• 关于 伪类结构 的搜索结果

问题

使用css的相邻+选择器和伪类会有兼容问题吗?

杨冬芳 2019-12-01 19:37:46 770 浏览量 回答数 1

回答

伪类就是比如a标签的样式 hover visited 等等,可以通过伪类改变元素的样式而不需要对html结构做任何修改。

chale 2019-12-02 00:57:34 0 浏览量 回答数 0

回答

想学算法就看算法导论吧,算法不分编程语言的,在算法导论里都是伪代码,也就是一种类Pascal代码,一般想看明白算法导论需要多实践,将每章的伪代码用任意一种编程语言实现一下,课后的习题可以选择一些简单的思考一下(导论每章讲的都是基础的经典算法,但是课后习题大部分都很有难度),算法分析算是算法导论的精简版本吧,你也可以看一些相关的其它经典著作比方说挑战编程,编程之美,程序设计的艺术之类的,这方面的好书有很多。对于算法来说最重要的是有良好的数学基础和数学能力,当然还要能熟练的使用一种语言基础语法和数据结构知识。

liujae 2019-12-02 01:19:47 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

回答

Position不是一个类型,起码C语言中,我写那么多年代码没见过这个类型 。 你该把整段代码贴上来。 我猜你看的那段代码是伪代码,Position是自定义类型。 若Position是类名,那么Position P 就是实例化对象。 如果Position是结构体,那么就是声明一个结构体变量 从你的补充的代码,可以看出Position 是自定义的链表结构,而且是通过该“链表类型指针”的别名。而且这段代码我认为有错误: free (P); //当时释放掉P指向的栈内存,P就是一个野指针 P = P -> Next; //Next的内容都被释放掉了,P->Next 还有什么意义。。。

liujae 2019-12-02 01:23:08 0 浏览量 回答数 0

回答

通过伪类做一个dotted边框为虚线,然后给字设背景遮住底下的虚线。而旁边的圆点和线思路也一样,通过伪类来画,然后定位。善用伪类不仅能实现很多布局,还能精简很多代码,不去影响原本的HTML结构。 HTML <ul class="index-list"> <li class="item"> <div class="article"> <span class="title">文章</span> <span class="info">10条解读</span> </div> </li> <li class="item"> <div class="article"> <span class="title">文章</span> <span class="info">5条解读</span> </div> </li> <li class="item"> <div class="article"> <span class="title">文章</span> <span class="info">1条解读</span> </div> </li> <li class="item"> <div class="article"> <span class="title">文章</span> <span class="info">10条解读</span> </div> </li> <li class="item"> <div class="article"> <span class="title">文章</span> <span class="info">5条解读</span> </div> </li> <li class="item"> <div class="article"> <span class="title">文章</span> <span class="info">1条解读</span> </div> </li> </ul> CSS *{ margin:0; padding: 0; } body{ background:#FFF } ul{ list-style: none } .item{ position:relative; width:100%; padding:5px 0; } .item:after{ content:""; position:absolute; width:7px; height:7px; border-radius:50%;

杨冬芳 2019-12-02 02:42:58 0 浏览量 回答数 0

回答

《C语言程序设计》作  者:郭有强编出版社:清华大学出版社评价:书很利索,该有的都有,如果你还没有一本满意的C语言课本,买它没错。(也可以阅读外国的经典C语言书籍)《C和指针》POINTERSONCKennethA.Reek、徐波人民邮电出版社评价:不算厚的书,纠正对指针的错误理解,这是必读经典,相信会带给你很多思考。(单单一本还不够,继续往后看)《C陷阱与缺陷》AndrewKoenig、高巍人民邮电出版社评价:172页,应当1-2天看完,读完豁然开朗,对C语言常见的陷阱进行剖析,必须经典。《C专家编程》ExpertCProgrammingDeepCSecretsPeterVanDerLinden人民邮电出版社(2008-02出版)评价:200多页,应当2天左右看完,本书读起来很舒坦,不可多得的好书,带你领略语法之外的奥秘,必读经典。②数据结构与算法:《清华大学计算机系列教材•数据结构(C语言版)(附光盘1张)》吴伟民、严蔚敏清华大学出版社评价:数据结构都是类C的伪代码描述,初次接触编程的同学可能理解不了,我也一样。我是看严蔚敏视频学会的数据结构,希望这个法对你们也同样有效。《计算机算法设计与分析(第3版)》王晓东电子工业出版社评价:这是我们的课本,不过的确是学习它才把数据结构和算法入门了,为后面进阶做了铺垫。《算法艺术与信息学竞赛•算法竞赛入门经典》刘汝佳清华大学出版社评价:了解数据结构怎么用,常用算法与思想,书不厚,但很给力。初学可能有障碍,但这的确是入门经典书籍,请不要放弃。《算法导论(原书第2版)》科曼(CormenT.H.)、等、潘金贵机械工业出版社(2006-09出版)评价:经典中的经典,无需多说,不要问我看哪些内容,负责任的说:有能力就多看点,其实都能看懂,书中的内容与思想将会终身受用。《编程之美:微软技术面试心得》《编程之美》小组电子工业出版社评价:微软出品,像是一本小故事集,将数学和编程之美展露无疑,学起来很轻松,反复回顾收获颇丰。《编程珠玑(第2版)》JonBentley、黄倩、钱丽艳人民邮电出版社评价:主要是数据结构和算法,都是常用的内容,不过作者思维新奇,跟随作者一起思考会碰撞出不少火花,评价非常高的一本书,本人没有顺序阅读,感兴趣的内容翻了翻。《算法艺术与信息学竞赛》刘汝佳清华大学出版社评价:放在最后,因为此书的确很专业,我这点智商也驾驭不了,信息学竞赛必备。《程序员面试宝典(第3版)》欧立奇、刘洋、段韬电子工业出版社评价:这本书很神奇,大二下学期的时候我就买了并看完了,等到大三找工作的时候发现里边的提到的陷阱题目还是有点意思的,C语言掌握的怎么样拿这本书验一验就知道了。《数学之美》(《浪潮之巅》作者吴军最新力作,李开复作序推荐,Google黑板报百万点击)

