的时候。关于 Python 2,我们将看到 2020 年 40%使用率的数量进一步减少,但是变化将是递增的。 英文原文

珍宝珠 2020-01-06 10:36:04 0 浏览量 回答数 0

回答

问题 你想创建一个字典,并且在迭代或序列化这个字典的时候能够控制元素的顺序。 解决方案 为了能控制一个字典中元素的顺序,你可以使用 collections 模块中的 OrderedDict 类。 在迭代操作的时候它会保持元素被插入时的顺序,示例如下: 往期回顾: python问答学堂-《python进阶大全》中你必须掌握的QA 【python问答学堂】2期解压序列赋值给多个变量? 【python问答学堂】3解压可迭代对象赋值给多个变量? 【python问答学堂】4期保留最后 N 个元素? 【python问答学堂】5期 查找最大或最小的 N 个元素 【python问答学堂】6期 实现一个优先级队列 【python问答学堂】7期 字典中的键映射多个值

剑曼红尘 2020-04-28 14:22:58 0 浏览量 回答数 0

问题

如何使用OpenCV的Python版本> 3.0查找.pyc文件

is大龙 2020-03-23 17:06:25 0 浏览量 回答数 1

问题

Python Web开发-有无框架

祖安文状元 2020-02-21 17:53:35 10 浏览量 回答数 2

问题

基础语言百问-Python

薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

回答

不要尝试将/System/Library/Framework/Python.framework复制到您的应用程序捆绑包中,这几乎可以肯定不会满足您的要求(该应用程序无法在较旧的OSX版本上运行,并且在相同或较新的OSX版本),并且明智的使用许可证。 要使用该框架,您需要通过使用install_name_tool或通过创建一个自定义python框架(使用@executable_path /../../ Framework / Python之类的名称)来重写加载命令,该自定义python框架已经具有正确的安装名称值。框架/ Python。 我通常使用py2app来创建应用程序捆绑包(并不奇怪,因为我是py2app的维护者),该捆绑包也会自动包含所需的Python依赖项。

祖安文状元 2020-02-21 14:19:59 0 浏览量 回答数 0

问题

PyXB和python框架

祖安文状元 2020-02-21 16:06:20 0 浏览量 回答数 1

回答

Python是不能直接调用jar包的,但是通常都以Jython调用jar包作为一种很好的解决方式。 ython是一种完整的语言,而不是一个Java翻译器或仅仅是一个Python编译器,它是一个Python语言在Java中的完全实现。Jython也有很多从CPython中继承的模块库。最有趣的事情是Jython不像CPython或其他任何高级语言,它提供了对其实现语言的一切存取。所以Jython不仅给你提供了Python的库,同时也提供了所有的Java类。这使其有一个巨大的资源库。 ython由于继承了Java和Python二者的特性而显得很独特。其可以对Java类的无缝存取。 在Java中实现Python可以看到有趣的Java反射API的作用。反射使Jython能无缝地使用任何Java类。Jython从CPython中继承了很多优点,但CPython不像别的专为Python所写的一样,在C和Python之间有一些问题限制了C库函数的使用。在Jython中真正解决了这个问题,使其编程的效率和生产力得到了很大的提高。 由于与Java的无缝集成,Jython能使任何部署了Java应用和框架的公司受益而不需要额外的工作。接受任何一种部门的编程语言,对任何一个公司而言都是不容易的,需要深思熟虑,因为这牵涉到整体结构、服务器和外围的工具。Jython作为Java的一个无缝集成的语言,可以在已存在的Java应用上无缝增加而不需要重大抉择。很多公司都花费了很多资金来建立Java的应用,这使采用CPython、Perl、Ruby、PHP和其他不能透明地集成已有Java实现的高级语言的效益降低,吸引力下降。而Jython有能力对已存在的Java框架进行补充,且二者能无缝地结合。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:17:47 0 浏览量 回答数 0

问题

性能测试脚本使用何种语言?

猫饭先生 2019-12-01 21:26:18 1348 浏览量 回答数 0

问题

matplotlib:RuntimeError:Python未作为框架安装

祖安文状元 2020-02-21 17:35:34 3 浏览量 回答数 1

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 454222 浏览量 回答数 19

问题

【精品问答】Python数据爬取面试题库100问

珍宝珠 2019-12-01 21:55:53 6502 浏览量 回答数 3
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站