• 关于

    面向对象的基础概念()

    的搜索结果

回答

什么是java反射机制?我们又为什么要学它?当程序运行时,允许改变程序结构或变量类型,这种语言称为动态语言。我们认为java并不是动态语言,但是它却有一个非常突出的动态相关机制,俗称:反射。IT行业里这么说,没有反射也就没有框架,现有的框架都是以反射为基础。在实际项目开发中,用的最多的是框架,填的最多的是类,反射这一概念就是将框架和类揉在一起的调和剂。所以,反射才是接触项目开发的敲门砖! 一、Class类什么是Class类?在面向对象的世界里,万事万物皆是对象。而在java语言中,static修饰的东西不是对象,但是它属于类。普通的数据类型不是对象,例如:int a = 5;它不是面向对象,但是它有其包装类 Integer 或者分装类来弥补了它。除了以上两种不是面向对象,其余的包括类也有它的面向对象,类是java.lang.Class的实例化对象(注意Class是大写)。也就是说:Class A{}当我创建了A类,那么类A本身就是一个对象,谁的对象?java.lang.Class的实例对象。那么这个对象又该怎么表示呢?我们先看一下下面这段代码: 1234public class Demo(){F f=new F();}class F{}这里的F的实例化对象就可以用f表达出来。同理F类也是一个实例化对象,Class类的实例化对象。我们可以理解为任何一个类都是Class类的实例化对象,这种实例化对象有三种表示方法: 123456789101112131415public class Demo(){F f=new F();//第一种表达方式Class c1=F.class;//这种表达方式同时也告诉了我们任何一个类都有一个隐含的静态成员变量class//第二种表达方式Class c2=f.getClass();//这种表达方式在已知了该类的对象的情况下通过getClass方法获取//第三种表达方式Class c3 = null;try {c3 = Class.forName("com.text.F");//类的全称} catch (ClassNotFoundException e) {e.printStackTrace();}}class F{}以上三种表达方式,c1,c2,c3都表示了F类的类类型,也就是官方解释的Class Type。那么问题来了: 1System.out.println(c1 == c2)? or System.out.println(c1 == c3)?答案是肯定的,返回值为ture。这表明不论c1 or c2 or c3都代表了F类的类类型,也就是说一个类只可能是Class类的一个实例对象。理解了Class的概念,我们也可以通过类的类类型创建该类的对象实例,用c1 or c2 or c3的newInstance()方法: 12345678910111213Public class Demo1{try {Foo foo = (Foo)c1.newInstance();//foo就表示F类的实例化对象foo.print();} catch (InstantiationException e) {e.printStackTrace();} catch (IllegalAccessException e) {e.printStackTrace();}}class F{void print(){}}这里需要注意的是,c1是F类的类类型,创建出来的就是F类的对象。如果a是A类的类类型,那么创建出来的对象也应该与之对应,属于A类的对象。 二、方法的反射Class类有一个最简单的方法,getName(): 1234567891011public class Demo2 {public static void main(String[] args) {Class c1 = int.class;//int 的类类型Class c2 = String.class;//String类的类类型Class c3 = void.class;System.out.println(c1.getName());System.out.println(c2.getName());System.out.println(c2.getSimpleName());System.out.println(c3.getName());}}本的数据类型以及void关键字都是存在类类型的。 案例: 123456789101112131415161718192021222324252627282930313233public class ClassUtil {public static void printClassMethodMessage(Object obj){//要获取类的信息》》首先我们要获取类的类类型Class c = obj.getClass();//我们知道Object类是一切类的父类,所以我们传递的是哪个子类的对象,c就是该子类的类类型。//接下来我们要获取类的名称System.out.println("类的名称是:"+c.getName());/**我们知道,万事万物都是对象,方法也是对象,是谁的对象呢? 