• 关于

    事件绑定的三种形式

    的搜索结果

回答

DOM0事件模型(原始事件模型) 有两种实现方式 通过元素属性来绑定事件 点我 先获取页面元素,然后以赋值的形式来绑定事件 const btn = document.getElementById('btn') btn.onclick = function(){ //do something } //解除事件 btn.onclick = null DOM0缺点 一个dom节点只能绑定一个事件,再次绑定将会覆盖之前的事件。 DOM2事件模型 dom2新增冒泡和捕获的概念,并且支持一个元素节点绑定多个事件。 2.1 事件捕获和事件冒泡(capture,bubble ) 如图所示1,2,3为捕获,4,5,6,7为冒泡,也就是说事件流分为三个阶段: DOM2 级事件模型共有三个阶段: 事件捕获阶段:事件从 document 向下传播到目标元素,依次检查所有节点是否绑定了监听事件,如果有则执行。 事件处理阶段:事件在达到目标元素时,触发监听事件。 事件冒泡阶段:事件从目标元素冒泡到 document,并且一次检查各个节点是否绑定了监听函数,如果有则执行。 2.2 addEventListener 这应该是大家用的最熟悉的事件绑定方法了。 addEventListener有三个参数 事件名称、事件回调、捕获/冒泡 btn.addEventListener('click',function(){ console.log('btn') },true) box.addEventListener('click',function(){ console.log('box') },false) 设置为true,则事件在捕获阶段执行,为false则在冒泡阶段执行。 3. IE事件模型 IE事件只支持冒泡,所以事件流有两个阶段: 事件处理阶段:事件在达到目标元素时,触发监听事件。 事件冒泡阶段:事件从目标元素冒泡到 document,并且一次检查各个节点是否绑定了监听函数,如果有则执行。 实现方法: // 绑定事件 el.attachEvent(eventType, handler) // 移除事件 el.detachEvent(eventType, handler)
景凌凯 2020-04-03 22:07:57 0 浏览量 回答数 0

回答

相关资料: 回调函数 优点:简单、容易理解 缺点:不利于维护,代码耦合高 事件监听(采用时间驱动模式,取决于某个事件是否发生): 优点:容易理解,可以绑定多个事件,每个事件可以指定多个回调函数 缺点:事件驱动型,流程不够清晰 发布/订阅(观察者模式) 类似于事件监听,但是可以通过‘消息中心’,了解现在有多少发布者,多少订阅者 Promise 对象 优点:可以利用 then 方法,进行链式写法;可以书写错误时的回调函数; 缺点:编写和理解,相对比较难 Generator 函数 优点:函数体内外的数据交换、错误处理机制 缺点:流程管理不方便 async 函数 优点:内置执行器、更好的语义、更广的适用性、返回的是 Promise、结构清晰。 缺点:错误处理机制 回答: js 中的异步机制可以分为以下几种: 第一种最常见的是使用回调函数的方式,使用回调函数的方式有一个缺点是,多个回调函数嵌套的时候会造成回调函数地狱,上下两层的回调函数间的代码耦合度太高,不利于代码的可维护。 第二种是 Promise 的方式,使用 Promise 的方式可以将嵌套的回调函数作为链式调用。但是使用这种方法,有时会造成多个 then 的链式调用,可能会造成代码的语义不够明确。 第三种是使用 generator 的方式,它可以在函数的执行过程中,将函数的执行权转移出去,在函数外部我们还可以将执行权转移回来。当我们遇到异步函数执行的时候,将函数执行权转移出去,当异步函数执行完毕的时候我们再将执行权给转移回来。因此我们在 generator 内部对于异步操作的方式,可以以同步的顺序来书写。使用这种方式我们需要考虑的问题是何时将函数的控制权转移回来,因此我们需要有一个自动执行 generator 的机制,比如说 co 模块等方式来实现 generator 的自动执行。 第四种是使用 async 函数的形式,async 函数是 generator 和 promise 实现的一个自动执行的语法糖,它内部自
剑曼红尘 2020-04-06 15:57:12 0 浏览量 回答数 0

问题

Netty实现原理浅析 1、总体结构 2、网络模型 3、 buffer 4、Ch?400报错

Netty实现原理浅析 1、总体结构 2、网络模型 3、 buffer 4、Channel 5、ChannelEvent 6、ChannelPipeline 7、codec framework 8、小结? 400 报错 Netty是JBo...
爱吃鱼的程序员 2020-06-04 11:53:36 3 浏览量 回答数 1

