• 关于

    选择器引擎--函数化

    的搜索结果

问题

MPP计算引擎 SELECT语法是什么?

nicenelly 2019-12-01 21:25:30 1617 浏览量 回答数 0

问题

MPP计算引擎 SELECT语法是什么?

nicenelly 2019-12-01 21:10:51 1381 浏览量 回答数 0

问题

Windows2008r2+IIS7.5+mysql+php+URL_rewrite伪静态的环境配置

zhedianshi 2019-12-01 22:08:06 43897 浏览量 回答数 11

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。

玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

问题

在Eclipse中配置Heritrix HTTP ERROR 403.10 禁止访问:配置无效

kun坤 2020-05-27 20:05:38 7 浏览量 回答数 1

问题

Vue面试题汇总【精品问答】

问问小秘 2020-05-25 18:02:28 11132 浏览量 回答数 2

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

问题

应用 AXIS 开始 Web 服务之旅:报错

kun坤 2020-06-08 11:01:46 3 浏览量 回答数 1

回答

Flutter开发框架总结 跨平台高性能的渲染引擎逐渐成为移动端、大前端领域的一个热点,作为其中的明星框架Flutter,经过近几年来的迅速发展,由极大的可能成为下一代跨终端解决方案。自从2017年5月,谷歌公司发布了alpha版本的Flutter;2018年底Flutter Live发布的1.0版本;2019年7月发布1.5版本,截至今日(2020年2月)已经发布了v1.14.6Beta版本。 Flutter背景 + 发展历程 首先在写Flutter之前我们要了解什么是原生开发什么是跨平台技术: 原生开发     是指在某一个平台所特有的应用,使用该平台所支持的开发工具和语言,并直接调用系统SDK,比如android上使用java 和ios上使用OC来开发, 这样做的好处 是可以使用平台上全部功能、速度快 性能好,用户体验好。 但是 缺点也很明显,开发不同平台需要维护的成本增加,动态化弱,更新时需要发布版本。 跨平台技术     针对原生开发所遇到的问题,人们已经研究出现有的跨平台技术方案:H5+原生、Js开发加原生渲染(例如React Native、weex等)、自绘UI加原生(QT fro mobile,Flutter) 发展历程     2011年谷歌推出一款可以在移动端,web,服务器等领域的语言—dart,其本质目的是为了取代现在的js的web。 1. 2014年谷歌在github开源了Sky 这便是Flutter的前身 2. 2015-10 Sky改名为Flutter 3. 2017-5 谷歌正式向外界公布Flutter 4. 2018-12 谷歌发布Flutter Live的1.0版本 5. 2019-2 Flutter1.2发布主要是增加对web的支持     Flutter提供了丰富的组件、接口,开发者可以很快地为 Flutter添加 native扩展。同时 Flutter还使用 Native引擎渲染视图,这无疑能为用户提供良好的体验 Flutter架构     Flutter既没有采用Webview也没有采用操作系统的原生控件,相反Flutter使用自己的高性能渲染引擎来绘制widget,这样不仅可以保证UI和原生的一致性,也可以降低维护成本。     Flutter使用Skia作为其2D渲染引擎,Skia是谷歌的一个2D图形处理函数库。     Flutter 采用Dart语言进性开发。Dart在即时编译模式下速度与JavaScript基本持平,但是Dart支持AOT(Ahead-Of-Time - 预先编译),如果以AOT模式运行时js便远追不上了。 为什么Flutter语言采用Dart而不是JavaScript,我们需要做一个对比 1. 开发效率 Dart运行时和编译器支持Flutter的两个关键特性的组合—“基于JIT的快速开发周期”、“基于AOT的发布包” 2. 高性能 Flutter为了实现流畅高保真的UI体验,需要能够在每个动画帧中运行大量的代码,这就需要一种既能提供高性能的语言,又不会出现丢帧,在这一点上Dart更好 3. 快速分配内存 Flutter框架使用函数式流,这使得它很依赖于底层的内存分配器。事实上Dart开发团队许多来自chrome,chrome V8的js引擎在内存分配上也做得非常好,而Dart也正好满足 4. 类型安全 Dart是类型安全语言,支持静态类型检测,js是弱类型语言,这是Dart的一个重要优势 言归正传,下图是Flutter官方提供的一个架构图 引擎刚刚已经介绍过了,我们现在来看看Flutter框架的结构:     由下到上     Foundation、Animation、Painting、Gestutes 这些在Google的一些视频中合称为Dart ui层,对应的是Flutter中的dart:ui包,他是底层ui库,提供动画、手势以及绘制能力。     Rendering层为一个抽象的布局层,它依赖于ui层,这类似于react中的虚拟dom树,该层可以说是Flutter框架最核心的部分,它除了确定每个元素的位置、大小还要进性坐标变换、绘制。     Widgets层是一套基础组件库,在基础组件之上还提供了Material和Cupertino两种视觉风格组件库,大多数我们只是使用这两层。 Flutter运行流程 渲染流程     当需要更新UI的时候,Framework通知Engine,Engine会等到下个Vsync信号到达的时候,会通知Framework,然后Framework会进行animations, build,layout,compositing,paint,最后生成layer提交给Engine。Engine会把layer进行组合,生成纹理,最后通过Open Gl接口提交数据给GPU, GPU经过处理后在显示器上面显示。 启动流程     此图为flutter在安卓下启动的流程,在安卓中默认启动的Activity是MainActivity,而MainActivity继承的是Flutter Activity。     FlutterActivity是继承Activity和实现了PluginRegistry。分析一下onCreate,onStop,onDestroy这些生命周期方法被FlutterActivity.eventDelegate代理了,这个时候我们明白了,FlutterActivity就是一个空壳,真正实现是代理类FlutterActivityDelegate。说白了就是创建一个FlutterView,并且把view显示到屏幕上。 Flutter生命周期     Flutter和安卓、ios应用一样拥有自己的生命周期,对比来看,安卓中是Activity,ios中是ViewController。Flutter中为Widget createState(): 当框架构建StatefulWidget时,会立即调用createState();initState(): 创建窗口小部件时,调用的第一个方法,子类化State可以重写initState,用来完成仅需要执行一次的工作。didChangeDependencies(): 在执行完initState之后调用此方法。build(): 在执行完didChangeDependencies() 之后立即调用,所有的GUI都会在这里渲染,并且每次渲染UI时都会调用它。didUpdateWidget(): 父级窗口小部件进行更改并需要重新绘制UI时,会调用此方法setState(): 此方法用于通知框架数据已更改。dispose(): 销毁方法,移除State对象时调用,应该在此方法中取消一些订阅、动画、流等。 Flutter生态圈及其常用框架 DIO Dio是flutter中文网开源的一个强大的Dart Http请求库,支持Restful Api、FormData、拦截器、请求取消、Cookie、文件上传下载、超时等。 Flukit flukit即Flutter UI Kit,一个常用的Widget库,包括下拉刷新、轮播图、快速滚动条、渐变进度条、城市选择器等. CookieJar 一个实现HTTP协议标准Cookie管理策略的Cookie管理器,他可以自动帮您自动管理http请求cookie,并支持本地持久化。 flutter-go 阿里巴巴开源的flutter 开发者帮助 APP,包含 flutter 常用 140+ 组件的demo 演示与中文文档 https://flutter-go.pub/website/ Best-Flutter-UI-Templates Github地址:https://github.com/mitesh77/Best-Flutter-UI-Templates ,有许多内置ui模板。 欢迎大家有问题随时和我分享哦~初次在开发者社区码字,若有不足之处,请指教,您的每一次留言都是我前进的动力。愿大家在疫情期间共同进步,共创美好的开发者社区。