知与谁同 2019-12-02 01:22:33 0 浏览量 回答数 0

回答

《C语言程序设计》作  者:郭有强编出版社:清华大学出版社评价:书很利索,该有的都有,如果你还没有一本满意的C语言课本,买它没错。(也可以阅读外国的经典C语言书籍)《C和指针》POINTERSONCKennethA.Reek、徐波人民邮电出版社评价:不算厚的书,纠正对指针的错误理解,这是必读经典,相信会带给你很多思考。(单单一本还不够,继续往后看)《C陷阱与缺陷》AndrewKoenig、高巍人民邮电出版社评价:172页,应当1-2天看完,读完豁然开朗,对C语言常见的陷阱进行剖析,必须经典。《C专家编程》ExpertCProgrammingDeepCSecretsPeterVanDerLinden人民邮电出版社(2008-02出版)评价:200多页,应当2天左右看完,本书读起来很舒坦,不可多得的好书,带你领略语法之外的奥秘,必读经典。②数据结构与算法:《清华大学计算机系列教材•数据结构(C语言版)(附光盘1张)》吴伟民、严蔚敏清华大学出版社评价:数据结构都是类C的伪代码描述,初次接触编程的同学可能理解不了,我也一样。我是看严蔚敏视频学会的数据结构,希望这个法对你们也同样有效。《计算机算法设计与分析(第3版)》王晓东电子工业出版社评价:这是我们的课本,不过的确是学习它才把数据结构和算法入门了,为后面进阶做了铺垫。《算法艺术与信息学竞赛•算法竞赛入门经典》刘汝佳清华大学出版社评价:了解数据结构怎么用,常用算法与思想,书不厚,但很给力。初学可能有障碍,但这的确是入门经典书籍,请不要放弃。《算法导论(原书第2版)》科曼(CormenT.H.)、等、潘金贵机械工业出版社(2006-09出版)评价:经典中的经典,无需多说,不要问我看哪些内容,负责任的说:有能力就多看点,其实都能看懂,书中的内容与思想将会终身受用。《编程之美:微软技术面试心得》《编程之美》小组电子工业出版社评价:微软出品,像是一本小故事集,将数学和编程之美展露无疑,学起来很轻松,反复回顾收获颇丰。《编程珠玑(第2版)》JonBentley、黄倩、钱丽艳人民邮电出版社评价:主要是数据结构和算法,都是常用的内容,不过作者思维新奇,跟随作者一起思考会碰撞出不少火花,评价非常高的一本书,本人没有顺序阅读,感兴趣的内容翻了翻。《算法艺术与信息学竞赛》刘汝佳清华大学出版社评价:放在最后,因为此书的确很专业,我这点智商也驾驭不了,信息学竞赛必备。《程序员面试宝典(第3版)》欧立奇、刘洋、段韬电子工业出版社评价:这本书很神奇,大二下学期的时候我就买了并看完了,等到大三找工作的时候发现里边的提到的陷阱题目还是有点意思的,C语言掌握的怎么样拿这本书验一验就知道了。《数学之美》(《浪潮之巅》作者吴军最新力作,李开复作序推荐,Google黑板报百万点击)

马铭芳 2019-12-02 01:22:13 0 浏览量 回答数 0

回答

机器学习方面的面试主要分成三个部分: 1. 算法和理论基础 2. 工程实现能力与编码水平 3. 业务理解和思考深度 1. 理论方面,我推荐最经典的一本书《统计学习方法》,这书可能不是最全的,但是讲得最精髓,薄薄一本,适合面试前突击准备。 我认为一些要点是: 统计学习的核心步骤:模型、策略、算法,你应当对logistic、SVM、决策树、KNN及各种聚类方法有深刻的理解。能够随手写出这些算法的核心递归步的伪代码以及他们优化的函数表达式和对偶问题形式。 非统计学习我不太懂,做过复杂网络,但是这个比较深,面试可能很难考到。 数学知识方面,你应当深刻理解矩阵的各种变换,尤其是特征值相关的知识。 算法方面:你应当深刻理解常用的优化方法:梯度下降、牛顿法、各种随机搜索算法(基因、蚁群等等),深刻理解的意思是你要知道梯度下降是用平面来逼近局部,牛顿法是用曲面逼近局部等等。 2. 工程实现能力与编码水平 机器学习从工程实现一般来讲都是某种数据结构上的搜索问题。 你应当深刻理解在1中列出的各种算法对应应该采用的数据结构和对应的搜索方法。比如KNN对应的KD树、如何给图结构设计数据结构。如何将算法map-red化等等。 一般来说要么你会写C,而且会用MPI,要么你懂Hadoop,工程上基本都是在这两个平台实现。实在不济你也学个python吧。 3. 非常令人失望地告诉你尽管机器学习主要会考察1和2 但是实际工作中,算法的先进性对真正业务结果的影响,大概不到30%。当然算法必须要足够快,离线算法最好能在4小时内完成,实时算法我没搞过,要求大概更高。 机器学习大多数场景是搜索、广告、垃圾过滤、安全、推荐系统等等。对业务有深刻的理解对你做出来的系统的结果影响超过70%。这里你没做过实际的项目,是完全不可能有任何体会的,我做过一个推荐系统,没有什么算法上的高大上的改进,主要是业务逻辑的创新,直接就提高了很明显的一个CTR(具体数目不太方便透露,总之很明显就是了)。如果你做过实际的项目,一定要主动说出来,主动让面试官知道,这才是最大最大的加分项目。 最后举个例子,阿里内部机器学习挑战赛,无数碾压答主10000倍的大神参赛。最后冠军没有用任何高大上的算法而是基于对数据和业务的深刻理解和极其细致的特征调优利用非常基本的一个算法夺冠。所以啥都不如真正的实操撸几个生产项目啊。

马铭芳 2019-12-02 01:21:30 0 浏览量 回答数 0

回答

首先,我要说没必要来实现选择器这种轮子,虽然我不反对造轮子,但选择器这种轮子已经非常成熟了,而且现代浏览器已经内置了选择器。不过如果你坚持还是要继续的话,我可以简单探讨下。顺便说一下,jquery的选择器用的是sizzle,它以前用的是自己写的,不过后来大概也觉得这个轮子没啥意思。。。第一步,解析首先要把你的查询字符串解析成查询链,这个过程简单但是繁杂,因为除了常见的css选择器,还有各种伪类。我们就拿最简单的一个查询来举例子把,我把我们的选择器叫做XX('#header .nav ul');这段代码经过我们的解析后会变成类似这样的结构[{type: 'id', value: 'header'}, {type: 'class', value: 'nav'}, {type: 'tag', value: 'ul'}]OK,这样一个简单的查询链就出来了,理论上我们按照这个顺序一步一步就可以得到期望的结果了。第二步,查询注意,如果你没有用querySelector这个函数,那么基本上就是利用 getElementById, getElementsByName, getElementsByTagName, getElementsByClassName 这几个函数来实现了我们可以把上面查询链的type给映射到具体的操作,类似var handlers = {'id' : function (el, value) { return el.getElementById(value); }, ...};最后,我们遍历这条查询链,根据每个节点的type来查询value,然后把每个节点结果作为下一个查询的el,依此类推注意,以上只是做一个选择器的基本原理,实际情况要复杂的多