回答

一、 Afinal官方介绍:Afinal是一个Android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。详情请通过以下网址查看。Afinal 是一个android的sqlite orm 和 ioc 框架。同时封装了android中的http框架,使其更加简单易用;使用finalBitmap,无需考虑bitmap在android中加载的时候oom的问题和快速滑动的时候图片加载位置错位等问题。Afinal的宗旨是简洁,快速。约定大于配置的方式。尽量一行代码完成所有事情。项目地址:https://github.com/yangfuhai/afinal功能:一个android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。优点:功能比较全面,文档完善,代码效率比较高。缺点:没有项目demo,框架的时间比较久,代码冗余比较多(这也是无可避免的),文档比较老跟不上代码更新进度。(这个评价是其他高人评的,他自己也有写了框架。我个人觉得以前Afinal算是经典了 用的人多)。二、 xUtilsGit地址:https://github.com/wyouflf/xUtilsxUtils:可以说是Afinal的升级版。xUtils 包含了很多实用的android工具。xUtils 支持大文件上传,更全面的http请求协议支持(10种谓词),拥有更加灵活的ORM,更多的事件注解支持且不受混淆影响...xUitls 最低兼容android 2.2 (api level 8)三、 ThinkAndroid项目地址:https://github.com/white-cat/ThinkAndroid官方介绍:ThinkAndroid是一个免费的开源的、简易的、遵循Apache2开源协议发布的Android开发框架,其开发宗旨是简单、快速的进行Android应用程序的开发,包含Android mvc、简易sqlite orm、ioc模块、封装Android httpclitent的http模块,具有快速构建文件缓存功能,无需考虑缓存文件的格式,都可以非常轻松的实现缓存,它还基于文件缓存模块实现了图片缓存功能,在android中加载的图片的时候,对oom的问题,和对加载图片错位的问题都轻易解决。他还包括了一个手机开发中经常应用的实用工具类,如日志管理,配置文件管理,android下载器模块,网络切换检测等等工具优点:功能看起来比较完善。个人觉得名字起的好。缺点:从2013年就停止维护了,没有项目文档。四、 LoonAndroid官方介绍:如果你想看ui方面的东西,这里没有,想要看牛逼的效果这里也没有。这只是纯实现功能的框架,它的目标是节省代码量,降低耦合,让代码层次看起来更清晰。整个框架一部分是网上的,一部分是我改的,为了适应我的编码习惯,还有一部分像orm完全是网上的组件。在此感谢那些朋友们。 整个框架式的初衷是为了偷懒,之前都是一个功能一个jar,做项目的时候拉进去,这样对于我来说依然还是比较麻烦。最后就导致我把所有的jar做成了一个工具集合包。 有很多框架都含有这个工具集合里的功能,这些不一定都好用,因为这是根据我个人使用喜欢来实现的,如果你们有自己的想法,可以自己把架包解压了以后,源码拉出来改动下。 目前很多框架都用到了注解,除了androidannotations没有入侵我们应用的代码以外,其他的基本上都有,要么是必须继承框架里面的activity,要么是必须在activity的oncreat里面调用某个方法。 整个框架式不同于androidannotations,Roboguice等ioc框架,这是一个类似spring的实现方式。在整应用的生命周期中找到切入点,然后对activity的生命周期进行拦截,然后插入自己的功能。开源地址:https://github.com/gdpancheng/LoonAndroid功能:1自动注入框架(只需要继承框架内的application既可)2图片加载框架(多重缓存,自动回收,最大限度保证内存的安全性)3网络请求模块(继承了基本上现在所有的http请求)4 eventbus(集成一个开源的框架)5验证框架(集成开源框架)6 json解析(支持解析成集合或者对象)7 数据库(不知道是哪位写的 忘记了)8 多线程断点下载(自动判断是否支持多线程,判断是否是重定向)9 自动更新模块10 一系列工具类有点:功能多缺点:文档方面五、 KJFrameForAndroid项目地址:https://github.com/kymjs/KJFrameForAndroid官方介绍:KJFrameForAndroid 又叫KJLibrary,是一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用;KJFrameForAndroid的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。我们提倡用最少的代码,完成最多的操作,用最高的效率,完成最复杂的功能。功能:一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用; KJFrameForAndroid开发框架的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。总共分为五大模块:UILibrary,UtilsLibrary,HttpLibrary,BitmapLibrary,DBLibrary。优点:功能比较全面,代码效率很高,文档完善,有项目demo,出来的比较晚借鉴了很多大型框架经验。缺点:项目文档是html页面,查看起来很不方便,项目交流平台没多少人说话(难道大神都是不说话的?)(这两个评价是KJFrameForAndroid的作者对自己的评价,个人觉得作者是个天才。他的评价可能刚写完网上发布后写的。我在给他更新评价。因为现在已经过去了几个月一直在时不时更新。功能很全,项目文档也很全面,而且代码里注释最多 这方面这个很难得。交流平台人很多挺热闹,作者希望更热闹这样框架越来越完善。对于初学者希望看到Demo更完善)六、 dhroid官方介绍:dhroid 是基于android 平台, 极速开发框架,其核心设计目标是开发迅速、代码量少、学习简单、功能强大、轻量级、易扩展.