在java里面,方法是Method类的对象*一个成员方法就是一个Method的对象,那么Method就封装了对这个成员 *方法的操作*///如果我们要获得所有的方法,可以用getMethods()方法,这个方法获取的是所有的Public的函数,包括父类继承而来的。如果我们要获取所有该类自己声明的方法,就可以用getDeclaredMethods()方法,这个方法是不问访问权限的。Method[] ms = c.getMethods();//c.getDeclaredMethods()//接下来我们拿到这些方法之后干什么?我们就可以获取这些方法的信息,比如方法的名字。//首先我们要循环遍历这些方法for(int i = 0; i < ms.length;i++){//然后可以得到方法的返回值类型的类类型Class returnType = ms[i].getReturnType();//得到方法的返回值类型的名字System.out.print(returnType.getName()+" ");//得到方法的名称System.out.print(ms[i].getName()+"(");//获取参数类型--->得到的是参数列表的类型的类类型Class[] paramTypes = ms[i].getParameterTypes();for (Class class1 : paramTypes) {System.out.print(class1.getName()+",");}System.out.println(")");}}}总结思路:通过方法的反射得到该类的名称步骤:1.获取该类的类类型2.通过类类型获取类的方法(getMethods())3.循环遍历所获取到的方法4.通过这些方法的getReturnType()得到返回值类型的类类型,又通过该类类型得到返回值类型的名字5.getName()得到方法的名称,getParameterTypes()获取这个方法里面的参数类型的类类型。 三、成员变量的反射首先我们需要认识到成员变量也是对象,是java.lang.reflect.Field类的对象,那么也就是说Field类封装了关于成员变量的操作。既然它封装了成员变量,我们又该如何获取这些成员变量呢?它有这么一个方法: 12345public class ClassUtil {public static void printFieldMessage(Object obj){Class c = obj.getClass();//Field[] fs = c.getFields();}这里的getFields()方法获取的所有的public的成员变量的信息。和方法的反射那里public的成员变量,也有一个获取所有自己声明的成员变量的信息:Field[] fs = c.getDeclaredFields(); 我们得到它之后,可以进行遍历(既然封装了Field的信息,那么我们就可以得到Field类型) 12345678for (Field field : fs) {//得到成员变量的类型的类类型Class fieldType = field.getType();String typeName = fieldType.getName();//得到成员变量的名称String fieldName = field.getName();System.out.println(typeName+" "+fieldName);}四、构造函数的反射不论是方法的反射、成员变量的反射、构造函数的反射,我们只需要知道:要想获取类的信息,首先得获取类的类类型。 12345678910111213141516171819202122public static void printConMessage(Object obj){Class c = obj.getClass();/* 首先构造函数也是对象,是java.lang.Constructor类的对象 也就是java.lang. Constructor中封装了构造函数的信息 和前面说到的一样,它也有两个方法: getConstructors()方法获取所有的public的构造函数 getDeclaredConstructors()方法得到所有的自己声明的构造函数*/ //Constructor[] cs = c.getConstructors();Constructor[] cs = c.getDeclaredConstructors();for (Constructor constructor : cs) {//我们知道构造方法是没有返回值类型的,但是我们可以:System.out.print(constructor.getName()+"(");//获取构造函数的参数列表》》得到的是参数列表的类类型Class[] paramTypes = constructor.getParameterTypes();for (Class class1 : paramTypes) {System.out.print(class1.getName()+",");}System.out.println(")");}}五、Class类的动态加载类如何动态加载一个类呢?