a123456678 2019-12-02 02:22:49 0 浏览量 回答数 0

问题

IE6滴FUCK-BUG:报错

kun坤 2020-06-14 15:07:18 0 浏览量 回答数 1

问题

IE6滴FUCK-BUG:配置报错 

kun坤 2020-06-02 14:41:21 0 浏览量 回答数 1

问题

IE6滴FUCK-BUG - IE报错

montos 2020-06-03 20:30:51 2 浏览量 回答数 1

问题

IE6滴FUCK-BUG-HTML报错

montos 2020-05-31 22:59:24 0 浏览量 回答数 1

回答

global关键字后面需要跟上变量名称。 $_html['user'];//这是在取出数组下标的一种表达式,也就是个地址,真正的变量名称是$ _html 扩展: global声明后,需要把变量名称存储到底层的全局变量表中,使用时根据变量名查找该表(表存储方式:变量名称->Z_VALUE据结构地址),前提需要一个变量名。知道为什么是变量名,而不是地址了吧? 回复 @yongu:测试代码:$var1=123;$arr=['var2'=>'var1'];$GLOBALS[$arr['var2']]=456;echo$var1;回复 @yongu:http://www.php.net/manual/zh/reserved.variables.globals.php变量的名字就是数组的键回复 @D哥:明白了,那我数组的地址申明个变量,变量声明为全局数组就可以了回复 @yongu:参见$GLOBALS,用法:$GLOBALS['var']=123;结果是一样的。想象下$GLOBALS[$_html['user']]=123;假设$_html['user']='var2';等价于:$GLOBALS['var2']=123;等价于:global$var2=123;变量知道,数组[0][1]些是地址。global后面不能跟着地址,手册上怎么没标注,求解。授之于鱼。所谓的单元素全局不就是一个普通的全局变量啊?定义一个类,在类里定义静态变量,数组,就可全局引用了。尽量少用这些自己都搞不懂的语法,如果打算写伪开源程序倒是可以深入研究global后只能跟变量名,php把“ $_html['user']”当成是变量名了,报错正常。 global这个函数,我在手册上怎么没找到不能跟地址只能跟函数?求解 functiontest(){$a='100';$GLOBALS['myvar']=$a;//php不管什么变量,最终都会在GLOBALS数组中.并且是超全局的.}test();echo$myvar; $GLOBALS['arr]=array('dog','cat','hongshu'); 引用来自“D哥”的评论 global关键字后面需要跟上变量名称。 $_html['user'];//这是在取出数组下标的一种表达式,也就是个地址,真正的变量名称是$ _html 扩展: global声明后,需要把变量名称存储到底层的全局变量表中,使用时根据变量名查找该表(函数表存储方式:变量名称->Z_VALUE据结构地址),前提需要一个变量名。知道为什么是变量名,而不是地址了吧?

爱吃鱼的程序员 2020-06-20 16:55:26 0 浏览量 回答数 0

问题

MaxCompute用户指南:图模型:图模型概述

行者武松 2019-12-01 22:04:37 1136 浏览量 回答数 0

回答

  算法,数据结构是关键,另外还有组合数学,特别是集合与图论,概率论也重要。推荐买一本《算法导论》,那本书行,看起来超爽。。。基本掌握语法还不行啊,语法的超熟练掌握,不然出了错误很难调试的。。。最重要的是超牛皮的头脑啦,分析能力,逻辑推理能力很重要。ACM很好玩啦,祝你成功。。。   acm是3人一组的,以学校为单位报名的,也就是说要得到学校同意,还要有2个一起搞的。其实可能是你不知道你们学校搞acm的地方,建议你好好询问下你们学校管科技创新方面的人。建议你找几个兴趣相同的一起做,互相探讨效果好多了,团队合作也是acm要求的3大能力之一。   数据结构远远不够的,建议你看算法导论,黑书,oj的话个人觉得还是poj好,有水题有好题,而且做的人多,要解题报告什么的也好找。我们就是一些做acm的学生一起搞,也没老师,这样肯定能行的。   基础的话是语言,然后数据结构,然后算法。   ACM有三个方向:算法,数学,实现   要求三种能力:英文,自学,团队协作   简单的说,你要能读懂英文的题意描述,要有一门acm能使用的编程语言,要会数据结构,有一点数学基础,一点编程方面天赋,要有兴趣和毅力(最重要),就具有做ACM的基本条件了。   做acm我推荐c,c++也可以,java在某些情况下好用,但是大多数情况的效率和代码量都不大好,所以建议主用c++,有些题目用java   还有什么问题,可以问我啊。   不好意思,没见过用java描述的acm书籍,大多数是用伪命令,其他有的用的c,c++,老一些的用pascal。java只是用来做高精度的一些题的,个人觉得不用专门看这方面的书,java的基本部分学好就够用了。所以我还是推荐主用c++,在高精度和个别题再用java。你可以找找java描述的算法设计与分析,这个好像有   数据结构:C语言版 清华大学出版社 严蔚敏 《数据结构》   算法:清华大学出版社 王晓东 《算法设计与分析》   麻省理工大学 中译本:机械工业出版社 《算法导论》   基本上这三本书就已经足够了,建议一般水平的人先不要看算法导论,待另外两本书看的差不多的时候,再看算法导论加深理解。   另外还有很多针对性更强的书籍,不过针对性太强,这里就不多介绍了。   以上一些都是些算法方面的书,最好的方式就是做题与看书相结合,很多在线做题的网站,PKU,ZOJ很多,推荐PKU,题目比较多,参与的人比较多。做一段时间的题,然后看书,研究算法,再做题,这样进步比较快。   还有关于ACM竞赛,我有自己的一点话说。   首先说下ACM/ICPC是个团队项目,最后的参赛名额是按照学校为单位的,所以找到志同道合的队友和学校的支持是很重要的。   刚刚接触信息学领域的同学往往存在很多困惑,不知道从何入手学习,在这篇文章里,我希望能将自己不多的经验与大家分享,希望对各位有所帮助。   一、语言是最重要的基本功   无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关。亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出了更高的要求,是相当不利的。其实,笔者并不主张大家在这种场合过多地运用面向对象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会降低程序的执行效率。   接着说C和C++。许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。   而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。   C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。   通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误:   在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由于一个带缓冲一个不带,所以输出一长就混乱了。只是因为当时judge team中负责F题的人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地方的。   现在我们转入第二个方面的讨论,基础学科知识的积累。   二、以数学为主的基础知识十分重要   虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧。下面我来谈谈在竞赛中应用的数学的主要分支。   1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支,其重中之重又在于图论和组合数学,尤其是图论。   图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。   竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。   2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。   3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。计算几何的题目难度不会很大,但也永远不会成为最弱的题。   4、线性代数——对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。   5、概率论——竞赛是以黑箱来判卷的,这就是说你几乎不能动使用概率算法的念头,但这也并不是说概率就没有用。关于这一点,只有通过一定的练习才能体会。   6、初等数学与解析几何——这主要就是中学的知识了,用的不多,但是至少比高等数学多,我觉得熟悉一下数学手册上的相关内容,至少要知道在哪儿能查到,还是必要的。   7、高等数学——纯粹运用高等数学来解决的题目我接触的只有一道,但是一些题目的叙述背景往往需要和这部分有一定联系,掌握得牢固一些总归没有坏处。   以上就是竞赛所涉及的数学领域,可以说范围是相当广的。我认识的许多人去搞信息学的竞赛就是为了逼着自己多学一点数学,因为数学是一切一切的基础。   三、数据结构与算法是真正的核心   虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。   先说说数据结构。掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等——这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。   接着说说算法。算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。   常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。这其中比较难于掌握的就是动态规划,如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。   四、团队配合   通过以上的介绍大家也可以看出,信息学竞赛对于知识面覆盖的非常广,想凭一己之力全部消化这些东西实在是相当困难的,这就要求我们尽可能地发挥团队协作的精神。同组成员之间的熟练配合和默契的形成需要时间,具体的情况因成员的组成不同而不同,这里我就不再多说了。   五、练习、练习、再练习   知识的积累固然重要,但是信息学终究不是看出来的,而是练出来的,这是多少前人最深的一点体会,只有通过具体题目的分析和实践,才能真正掌握数学的使用和算法的应用,并在不断的练习中增加编程经验和技巧,提高对时间复杂度的感性认识,优化时间的分配,加强团队的配合。总之,在这里光有纸上谈兵是绝对不行的,必须要通过实战来锻炼自己。   大家一定要问,我们去哪里找题做,又如何检验程序是否正确呢。这大可不必担心,现在已经有了很多网上做题的站点,这些站点提供了大量的题库并支持在线判卷,你只需要把程序源码提交上去,马上就可以知道自己的程序是否正确,运行所使用的时间以及消耗的内存等等状况。下面我给大家推荐几个站点,笔者不建议大家在所有这些站点上做题,选择一个就可以了,因为每个站点的题都有一定的难易比例,系统地做一套题库可以使你对各种难度、各种类型的题都有所认识。   1、Ural:   Ural是中国学生对俄罗斯的Ural州立大学的简称 ,那里设立了一个Ural Online Problem Set,并且支持Online Judge。Ural的不少题目算法性和趣闻性都很强,得到了国内广大学生的厚爱。根据“信息学初学者之家”网站的统计,Ural的题目类型大概呈如下的分布:   题型   搜索   动态规划   贪心   构造   图论   计算几何   纯数学问题   数据结构   其它   所占比例   约10%   约15%   约5%   约5%   约10%   约5%   约20%   约5%   约25%   这和实际比赛中的题型分布也是大体相当的。有兴趣的朋友可以去看看。   2、UVA:   UVA代表西班牙Valladolid大学(University de Valladolid)。该大学有一个那里设立了一个PROBLEM SET ARCHIVE with ONLINE JUDGE ,并且支持ONLINE JUDGE,形式和Ural大学的题库类似。不过和Ural不同的是,UVA题目多的多,而且比较杂,而且有些题目的测试数据比较刁钻。这使得刚到那里做题的朋友往往感觉到无所适从,要么难以找到合适的题目,要么Wrong Answer了很多次以后仍然不知道错在那里。 如果说做Ural题目主要是为了训练算法,那么UVA题目可以训练全方位的基本功和一些必要的编程素质。UVA和许多世界知名大学联合办有同步网上比赛,因此那里强人无数,不过你先要使自己具有听懂他们在说什么的素质:)   3、ZOJ:   ZOJ是浙江大学建立的ONLINE JUDGE,是中国大学建立的第一个同类站点,也是最好和人气最高的一个,笔者和许多班里的同学就是在这里练习。ZOJ虽然也定位为一个英文网站,但是这里的中国学生比较多,因此让人觉得很亲切。这里目前有500多道题目,难易分配适中,且涵盖了各大洲的题目类型并配有索引,除此之外,ZOJ的JUDGE系统是几个网站中表现得比较好的一个,很少出现Wrong Answer和Presentation error混淆的情况。这里每月也办有一次网上比赛,只要是注册的用户都可以参加。   说起中国的ONLINE JUDGE,去年才开始参加ACM竞赛的北京大学现在也建立了自己的提交系统;而我们学校也是去年开始参加比赛,现在也有可能推出自己的提交系统,如果能够做成,到时候大家就可以去上面做题了。同类网站的飞速发展标志着有越来越多的同学有兴趣进入信息学的领域探索,这是一件好事,同时也意味着更激烈的竞争。