kun坤 2020-03-02 17:00:55 0 浏览量 回答数 0

问题

【分享】WeX5的正确打开方式(3)——绑定机制

小太阳1号 2019-12-01 21:23:54 5393 浏览量 回答数 3

问题

【今日算法】备战大厂必备题目,持续更新

游客ih62co2qqq5ww 2020-04-08 09:21:40 3542 浏览量 回答数 4

回答

使用准备好的语句和参数化查询。这些是独立于任何参数发送到数据库服务器并由数据库服务器解析的SQL语句。这样,攻击者就不可能注入恶意SQL。 您基本上有两种选择可以实现此目的: 使用PDO(对于任何受支持的数据库驱动程序): $stmt = $pdo->prepare('SELECT * FROM employees WHERE name = :name'); $stmt->execute([ 'name' => $name ]); foreach ($stmt as $row) { // Do something with $row } 使用MySQLi(对于MySQL): $stmt = $dbConnection->prepare('SELECT * FROM employees WHERE name = ?'); $stmt->bind_param('s', $name); // 's' specifies the variable type => 'string' $stmt->execute(); $result = $stmt->get_result(); while ($row = $result->fetch_assoc()) { // Do something with $row } 如果你连接到MySQL之外的数据库,有一个特定的驱动程序,第二个选项,你可以参考一下(例如,pg_prepare()和pg_execute()PostgreSQL的)。PDO是通用选项。 正确设置连接 注意,当PDO用于访问MySQL数据库时,默认情况下不使用真实的预处理语句。要解决此问题,您必须禁用对准备好的语句的仿真。使用PDO创建连接的示例如下: $dbConnection = new PDO('mysql:dbname=dbtest;host=127.0.0.1;charset=utf8', 'user', 'password'); $dbConnection->setAttribute(PDO::ATTR_EMULATE_PREPARES, false); $dbConnection->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION); 在上面的示例中,错误模式不是严格必需的,但建议添加它。这样,Fatal Error当出现问题时脚本不会以a停止。并且它为开发人员提供了解决catch任何thrown为PDOExceptions的错误的机会。 但是,第一行是强制性的,setAttribute()它告诉PDO禁用模拟的预备语句并使用实际的预备语句。这可以确保在将语句和值发送到MySQL服务器之前,不会对PHP进行解析(这样可能会使攻击者没有机会注入恶意SQL)。 尽管可以charset在构造函数的选项中设置,但是必须注意,PHP的“较旧”版本(在5.3.6之前)静默忽略了DSN中的charset参数。 说明 传递给您的SQL语句prepare由数据库服务器解析和编译。通过指定参数(如上例中的?参数或命名参数:name),您可以告诉数据库引擎要在何处进行过滤。然后,当您调用时execute,准备好的语句将与您指定的参数值组合在一起。 这里重要的是参数值与已编译的语句组合,而不是与SQL字符串组合。SQL注入通过在创建要发送到数据库的SQL时欺骗脚本使其包含恶意字符串来起作用。因此,通过将实际的SQL与参数分开发送,可以减少因意外获得最终结果的风险。 使用预处理语句发送的任何参数都将被视为字符串(尽管数据库引擎可能会进行一些优化,因此参数最终也可能以数字结尾)。在上面的示例中,如果$name变量包含'Sarah'; DELETE FROM employees结果,则仅是搜索字符串"'Sarah'; DELETE FROM employees",并且最终不会得到空表。 使用准备好的语句的另一个好处是,如果您在同一会话中多次执行同一条语句,它将仅被解析和编译一次,从而使您获得了一些速度上的提高。 哦,既然您询问了如何进行插入,这是一个示例(使用PDO): $preparedStatement = $db->prepare('INSERT INTO table (column) VALUES (:column)'); $preparedStatement->execute([ 'column' => $unsafeValue ]); 准备好的语句可以用于动态查询吗? 尽管您仍可以对查询参数使用准备好的语句,但是无法对动态查询本身的结构进行参数化,并且无法对某些查询功能进行参数化。 对于这些特定方案,最好的办法是使用白名单过滤器来限制可能的值。 // Value whitelist // $dir can only be 'DESC', otherwise it will be 'ASC' if (empty($dir) || $dir !== 'DESC') { $dir = 'ASC'; }

保持可爱mmm 2020-05-08 09:26:01 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 455812 浏览量 回答数 21