使你更快,更好的开发商业级别应用开源地址: http://git.oschina.net/tengzhinei/dhroid功能:1.Ioc容器: (用过spring的都知道)视图注入,对象注入,接口注入,解决类依赖关系2.Eventbus: android平台事件总线框架,独创延时事件,事件管理轻松3.Dhnet: 网络http请求的解决方案,使用简单,减少代码,自带多种网络访问缓存策略4.adapter模块: 数据绑定轻松,不用写多余的adapter,天生网络支持(一行代码搞定加载,刷新问题)5.DhDb: android中sqlite的最轻量orm框架(增删改查轻松搞定)6.Perference: android自带Perference 升级版,让你的Perference更强大,更方便工具集合 JSONUtil(安全处理json),ViewUtil(数据绑定更快) ThreadWorker(异步任务工具)...优点:功能全面,有demo,作者也是为公司开发的框架。缺点:文档方面现在不是很好,就eoe上的那些。七、 SmartAndroid项目地址:http://www.aplesson.com/smartAndroid/demos官方介绍:SmartAndroid是一套给 Android开发者使用的应用程序开发框架和工具包。它提供一套丰富的标准库以及简单的接口和逻辑结构,其目的是使开发人员更快速地进行项目开发。使用 SmartAndroid可以减少代码的编写量,并将你的精力投入到项目的创造性开发上。功能:SmartAndroid 拥有全范围的类库,可以完成大多数通常需要的APP开发任务,包括: 异步网络操作相关所有功能、强大的图片处理操作、轻量级ORM数据库Sqlite库、zip操作 、动画特效、Html等解析采集、事件总线EventBus/Otto、Gson(Json)、AQuery、主流所有UI控件(例如:ActionbarSherlock,SlidingMenu,BottomView,Actionbar,DragListView等10多种UI库)等。优点:功能非常全,超出你索要、文档完善(作者很全面,官方网站是web响应式网站,框架里功能有UI各种特效应该最全了,一直更新中)缺点:jar包大点?(功能多不可避免,不是问题),在线文档(随响应式的手机访问也方便,但是网速慢就不好了,页面打开不是很流畅)八、 andBase官方介绍:andbase是为Android开发者量身打造的一款开源类库产品开源地址:https://code.jd.com/zhaoqp2010_m/andbase功能:1.andbase中包含了大量的开发常用手段。如网络下载,多线程与线程池的管理,数据库ORM,图片缓存管理,图片文件下载上传,Http请求工具,常用工具类(字符串,日期,文件处理,图片处理工具类等),能够使您的应用在团队开发中减少冗余代码,很大的提高了代码的维护性与开发高效性,能很好的规避由于开发疏忽而导致常犯的错误。2.andbase封装了大量的常用控件。如list分页,下拉刷新,图片轮播,表格,多线程下载器,侧边栏,图片上传,轮子选择,图表,Tab滑动,日历选择器等。3.强大的AbActivity,您没有理由不继承它。继承它你能够获得一个简单强大可设置的操作栏,以及一系列的简单调用,如弹出框,提示框,进度框,副操作栏等。4.提供效率较高图片缓存管理策略,使内存大幅度节省,利用率提高,效率提高。程序中要管理大量的图片资源,andbase提供简单的方法,几步完成下载与显示,并支持缩放,裁剪,缓存功能。5.封装了大量常见工具类。包括日期,字符,文件,图片等各种处理函数,多而全。6.用andbase大量减少handler的使用,而采用回调函数,代码更整洁。handler会产生大量代码,并且不好维护,andbase对handler进行了封装。7.简单轻量支持注解自动建表的ORM框架(支持一/多对多的关联操作)。写sql,建表,工作量大,andbase提供更傻瓜异步增删改查工具类。8.异步请求http框架,网络请求标准化,支持文件上传下载,get,post,进度显示。包含了异步与http请求的工具类,实用。9.热情的支持群体。优点:功能很全,demo做的好 、API文档完善、接近完美缺点:希望文档更详细些。九、 AndroidAnnotations项目地址:https://github.com/excilys/androidannotations功能:完全注解框架,一切皆为注解:声明控件,绑定控件,设置监听,setcontentview,长按事件,异步线程,全部通过注解实现。优点:完全的注解,使开发起来更加便利,程序员写的代码也更少。缺点:文档是全英文的加上功能比较少没有具体研究,由于一切都是注解,感觉效率不高,不过根据官方介绍说并不是使用的反射加载,所以效率比一般注解高很多。十、 volley项目地址: https://github.com/smanikandan14/Volley-demo功能:Volley是Android平台上的网络通信库,能使网络通信更快,更简单,更健壮异步加载网络图片、网络数据优点:Google官方推荐,请看去年的开发者大会介绍。缺点:功能比较少,只有网络数据加载和网络图片加载十一、 android-async-http项目地址:https://github.com/loopj/android-async-http文档介绍:http://loopj.com/android-async-http/ (1) 在匿名回调中处理请求结果 (2) 在UI线程外进行http请求 (3) 文件断点上传 (4) 智能重试 (5) 默认gzip压缩 (6) 支持解析成Json格式 (7) 可将Cookies持久化到SharedPreferences 有点:很简单很实用缺点:功能比较少, (只是针对的功能不是什么缺点)最后来个总结吧: 以上的开发框架网上都可以下载源码,也有demo实例的。当然我没分析和对比框架的效率性能,但是都非常实用,其作者大部分是个人,都是些牛人或天才。你可以直接使用,也可以把有用跳出来用,至少有很多使用工具。如果有发现Bug,作者希望把bug交给他。 Afinal 和 xUtils简单实用但是demo和更新的问题。 KJFrameForAndroid 算是新出的,功能也多,效率也应该好,代码也注释多 用起来也很方便。Dhroid 作者自己公司的框架,也可以直接请教。SmartAndroid 强劲的框架功能俱全。andBase 出来早各个方面算是完整的吧。转自:http://blog.csdn.net/buddyuu/article/details/40503471
元芳啊 2019-12-02 00:55:54 0 浏览量 回答数 0