首先我们需要区分什么是动态加载?什么是静态加载?我们普遍认为编译时刻加载的类是静态加载类,运行时刻加载的类是动态加载类。我们举一个例子: 123456789101112Class A{Public static void main(String[] args){if("B".equal(args[0])){B b=new B();b.start();}if("C".equal(args[0])){C c=new C();C.start();}}}上面这一段代码,当我们在用eclipse或者myeclipse的时候我们并不关心是否能够通过编译,当我们直接在cmd使用javac访问A.java类的时候,就会抛出问题: 1234567891011121314151617A.java:7:错误:找不到符号B b=new B();符号: 类B位置: 类AA.java:7:错误:找不到符号B b=new B();符号: 类B位置: 类AA.java:12:错误:找不到符号C c=new C();符号: 类C位置: 类AA.java:12:错误:找不到符号C c=new C();符号: 类C位置: 类A4个错误或许我们理所当然的认为这样应该是错,类B根本就不存在。但是如果我们多思考一下,就会发现B一定用吗?不一定。C一定用吗?也不一定。那么好,现在我们就让B类存在 12345Class B{Public static void start(){System.out.print("B...satrt");}}现在我们就先 javac B.class,让B类先开始编译。然后在运行javac A.class。结果是: 123456789A.java:12:错误:找不到符号C c=new C();符号: 类C位置: 类AA.java:12:错误:找不到符号C c=new C();符号: 类C位置: 类A2个错误我们再想,这个程序有什么问题。如果你说没有什么问题?C类本来就不存在啊!那么问题来了B类已经存在了,假设我现在就想用B,我们这个程序用得了吗?答案是肯定的,用不了。那用不了的原因是什么?因为我们这个程序是做的类的静态加载,也就是说new创建对象是静态加载类,在编译时刻就需要加载所有的,可能使用到的类。所以不管你用不用这个类。现在B类是存在的,但是我们这个程序仍然用不了,因为会一直报C类有问题,所以B类我也用不了。那么在实际应用当中,我们肯定需要如果B类存在,B类我就能用,当用C类的时候,你再告诉我错了。如果说将来你有100个类,只要其中一个类出现问题,其它99个类你都用不了。所以这并不是我们想要的。我们想要的就是我用那个类就加载那个类,也就是常说的运行时刻加载,动态加载类。如何实现动态加载类呢?我们可以建这么一个类: 1234567891011Class All{Public static void start(){try{Class cl= Class.forName(args[0]);//通过类类型,创建该类的对象cl.newInstance();}catch(Exception e){e.printStackTrace();}}}前面我们在分析Class实例化对象的方式的时候,Class.forName(“类的全称”),它不仅仅表示了类的类类型,还表示了动态加载类。当我们javac All.java的时候,它不会报任何错误,也就是说在编译的时候是没有错误的。只有当我们具体用某个类的时候,那个类不存在,它才会报错。如果加载的类是B类,就需要: 1B bt = (B) cl.newInstance();万一加载的是C类呢,可以改成 1C ct = (C) cl.newInstance();但是如果我想用很多的类或者加载很多的类,该怎么办?我们可以统一一个标准,不论C类还是B类或者其他的类,比如定义一个标准 1Stand s = (Stand) cl.newInstance();只要B类和C类都是这个标准的就行了。 123456789101112131415Class All{Public static void start(){try{Class cl= Class.forName(args[0]);//通过类类型,创建该类的对象Stand s = (Stand) cl.newInstance();s.start();}catch(Exception e){e.printStackTrace();}}}interface Stand {Public void start();}现在如果我想要用B类,我们只需要: 12345Class B implements Stand{Public void start(){System.out.print("B...satrt");}}加载B类,编译运行。 123javac B.javajavac Stand.javajava Stand B结果: 1B...satrt如果以后想用某一个类,不需要重新编译,只需要实现这个标准的接口即可。只需要动态的加载新的东西就行了。这就是动态加载类。