回答

Android平台进行数据存储的五大方式,分别如下: 1 使用SharedPreferences存储数据 2 文件存储数据 3 SQLite数据库存储数据 4 使用ContentProvider存储数据 5 网络存储数据 下面详细讲解这五种方式的特点 第一种: 使用SharedPreferences存储数据 适用范围:保存少量的数据,且这些数据的格式非常简单:字符串型、基本类型的值。比如应用程序的各种配置信息(如是否打开音效、是否使用震动效果、小游戏的玩家积分等),解锁口 令密码等 核心原理:保存基于XML文件存储的key-value键值对数据,通常用来存储一些简单的配置信息。通过DDMS的File Explorer面板,展开文件浏览树,很明显SharedPreferences数据总是存储在/data/data/<package name>/shared_prefs目录下。SharedPreferences对象本身只能获取数据而不支持存储和修改,存储修改是通过SharedPreferences.edit()获取的内部接口Editor对象实现。 SharedPreferences本身是一 个接口,程序无法直接创建SharedPreferences实例,只能通过Context提供的getSharedPreferences(String name, int mode)方法来获取SharedPreferences实例,该方法中name表示要操作的xml文件名,第二个参数具体如下: Context.MODE_PRIVATE: 指定该SharedPreferences数据只能被本应用程序读、写。 Context.MODE_WORLD_READABLE: 指定该SharedPreferences数据能被其他应用程序读,但不能写。 Context.MODE_WORLD_WRITEABLE: 指定该SharedPreferences数据能被其他应用程序读,写 Editor有如下主要重要方法: SharedPreferences.Editor clear():清空SharedPreferences里所有数据 SharedPreferences.Editor putXxx(String key , xxx value): 向SharedPreferences存入指定key对应的数据,其中xxx 可以是boolean,float,int等各种基本类型据 SharedPreferences.Editor remove(): 删除SharedPreferences中指定key对应的数据项 boolean commit(): 当Editor编辑完成后,使用该方法提交修改 实际案例:运行界面如下 这里只提供了两个按钮和一个输入文本框,布局简单,故在此不给出界面布局文件了,程序核心代码如下: 、class ViewOcl implements View.OnClickListener{ @Override public void onClick(View v) { switch(v.getId()){ case R.id.btnSet: //步骤1:获取输入值 String code = txtCode.getText().toString().trim(); //步骤2-1:创建一个SharedPreferences.Editor接口对象,lock表示要写入的XML文件名,MODE_WORLD_WRITEABLE写操作 SharedPreferences.Editor editor = getSharedPreferences("lock", MODE_WORLD_WRITEABLE).edit(); //步骤2-2:将获取过来的值放入文件 editor.putString("code", code); //步骤3:提交 editor.commit(); Toast.makeText(getApplicationContext(), "口令设置成功", Toast.LENGTH_LONG).show(); break; case R.id.btnGet: //步骤1:创建一个SharedPreferences接口对象 SharedPreferences read = getSharedPreferences("lock", MODE_WORLD_READABLE); //步骤2:获取文件中的值 String value = read.getString("code", ""); Toast.makeText(getApplicationContext(), "口令为:"+value, Toast.LENGTH_LONG).show(); break; } } } 、读写其他应用的SharedPreferences: 步骤如下 1、在创建SharedPreferences时,指定MODE_WORLD_READABLE模式,表明该SharedPreferences数据可以被其他程序读取 2、创建其他应用程序对应的Context: Context pvCount = createPackageContext("com.tony.app", Context.CONTEXT_IGNORE_SECURITY);这里的com.tony.app就是其他程序的包名 3、使用其他程序的Context获取对应的SharedPreferences SharedPreferences read = pvCount.getSharedPreferences("lock", Context.MODE_WORLD_READABLE); 4、如果是写入数据,使用Editor接口即可,所有其他操作均和前面一致。 SharedPreferences对象与SQLite数据库相比,免去了创建数据库,创建表,写SQL语句等诸多操作,相对而言更加方便,简洁。但是SharedPreferences也有其自身缺陷,比如其职能存储boolean,int,float,long和String五种简单的数据类型,比如其无法进行条件查询等。所以不论SharedPreferences的数据存储操作是如何简单,它也只能是存储方式的一种补充,而无法完全替代如SQLite数据库这样的其他数据存储方式。 第二种: 文件存储数据 核心原理: Context提供了两个方法来打开数据文件里的文件IO流 FileInputStream openFileInput(String name); FileOutputStream(String name , int mode),这两个方法第一个参数 用于指定文件名,第二个参数指定打开文件的模式。具体有以下值可选: MODE_PRIVATE:为默认操作模式,代表该文件是私有数据,只能被应用本身访问,在该模式下,写入的内容会覆盖原文件的内容,如果想把新写入的内容追加到原文件中。可 以使用Context.MODE_APPEND MODE_APPEND:模式会检查文件是否存在,存在就往文件追加内容,否则就创建新文件。 MODE_WORLD_READABLE:表示当前文件可以被其他应用读取; MODE_WORLD_WRITEABLE:表示当前文件可以被其他应用写入。 除此之外,Context还提供了如下几个重要的方法: getDir(String name , int mode):在应用程序的数据文件夹下获取或者创建name对应的子目录 File getFilesDir():获取该应用程序的数据文件夹得绝对路径 String[] fileList():返回该应用数据文件夹的全部文件 public String read() { try { FileInputStream inStream = this.openFileInput("message.txt"); byte[] buffer = new byte[1024]; int hasRead = 0; StringBuilder sb = new StringBuilder(); while ((hasRead = inStream.read(buffer)) != -1) { sb.append(new String(buffer, 0, hasRead)); } inStream.close(); return sb.toString(); } catch (Exception e) { e.printStackTrace(); } return null; } public void write(String msg){ // 步骤1:获取输入值 if(msg == null) return; try { // 步骤2:创建一个FileOutputStream对象,MODE_APPEND追加模式 FileOutputStream fos = openFileOutput("message.txt", MODE_APPEND); // 步骤3:将获取过来的值放入文件 fos.write(msg.getBytes()); // 步骤4:关闭数据流 fos.close(); } catch (Exception e) { e.printStackTrace(); } } openFileOutput()方法的第一参数用于指定文件名称,不能包含路径分隔符“/” ,如果文件不存在,Android 会自动创建它。创建的文件保存在/data/data//files目录,如: /data/data/cn.tony.app/files/message.txt, 下面讲解某些特殊文件读写需要注意的地方: 读写sdcard上的文件 其中读写步骤按如下进行: 1、调用Environment的getExternalStorageState()方法判断手机上是否插了sd卡,且应用程序具有读写SD卡的权限,如下代码将返回true Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED) 2、调用Environment.getExternalStorageDirectory()方法来获取外部存储器,也就是SD卡的目录,或者使用"/mnt/sdcard/"目录 3、使用IO流操作SD卡上的文件 注意点:手机应该已插入SD卡,对于模拟器而言,可通过mksdcard命令来创建虚拟存储卡 必须在AndroidManifest.xml上配置读写SD卡的权限 // 文件写操作函数 private void write(String content) { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } PrintStream out = null; // 打印流对象用于输出 try { out = new PrintStream(new FileOutputStream(file, true)); // 追加文件 out.println(content); } catch (Exception e) { e.printStackTrace(); } finally { if (out != null) { out.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "保存失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } } // 文件读操作函数 private String read() { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } Scanner scan = null; // 扫描输入 StringBuilder sb = new StringBuilder(); try { scan = new Scanner(new FileInputStream(file)); // 实例化Scanner while (scan.hasNext()) { // 循环读取 sb.append(scan.next() + "\n"); // 设置文本 } return sb.toString(); } catch (Exception e) { e.printStackTrace(); } finally { if (scan != null) { scan.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "读取失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } return null; } 复制代码 第三种:SQLite存储数据 SQLite是轻量级嵌入式数据库引擎,它支持 SQL 语言,并且只利用很少的内存就有很好的性能。现在的主流移动设备像Android、iPhone等都使用SQLite作为复杂数据的存储引擎,在我们为移动设备开发应用程序时,也许就要使用到SQLite来存储我们大量的数据,所以我们就需要掌握移动设备上的SQLite开发技巧 SQLiteDatabase类为我们提供了很多种方法,上面的代码中基本上囊括了大部分的数据库操作;对于添加、更新和删除来说,我们都可以使用 1 db.executeSQL(String sql); 2 db.executeSQL(String sql, Object[] bindArgs);//sql语句中使用占位符,然后第二个参数是实际的参数集 除了统一的形式之外,他们还有各自的操作方法: 1 db.insert(String table, String nullColumnHack, ContentValues values); 2 db.update(String table, Contentvalues values, String whereClause, String whereArgs); 3 db.delete(String table, String whereClause, String whereArgs);以上三个方法的第一个参数都是表示要操作的表名;insert中的第二个参数表示如果插入的数据每一列都为空的话,需要指定此行中某一列的名称,系统将此列设置为NULL,不至于出现错误;insert中的第三个参数是ContentValues类型的变量,是键值对组成的Map,key代表列名,value代表该列要插入的值;update的第二个参数也很类似,只不过它是更新该字段key为最新的value值,第三个参数whereClause表示WHERE表达式,比如“age > ? and age < ?”等,最后的whereArgs参数是占位符的实际参数值;delete方法的参数也是一样 下面给出demo 数据的添加 1.使用insert方法 复制代码1 ContentValues cv = new ContentValues();//实例化一个ContentValues用来装载待插入的数据2 cv.put("title","you are beautiful");//添加title3 cv.put("weather","sun"); //添加weather4 cv.put("context","xxxx"); //添加context5 String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")6 .format(new Date());7 cv.put("publish ",publish); //添加publish8 db.insert("diary",null,cv);//执行插入操作复制代码2.