问题

在 berserkJS 中无缝使用 Wind.js:报错

在 berserkJS 中无缝使用 Wind.js 收拢异步执行流程 一、Wind.js 是怎么实现的异步流程控制。 二、$await 为什么是个函数而不是作为一个简单的语法标记存在? 三、为什么要用 eval 并且还没有封装它? 四、为什...
kun坤 2020-06-07 14:00:40 0 浏览量 回答数 1

问题

Nginx性能为什么如此吊

Nginx性能为什么如此吊,Nginx性能为什么如此吊,Nginx性能为什么如此吊 (重要的事情说三遍)的性能为什么如此吊!!!         最近几年,web架构拥抱解耦的...
小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

应用 AXIS 开始 Web 服务之旅:报错

一. 介绍 本文并不是想介绍Web服务的原理、系统架构等,我们假设您已经了解了关于Web服务的一些基本的概念、原理等知识。本文主要是针对那些已经了解Web服 务概念,但是还没有亲身体会Web服务...
kun坤 2020-06-08 11:01:46 3 浏览量 回答数 1

回答

背景 Kubernetes的优势 Spark on kubernetes相比于on YARN等传统部署方式的优势: 1、统一的资源管理。不论是什么类型的作业都可以在一个统一kubernetes的集群运行。不再需要单独为大数据作业维护一个独立的YARN集群。 2、弹性的集群基础设施。资源层和应用层提供了丰富的弹性策略,我们可以根据应用负载需求选择 ECS 虚拟机、神龙裸金属和 GPU 实例进行扩容,除了kubernetes集群本生具备的强大的扩缩容能力,还可以对接生态,比如virtual kubelet。 3、轻松实现复杂的分布式应用的资源隔离和限制,从YRAN复杂的队列管理和队列分配中解脱。 4、容器化的优势。每个应用都可以通过docker镜像打包自己的依赖,运行在独立的环境,甚至包括Spark的版本,所有的应用之间都是隔离的。 5、大数据上云。目前大数据应用上云常见的方式有两种:1)用ECS自建YARN(不限于YARN)集群;2)购买EMR服务。如今多了一个选择——Kubernetes。既能获得完全的集群级别的掌控,又能从复杂的集群管理、运维中解脱,还能享受云所带来的弹性和成本优势。 Spark自2.3.0开始试验性支持Standalone、on YARN以及on Mesos之外的新的部署方式:Running Spark on Kubernetes ,并在后续的发行版中不断地加强。 后文将是实际的操作,分别让Spark应用在普通的Kubernetes集群、Serverless Kubernetes集群、以及Kubernetes + virtual kubelet等三种场景中部署并运行。 Spark on Kubernetes 准备数据以及Spark应用镜像 参考: 在ECI中访问HDFS的数据 在ECI中访问OSS的数据 创建kubernetes集群 如果已经有阿里云的ACK集群,该步可以忽略。 具体的创建流程参考:创建Kubernetes 托管版集群。 提交作业 为Spark创建一个RBAC的role 创建账号(默认namespace) kubectl create serviceaccount spark 绑定角色 kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=default:spark --namespace=default 直接使用spark-submit提交(不推荐的提交方式) liumihustdeMacBook-Pro:spark-on-k8s liumihust$ ./spark-2.3.0-bin-hadoop2.6/bin/spark-submit --master k8s://121.199.47.XX:6443 --deploy-mode cluster --name WordCount --class com.aliyun.liumi.spark.example.WordCount --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark --conf spark.executor.instances=2 --conf spark.kubernetes.container.image=registry.cn-beijing.aliyuncs.com/liumi/spark:2.4.4-example local:///opt/spark/jars/SparkExampleJava-1.0-SNAPSHOT.jar 参数解释 —master :k8s集群的apiserver,这是决定spark是在k8s集群跑,还是在yarn上跑。 —deploy-mode:driver可以部署在集群的master节点(client)也可以在非master(cluster)节点。 spark.executor.instances: executor的数量 spark.kubernetes.container.image spark打包镜像(包含driver、excutor、应用,也支持单独配置) 提交基本流程 spark-10.png Running Spark on Kubernetes Spark先在k8s集群中创建Spark Driver(pod)。 Driver起来后,调用k8s API创建Executors(pods),Executors才是执行作业的载体。 作业计算结束,Executor Pods会被自动回收,Driver Pod处于Completed状态(终态)。可以供用户查看日志等。 Driver Pod只能被用户手动清理,或者被k8s GC回收。 结果分析 执行过程中的截图如下:spark-5.png 我们30G的数据用2个1C1G的Excutor处理了大约20分钟。 作业运行结束后查看结果: [root@liumi-hdfs ~]# $HADOOP_HOME/bin/hadoop fs -cat /pod/data/A-Game-of-Thrones-Result/* (142400000,the) (78400000,and) (77120000,) (62200000,to) (56690000,of) (56120000,a) (43540000,his) (35160000,was) (30480000,he) (29060000,in) (26640000,had) (26200000,her) (23050000,as) (22210000,with) (20450000,The) (19260000,you) (18300000,I) (17510000,she) (16960000,that) (16450000,He) (16090000,not) (15980000,it) (15080000,at) (14710000,for) (14410000,on) (12660000,but) (12470000,him) (12070000,is) (11240000,from) (10300000,my) (10280000,have) (10010000,were) 至此,已经能在kubernetes集群部署并运行spark作业。 Spark on Serverless Kubernetes Serverless Kubernetes (ASK) 相比于普通的kubernetes集群,比较大的一个优势是,提交作业前无需提前预留任何资源,无需关心集群的扩缩容,所有资源都是随作业提交自动开始申请,作业执行结束后自动释放。