小旋风柴进 2019-12-02 01:20:20 0 浏览量 回答数 0

问题

怎么实现node 子节点

何时定123 2020-05-19 10:54:14 5 浏览量 回答数 1

回答

在JavaScript范围内的基本层次上,对象的属性是更为复杂的实体。您可以使用setters / getters创建具有不同可枚举性,可写性和可配置性的属性。数组中的项目无法通过这种方式进行自定义:它存在或不存在。在底层引擎级别,这可以在组织表示结构的内存方面进行更多优化。 在从对象(字典)中识别数组方面,JS引擎始终在两者之间做出明确的区分。这就是为什么有很多文章尝试创建类似半伪数组的对象的方法,这些对象的行为类似于一个但允许其他功能。甚至存在这种分离的原因是因为JS引擎本身将两者存储的方式不同。 属性可以存储在数组对象上,但这仅说明了JavaScript如何坚持将所有内容制作为对象。数组中的索引值与您决定在代表基础数组数据的数组对象上设置的所有属性的存储方式不同。 每当您使用合法的数组对象并使用处理该数组的标准方法之一时,您都将访问基础数组数据。特别是在V8中,这些基本上与C ++数组相同,因此将应用这些规则。如果由于某种原因您正在使用一个引擎无法确定其是否为数组的数组,那么您将处于更加不稳定的境地。在最新版本的V8中,还有更多的工作空间。例如,可以创建一个以Array.prototype作为原型的类,并且仍然可以有效地访问各种本机数组操作方法。但这是最近的变化。 指向最近对数组操作所做的更改的特定链接可能会派上用场: http://code.google.com/p/v8/source/detail?r=10024 http://code.google.com/p/v8/source/detail?r=9849 http://code.google.com/p/v8/source/detail?r=9747 另外,这里是直接从V8来源获取的Array Pop和Array Push,它们均在JS本身中实现: function ArrayPop() { if (IS_NULL_OR_UNDEFINED(this) && !IS_UNDETECTABLE(this)) { throw MakeTypeError("called_on_null_or_undefined", ["Array.prototype.pop"]); } var n = TO_UINT32(this.length); if (n == 0) { this.length = n; return; } n--; var value = this[n]; this.length = n; delete this[n]; return value; } function ArrayPush() { if (IS_NULL_OR_UNDEFINED(this) && !IS_UNDETECTABLE(this)) { throw MakeTypeError("called_on_null_or_undefined", ["Array.prototype.push"]); } var n = TO_UINT32(this.length); var m = %_ArgumentsLength(); for (var i = 0; i < m; i++) { this[i+n] = %_Arguments(i); } this.length = n + m; return this.length; }