使用execSQL方式来实现 String sql = "insert into user(username,password) values ('Jack Johnson','iLovePopMuisc');//插入操作的SQL语句db.execSQL(sql);//执行SQL语句数据的删除 同样有2种方式可以实现 String whereClause = "username=?";//删除的条件String[] whereArgs = {"Jack Johnson"};//删除的条件参数db.delete("user",whereClause,whereArgs);//执行删除使用execSQL方式的实现 String sql = "delete from user where username='Jack Johnson'";//删除操作的SQL语句db.execSQL(sql);//执行删除操作数据修改 同上,仍是2种方式 ContentValues cv = new ContentValues();//实例化ContentValuescv.put("password","iHatePopMusic");//添加要更改的字段及内容String whereClause = "username=?";//修改条件String[] whereArgs = {"Jack Johnson"};//修改条件的参数db.update("user",cv,whereClause,whereArgs);//执行修改使用execSQL方式的实现 String sql = "update user set password = 'iHatePopMusic' where username='Jack Johnson'";//修改的SQL语句db.execSQL(sql);//执行修改数据查询 下面来说说查询操作。查询操作相对于上面的几种操作要复杂些,因为我们经常要面对着各种各样的查询条件,所以系统也考虑到这种复杂性,为我们提供了较为丰富的查询形式: 1 db.rawQuery(String sql, String[] selectionArgs); 2 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy); 3 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 4 db.query(String distinct, String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 上面几种都是常用的查询方法,第一种最为简单,将所有的SQL语句都组织到一个字符串中,使用占位符代替实际参数,selectionArgs就是占位符实际参数集; 各参数说明: table:表名称colums:表示要查询的列所有名称集selection:表示WHERE之后的条件语句,可以使用占位符selectionArgs:条件语句的参数数组groupBy:指定分组的列名having:指定分组条件,配合groupBy使用orderBy:y指定排序的列名limit:指定分页参数distinct:指定“true”或“false”表示要不要过滤重复值Cursor:返回值,相当于结果集ResultSet最后,他们同时返回一个Cursor对象,代表数据集的游标,有点类似于JavaSE中的ResultSet。下面是Cursor对象的常用方法: 复制代码 1 c.move(int offset); //以当前位置为参考,移动到指定行 2 c.moveToFirst(); //移动到第一行 3 c.moveToLast(); //移动到最后一行 4 c.moveToPosition(int position); //移动到指定行 5 c.moveToPrevious(); //移动到前一行 6 c.moveToNext(); //移动到下一行 7 c.isFirst(); //是否指向第一条 8 c.isLast(); //是否指向最后一条 9 c.isBeforeFirst(); //是否指向第一条之前 10 c.isAfterLast(); //是否指向最后一条之后 11 c.isNull(int columnIndex); //指定列是否为空(列基数为0) 12 c.isClosed(); //游标是否已关闭 13 c.getCount(); //总数据项数 14 c.getPosition(); //返回当前游标所指向的行数 15 c.getColumnIndex(String columnName);//返回某列名对应的列索引值 16 c.getString(int columnIndex); //返回当前行指定列的值 复制代码实现代码 复制代码String[] params = {12345,123456};Cursor cursor = db.query("user",columns,"ID=?",params,null,null,null);//查询并获得游标if(cursor.moveToFirst()){//判断游标是否为空 for(int i=0;i<cursor.getCount();i++){ cursor.move(i);//移动到指定记录 String username = cursor.getString(cursor.getColumnIndex("username"); String password = cursor.getString(cursor.getColumnIndex("password")); } }复制代码通过rawQuery实现的带参数查询 复制代码Cursor result=db.rawQuery("SELECT ID, name, inventory FROM mytable");//Cursor c = db.rawQuery("s name, inventory FROM mytable where ID=?",new Stirng[]{"123456"}); result.moveToFirst(); while (!result.isAfterLast()) { int id=result.getInt(0); String name=result.getString(1); int inventory=result.getInt(2); // do something useful with these result.moveToNext(); } result.close();复制代码 在上面的代码示例中,已经用到了这几个常用方法中的一些,关于更多的信息,大家可以参考官方文档中的说明。 最后当我们完成了对数据库的操作后,记得调用SQLiteDatabase的close()方法释放数据库连接,否则容易出现SQLiteException。 上面就是SQLite的基本应用,但在实际开发中,为了能够更好的管理和维护数据库,我们会封装一个继承自SQLiteOpenHelper类的数据库操作类,然后以这个类为基础,再封装我们的业务逻辑方法。 这里直接使用案例讲解:下面是案例demo的界面 SQLiteOpenHelper类介绍 SQLiteOpenHelper是SQLiteDatabase的一个帮助类,用来管理数据库的创建和版本的更新。一般是建立一个类继承它,并实现它的onCreate和onUpgrade方法。 方法名 方法描述SQLiteOpenHelper(Context context,String name,SQLiteDatabase.CursorFactory factory,int version) 构造方法,其中 context 程序上下文环境 即:XXXActivity.this; name :数据库名字; factory:游标工厂,默认为null,即为使用默认工厂; version 数据库版本号 onCreate(SQLiteDatabase db) 创建数据库时调用onUpgrade(SQLiteDatabase db,int oldVersion , int newVersion) 版本更新时调用getReadableDatabase() 创建或打开一个只读数据库getWritableDatabase() 创建或打开一个读写数据库首先创建数据库类 复制代码 1 import android.content.Context; 2 import android.database.sqlite.SQLiteDatabase; 3 import android.database.sqlite.SQLiteDatabase.CursorFactory; 4 import android.database.sqlite.SQLiteOpenHelper; 5 6 public class SqliteDBHelper extends SQLiteOpenHelper { 7 8 // 步骤1:设置常数参量 9 private static final String DATABASE_NAME = "diary_db";10 private static final int VERSION = 1;11 private static final String TABLE_NAME = "diary";12 13 // 步骤2:重载构造方法14 public SqliteDBHelper(Context context) {15 super(context, DATABASE_NAME, null, VERSION);16 }17 18 /*19 * 参数介绍:context 程序上下文环境 即:XXXActivity.this 20 * name 数据库名字 21 * factory 接收数据,一般情况为null22 * version 数据库版本号23 */24 public SqliteDBHelper(Context context, String name, CursorFactory factory,25 int version) {26 super(context, name, factory, version);27 }28 //数据库第一次被创建时,onCreate()会被调用29 @Override30 public void onCreate(SQLiteDatabase db) {31 // 步骤3:数据库表的创建32 String strSQL = "create table "33 + TABLE_NAME34 + "(tid integer primary key autoincrement,title varchar(20),weather varchar(10),context text,publish date)";35 //步骤4:使用参数db,创建对象36 db.execSQL(strSQL);37 }38 //数据库版本变化时,会调用onUpgrade()39 @Override40 public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {41 42 }43 }复制代码正如上面所述,数据库第一次创建时onCreate方法会被调用,我们可以执行创建表的语句,当系统发现版本变化之后,会调用onUpgrade方法,我们可以执行修改表结构等语句。 我们需要一个Dao,来封装我们所有的业务方法,代码如下: 复制代码 1 import android.content.Context; 2 import android.database.Cursor; 3 import android.database.sqlite.SQLiteDatabase; 4 5 import com.chinasoft.dbhelper.SqliteDBHelper; 6 7 public class DiaryDao { 8 9 private SqliteDBHelper sqliteDBHelper;10 private SQLiteDatabase db;11 12 // 重写构造方法13 public DiaryDao(Context context) {14 this.sqliteDBHelper = new SqliteDBHelper(context);15 db = sqliteDBHelper.getWritableDatabase();16 }17 18 // 读操作19 public String execQuery(final String strSQL) {20 try {21 System.out.println("strSQL>" + strSQL);22 // Cursor相当于JDBC中的ResultSet23 Cursor cursor = db.rawQuery(strSQL, null);24 // 始终让cursor指向数据库表的第1行记录25 cursor.moveToFirst();26 // 定义一个StringBuffer的对象,用于动态拼接字符串27 StringBuffer sb = new StringBuffer();28 // 循环游标,如果不是最后一项记录29 while (!cursor.isAfterLast()) {30 sb.append(cursor.getInt(0) + "/" + cursor.getString(1) + "/"31 + cursor.getString(2) + "/" + cursor.getString(3) + "/"32 + cursor.getString(4)+"#");33 //cursor游标移动34 cursor.moveToNext();35 }36 db.close();37 return sb.deleteCharAt(sb.length()-1).toString();38 } catch (RuntimeException e) {39 e.printStackTrace();40 return null;41 }42 43 }44 45 // 写操作46 public boolean execOther(final String strSQL) {47 db.beginTransaction(); //开始事务48 try {49 System.out.println("strSQL" + strSQL);50 db.execSQL(strSQL);51 db.setTransactionSuccessful(); //设置事务成功完成 52 db.close();53 return true;54 } catch (RuntimeException e) {55 e.printStackTrace();56 return false;57 }finally { 58 db.endTransaction(); //结束事务 59 } 60 61 }62 }复制代码我们在Dao构造方法中实例化sqliteDBHelper并获取一个SQLiteDatabase对象,作为整个应用的数据库实例;在增删改信息时,我们采用了事务处理,确保数据完整性;最后要注意释放数据库资源db.close(),这一个步骤在我们整个应用关闭时执行,这个环节容易被忘记,所以朋友们要注意。 