auto_answer 2019-12-02 01:50:24 0 浏览量 回答数 0

回答

《面向对象数据结构(C++版)》全面介绍了面向对象数据结构的基础理论、算法设计方法和具体应用,包括数据结构及算法设计的基本概念、线性表、串、栈和队列、数组和广义表、树和二叉树、图、查找、排序等内容,力求满足计算机及相关专业本科教学的基本要求及培养目标。《面向对象数据结构(C++版)》采用面向对象C++语言描述数据结构和算法,涉及内容全面丰富,重点突出,理论讲述难度适中,算法实践浅显易懂,例题习题丰富。《面向对象数据结构(C++版)》可作为高等院校计算机及相关专业本科及研究生面向对象数据结构课程教材,也可供从事计算机软件开发和工程应用的技术人员参考。

晚来风急 2019-12-02 01:23:23 0 浏览量 回答数 0

回答

我觉得要理解django的class-based-view(以下简称cbv),首先要明白django引入cbv的目的是什么。在django1.3之前,generic view也就是所谓的通用视图,使用的是function-based-view(fbv),亦即基于函数的视图。有人认为fbv比cbv更pythonic,窃以为不然。python的一大重要的特性就是面向对象。而cbv更能体现python的面向对象。cbv是通过class的方式来实现视图方法的。class相对于function,更能利用多态的特定,因此更容易从宏观层面上将项目内的比较通用的功能抽象出来。关于多态,不多解释,有兴趣的同学自己Google。总之可以理解为一个东西具有多种形态(的特性)。cbv的实现原理通过看django的源码就很容易明白,大体就是由url路由到这个cbv之后,通过cbv内部的dispatch方法进行分发,将get请求分发给cbv.get方法处理,将post请求分发给cbv.post方法处理,其他方法类似。怎么利用多态呢?cbv里引入了mixin的概念。Mixin就是写好了的一些基础类,然后通过不同的Mixin组合成为最终想要的类。 所以,理解cbv的基础是,理解Mixin。 我们以1.5为例简单讲解一下Mixin。 在python-path/Lib/site-packages/django/view/generic文件夹下,包含了django自带的几个基于类的通用视图。 base.py: ContextMixin: 提供get_context_data方法,给cbv提供context_data View: cbv的基类,提供视图分发等功能 TemplateResponseMixin: 提供渲染模板等功能 TemplateView(TemplateResponseMixin, ContextMixin, View): 从类的构造上就可以看出,这个类是由TemplateResponseMixin,ContextMixin,View三个类共同继承而来的,所以同时具有这三个类的特定,因此,这个类完整的提供了一个cbv应该具有的所有动作(除了处理数据)。 RedirectView(View): 这是View的一个子类,实现的是重定向的功能。 base中已经提供了构成cbv最最基础的几个Mixin,以及cbv的基类View。 以下django又提供了detail,list,edit,dates四个模块,这四个模块分别用来处理detail数据(比如显示日志的某一篇的明细信息),list(比如显示某user的所有日志列表),edit(比如为用户提供新增日志和修改日志的功能),dates(比如显示2014年10月的日志)。想一下,从数据维度上讲,默认的django cbv提供了按照数据维度处理的两个不同的cbv,分别是detail和list。detail显示一个数据对象,list显示数据列表。 下面先分析detail.py: SimpleObjectMixin(ContextMixin): 这是ContextMixin的一个子类,提供最基础的取回单个对象的功能。 BaseDetailView(SimpleObjectMixin, View): 提供显示单个对象的功能。 SimpleObjectTemplateResponseMixin(TemplateResponseMixin): 这是对TemplateResponseMixin的再次封装,为了实现单个对象的模板显示。 DetailView(SimpleObjectTemplateResponseMixin, BaseDetailView): 这就是完整的detail view了。 从以上类的继承上就可以大致猜出,detail模块中的相关cbv其实是对base中提供的mixin的再度继承。从而实现更精细复杂的功能。 所以剩下几个模块题主完全可以自己分析了。 所以分析完了各个模块提供的功能就完了吗?如果到这里止步,那么还是不了解cbv的好处。上文说过,cbv的一大好处就是多态。因此可以把通用的功能抽象出来做成mixin给其他cbv用。 比如,想实现restful API。最简单的,想实现返回json数据。写一个mixin就好了。 