作业执行完后就只剩一个SparkApplication和终态的Driver pod(只保留管控数据)。原理图如下图所示:spark-7.png Running Spark on Serverless Kubernetes ASK通过virtual kubelet调度pod到阿里云弹性容器实例。虽然架构上跟ACK有明显的差异,但是两者都是全面兼容kubernetes标准的。所以on ASK跟前面的spark on kubernetes准备阶段的基本是一致的,即HDFS数据准备,spark base镜像的准备、spark应用镜像的准备等。主要就是作业提交方式稍有不同,以及一些额外的基本环境配置。 创建serverless kubernetes集群 创建以及操作集群的详细步骤参考:操作Serverless Kubernetes集群的方式 本文都是拷贝kubeconfig到本地服务器来访问集群。 选择标准serverless集群:eci-spark-4 基本参数: 1、自定义集群名。 2、选择地域、以及可用区。 3、专有网络可以用已有的也可以由容器服务自动创建的。 4、是否公网暴露API server,如有需求建议开启。 5、开启privatezone,必须开启。 6、日志收集,建议开启。eci-spark-5 注: 1、提交之前一定要升级集群的集群的virtual kubelet的版本(新建的集群可以忽略),只有目前最新版的VK才能跑Spark作业。 2、ASK集群依赖privatezone做服务发现,所以集群不需要开启privatezone,创建的时候需要勾选。如果创建的时候没有勾选,需要联系我们帮开启。不然Spark excutor会找不到driver service。 *制作镜像cache 由于后面可能要进行大规模启动,为了提高容器启动速度,提前将Spark应用的镜像缓存到ECI本地,采用k8s标准的CRD的方式,具体的流程参考:使用CRD加速创建Pod 提交: 由于spark submit目前支持的参数非常有限,所以ASK场景中建议不要使用spark submit直接提交,而是直接采用Spark Operator。也是我们推荐的方式。 Spark Operator 就是为了解决在Kubernetes集群部署并维护Spark应用而开发的。 eci-spark-6 Spark Operator几个主要的概念: SparkApplication:标准的k8s CRD,有CRD就有一个Controller 与之对应。Controller负责监听CRD的创建、更新、以及删除等事件,并作出对应的Action。 ScheduledSparkApplication:SparkApplication的升级,支持带有自定义时间调度策略的作业提交,比如cron。 Submission runner:对Controller发起的创建请求提交spark-submit。 Spark pod monitor:监听Spark pods的状态和事件更新并告知Controller。 安装Spark Operator 推荐用 helm 3.0 helm repo add incubator http://storage.googleapis.com/kubernetes-charts-incubator helm install incubator/sparkoperator --namespace default --set operatorImageName=registry.cn-hangzhou.aliyuncs.com/eci_open/spark-operator --set operatorVersion=v1beta2-1.0.1-2.4.4 --generate-name --set enableWebhook=true 注:在Serverless Kubernetes安装时不要使用enableWebhook=true选项 安装完成后可以看到集群多了个spark operator pod。eci-saprk-7 选项说明: 1、—set operatorImageName:指定operator镜像,默认的google的镜像阿里云ECI内拉不下来,可以先拉取到本地然后推到ACR。 2、—set operatorVersion operator:镜像仓库名和版本不要写在一起。 3、—generate-name 可以不用显式设置安装名。 4、—set enableWebhook 默认不会打开,对于需要使用ACK+ECI的用户,会用到nodeSelector、tolerations这些高级特性,Webhook 必须要打开,后面会讲到。Serverless Kubernetes 不要打开。 注: 创建spark operator的时候,一定要确保镜像能拉下来,推荐直接使用eci_open提供的镜像,因为spark operator卸载的时候也是用相同的镜像启动job进行清理,如果镜像拉不下来清理job也会卡主,导致所有的资源都要手动清理,比较麻烦。 申明wordcount SparkApplication: apiVersion: "sparkoperator.k8s.io/v1beta2" kind: SparkApplication metadata: name: wordcount namespace: default spec: type: Java mode: cluster image: "registry.cn-beijing.aliyuncs.com/liumi/spark:2.4.4-example" imagePullPolicy: IfNotPresent mainClass: com.aliyun.liumi.spark.example.WordCount mainApplicationFile: "local:///opt/spark/jars/SparkExampleJava-1.0-SNAPSHOT.jar" sparkVersion: "2.4.4" restartPolicy: type: OnFailure onFailureRetries: 2 onFailureRetryInterval: 5 onSubmissionFailureRetries: 2 onSubmissionFailureRetryInterval: 10 timeToLiveSeconds: 36000 sparkConf: "spark.kubernetes.allocation.batch.size": "10" driver: cores: 2 memory: "4096m" labels: version: 2.4.4 spark-app: spark-wordcount role: driver annotations: k8s.aliyun.com/eci-image-cache: "true" serviceAccount: spark executor: cores: 1 instances: 100 memory: "1024m" labels: version: 2.4.4 role: executor annotations: k8s.aliyun.com/eci-image-cache: "true" 注:大部分的参数都可以直接通过SparkApplication CRD已经支持的参数设置,目前支持的所有参数参考:SparkApplication CRD,此外还支持直接以sparkConf形式的传入。 提交: kubectl create -f wordcount-operator-example.yaml 结果分析 我们是100个1C1G的Excutor并发启动,应用的镜像大小约为 500 MB。 