我们获取数据库实例时使用了getWritableDatabase()方法,也许朋友们会有疑问,在getWritableDatabase()和getReadableDatabase()中,你为什么选择前者作为整个应用的数据库实例呢?在这里我想和大家着重分析一下这一点。 我们来看一下SQLiteOpenHelper中的getReadableDatabase()方法: 复制代码 1 public synchronized SQLiteDatabase getReadableDatabase() { 2 if (mDatabase != null && mDatabase.isOpen()) { 3 // 如果发现mDatabase不为空并且已经打开则直接返回 4 return mDatabase; 5 } 6 7 if (mIsInitializing) { 8 // 如果正在初始化则抛出异常 9 throw new IllegalStateException("getReadableDatabase called recursively"); 10 } 11 12 // 开始实例化数据库mDatabase 13 14 try { 15 // 注意这里是调用了getWritableDatabase()方法 16 return getWritableDatabase(); 17 } catch (SQLiteException e) { 18 if (mName == null) 19 throw e; // Can't open a temp database read-only! 20 Log.e(TAG, "Couldn't open " + mName + " for writing (will try read-only):", e); 21 } 22 23 // 如果无法以可读写模式打开数据库 则以只读方式打开 24 25 SQLiteDatabase db = null; 26 try { 27 mIsInitializing = true; 28 String path = mContext.getDatabasePath(mName).getPath();// 获取数据库路径 29 // 以只读方式打开数据库 30 db = SQLiteDatabase.openDatabase(path, mFactory, SQLiteDatabase.OPEN_READONLY); 31 if (db.getVersion() != mNewVersion) { 32 throw new SQLiteException("Can't upgrade read-only database from version " + db.getVersion() + " to " 33 + mNewVersion + ": " + path); 34 } 35 36 onOpen(db); 37 Log.w(TAG, "Opened " + mName + " in read-only mode"); 38 mDatabase = db;// 为mDatabase指定新打开的数据库 39 return mDatabase;// 返回打开的数据库 40 } finally { 41 mIsInitializing = false; 42 if (db != null && db != mDatabase) 43 db.close(); 44 } 45 }复制代码在getReadableDatabase()方法中,首先判断是否已存在数据库实例并且是打开状态,如果是,则直接返回该实例,否则试图获取一个可读写模式的数据库实例,如果遇到磁盘空间已满等情况获取失败的话,再以只读模式打开数据库,获取数据库实例并返回,然后为mDatabase赋值为最新打开的数据库实例。既然有可能调用到getWritableDatabase()方法,我们就要看一下了: 复制代码public synchronized SQLiteDatabase getWritableDatabase() { if (mDatabase != null && mDatabase.isOpen() && !mDatabase.isReadOnly()) { // 如果mDatabase不为空已打开并且不是只读模式 则返回该实例 return mDatabase; } if (mIsInitializing) { throw new IllegalStateException("getWritableDatabase called recursively"); } // If we have a read-only database open, someone could be using it // (though they shouldn't), which would cause a lock to be held on // the file, and our attempts to open the database read-write would // fail waiting for the file lock. To prevent that, we acquire the // lock on the read-only database, which shuts out other users. boolean success = false; SQLiteDatabase db = null; // 如果mDatabase不为空则加锁 阻止其他的操作 if (mDatabase != null) mDatabase.lock(); try { mIsInitializing = true; if (mName == null) { db = SQLiteDatabase.create(null); } else { // 打开或创建数据库 db = mContext.openOrCreateDatabase(mName, 0, mFactory); } // 获取数据库版本(如果刚创建的数据库,版本为0) int version = db.getVersion(); // 比较版本(我们代码中的版本mNewVersion为1) if (version != mNewVersion) { db.beginTransaction();// 开始事务 try { if (version == 0) { // 执行我们的onCreate方法 onCreate(db); } else { // 如果我们应用升级了mNewVersion为2,而原版本为1则执行onUpgrade方法 onUpgrade(db, version, mNewVersion); } db.setVersion(mNewVersion);// 设置最新版本 db.setTransactionSuccessful();// 设置事务成功 } finally { db.endTransaction();// 结束事务 } } onOpen(db); success = true; return db;// 返回可读写模式的数据库实例 } finally { mIsInitializing = false; if (success) { // 打开成功 if (mDatabase != null) { // 如果mDatabase有值则先关闭 try { mDatabase.close(); } catch (Exception e) { } mDatabase.unlock();// 解锁 } mDatabase = db;// 赋值给mDatabase } else { // 打开失败的情况:解锁、关闭 if (mDatabase != null) mDatabase.unlock(); if (db != null) db.close(); } } }复制代码大家可以看到,几个关键步骤是,首先判断mDatabase如果不为空已打开并不是只读模式则直接返回,否则如果mDatabase不为空则加锁,然后开始打开或创建数据库,比较版本,根据版本号来调用相应的方法,为数据库设置新版本号,最后释放旧的不为空的mDatabase并解锁,把新打开的数据库实例赋予mDatabase,并返回最新实例。 看完上面的过程之后,大家或许就清楚了许多,如果不是在遇到磁盘空间已满等情况,getReadableDatabase()一般都会返回和getWritableDatabase()一样的数据库实例,所以我们在DBManager构造方法中使用getWritableDatabase()获取整个应用所使用的数据库实例是可行的。当然如果你真的担心这种情况会发生,那么你可以先用getWritableDatabase()获取数据实例,如果遇到异常,再试图用getReadableDatabase()获取实例,当然这个时候你获取的实例只能读不能写了 最后,让我们看一下如何使用这些数据操作方法来显示数据,界面核心逻辑代码: 复制代码public class SQLiteActivity extends Activity { public DiaryDao diaryDao; //因为getWritableDatabase内部调用了mContext.openOrCreateDatabase(mName, 0, mFactory); //所以要确保context已初始化,我们可以把实例化Dao的步骤放在Activity的onCreate里 @Override protected void onCreate(Bundle savedInstanceState) { diaryDao = new DiaryDao(SQLiteActivity.this); initDatabase(); } class ViewOcl implements View.OnClickListener { @Override public void onClick(View v) { String strSQL; boolean flag; String message; switch (v.getId()) { case R.id.btnAdd: String title = txtTitle.getText().toString().trim(); String weather = txtWeather.getText().toString().trim();; String context = txtContext.getText().toString().trim();; String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") .format(new Date()); // 动态组件SQL语句 strSQL = "insert into diary values(null,'" + title + "','" + weather + "','" + context + "','" + publish + "')"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"添加成功":"添加失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnDelete: strSQL = "delete from diary where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"删除成功":"删除失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnQuery: strSQL = "select * from diary order by publish desc"; String data = diaryDao.execQuery(strSQL); Toast.makeText(getApplicationContext(), data, Toast.LENGTH_LONG).show(); break; case R.id.btnUpdate: strSQL = "update diary set title = '测试标题1-1' where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"更新成功":"更新失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; } } } private void initDatabase() { // 创建数据库对象 SqliteDBHelper sqliteDBHelper = new SqliteDBHelper(SQLiteActivity.this); sqliteDBHelper.getWritableDatabase(); System.out.println("数据库创建成功"); } }复制代码 Android sqlite3数据库管理工具 Android SDK的tools目录下提供了一个sqlite3.exe工具,这是一个简单的sqlite数据库管理工具。开发者可以方便的使用其对sqlite数据库进行命令行的操作。 程序运行生成的.db文件一般位于"/data/data/项目名(包括所处包名)/databases/.db",因此要对数据库文件进行操作需要先找到数据库文件: 1、进入shell 命令 adb shell2、找到数据库文件 cd data/data ls --列出所有项目 cd project_name --进入所需项目名 cd databases ls --列出现寸的数据库文件 3、进入数据库 sqlite3 test_db --进入所需数据库 会出现类似如下字样: SQLite version 3.6.22Enter ".help" for instructionsEnter SQL statements terminated with a ";"sqlite>至此,可对数据库进行sql操作。 4、sqlite常用命令 .databases --产看当前数据库.tables --查看当前数据库中的表.help --sqlite3帮助.schema --各个表的生成语句 原文地址https://www.cnblogs.com/ITtangtang/p/3920916.html