保持可爱mmm 2020-02-08 11:02:22 0 浏览量 回答数 0

回答

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。 [编辑本段]基本概念 * 若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。 * 对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称冲突。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。 * 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。 [编辑本段]常用的构造散列函数的方法 散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位ǐ 1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a•key + b,其中a和b为常数(这种散列函数叫做自身函数) 2. 数字分析法 3. 平方取中法 4. 折叠法 5. 随机数法 6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。 [编辑本段]处理冲突的方法 1. 开放寻址法:Hi=(H(key) + di) MOD m, i=1,2,…, k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法: 1. di=1,2,3,…, m-1,称线性探测再散列; 2. di=1^2, (-1)^2, 2^2,(-2)^2, (3)^2, …, ±(k)^2,(k<=m/2)称二次探测再散列; 3. di=伪随机数序列,称伪随机探测再散列。 == 2. 再散列法:Hi=RHi(key), i=1,2,…,k RHi均是不同的散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。 3. 链地址法(拉链法) 4. 建立一个公共溢出区 [编辑本段]查找的性能分析 散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。 查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素: 1. 散列函数是否均匀; 2. 处理冲突的方法; 3. 散列表的装填因子。 散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度 α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。 实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。 了解了hash基本定义,就不能不提到一些著名的hash算法,MD5 和 SHA-1 可以说是目前应用最广泛的Hash算法,而它们都是以 MD4 为基础设计的。那么他们都是什么意思呢? 这里简单说一下: (1) MD4 MD4(RFC 1320)是 MIT 的 Ronald L. Rivest 在 1990 年设计的,MD 是 Message Digest 的缩写。它适用在32位字长的处理器上用高速软件实现--它是基于 32 位操作数的位操作来实现的。 (2) MD5 MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好 (3) SHA-1 及其他 SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。 那么这些Hash算法到底有什么用呢? Hash算法在信息安全方面的应用主要体现在以下的3个方面: (1) 文件校验 我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。 MD5 Hash算法的"数字指纹"特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。 (2) 数字签名 Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。 对 Hash 值,又称"数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。 (3) 鉴权协议 如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。 MD5、SHA1的破解 2004年8月17日,在美国加州圣芭芭拉召开的国际密码大会上,山东大学王小云教授在国际会议上首次宣布了她及她的研究小组近年来的研究成果——对MD5、HAVAL-128、MD4和RIPEMD等四个著名密码算法的破译结果。 次年二月宣布破解SHA-1密码。 [编辑本段]实际应用 以上就是一些关于hash以及其相关的一些基本预备知识。那么在emule里面他具体起到什么作用呢? 大家都知道emule是基于P2P (Peer-to-peer的缩写,指的是点对点的意思的软件), 它采用了"多源文件传输协议”(MFTP,the Multisource FileTransfer Protocol)。在协议中,定义了一系列传输、压缩和打包还有积分的标准,emule 对于每个文件都有md5-hash的算法设置,这使得该文件独一无二,并且在整个网络上都可以追踪得到。 什么是文件的hash值呢? MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,这一个Hash算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。 当我们的文件放到emule里面进行共享发布的时候,emule会根据hash算法自动生成这个文件的hash值,他就是这个文件唯一的身份标志,它包含了这个文件的基本信息,然后把它提交到所连接的服务器。当有他人想对这个文件提出下载请求的时候, 这个hash值可以让他人知道他正在下载的文件是不是就是他所想要的。尤其是在文件的其他属性被更改之后(如名称等)这个值就更显得重要。而且服务器还提供了,这个文件当前所在的用户的地址,端口等信息,这样emule就知道到哪里去下载了。 一般来讲我们要搜索一个文件,emule在得到了这个信息后,会向被添加的服务器发出请求,要求得到有相同hash值的文件。而服务器则返回持有这个文件的用户信息。这样我们的客户端就可以直接的和拥有那个文件的用户沟通,看看是不是可以从他那里下载所需的文件。 对于emule中文件的hash值是固定的,也是唯一的,它就相当于这个文件的信息摘要,无论这个文件在谁的机器上,他的hash值都是不变的,无论过了多长时间,这个值始终如一,当我们在进行文件的下载上传过程中,emule都是通过这个值来确定文件。 那么什么是userhash呢? 道理同上,当我们在第一次使用emule的时候,emule会自动生成一个值,这个值也是唯一的,它是我们在emule世界里面的标志,只要你不卸载,不删除config,你的userhash值也就永远不变,积分制度就是通过这个值在起作用,emule里面的积分保存,身份识别,都是使用这个值,而和你的id和你的用户名无关,你随便怎么改这些东西,你的userhash值都是不变的,这也充分保证了公平性。其实他也是一个信息摘要,只不过保存的不是文件信息,而是我们每个人的信息。 那么什么是hash文件呢? 我们经常在emule日志里面看到,emule正在hash文件,这里就是利用了hash算法的文件校验性这个功能了,文章前面已经说了一些这些功能,其实这部分是一个非常复杂的过程,目前在ftp,bt等软件里面都是用的这个基本原理,emule里面是采用文件分块传输,这样传输的每一块都要进行对比校验,如果错误则要进行重新下载,这期间这些相关信息写入met文件,直到整个任务完成,这个时候part文件进行重新命名,然后使用move命令,把它传送到incoming文件里面,然后met文件自动删除,所以我们有的时候会遇到hash文件失败,就是指的是met里面的信息出了错误不能够和part文件匹配,另外有的时候开机也要疯狂hash,有两种情况一种是你在第一次使用,这个时候要hash提取所有文件信息,还有一种情况就是上一次你非法关机,那么这个时候就是要进行排错校验了。 关于hash的算法研究,一直是信息科学里面的一个前沿,尤其在网络技术普及的今天,他的重要性越来越突出,其实我们每天在网上进行的信息交流安全验证,我们在使用的操作系统密钥原理,里面都有它的身影,特别对于那些研究信息安全有兴趣的朋友,这更是一个打开信息世界的钥匙,他在hack世界里面也是一个研究的焦点。 一般的线性表、树中,记录在结构中的相对位置是随机的即和记录的关键字之间不存在确定的关系,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在“比较”的基础上,查找的效率与比较次数密切相关。理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。因而查找时,只需根据这个对应关系f找到给定值K的像f(K)。若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上,由此不需要进行比较便可直接取得所查记录。在此,称这个对应关系f为哈希函数,按这个思想建立的表为哈希表(又称为杂凑法或散列表)。 哈希表不可避免冲突(collision)现象:对不同的关键字可能得到同一哈希地址 即key1≠key2,而hash(key1)=hash(key2)。具有相同函数值的关键字对该哈希函数来说称为同义词(synonym)。 因此,在建造哈希表时不仅要设定一个好的哈希函数,而且要设定一种处理冲突的方法。可如下描述哈希表:根据设定的哈希函数H(key)和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集(区间)上并以关键字在地址集中的“象”作为相应记录在表中的存储位置,这种表被称为哈希表。 对于动态查找表而言,1) 表长不确定;2)在设计查找表时,只知道关键字所属范围,而不知道确切的关键字。因此,一般情况需建立一个函数关系,以f(key)作为关键字为key的录在表中的位置,通常称这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数) 哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。 现实中哈希函数是需要构造的,并且构造的好才能使用的好。 用途:加密,解决冲突问题。。。。 用途很广,比特精灵中就使用了哈希函数,你可 以自己看看。 具体可以学习一下数据结构和算法的书。 [编辑本段]字符串哈希函数 (著名的ELFhash算法) int ELFhash(char *key) return h%MOD; }