class JSONResponseMixin(object): """JSON mixin""" def render_to_response(self, context): return self.get_json_response(self.convert_context_to_json(context)) def get_json_response(self, content, **httpresponse_kwargs): return HttpResponse(content, content_type='application/json', **httpresponse_kwargs) def convert_context_to_json(self, context): return json.dumps(context) 怎么用呢? class CheckRemindUtilView(JSONResponseMixin, ListView): """ Check if there is reminder need to be reminded. This view should be called every minute. """ def get_queryset(self): start = timezone.now() end = start + datetime.timedelta(minutes=1) return Reminder.objects.filter(next_t__gte=start, next_t__lte=end, is_valid=True) def get(self, request, *args, **kwargs): self.object_list = self.get_queryset() if (self.get_paginate_by(self.object_list) is not None and hasattr(self.object_list, 'exists')): is_empty = not self.object_list.exists() else: is_empty = len(self.object_list) == 0 if is_empty: ret = {'code': 42, 'msg': 'empty'} else: for object_ in self.object_list: code = exec_remind(object_) object_.previous_t = object_.next_t update_reminder(object_) ret = {'code': code, 'msg': 'reminded.'} return self.render_to_response(ret) 再从另一个方向举个栗子。比如需要对日志进行用户过滤,用户私有的日志只能用户自己看到,其他人看不到。那么只需要写一个PrivateObjectMixin,然后其他DetailView,ListView继承这个就好了。 class PrivateObjectMixin(object): ''' Filter private object for request.user ''' def filte_private(self, queryset): ''' Filte private object for authenticated user. ''' ordering = getattr(self, 'ordering', '-date_created') if not hasattr(self, 'request'): return queryset if not hasattr(self.request, 'user'): return queryset if self.request.user.is_authenticated(): queryset = queryset.filter(Q(is_valid=True), Q(is_private=True) & Q(user__id=self.request.user.id) | Q(is_private=False)) else: queryset = queryset.filter(is_valid=True, is_private=False) try: result = queryset.order_by(ordering) except FieldError: # The model doesnot have an `ordering` field. return queryset return result class NoteListView(PrivateObjectMixin, BaseNoteListView): ''' Show note list. ''' def get_queryset(self): ''' Get notes. ''' queryset = Note.objects.all() return self.filte_private(queryset) 上面这两个例子只是简单的应用而已,完全可以借助多态实现更复杂的cbv。 以下是建议部分: 1,建议翻阅django cbv的源码,自己画个图了解cbv的实现原理,继承流程。 2,自己写几个简单的cbv。 “答案来源于网络,供您参考”