auto_answer 2019-12-02 01:50:21 0 浏览量 回答数 0

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

浅谈Flutter框架原理及其生态圈 Flutter的锋芒 跨平台高性能的渲染引擎逐渐成为移动端、大前端领域的一个热点,作为其中的明星框架Flutter,经过近几年来的迅速发展,由极大的可能成为下一代跨端终端解决方案。自从2017 年 5 月,谷歌公司发布的了 Alpha 版本的 Flutter; 2018 年底 Flutter Live 发布的 1.0 版本;2019年7月发布1.5版本,截止今日(2020年2月)已经发布了v1.14.6 Beta版本。 在Flutter诞生之前,已经有许多跨平台UI框架的方案如Cordova、ReactNative、weex、uni-app、Hippy等,常见的需要处理兼容的终端平台也包括android、ios、web、Iot等,但是在大前端的浪潮下,对于企业和开发者来说开发效率和使用体验都十分重要,传统的做法莫过于分不同的团队开发不同的终端项目,如果还要继续向其他平台,拓展的话,我们需要付出的成本和时间将成倍增长。正因为如此,在这样的背景下,Flutter等跨端框架的兴起,从本质上讲,帮助开发者增加业务代码的复用率,减少因为要适配多个平台带来的工作量,从而降低开发成本、提高开发效率。 纵观已有的跨端方案,可以分为三类:Web 容器、泛 Web 容器、自绘引擎框架。 基于web容器即基于浏览器的跨平台也做得越来越好,自然管线也越来越短,与native的一些技术手段来实现性能上的相互补充。比如Egret、Cocos、Laya这些游戏引擎,它们在跨平台方面的做法多以Typescript编写,在iOS和安卓平台的各种浏览器中轻松的运行HTML5游戏,并在不同平台浏览器里提供近乎一致的用户体验,比如Egret还会提供高效的 JS-C Binding 编译机制,以满足游戏编译为原生格式的需求,不过大多数HTML游戏引擎也属于web容器这个范畴内。web容器框架也有一个明显的致命(在对体验&性能有较高要求的情况下)的缺点,那就是WebView的渲染效率和JavaScript执行性能太差。再加上Android各个系统版本和设备厂商的定制,很难保证所在所有设备上都能提供一致的体验。 泛 Web 容器框架比如ReactNative和Weex,即上层通过面向前端友好的UI,下层通过native的渲染形式,虽然同样使用类HTML+JS的UI构建逻辑,但是最终会生成对应的自定义原生控件,以充分利用原生控件相对于WebView的较高的绘制效率,同时H5与native相互补充来达到更好的用户体验,这也是一种很好的解决方案。缺陷也很明显,随着系统版本变化和API的变化,开发者可能也需要处理不同平台的差异,甚至有些特性只能在部分平台上实现,这样框架的跨平台特性就会大打折扣。 自绘引擎框架这里专指Flutter框架,从底层就承担跨端的任务和渲染方式,从目前来看,从技术的实现和方案的成熟度、产品的性能方面比较,Flutter有很大可能成为下一代主流跨平台框架。 Flutter与其他跨端框架的不同点之一就是自带渲染引擎,Flutter渲染引擎依靠跨平台的Skia图形库来实现,Skia引擎会将使用Dart语言构建的抽象的视图结构数据加工成GPU数据,交由 OpenGL 最终提供给 GPU 渲染,至此完成渲染闭环,因此可以在最大程度上保证一款应用在不同平台、不同设备上的体验一致性。 而开发语言选用的是同时支持 JIT和 AOT的 Dart语言,Dart本身提供了三种运行方式,应对web环境,用Dart2js编译成JavaScript代码,运行在常规浏览器中;使用DartVM直接在命令行中运行Dart代码;AOT方式编译成机器码,例如Flutter App框架。而且Dart 避免了抢占式调度和共享内存,可以在没有锁的情况下进行对象分配和垃圾回收,在性能方面表现相当不错,不仅保证了开发效率,代码性能和用户体验也更卓越。因此,Flutter在各类跨平台移动开发方案中脱颖而出。同时在去年2019的Google IO大会上,备受关注的Fuchsia系统虽然并没有发布,但是宣布了 Flutter除了支持开发 Android 和 iOS 程序之外,现在还支持开发Web程序了,在 I/O 大会上,谷歌发布了 Web 版 Flutter 的首个技术预览版,宣布 Flutter 将为包括 Google Home Hub 在内的 Google Smart Display 平台提供技术支持,并迈出利用 Chrome 操作系统支持桌面级应用的第一步。 很多JS开发者会思考Google Flutter团队至于为啥选择Dart而不是JS,其实Google 公司给出的原因很简单也很直接:Dart 语言开发组就在隔壁,对于 Flutter 需要的一些语言新特性,能够快速在语法层面落地实现;而如果选择了 JavaScript,就必须经过各种委员会(TC39等)和浏览器提供商漫长的决议。 Flutter绘制原理 在计算机系统中,图像的显示需要 CPU、GPU 和显示器一起配合完成:CPU 负责图像数据计算,GPU 负责图像数据渲染,而显示器则负责最终图像显示。 CPU 把计算好的、需要显示的内容交给 GPU,由 GPU 完成渲染后放入帧缓冲区,随后视频控制器根据垂直同步信号(VSync)以每秒 60 次的速度,从帧缓冲区读取帧数据交由显示器完成图像显示。 操作系统在呈现图像时遵循了这种机制,而 Flutter 作为跨平台开发框架也采用了这种底层方案。下面有一张更为详尽的示意图来解释 Flutter 的绘制原理。可以看到,Flutter 关注如何尽可能快地在两个硬件时钟的 VSync 信号之间计算并合成视图数据,然后通过 Skia 交给 GPU 渲染:UI 线程使用 Dart 来构建视图结构数据,这些数据会在 GPU 线程进行图层合成,随后交给 Skia 引擎加工成 GPU 数据,而这些数据会通过 OpenGL 最终提供给 GPU 渲染。 Skia原理 Skia 是一款用由C++ 开发的2D 图像绘制引擎。在2005 年被 Google 公司收购后被广泛应用在 Android和其他等核心产品上,Skia 目前是Android 官方的图像渲染引擎,因此 Flutter Android SDK 无需内嵌 Skia 引擎就可以获得天然的 Skia 支持;而对于 iOS 平台来说,由于 Skia 是跨平台的,因此它作为 Flutter iOS 渲染引擎被嵌入到 Flutter 的 iOS SDK 中,替代了 iOS 闭源的 Core Graphics/Core Animation/Core Text,这也正是 Flutter iOS SDK 打包的 App 包体积比 Android 要大一些的原因。 底层渲染能力统一了,上层开发接口和功能体验也就随即统一了,开发者再也不用操心平台相关的渲染特性了。也就是说,Skia 保证了同一套代码调用在 Android 和 iOS 平台上的渲染效果是完全一致的。 Flutter架构 Framework底层是Flutter引擎,引擎主要负责图形绘制(Skia)、文字排版(libtxt)和提供Dart运行时,引擎全部使用C++实现,Framework层使我们可以用Dart语言调用引擎的强大能力。Flutter 架构采用分层设计,从下到上分为三层,依次为:Embedder、Engine、Framework。 Embedder 是操作系统适配层,实现了渲染 Surface 设置,线程设置,以及平台插件等平台相关特性的适配。从这里我们可以看到,Flutter 平台相关特性并不多,这就使得从框架层面保持跨端一致性的成本相对较低。 Engine 层主要包含 Skia、Dart 和 Text,实现了 Flutter 的渲染引擎、文字排版、事件处理和 Dart 运行时等功能。Skia 和 Text 为上层接口提供了调用底层渲染和排版的能力,Dart 则为 Flutter 提供了运行时调用 Dart 和渲染引擎的能力。而 Engine 层的作用,则是将它们组合起来,从它们生成的数据中实现视图渲染。 Framework 层则是一个用 Dart 实现的 UI SDK,包含了动画、图形绘制和手势识别等功能。为了在绘制控件等固定样式的图形时提供更直观、更方便的接口,Flutter 还基于这些基础能力,根据 Material 和 Cupertino 两种视觉设计风格封装了一套 UI 组件库,开发者可以直接使用这些组件库。 Flutter运行流程 页面中的各界面元素(Widget)以树的形式组织,即控件树。Flutter 通过控件树中的每个控件创建不同类型的渲染对象,组成渲染对象树。在Flutter界面渲染过程分为三个阶段:布局、绘制、合成,布局和绘制在Flutter框架中完成,合成则交由引擎负责。 Flutter 采用深度优先机制遍历渲染对象树,决定渲染对象树中各渲染对象在屏幕上的位置和尺寸。在布局过程中,渲染对象树中的每个渲染对象都会接收父对象的布局约束参数,决定自己的大小,然后父对象按照控件逻辑决定各个子对象的位置,最终完成布局过程。这里只需要注意一点,无论布局还是绘制,都是父子间的遍历关系:父Widget的布局需要依赖子Widget的布局结果;而绘制则反过来(子Widget需要盖在父Widget上),布局是后续遍历,绘制是前序遍历,他们都是深度优先遍历。 Flutter生命周期 可以看到,Flutter中State 的生命周期可以分为 3 个阶段:创建(插入视图树)、更新(在视图树中存在)、销毁(从视图树中移除)。接下来,我们一起看看每一个阶段的具体流程。 第一步创建 State 初始化时会依次执行 :构造方法 -> initState -> didChangeDependencies -> build,随后完成页面渲染。构造方法是 State 生命周期的起点,Flutter 会通过调用StatefulWidget.createState() 来创建一个 State。我们可以通过构造方法,来接收父 Widget 传递的初始化 UI 配置数据。这些配置数据,决定了 Widget 最初的呈现效果。 initState,会在 State 对象被插入视图树的时候调用。这个函数在 State 的生命周期中只会被调用一次,所以我们可以在这里做一些初始化工作,比如为状态变量设定默认值。 didChangeDependencies 则用来专门处理 State 对象依赖关系变化,会在 initState() 调用结束后,被 Flutter 调用。 build,作用是构建视图。经过以上步骤,Framework 认为 State 已经准备好了,于是调用 build。我们需要在这个函数中,根据父 Widget 传递过来的初始化配置数据,以及 State 的当前状态,创建一个 Widget 然后返回。 第二步更新 Widget 的状态更新,主要由个方法触发:setState、didchangeDependencies、didUpdateWidget。 setState:我们最熟悉的方法之一。当状态数据发生变化时,我们总是通过调用这个方法告诉 Flutter:“我这儿的数据变啦,请使用更新后的数据重建 UI!” didChangeDependencies:State 对象的依赖关系发生变化后,Flutter 会回调这个方法,随后触发组件构建。哪些情况下 State 对象的依赖关系会发生变化呢?典型的场景是,系统语言 Locale 或应用主题改变时,系统会通知 State 执行 didChangeDependencies 回调方法。 didUpdateWidget:当 Widget 的配置发生变化时,比如,父 Widget 触发重建(即父 Widget 的状态发生变化时),热重载时,系统会调用这个函数。一旦这三个方法被调用,Flutter 随后就会销毁老 Widget,并调用 build 方法重建 Widget。 第三步销毁 比如组件被移除,或是页面销毁的时候,系统会调用 deactivate 和 dispose 这两个方法,来移除或销毁组件。 Flutter生态圈及其常用框架 一项技术一个框架是否流行,最直观的体现就是它的生态圈是否活跃,下面列举了一些Flutter开发中常用的库工具。 参考文献 1、[Flutter原理与实践](https://tech.meituan.com/2018/08/09/waimai-flutter-practice.html) 少杰 2、[Flutter框架技术概览](https://flutter.dev/docs/resources/technical-overview) 3、[Flutter中文官网](https://pub.dartlang.org/flutter/) 4、[Flutter插件仓库](https://pub.dev/flutter/packages)