晚来风急 2019-12-02 01:22:24 0 浏览量 回答数 0

回答

一.Lock接口(java.util.concurrent.locks): void lock():获取锁,阻塞方式;如果资源已被其他线程锁定,那么lock将会阻塞直到获取锁,锁阻塞期间不受线程的Interrupt的影响,在获取锁成功后,才会检测线程的interrupt状态,如果interrupt=true,则抛出异常。 unlock():释放锁 tryLock():尝试获取锁,并发环境中"闯入"行为,如果有锁可用,直接获取锁并返回true,否则范围false. lockInterruptibly():尝试获取锁,并支持"中断"请求。与lock的区别时,此方法的开始、结束和执行过程中,都会不断检测线程的interrupt状态,如果线程被中断,则立即抛出异常;而不像lock方法那样只会在获取锁之后才检测。 二.Lock接口实现类 Lock直接实现,只有3个类:ReentrantLock和WriteLock/ReadLock;这三种锁;Lock和java的synchronized(内置锁)的功能一致,均为排他锁. ReentrantLock为重入排他锁,对于同一线程,如果它已经持有了锁,那么将不会再次获取锁,而直接可以使用. ReentrantReadWriteLock并没有继承ReentrantLock,而是一个基于Lock接口的单独实现.它实现了 ReadWriteLock,即读写分离锁,是一种采用锁分离技巧的API. 尽管在API级别ReentrantReadWriteLock和ReentrantLock没有直接继承关系,但是ReentrantReadWriteLock中的ReadLock和WriteLock都具有ReentrantLock的全部语义(简单说,就是把ReentrantLock的代码copy了一下.),即锁的可重入性.WriteLock支持Condition(条件),ReadLock不支持. Lock的实现类中,都包含了2中锁等待策略:公平和非公平;其实他们的实现也非常简单,底层都是使用了queue来维持锁请求顺序.[参考:http://shift-alt-ctrl.iteye.com/blog/1839142] 公平锁,就是任何锁请求,首先将请求加入队列,然后再有队列机制来决定,是阻塞还是分配锁. 非公平,就是允许"闯入",当然公平锁,也无法干扰"闯入",对于任何锁请求,首先检测锁状态是否可用,如果可用直接获取,否则加入队列.. ReentrantLock本质上和synchronized修饰词是同一语义,如果一个线程lock()之后,其他线程进行lock时必须阻塞,直到当前线程的前续线程unlock.[执行lock操作时,将会被队列化(假如在公平模式下),获取lock的线程都将具有前续/后继线程,前续线程就是当前线程之前执行lock操作而阻塞的线程,后继线程就是当前线程之后执行lock操作的线程;那么对于unlock操作就是"解锁"信号的传递,如果当前线程unlock,那么将会触发后继线程被"唤醒",即它因为lock操作阻塞状态被解除.];这是ReentrantLock的基本原理,但是当ReentrantLock在Conditon情况下,事情就变得更加复杂.[参加下述] 三.Condition:锁条件 Condition与Lock形成happen-before关系。Condition将Object的监视器方法(wait,notify,notifyAll)分解成截然不同的对象,以便通过这些对象与任意Lock实现组合。使Lock具有等待“集合”的特性,或者“类型”;Lock替代了synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。(synchronized + object.wait对应Lock + Condition.await) Condition又称条件队列,为线程提供了一个含义,以便在某种状态条件现在可能为true的其他线程通知它之前,一直挂起该线程。即多个线程,其中一个线程因为某个条件而阻塞,其他线程当“条件”满足时,则“通知”哪些阻塞的线程。这,几乎和object中wait和notify的机制一样。 Condition和wait一样,阻塞时也将原子性的释放锁(间接执行了release()方法)。并挂起线程。Condition必须与Lock形成关系,只有获取lock权限的,才能进行Condition操作。Condition底层基于AQS实现,条件阻塞,将以队列的方式,LockSupport支持。其实现类有ConditionObject,这也是Lock.newCondition()的返回实际类型,在等待 Condition 时,允许发生“虚假唤醒”,这通常作为对基础平台语义的让步。对于大多数应用程序,这带来的实际影响很小,因为 Condition 应该总是在一个循环中被等待,并测试正被等待的状态声明。某个实现可以随意移除可能的虚假唤醒,但建议应用程序程序员总是假定这些虚假唤醒可能发生,因此总是在一个循环中等待。 void await() throws InterruptedException:当前线程阻塞,并原子性释放对象锁。如下条件将触发线程唤醒: 当线程被中断(支持中断响应), 其他线程通过condition.signal()方法,且碰巧选中当前线程唤醒 其他线程通过condition.signalAll()方法 发生虚假唤醒 底层实现,await()方法将当前线程信息添加到Conditon内部维护的"await"线程队列的尾部(此队列的目的就是为singal方法保持亟待唤醒的线程的顺序),然后释放锁(执行tryRelease()方法,注意此处释放锁,仅仅是释放了锁信号,并不是unlock,此时其他线程仍不能获取锁--lock方法阻塞),然后使用LockSupport.park(this)来强制剥夺当前线程执行权限。await方法会校验线程的中断标记。 由此可见,await()方法执行之后,因为已经"归还"了锁信号,那么其他线程此时执行lock方法,将不再阻塞.. void awaitUninterruptibly():阻塞,直到被唤醒。此方法不响应线程中断请求。即当线程被中断时,它将继续等待,直到接收到signal信号(你应该能想到"陷阱"),当最终从此方法返回时,仍然将设置其中断状态。 void signal()/signalAll():唤醒一个/全部await的线程。 对于signal()方法而言,底层实现为,遍历await"线程队列,找出此condition上最先阻塞的线程,并将此阻塞线程unpark.至此为止,我们似乎发现"锁信号"丢失了,因为在线程await时通过tryRelease时释放了一次信号.那么被signal成功的线程,首先执行一次acquire(增加锁信号),然后校验自己是否被interrupted,如果锁信号获取成功且线程状态正常,此时才正常的从await()方法退出.经过这么复杂的分析,终于明白了ReentrantLock + Condition情况下,锁状态变更和线程控制的来龙去脉... Java代码 收藏代码 //////例子: private Lock lock = new ReentrantLock(); private Condition full = lock.newCondition(); private Condition empty = lock.newCondition(); public Object take(){ lock.lock(); try{ while(isEmpty()){ empty.await() } Object o = get() full.signalAll(); return o; }finally{ lock.unlock(); } } public void put(Object o){ lock.lock(); try{ while(isFull()){ full.await(); } put(o); empty.signalAll(); }finally{ lock.unlock(); } } 四.机制 Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。此实现允许更灵活的结构,可以具有差别很大的属性,可以支持多个相关的 Condition 对象。注意,Lock 实例只是普通的对象,其本身可以在 synchronized 语句中作为目标使用。获取 Lock 实例的监视器锁与调用该实例的任何 lock() 方法没有特别的关系。为了避免混淆,建议除了在其自身的实现中之外,决不要以这种方式使用 Lock 实例。 Lock接口具有的方法: void lock():获取锁,阻塞直到获取。 void lockInterruptibly() throws InterrutedException:获取锁,阻塞直到获取成功,支持中断响应。 boolean tryLock():尝试获取锁,返回是否获取的结果。如果碰巧获取成功,则返回true,此时已经持有锁。 boolean tryLock(long time,TimeUnit) throws InterruptedException:尝试获取锁,获取成功返回true,超时时且没有获取锁则返回false。 void unlock():释放锁。约定只有持有锁者才能释放锁,否则抛出异常。 void newCondition():返回绑定到lock的条件。 五.ReadWriteLock ReadWriteLock 维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有 writer(写锁),读取锁可以由多个 reader 线程同时保持(共享锁)。写入锁是独占的。所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。 与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问。虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点。从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高。在实践中,只有在多处理器上并且只在访问模式适用于共享数据时,才能完全实现并发性增强。 Lock readLock():返回读锁。 Lock writeLock():返回写锁。 六.ReentrantLock ReentrantLock,重入排它锁,它和synchronized具有相同的语义以及在监视器上具有相同的行为,但是功能更加强大。 ReetrantLock将由最近成功获得锁且还没有释放锁的线程标记为“锁占有者”;当锁没有被线程持有时,调用lock方法将会成功获取锁并返回,如果当前线程为锁持有者,再次调用lock将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查此情况是否发生。 