作业执行过程截图:eci-spark-8eci-spark-9 可以看到并发启动的100个pod基本在30s内可以完成全部的启动,其中93%可以在20秒内完成启动。 看下作业执行时间(包括了vk调度100个Excutor pod时间、每个Excutor pod资源准备的时间、以及作业实际执行的时间等): exitCode: 0 finishedAt: '2019-11-16T07:31:59Z' reason: Completed startedAt: '2019-11-16T07:29:01Z' 可以看到总共只花了178S,时间降了一个数量级。 ACK + ECI 在Spark中,Driver和Excutor之间的启动顺序是串行的。尽管ECI展现了出色的并发创建Executor pod的能力,但是ASK这种特殊架构会让Driver和Excutor之间的这种串行体现的比较明显,通常情况下在ECI启动一个Driver pod需要大约20s的时间,然后才是大规模的Excutor pod的启动。对于一些响应要求高的应用,Driver的启动速度可能比Excutor执行作业的耗时更重要。这个时候,我们可以采用ACK+ECI,即传统的Kubernetes集群 + virtual kubelet的方式:eci-spark-9 对于用户来说,只需如下简单的几步就可以将excutor调度到ECI的virtual node。 1、在ACK集群中安装ECI的virtual kubelet。 进入容器服务控制台的应用目录栏,搜索”ack-virtual-node”: eci-spark-10 点击进入,选择要安装的集群。eci-spark-11 必填参数参考: virtualNode: image: repository: registry.cn-hangzhou.aliyuncs.com/acs/virtual-nodes-eci tag: v1.0.0.1-aliyun affinityAdminssion: enabled: true image: repository: registry.cn-hangzhou.aliyuncs.com/ask/virtual-node-affinity-admission-controller tag: latest env: ECI_REGION: "cn-hangzhou" #集群所在的地域 ECI_VPC: vpc-bp187fy2e7l123456 # 集群所在的vpc,和创建集群的时候保持一致即可,可以在集群概览页查看 ECI_VSWITCH: vsw-bp1bqf53ba123456 # 资源所在的交换机,同上 ECI_SECURITY_GROUP: sg-bp12ujq5zp12346 # 资源所在的安全组,同上 ECI_ACCESS_KEY: XXXXX #账号AK ECI_SECRET_KEY: XXXXX #账号SK ALIYUN_CLUSTERID: virtual-kubelet 2、修改应用的yaml 为excutor增加如下参数即可: nodeSelector: type: virtual-kubelet tolerations: - key: virtual-kubelet.io/provider operator: Exists 完整的应用参数如下: apiVersion: "sparkoperator.k8s.io/v1beta2" kind: SparkApplication metadata: name: wordcount namespace: default spec: type: Java mode: cluster image: "registry.cn-beijing.aliyuncs.com/liumi/spark:2.4.4-example" imagePullPolicy: IfNotPresent mainClass: com.aliyun.liumi.spark.example.WordCount mainApplicationFile: "local:///opt/spark/jars/SparkExampleJava-1.0-SNAPSHOT.jar" sparkVersion: "2.4.4" restartPolicy: type: OnFailure onFailureRetries: 2 onFailureRetryInterval: 5 onSubmissionFailureRetries: 2 onSubmissionFailureRetryInterval: 10 timeToLiveSeconds: 36000 sparkConf: "spark.kubernetes.allocation.batch.size": "10" driver: cores: 2 memory: "4096m" labels: version: 2.4.4 spark-app: spark-wordcount role: driver annotations: k8s.aliyun.com/eci-image-cache: "true" serviceAccount: spark executor: cores: 1 instances: 100 memory: "1024m" labels: version: 2.4.4 role: executor annotations: k8s.aliyun.com/eci-image-cache: "true" #nodeName: virtual-kubelet nodeSelector: type: virtual-kubelet tolerations: - key: virtual-kubelet.io/provider operator: Exists 这样就可以将Driver调度到ACK,Excutor调度到ECI上,完美互补。 3、提交 效果如下:eci-spark-12 看下作业执行时间: exitCode: 0 finishedAt: '2019-11-16T07:25:05Z' reason: Completed startedAt: '2019-11-16T07:22:40Z' 总共花了145秒,更重要的是Driver直接在本地起,只花了约2秒的时间就启动了。 附录 Spark Base 镜像: 本样例采用的是谷歌提供的 gcr.io/spark-operator/spark:v2.4.4 ECI已经帮拉取到ACR仓库,各地域地址如下: 公网地址:registry.{对应regionId}.aliyuncs.com/eci_open/spark:2.4.4 vpc网络地址:registry-vpc.{对应regionId}.aliyuncs.com/eci_open/spark:2.4.4 Spark Operator 镜像 本样例采用的是谷歌提供的 gcr.io/spark-operator/spark-operator:v1beta2-1.0.1-2.4.4 ECI已经帮拉取到ACR仓库,各地域地址如下: 公网地址:registry.{对应regionId}.aliyuncs.com/eci_open/spark-operator:v1beta2-1.0.1-2.4.4 vpc网络地址:registry-vpc.{对应regionId}.aliyuncs.com/eci_open/spark-operator:v1beta2-1.0.1-2.4.4
1934890530796658 2020-03-20 18:30:16 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    
石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