罗思雨 2020-02-27 11:47:50 0 浏览量 回答数 0

问题

MaxCompute产品简介:通告

行者武松 2019-12-01 22:01:10 1613 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

问题

在 berserkJS 中无缝使用 Wind.js:报错

kun坤 2020-06-07 14:00:40 0 浏览量 回答数 1

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

 TTS</B>是Text To Speech的缩写,即“从文本到语音”。它是同时运用语言学和心理学的杰出之作,在内置芯片的支持之下,通过神经网络的设计,把文字智能地转化为自然语音流。TTS技术对文本文件进行实时转换,转换时间之短可以秒计算。在其特有智能语音控制器作用下,文本输出的语音音律流畅,使得听者在听取信息时感觉自然,毫无机器语音输出的冷漠与生涩感。TTS语音合成技术即将覆盖国标一、二级汉字,具有英文接口,自动识别中、英文,支持中英文混读。所有声音采用真人普通话为标准发音,实现了120-150个汉字/秒的快速语音合成,朗读速度达3-4个汉字/秒,使用户可以听到清晰悦耳的音质和连贯流畅的语调。现在有少部分MP3随身听具有了TTS功能。   TTS是语音合成应用的一种,它将储存于电脑中的文件,如帮助文件或者网页,转换成自然语音输出。TTS可以帮助有视觉障碍的人阅读计算机上的信息,或者只是简单的用来增加文本文档的可读性。现在的TTL应用包括语音驱动的邮件以及声音敏感系统。TTS经常与声音识别程序一起使用。现在有很多TTS的产品,包括Read Please 2000, Proverbe Speech Unit,以及Next Up Technology的TextAloud。朗讯、 Elan、以及 AT&T都有自己的语音合成产品。   除了TTS软件之外,很多商家还提供硬件产品,其中包括以色列WizCom Technologies公司的 Quick Link Pen,它是一个笔状的可以扫描也可以阅读文字的设备;还有Ostrich Software公司的Road Runner,一个手持的可以阅读ASCII文本的设备;另外还有美国DEC公司的DecTalk TTS,它是可以替代声卡的外部硬件设备,它包含一个内部软件设备,可以与个人电脑自己的声卡协同工作。 TTS文语转换用途很广,包括电子邮件的阅读、IVR系统的语音提示等等,目前IVR系统已广泛应用于各个行业(如电信、交通运输等)。   TTS所用的关键技术就是语音合成(SpeechSynthesis)。早期的TTS一般采用专用的芯片实现,如德州仪器公司的TMS50C10/TMS50C57、飞利浦的PH84H36等,但主要用在家用电器或儿童玩具中。   而基于微机应用的TTS一般用纯软件实现,主要包括以下几部分:   ●文本分析-对输入文本进行语言学分析,逐句进行词汇的、语法的和语义的分析,以确定句子的低层结构和每个字的音素的组成,包括文本的断句、字词切分、多音字的处理、数字的处理、缩略语的处理等。   ●语音合成-把处理好的文本所对应的单字或短语从语音合成库中提取,把语言学描述转化成言语波形。   ●韵律处理-合成音质(Qualityof Synthetic Speech)是指语音合成系统所输出的语音的质量,一般从清晰度(或可懂度)、自然度和连贯性等方面进行主观评价。清晰度是正确听辨有意义词语的百分率;自然度用来评价合成语音音质是否接近人说话的声音,合成词语的语调是否自然; 连贯性用来评价合成语句是否流畅。   要合成出高质量的语音,所采用的算法是极为复杂的,因此对机器的要求也非常高。算法的复杂度决定了目前微机并发进行多通道TTS的系统容量。 在一般的CTI应用系统中,都会有IVR(交互式语音应答系统)。IVR系统是呼叫中心的重要组成部分,通过IVR系统,用户可以利用音频按健电话输入信息,从系统中获得预先录制的数字或合成语音信息。具有TTS功能的IVR可以加快服务速度,节约服务成本,使IVR为呼叫者提供7*24小时的服务。   目前常见的IVR系统大都是通用的工控机平台上插入语音板卡组成,并支持中文语音合成TTS等技术。   一个典型的包含TTS服务的电话服务流程可分为:   用户电话拨入,系统IVR响应,获得用户按键等信息。   IVR根据用户的按键信息,向数据库服务器申请相关数据。   数据库服务器返回文本数据给IVR。   IVR通过其TCP通讯接口,将需要合成的文本信息发送给TTS服务器。   TTS服务器将用户文本合成的语音数据分段通过TCP通讯接口发送给IVR服务器。   IVR服务器把分段语音数据组装成为独立的语音文件。   IVR播放相应的语音文件给电话用户。   一般的公网接入(IVR)大都采用工控机+语音板卡,而合成的语音数据则通过局域网传给IVR。这种结构只适用于简单的应用场合。 包括中文语音处理和语音合成,利用中文韵律等相关知识对中文语句进行分词、词性判断、注音、数字符号转换,语音合成通过查询中文语音库得到语音。目前中文TTS系统,比较著名的有:IBM,Microsoft,Fujitsu,科大讯飞,捷通华声等研究的系统。目前比较关键的就是中文韵律处理、符号数字、多音字、构词方面有较多的问题,需要不断研究,使得中文语音合成的自然化程度较高。  CTI技术使电信和计算机相互融合,克服了传统电信和计算机服务相对单一的缺点,将两者完美结合了起来。其应用领域非常广泛,任何需要语音、数据通信,特别是那些希望把计算机网与通信网结合起来完成语音数据信息交换的系统都会用到CTI技术。   TTS即语音合成技术(Text To Speech),它涉及声学、语言学、数学信号处理技术、多媒体技术等多个学科技术,是中文信息处理领域的一项前沿技术,实现把计算机中任意出现的文字转换成自然流畅的语音输出。   TTS在CTI系统中可以应用在IVR(交互式语音应答)服务器上,以提供语音交互式平台,为用户电话来访提供语音提示,引导用户选择服务内容和输入电话事务所需的数据,并接受用户在电话拨号键盘上输入的信息,实现对计算机数据库等信息资料的交互式访问。   在IVR中应用TTS可以自动将文本信息转换为语音文件,或者实时地将文本信息合成语音并通过电话发布。实现文本与语音自动双向转换,以达到人与系统的自动交互,随时随地为客户服务。维护人员不必再人工录音,只须将电子文档引入系统中,系统可以自动将电子文档转换为语音信息播放给客户。数据库中存放的大量数据,无需事先进行录音,能够随时根据查询条件查出并合成语音进行播报,从而大大减少了座席人员的工作负担。   那么应如何将TTS功能附加到CTI应用中呢?某些比较先进的交换平台,已经在交换机的内部实现了TTS的功能,并作为标准接口的一部分对外提供,业务开发商只需要简单的调用他们即可以在业务中使用该功能。   对于未实现TTS功能的PBX,就需要业务开发商自己去选择合适的平台,在此基础上进行二次开发,即调用所选TTS平台提供的标准接口,实现语音合成功能。   目前CTI已经成为全球发展最为迅猛的产业之一,每年以50%的速度增长,CTI如同计算机产业一样是一个金字塔形的产业链,从上到下会以至少20倍的幅度增值。