ReentrantLock的构造方法,允许接收一个“公平策略”参数,“公平策略”下,多个线程竞争获取锁时,将会以队列化锁请求者,并将锁授予队列的head。在“非公平策略”下,则不完全保证锁获取的顺序,允许闯入行为(tryLock)。 ReentrantLock基于AQS机制,锁信号量为1,如果信号量为1且当前锁持有者不为自己,则不能获取锁。释放锁时,如果当前锁持有者不是自己,也将抛出“IllegalMonitorStateException”。由此可见,对于ReentrantLock,lock和release方法是需要组合出现。 七.ReentrantReadWriteLock:可重入读写分离锁 重入性 :当前线程可以重新获取相应的“读锁”或者“写锁”,在写入线程保持的所有写入锁都已经释放后,才允许重入reader(读取线程)使用它们。writer线程可以获取读锁,但是reader线程却不能直接获取写锁。 锁降级:重入还允许写入锁降级为读锁,其实现方式为:先获取写入锁,然后获取读取锁,最后释放写入锁。但是读取锁不能升级为写入锁。 Conditon的支持:只有写入锁支持conditon,对于读取锁,newConditon方法直接抛出UnsupportedOperationException。 ReentrantReadWriteLock目前在java api中无直接使用。ReentrantReadWriteLock并没有继承自 ReentrantLock,而是单独重新实现。其内部仍然支持“公平性”“非公平性”策略。 ReentrantReadWriteLock基于AQS,但是AQS只有一个state来表示锁的状态,所以如果一个state表示2种类型的锁状态,它做了一个很简单的策略,“位运算”,将一个int类型的state拆分为2个16位段,左端表示readlock锁引用计数,右端16位表示write锁。在readLock、writeLock进行获取锁或者释放锁时,均是通过有效的位运算和位控制,来达到预期的效果。 八.ReadLock void lock():获取读取锁,伪代码如下: Java代码 收藏代码 //如果当前已经有“写锁”,且持有写锁者不是当前线程(如果是当前线程,则支持写锁,降级为读锁),则获取锁失败 //即任何读锁的获取,必须等待队列中的写锁释放 //c为实际锁引用量(exclusiveCount方法实现为:c & ((1<<16) -1) if (exclusiveCount(c) != 0 &&getExclusiveOwnerThread() != current) return -1; //CAS操作,操作state的左端16位。 if(CAS(c,c + (1<<16))){ return 1; } void unlock():释放read锁,即共享锁,伪代码如下: Java代码 收藏代码 //CAS锁引用 for (;;) { int c = getState(); int nextc = c - (1<<16);//位操作,释放一个锁。 if (compareAndSetState(c, nextc)) return nextc == 0; } 九.WriteLock void lock():获取写入锁,伪代码如下: Java代码 收藏代码 //当前线程 Thread current = Thread.currentThread(); //实际的锁引用state int c = getState(); //右端16位,通过位运算获取“写入锁”的state int w = exclusiveCount(c); //如果有锁引用 if (c != 0) { //且所引用不是自己 if (w == 0 || current != getExclusiveOwnerThread()){ return false; } } //如果写入锁state为0,且CAS成功,则设置state和独占线程信息 if ((w == 0 && writerShouldBlock(current)) ||!compareAndSetState(c, c + acquires)){ return false; } setExclusiveOwnerThread(current); return true; void unlock():释放写入锁,伪代码如下: Java代码 收藏代码 //计算释放锁的信号量 int nextc = getState() - releases; //对于写入锁,则校验当前线程是否为锁持有者,否则不可以释放(死锁) if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); //释放锁,且重置独占线程信息 if (exclusiveCount(nextc) == 0) { setExclusiveOwnerThread(null); setState(nextc); return true; } else { setState(nextc); return false; } 十.LockSupport:用来创建锁和其他同步类的基本线程阻塞原语。 底层基于hotspot的实现unsafe。park 和 unpark 方法提供了阻塞和解除阻塞线程的有效方法。三种形式的 park(即park,parkNanos(Object blocker,long nanos),parkUntil(Object blocker,long timestamp)) 还各自支持一个 blocker 对象参数。此对象在线程受阻塞时被记录,以允许监视工具和诊断工具确定线程受阻塞的原因。(这样的工具可以使用方法 getBlocker(java.lang.Thread) 访问 blocker。)建议最好使用这些形式,而不是不带此参数的原始形式。 在锁实现中提供的作为 blocker 的普通参数是 this。 static void park(Object blocker):阻塞当前线程,直到如下情况发生: 其他线程,调用unpark方法,并将此线程作为目标而唤醒 其他线程中断当前线程此方法不报告,此线程是何种原因被放回,需要调用者重新检测,而且此方法也经常在while循环中执行 Java代码 收藏代码 while(//condition,such as:queue.isEmpty){ LockSupport.park(queue);//此时queue对象作为“阻塞”点传入,以便其他监控工具查看,queue的状态 //检测当前线程是否已经中断。 if(Thread.interrupted()){ break; } } void getBlocker(Thread t):返回提供最近一次尚未解除阻塞的park的阻塞点。可以返回null。 void unpark(Thread t):解除指定线程阻塞,使其可用。参数null则无效果。 LockSupport实例(不过不建议在实际代码中直接使用LockSupport,很多时候,你可以使用锁来控制): Java代码 收藏代码 /////////////Demo public class LockSupportTestMain { /** * @param args */ public static void main(String[] args) throws Exception{ System.out.println("Hear!"); BlockerObject blocker = new BlockerObject(); LThread tp = new LThread(blocker, false); LThread tt = new LThread(blocker, true); tp.start(); tt.start(); Thread.sleep(1000); } static class LThread extends Thread{ private BlockerObject blocker; boolean take; LThread(BlockerObject blocker,boolean take){ this.blocker = blocker; this.take = take; } @Override public void run(){ if(take){ while(true){ Object o = blocker.take(); if(o != null){ System.out.println(o.toString()); } } }else{ Object o = new Object(); System.out.println("put,,," + o.toString()); blocker.put(o); } } } static class BlockerObject{ Queue<Object> inner = new LinkedList<Object>(); Queue<Thread> twaiters = new LinkedList<Thread>(); Queue<Thread> pwaiters = new LinkedList<Thread>(); public void put(Object o){ inner.offer(o); pwaiters.offer(Thread.currentThread()); Thread t = twaiters.poll(); if(t != null){ LockSupport.unpark(t); } System.out.println("park"); LockSupport.park(Thread.currentThread()); System.out.println("park is over"); } public Object take(){ Thread t = pwaiters.poll(); if(t != null){ System.out.println("unpark"); LockSupport.unpark(t); System.out.println("unpark is OK"); } //twaiters.offer(Thread.currentThread()); return inner.poll(); } } } 备注:有时候会疑惑wait()/notify() 和Unsafe.park()/unpark()有什么区别?区别是wait和notify是Object类的方法,它们首选需要获得“对象锁”,并在synchronized同步快中执行。park和unpark怎不需要这么做。wait和park都是有当前线程发起,notify和unpark都是其他线程发起。wait针对的是对象锁,park针对的线程本身,但是最终的效果都是导致当前线程阻塞。Unsafe不建议开发者直接使用。