回答

转自:阿里云官网 — 知乎 写好代码,阿里专家沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家,相信同样的方法论可以复制到大部分复杂业务场景。 一文教会你如何写复杂业务代码 了解我的人都知道,我一直在致力于应用架构和代码复杂度的治理。 这两天在看零售通商品域的代码。面对零售通如此复杂的业务场景,如何在架构和代码层面进行应对,是一个新课题。针对该命题,我进行了比较细致的思考和研究。结合实际的业务场景,我沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家。 我相信,同样的方法论可以复制到大部分复杂业务场景。 一个复杂业务的处理过程 业务背景 简单的介绍下业务背景,零售通是给线下小店供货的B2B模式,我们希望通过数字化重构传统供应链渠道,提升供应链效率,为新零售助力。阿里在中间是一个平台角色,提供的是Bsbc中的service的功能。 在商品域,运营会操作一个“上架”动作,上架之后,商品就能在零售通上面对小店进行销售了。是零售通业务非常关键的业务操作之一,因此涉及很多的数据校验和关联操作。 针对上架,一个简化的业务流程如下所示: 过程分解 像这么复杂的业务,我想应该没有人会写在一个service方法中吧。一个类解决不了,那就分治吧。 说实话,能想到分而治之的工程师,已经做的不错了,至少比没有分治思维要好很多。我也见过复杂程度相当的业务,连分解都没有,就是一堆方法和类的堆砌。 不过,这里存在一个问题:即很多同学过度的依赖工具或是辅助手段来实现分解。比如在我们的商品域中,类似的分解手段至少有3套以上,有自制的流程引擎,有依赖于数据库配置的流程处理: 本质上来讲,这些辅助手段做的都是一个pipeline的处理流程,没有其它。因此,我建议此处最好保持KISS(Keep It Simple and Stupid),即最好是什么工具都不要用,次之是用一个极简的Pipeline模式,最差是使用像流程引擎这样的重方法。 除非你的应用有极强的流程可视化和编排的诉求,否则我非常不推荐使用流程引擎等工具。第一,它会引入额外的复杂度,特别是那些需要持久化状态的流程引擎;第二,它会割裂代码,导致阅读代码的不顺畅。大胆断言一下,全天下估计80%对流程引擎的使用都是得不偿失的。 回到商品上架的问题,这里问题核心是工具吗?是设计模式带来的代码灵活性吗?显然不是,问题的核心应该是如何分解问题和抽象问题,知道金字塔原理的应该知道,此处,我们可以使用结构化分解将问题解构成一个有层级的金字塔结构: 按照这种分解写的代码,就像一本书,目录和内容清晰明了。以商品上架为例,程序的入口是一个上架命令(OnSaleCommand), 它由三个阶段(Phase)组成。 @Command public class OnSaleNormalItemCmdExe { @Resource private OnSaleContextInitPhase onSaleContextInitPhase; @Resource private OnSaleDataCheckPhase onSaleDataCheckPhase; @Resource private OnSaleProcessPhase onSaleProcessPhase; @Override public Response execute(OnSaleNormalItemCmd cmd) { OnSaleContext onSaleContext = init(cmd); checkData(onSaleContext); process(onSaleContext); return Response.buildSuccess(); } private OnSaleContext init(OnSaleNormalItemCmd cmd) { return onSaleContextInitPhase.init(cmd); } private void checkData(OnSaleContext onSaleContext) { onSaleDataCheckPhase.check(onSaleContext); } private void process(OnSaleContext onSaleContext) { onSaleProcessPhase.process(onSaleContext); } } 每个Phase又可以拆解成多个步骤(Step),以OnSaleProcessPhase为例,它是由一系列Step组成的: @Phase public class OnSaleProcessPhase { @Resource private PublishOfferStep publishOfferStep; @Resource private BackOfferBindStep backOfferBindStep; //省略其它step public void process(OnSaleContext onSaleContext){ SupplierItem supplierItem = onSaleContext.getSupplierItem(); // 生成OfferGroupNo generateOfferGroupNo(supplierItem); // 发布商品 publishOffer(supplierItem); // 前后端库存绑定 backoffer域 bindBackOfferStock(supplierItem); // 同步库存路由 backoffer域 syncStockRoute(supplierItem); // 设置虚拟商品拓展字段 setVirtualProductExtension(supplierItem); // 发货保障打标 offer域 markSendProtection(supplierItem); // 记录变更内容ChangeDetail recordChangeDetail(supplierItem); // 同步供货价到BackOffer syncSupplyPriceToBackOffer(supplierItem); // 如果是组合商品打标,写扩展信息 setCombineProductExtension(supplierItem); // 去售罄标 removeSellOutTag(offerId); // 发送领域事件 fireDomainEvent(supplierItem); // 关闭关联的待办事项 closeIssues(supplierItem); } } 看到了吗,这就是商品上架这个复杂业务的业务流程。需要流程引擎吗?不需要,需要设计模式支撑吗?也不需要。对于这种业务流程的表达,简单朴素的组合方法模式(Composed Method)是再合适不过的了。 因此,在做过程分解的时候,我建议工程师不要把太多精力放在工具上,放在设计模式带来的灵活性上。而是应该多花时间在对问题分析,结构化分解,最后通过合理的抽象,形成合适的阶段(Phase)和步骤(Step)上。 过程分解后的两个问题的确,使用过程分解之后的代码,已经比以前的代码更清晰、更容易维护了。不过,还有两个问题值得我们去关注一下: 1、领域知识被割裂肢解什么叫被肢解? 因为我们到目前为止做的都是过程化拆解,导致没有一个聚合领域知识的地方。每个Use Case的代码只关心自己的处理流程,知识没有沉淀。相同的业务逻辑会在多个Use Case中被重复实现,导致代码重复度高,即使有复用,最多也就是抽取一个util,代码对业务语义的表达能力很弱,从而影响代码的可读性和可理解性。 2、代码的业务表达能力缺失 试想下,在过程式的代码中,所做的事情无外乎就是取数据--做计算--存数据,在这种情况下,要如何通过代码显性化的表达我们的业务呢? 说实话,很难做到,因为我们缺失了模型,以及模型之间的关系。脱离模型的业务表达,是缺少韵律和灵魂的。 举个例子,在上架过程中,有一个校验是检查库存的,其中对于组合品(CombineBackOffer)其库存的处理会和普通品不一样。