TTS作为一种诱人的新技术,如果能很好的嵌入到增值业务的应用中去,必将形成一个更好的应用前景。   杭州音通软件有限公司是由国家教育部和浙江省人民政府联办并依托浙江大学而成立的高新技术公司,音通公司主要致力于计算机语音技术的研发并逐步开拓语音识别、语音流媒体传输等其它语音领域的研究。其核心技术(Intone_TTS)是具有自主知识产权的中文语音合成技术,在由浙江省科技厅组织的鉴定中被专家一致鉴定为国内领先地位,并已申请多项国家专利。   Intone_TTS是一套把文本信息转换为语音信息的开发工具包,为系统集成商、软件开发商提供了完备的接口函数和编程示例,使用户能够灵活的进行调用,并集成到其它应用系统中。接口需要语音合成运行库的支持,适合多种开发环境。开发者可以根据具体的应用场合进行选择。   它能够对所有的汉字、英文、阿拉伯数字进行语音合成;   支持繁体字及多音字的编辑;   合成效果:自然、平滑;   规范的函数调用接口,同时支持微软SAPI的调用;支持同步调用和异步调用方式;   支持PCM Wave,uLaw/aLaw Wave,ADPCM,Dialogic Vox等多种语音格式;   支持GB2312码(简体中文)、BIG5码(繁体)、UNICODE码;   支持多路通道同时合成;   支持Dialogic、东进、三汇等主流语音板卡; TTS就是Text To Speech,文本转语音,文本朗读,差不多是一个意思。在语音系统开发中经常要用到。   目前市场上的TTS很多,实现方式也各式各样,有的很昂贵,如科大讯飞,据说当初得到863计划的资助,有很高的技术;有的相对便宜,如捷通华声, InfoTalk;也有免费的,如微软的TTS产品。   相对于ASR(Automatic Speech Recognition,自动语音识别)来说,实现一个TTS产品所需要的技术难度不算大,在我看来也就是个力气活。   要是让我们来做一个能够把汉语句子朗读出来的TTS,我们会怎么做呢?   有一种最简单的TTS,就是把每个字都念出来,你会问,岂不要录制6千多个汉字的语音?幸运的是,汉语的音节很少,很多同音字。我们最多只是需要录制: 声母数×韵母数×4,(其实不是每个读音都有4声),这样算来,最多只需要录制几百个语音就可以了。   在合成的时候需要一张汉字对应拼音的对照表,汉字拼音输入法也依赖这张表,可以在网上找到,不过通常没有4声音调,大不了自己加上,呵呵,要不怎么说是力气活呢。   这样做出来的TTS效果也还可以,特别是朗读一些没有特别含义的如姓名,家庭住址,股票代码等汉语句子,听起来足够清晰。这要归功于我们伟大的母语通常都是单音节,从古代的时候开始,每个汉字就有一个词,表达一个意思。而且汉字不同于英语,英语里面很多连读,音调节奏变化很大,汉字就简单多了。   当然,你仍然要处理一些细节,比如多音字,把“银行”读成“yin xing”就不对了;再比如,标点符号的处理,数字、字母的处理,这些问题对于写过很多程序的你,当然不难了。   国内的一些语音板卡带的TTS,不管是卖钱的还是免费的,大体都是这样做出来的,也就是这样的效果。   如果要把TTS的效果弄好一点,再来点力气活,把基本的词录制成语音,如常见的两字词,四字成语等,再做个词库和语音库的对照表,每次需要合成时到词库里面找。这样以词为单位,比以字为单位,效果自然是好多了。当然,这里面还是有个技术,就是分词的技术,要把复杂的句子断成合理的词序列,也有点技术。这也要怪新文化那些先驱们,当初倡导白话文,引进西文的横排格式、标点符号的时候,没有引进西文中的空格分词。不过即使分词算法那么不高效,不那么准确,也问题不大,如前面所说,汉字是单音节词,把声音合起来,大体上不会有错。   当然,科大讯飞的力气活又干的多了些,据说已经进化到以常用句子为单位来录音了,大家可以想像,这要耗费更多的力气,换来更好的效果。   至于增加一些衔接处的“词料”,弄一些修饰性的音调,我认为是无关紧要的,对整体的效果改进不是太大。   市面上商品化TTS一般还支持粤语,请个粤语播音员录音,把上面的力气活重做一遍就是了。   再说句题外话,很多人觉得录音最好找电台、电视台的播音员,其实找个你周围的女同事来录制,只要吐字清晰就可以了。在某种情况下,寻常声音比字正腔圆的新闻联播来得可爱。   再来说说文本的标识,对于复杂文本,某些内容程序没有办法处理,需要标识出来。比如,单纯的数字“128”,是应该念成“一百二十八”还是“一二八”?解决办法通常是加入XML标注,如微软的TTS:"<context ID = "number_cardinal">128</context>"念成“一百二十八”,"<context ID = "number_digit">128</context>"将念成“一二八”。TTS引擎可以去解释这些标注。遗憾的是,语音XML标注并没有形成大家都完全认可的标准,基本上是各自一套。   再说说TTS应用编程,微软的TTS编程接口叫SAPI,是COM接口,开发起来还是有点麻烦,还好MSDN的网站上资料很全面。微软的TTS虽然免费,但其中文角色目前是个男声,声音略嫌混浊,感觉不爽。   国内一般的厂家提供API调用接口,相对比较简单,可以方便地嵌入应用程序中去。   商品化的TTS还有个并发许可限制,就是限制同时合成的并发线程数,我觉得这个限制用处不大。无论哪种TTS,都可以将文本文件转换成语音文件,供语音卡播放。大部分应用句子比较短小,一般不会超过100个汉字,合成的时间是非常短的,弄个线程专门负责合成,其它应用向该线程请求就是了,万一句子很长,把它分解成多个短句子就是了,播放的速度总是比合成的速度慢。   也很多应用是脱机合成,没有实时性要求,就更不必买多个许可了。   更多情况下,我们甚至没有必要购买TTS,比如语音开发中常见的费用催缴,拨通后播放:“尊敬的客户,您本月的费用是:212元”,前面部分对所有客户都一样,录一个语音文件就是了,而数字的合成是很简单的,你只要录制好10个数字语音,再加上十,百,千,万,再加上金钱的单位“元”。   TTS(Training+Tool+Scheme)超越计划   针对目前成长型企业遇到的人力资源问题,立体化解决人力资源瓶颈、通过企业与专家共建、实现人才强企的人力资源方向的重大智业项目。为企业培养人力资源高级管理人才,提供先进人力资源管理工具,并协助企业建立现代人力资源战略规划。通过“培训(Training)+工具(Tool)+方案(Scheme)”的办法,为企业系统解决人力资源难点问题,进而搭建科学、完善的人力资源管理体系。   TTS TIANJIN TERMINAL SURCHARGE   天津港口附加费。09年从日韩经过的船所收的一个费用 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:05:12 0 浏览量 回答数 0

问题

搜索引擎背后的经典数据结构和算法 6月10日 【今日算法】

游客ih62co2qqq5ww 2020-06-15 07:32:11 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 阿里云双十一主会场 阿里云双十一新人会场 1024程序员加油包 阿里云双十一拼团会场 场景化解决方案 阿里云双十一直播大厅