牧明 2019-12-02 02:15:02 0 浏览量 回答数 0

问题

如何分清云计算与虚拟化的关系

wyc_luck 2019-12-01 20:19:00 12823 浏览量 回答数 2

回答

转自:阿里云官网 — 知乎 写好代码,阿里专家沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家,相信同样的方法论可以复制到大部分复杂业务场景。 一文教会你如何写复杂业务代码 了解我的人都知道,我一直在致力于应用架构和代码复杂度的治理。 这两天在看零售通商品域的代码。面对零售通如此复杂的业务场景,如何在架构和代码层面进行应对,是一个新课题。针对该命题,我进行了比较细致的思考和研究。结合实际的业务场景,我沉淀了一套“如何写复杂业务代码”的方法论,在此分享给大家。 我相信,同样的方法论可以复制到大部分复杂业务场景。 一个复杂业务的处理过程 业务背景 简单的介绍下业务背景,零售通是给线下小店供货的B2B模式,我们希望通过数字化重构传统供应链渠道,提升供应链效率,为新零售助力。阿里在中间是一个平台角色,提供的是Bsbc中的service的功能。 在商品域,运营会操作一个“上架”动作,上架之后,商品就能在零售通上面对小店进行销售了。是零售通业务非常关键的业务操作之一,因此涉及很多的数据校验和关联操作。 针对上架,一个简化的业务流程如下所示: 过程分解 像这么复杂的业务,我想应该没有人会写在一个service方法中吧。一个类解决不了,那就分治吧。 说实话,能想到分而治之的工程师,已经做的不错了,至少比没有分治思维要好很多。我也见过复杂程度相当的业务,连分解都没有,就是一堆方法和类的堆砌。 不过,这里存在一个问题:即很多同学过度的依赖工具或是辅助手段来实现分解。比如在我们的商品域中,类似的分解手段至少有3套以上,有自制的流程引擎,有依赖于数据库配置的流程处理: 本质上来讲,这些辅助手段做的都是一个pipeline的处理流程,没有其它。因此,我建议此处最好保持KISS(Keep It Simple and Stupid),即最好是什么工具都不要用,次之是用一个极简的Pipeline模式,最差是使用像流程引擎这样的重方法。 除非你的应用有极强的流程可视化和编排的诉求,否则我非常不推荐使用流程引擎等工具。第一,它会引入额外的复杂度,特别是那些需要持久化状态的流程引擎;第二,它会割裂代码,导致阅读代码的不顺畅。大胆断言一下,全天下估计80%对流程引擎的使用都是得不偿失的。 回到商品上架的问题,这里问题核心是工具吗?是设计模式带来的代码灵活性吗?显然不是,问题的核心应该是如何分解问题和抽象问题,知道金字塔原理的应该知道,此处,我们可以使用结构化分解将问题解构成一个有层级的金字塔结构: 按照这种分解写的代码,就像一本书,目录和内容清晰明了。以商品上架为例,程序的入口是一个上架命令(OnSaleCommand), 它由三个阶段(Phase)组成。 @Command public class OnSaleNormalItemCmdExe { @Resource private OnSaleContextInitPhase onSaleContextInitPhase; @Resource private OnSaleDataCheckPhase onSaleDataCheckPhase; @Resource private OnSaleProcessPhase onSaleProcessPhase; @Override public Response execute(OnSaleNormalItemCmd cmd) { OnSaleContext onSaleContext = init(cmd); checkData(onSaleContext); process(onSaleContext); return Response.buildSuccess(); } private OnSaleContext init(OnSaleNormalItemCmd cmd) { return onSaleContextInitPhase.init(cmd); } private void checkData(OnSaleContext onSaleContext) { onSaleDataCheckPhase.check(onSaleContext); } private void process(OnSaleContext onSaleContext) { onSaleProcessPhase.process(onSaleContext); } } 每个Phase又可以拆解成多个步骤(Step),以OnSaleProcessPhase为例,它是由一系列Step组成的: @Phase public class OnSaleProcessPhase { @Resource private PublishOfferStep publishOfferStep; @Resource private BackOfferBindStep backOfferBindStep; //省略其它step public void process(OnSaleContext onSaleContext){ SupplierItem supplierItem = onSaleContext.getSupplierItem(); // 生成OfferGroupNo generateOfferGroupNo(supplierItem); // 发布商品 publishOffer(supplierItem); // 前后端库存绑定 backoffer域 bindBackOfferStock(supplierItem); // 同步库存路由 backoffer域 syncStockRoute(supplierItem); // 设置虚拟商品拓展字段 setVirtualProductExtension(supplierItem); // 发货保障打标 offer域 markSendProtection(supplierItem); // 记录变更内容ChangeDetail recordChangeDetail(supplierItem); // 同步供货价到BackOffer syncSupplyPriceToBackOffer(supplierItem); // 如果是组合商品打标,写扩展信息 setCombineProductExtension(supplierItem); // 去售罄标 removeSellOutTag(offerId); // 发送领域事件 fireDomainEvent(supplierItem); // 关闭关联的待办事项 closeIssues(supplierItem); } } 看到了吗,这就是商品上架这个复杂业务的业务流程。