原来的代码是这么写的: boolean isCombineProduct = supplierItem.getSign().isCombProductQuote(); // supplier.usc warehouse needn't check if (WarehouseTypeEnum.isAliWarehouse(supplierItem.getWarehouseType())) { // quote warehosue check if (CollectionUtil.isEmpty(supplierItem.getWarehouseIdList()) && !isCombineProduct) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } // inventory amount check Long sellableAmount = 0L; if (!isCombineProduct) { sellableAmount = normalBiz.acquireSellableAmount(supplierItem.getBackOfferId(), supplierItem.getWarehouseIdList()); } else { //组套商品 OfferModel backOffer = backOfferQueryService.getBackOffer(supplierItem.getBackOfferId()); if (backOffer != null) { sellableAmount = backOffer.getOffer().getTradeModel().getTradeCondition().getAmountOnSale(); } } if (sellableAmount < 1) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + supplierItem.getId() + "]"); } } 然而,如果我们在系统中引入领域模型之后,其代码会简化为如下: if(backOffer.isCloudWarehouse()){ return; } if (backOffer.isNonInWarehouse()){ throw new BizException("亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } if (backOffer.getStockAmount() < 1){ throw new BizException("亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + backOffer.getSupplierItem().getCspuCode() + "]"); } 有没有发现,使用模型的表达要清晰易懂很多,而且也不需要做关于组合品的判断了,因为我们在系统中引入了更加贴近现实的对象模型(CombineBackOffer继承BackOffer),通过对象的多态可以消除我们代码中的大部分的if-else。 过程分解+对象模型 通过上面的案例,我们可以看到有过程分解要好于没有分解,过程分解+对象模型要好于仅仅是过程分解。对于商品上架这个case,如果采用过程分解+对象模型的方式,最终我们会得到一个如下的系统结构: 写复杂业务的方法论 通过上面案例的讲解,我想说,我已经交代了复杂业务代码要怎么写:即自上而下的结构化分解+自下而上的面向对象分析。 接下来,让我们把上面的案例进行进一步的提炼,形成一个可落地的方法论,从而可以泛化到更多的复杂业务场景。 上下结合 所谓上下结合,是指我们要结合自上而下的过程分解和自下而上的对象建模,螺旋式的构建我们的应用系统。这是一个动态的过程,两个步骤可以交替进行、也可以同时进行。这两个步骤是相辅相成的,上面的分析可以帮助我们更好的理清模型之间的关系,而下面的模型表达可以提升我们代码的复用度和业务语义表达能力。其过程如下图所示: 使用这种上下结合的方式,我们就有可能在面对任何复杂的业务场景,都能写出干净整洁、易维护的代码。 能力下沉 一般来说实践DDD有两个过程: 1. 套概念阶段 了解了一些DDD的概念,然后在代码中“使用”Aggregation Root,Bonded Context,Repository等等这些概念。更进一步,也会使用一定的分层策略。然而这种做法一般对复杂度的治理并没有多大作用。 2. 融会贯通阶段 术语已经不再重要,理解DDD的本质是统一语言、边界划分和面向对象分析的方法。 大体上而言,我大概是在1.7的阶段,因为有一个问题一直在困扰我,就是哪些能力应该放在Domain层,是不是按照传统的做法,将所有的业务都收拢到Domain上,这样做合理吗?说实话,这个问题我一直没有想清楚。 因为在现实业务中,很多的功能都是用例特有的(Use case specific)的,如果“盲目”的使用Domain收拢业务并不见得能带来多大的益处。相反,这种收拢会导致Domain层的膨胀过厚,不够纯粹,反而会影响复用性和表达能力。 鉴于此,我最近的思考是我们应该采用能力下沉的策略。 所谓的能力下沉,是指我们不强求一次就能设计出Domain的能力,也不需要强制要求把所有的业务功能都放到Domain层,而是采用实用主义的态度,即只对那些需要在多个场景中需要被复用的能力进行抽象下沉,而不需要复用的,就暂时放在App层的Use Case里就好了。 注:Use Case是《架构整洁之道》里面的术语,简单理解就是响应一个Request的处理过程 通过实践,我发现这种循序渐进的能力下沉策略,应该是一种更符合实际、更敏捷的方法。因为我们承认模型不是一次性设计出来的,而是迭代演化出来的。 下沉的过程如下图所示,假设两个use case中,我们发现uc1的step3和uc2的step1有类似的功能,我们就可以考虑让其下沉到Domain层,从而增加代码的复用性。 指导下沉有两个关键指标:代码的复用性和内聚性。 复用性是告诉我们When(什么时候该下沉了),即有重复代码的时候。 内聚性是告诉我们How(要下沉到哪里),功能有没有内聚到恰当的实体上,有没有放到合适的层次上(因为Domain层的能力也是有两个层次的,一个是Domain Service这是相对比较粗的粒度,另一个是Domain的Model这个是最细粒度的复用)。 比如,在我们的商品域,经常需要判断一个商品是不是最小单位,是不是中包商品。像这种能力就非常有必要直接挂载在Model上。 public class CSPU { private String code; private String baseCode; //省略其它属性 /** * 单品是否为最小单位。 * */ public boolean isMinimumUnit(){ return StringUtils.equals(code, baseCode); } /** * 针对中包的特殊处理 * */ public boolean isMidPackage(){ return StringUtils.equals(code, midPackageCode); } } 之前,因为老系统中没有领域模型,没有CSPU这个实体。你会发现像判断单品是否为最小单位的逻辑是以StringUtils.equals(code, baseCode)的形式散落在代码的各个角落。这种代码的可理解性是可想而知的,至少我在第一眼看到这个代码的时候,是完全不知道什么意思。 业务技术要怎么做 写到这里,我想顺便回答一下很多业务技术同学的困惑,也是我之前的困惑:即业务技术到底是在做业务,还是做技术?业务技术的技术性体现在哪里? 通过上面的案例,我们可以看到业务所面临的复杂性并不亚于底层技术,要想写好业务代码也不是一件容易的事情。 业务技术和底层技术人员唯一的区别是他们所面临的问题域不一样。业务技术面对的问题域变化更多、面对的人更加庞杂。而底层技术面对的问题域更加稳定、但对技术的要求更加深。比如,如果你需要去开发Pandora,你就要对Classloader有更加深入的了解才行。 但是,不管是业务技术还是底层技术人员,有一些思维和能力都是共通的。比如,分解问题的能力,抽象思维,结构化思维等等。 用我的话说就是:“做不好业务开发的,也做不好技术底层开发,反之亦然。业务开发一点都不简单,只是我们很多人把它做“简单”了因此,如果从变化的角度来看,业务技术的难度一点不逊色于底层技术,其面临的挑战甚至更大。 因此,我想对广大的从事业务技术开发的同学说:沉下心来,夯实自己的基础技术能力、OO能力、建模能力... 不断提升抽象思维、结构化思维、思辨思维... 持续学习精进,写好代码。我们可以在业务技术岗做的很”技术“!。
茶什i 2020-01-10 11:53:44 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板