景凌凯 2020-04-24 16:41:16 0 浏览量 回答数 0

回答

好的,我编写了PHP类来扩展Zend Framework DB表,行和行集类。无论如何,我一直在开发它,因为我在PHP Tek-X上谈论了两周有关分层数据模型的内容。 我不想将我所有的代码发布到Stack Overflow,因为如果这样做,它们将隐式地获得知识共享许可。 更新:我将代码提交给Zend Framework Extras孵化器,在幻灯片共享中,我的演示文稿是带有SQL和PHP的分层数据模型。 我将用伪代码描述解决方案。我使用的是动物学分类学作为测试数据,可从ITIS.gov下载。该表是longnames: CREATE TABLE longnames ( tsn int(11) NOT NULL, completename varchar(164) NOT NULL, PRIMARY KEY (tsn), KEY tsn (tsn,completename) ) 我为分类法层次结构中的路径创建了一个封闭表: CREATE TABLE closure ( a int(11) NOT NULL DEFAULT '0', -- ancestor d int(11) NOT NULL DEFAULT '0', -- descendant l tinyint(3) unsigned NOT NULL, -- levels between a and d PRIMARY KEY (a,d), CONSTRAINT closure_ibfk_1 FOREIGN KEY (a) REFERENCES longnames (tsn), CONSTRAINT closure_ibfk_2 FOREIGN KEY (d) REFERENCES longnames (tsn) ) 给定一个节点的主键,您可以通过以下方式获取其所有后代: SELECT d.*, p.a AS _parent FROM longnames AS a JOIN closure AS c ON (c.a = a.tsn) JOIN longnames AS d ON (c.d = d.tsn) LEFT OUTER JOIN closure AS p ON (p.d = d.tsn AND p.l = 1) WHERE a.tsn = ? AND c.l <= ? ORDER BY c.l; 联接要closure AS p包括每个节点的父ID。 该查询很好地利用了索引: +----+-------------+-------+--------+---------------+---------+---------+----------+------+-----------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+---------------+---------+---------+----------+------+-----------------------------+ | 1 | SIMPLE | a | const | PRIMARY,tsn | PRIMARY | 4 | const | 1 | Using index; Using filesort | | 1 | SIMPLE | c | ref | PRIMARY,d | PRIMARY | 4 | const | 5346 | Using where | | 1 | SIMPLE | d | eq_ref | PRIMARY,tsn | PRIMARY | 4 | itis.c.d | 1 | | | 1 | SIMPLE | p | ref | d | d | 4 | itis.c.d | 3 | | +----+-------------+-------+--------+---------------+---------+---------+----------+------+-----------------------------+ 鉴于我有490,032行longnames和4,299,883行closure,它的运行时间相当不错: +--------------------+----------+ | Status | Duration | +--------------------+----------+ | starting | 0.000257 | | Opening tables | 0.000028 | | System lock | 0.000009 | | Table lock | 0.000013 | | init | 0.000048 | | optimizing | 0.000032 | | statistics | 0.000142 | | preparing | 0.000048 | | executing | 0.000008 | | Sorting result | 0.034102 | | Sending data | 0.001300 | | end | 0.000018 | | query end | 0.000005 | | freeing items | 0.012191 | | logging slow query | 0.000008 | | cleaning up | 0.000007 | +--------------------+----------+ 现在,我对上述SQL查询的结果进行后处理,根据层次结构(伪代码)将行分类为子集: while ($rowData = fetch()) { $row = new RowObject($rowData); $nodes[$row["tsn"]] = $row; if (array_key_exists($row["_parent"], $nodes)) { $nodes[$row["_parent"]]->addChildRow($row); } else { $top = $row; } } return $top; 我还为“行”和“行集”定义类。行集基本上是行的数组。行包含行数据的关联数组,还包含其子级的行集。叶节点的子行集为空。 行和行集还定义了称为的方法toArrayDeep(),这些方法以纯数组的形式递归地转储其数据内容。 然后,我可以像这样一起使用整个系统: // Get an instance of the taxonomy table data gateway $tax = new Taxonomy(); // query tree starting at Rodentia (id 180130), to a depth of 2 $tree = $tax->fetchTree(180130, 2); // dump out the array var_export($tree->toArrayDeep()); 输出如下: array ( 'tsn' => '180130', 'completename' => 'Rodentia', '_parent' => '179925', '_children' => array ( 0 => array ( 'tsn' => '584569', 'completename' => 'Hystricognatha', '_parent' => '180130', '_children' => array ( 0 => array ( 'tsn' => '552299', 'completename' => 'Hystricognathi', '_parent' => '584569', ), ), ), 1 => array ( 'tsn' => '180134', 'completename' => 'Sciuromorpha', '_parent' => '180130', '_children' => array ( 0 => array ( 'tsn' => '180210', 'completename' => 'Castoridae', '_parent' => '180134', ), 1 => array ( 'tsn' => '180135', 'completename' => 'Sciuridae', '_parent' => '180134', ), 2 => array ( 'tsn' => '180131', 'completename' => 'Aplodontiidae', '_parent' => '180134', ), ), ), 2 => array ( 'tsn' => '573166', 'completename' => 'Anomaluromorpha', '_parent' => '180130', '_children' => array ( 0 => array ( 'tsn' => '573168', 'completename' => 'Anomaluridae', '_parent' => '573166', ), 1 => array ( 'tsn' => '573169', 'completename' => 'Pedetidae', '_parent' => '573166', ), ), ), 3 => array ( 'tsn' => '180273', 'completename' => 'Myomorpha', '_parent' => '180130', '_children' => array ( 0 => array ( 'tsn' => '180399', 'completename' => 'Dipodidae', '_parent' => '180273', ), 1 => array ( 'tsn' => '180360', 'completename' => 'Muridae', '_parent' => '180273', ), 2 => array ( 'tsn' => '180231', 'completename' => 'Heteromyidae', '_parent' => '180273', ), 3 => array ( 'tsn' => '180213', 'completename' => 'Geomyidae', '_parent' => '180273', ), 4 => array ( 'tsn' => '584940', 'completename' => 'Myoxidae', '_parent' => '180273', ), ), ), 4 => array ( 'tsn' => '573167', 'completename' => 'Sciuravida', '_parent' => '180130', '_children' => array ( 0 => array ( 'tsn' => '573170', 'completename' => 'Ctenodactylidae', '_parent' => '573167', ), ), ), ), ) 关于计算深度-或实际上每个路径的长度,发表您的评论。 假设您刚刚在表中插入了一个包含实际节点的新节点(longnames在上面的示例中),则新节点的ID由LAST_INSERT_ID()MySQL 返回,否则您可以通过某种方式获取它。 INSERT INTO Closure (a, d, l) SELECT a, LAST_INSERT_ID(), l+1 FROM Closure WHERE d = 5 -- the intended parent of your new node UNION ALL SELECT LAST_INSERT_ID(), LAST_INSERT_ID(), 0;来源:stack overflow

保持可爱mmm 2020-05-17 21:46:14 0 浏览量 回答数 0

问题

厉华:写一个开源容器引擎会是什么样的体验? 热:报错

kun坤 2020-06-10 10:01:12 3 浏览量 回答数 1

问题

人工智能技术百问——机器真的能取代人类吗

yq传送门 2019-12-01 20:27:57 4467 浏览量 回答数 3

问题

ECS-CentOS  /etc/fstab格式简介

ethnicity 2019-12-01 21:03:38 10993 浏览量 回答数 1

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播