需要流程引擎吗?不需要,需要设计模式支撑吗?也不需要。对于这种业务流程的表达,简单朴素的组合方法模式(Composed Method)是再合适不过的了。 因此,在做过程分解的时候,我建议工程师不要把太多精力放在工具上,放在设计模式带来的灵活性上。而是应该多花时间在对问题分析,结构化分解,最后通过合理的抽象,形成合适的阶段(Phase)和步骤(Step)上。 过程分解后的两个问题的确,使用过程分解之后的代码,已经比以前的代码更清晰、更容易维护了。不过,还有两个问题值得我们去关注一下: 1、领域知识被割裂肢解什么叫被肢解? 因为我们到目前为止做的都是过程化拆解,导致没有一个聚合领域知识的地方。每个Use Case的代码只关心自己的处理流程,知识没有沉淀。相同的业务逻辑会在多个Use Case中被重复实现,导致代码重复度高,即使有复用,最多也就是抽取一个util,代码对业务语义的表达能力很弱,从而影响代码的可读性和可理解性。 2、代码的业务表达能力缺失 试想下,在过程式的代码中,所做的事情无外乎就是取数据--做计算--存数据,在这种情况下,要如何通过代码显性化的表达我们的业务呢? 说实话,很难做到,因为我们缺失了模型,以及模型之间的关系。脱离模型的业务表达,是缺少韵律和灵魂的。 举个例子,在上架过程中,有一个校验是检查库存的,其中对于组合品(CombineBackOffer)其库存的处理会和普通品不一样。原来的代码是这么写的: boolean isCombineProduct = supplierItem.getSign().isCombProductQuote(); // supplier.usc warehouse needn't check if (WarehouseTypeEnum.isAliWarehouse(supplierItem.getWarehouseType())) { // quote warehosue check if (CollectionUtil.isEmpty(supplierItem.getWarehouseIdList()) && !isCombineProduct) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } // inventory amount check Long sellableAmount = 0L; if (!isCombineProduct) { sellableAmount = normalBiz.acquireSellableAmount(supplierItem.getBackOfferId(), supplierItem.getWarehouseIdList()); } else { //组套商品 OfferModel backOffer = backOfferQueryService.getBackOffer(supplierItem.getBackOfferId()); if (backOffer != null) { sellableAmount = backOffer.getOffer().getTradeModel().getTradeCondition().getAmountOnSale(); } } if (sellableAmount < 1) { throw ExceptionFactory.makeFault(ServiceExceptionCode.SYSTEM_ERROR, "亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + supplierItem.getId() + "]"); } } 然而,如果我们在系统中引入领域模型之后,其代码会简化为如下: if(backOffer.isCloudWarehouse()){ return; } if (backOffer.isNonInWarehouse()){ throw new BizException("亲,不能发布Offer,请联系仓配运营人员,建立品仓关系!"); } if (backOffer.getStockAmount() < 1){ throw new BizException("亲,实仓库存必须大于0才能发布,请确认已补货.\r[id:" + backOffer.getSupplierItem().getCspuCode() + "]"); } 有没有发现,使用模型的表达要清晰易懂很多,而且也不需要做关于组合品的判断了,因为我们在系统中引入了更加贴近现实的对象模型(CombineBackOffer继承BackOffer),通过对象的多态可以消除我们代码中的大部分的if-else。 过程分解+对象模型 通过上面的案例,我们可以看到有过程分解要好于没有分解,过程分解+对象模型要好于仅仅是过程分解。对于商品上架这个case,如果采用过程分解+对象模型的方式,最终我们会得到一个如下的系统结构: 写复杂业务的方法论 通过上面案例的讲解,我想说,我已经交代了复杂业务代码要怎么写:即自上而下的结构化分解+自下而上的面向对象分析。 接下来,让我们把上面的案例进行进一步的提炼,形成一个可落地的方法论,从而可以泛化到更多的复杂业务场景。 上下结合 所谓上下结合,是指我们要结合自上而下的过程分解和自下而上的对象建模,螺旋式的构建我们的应用系统。这是一个动态的过程,两个步骤可以交替进行、也可以同时进行。这两个步骤是相辅相成的,上面的分析可以帮助我们更好的理清模型之间的关系,而下面的模型表达可以提升我们代码的复用度和业务语义表达能力。其过程如下图所示: 使用这种上下结合的方式,我们就有可能在面对任何复杂的业务场景,都能写出干净整洁、易维护的代码。 能力下沉 一般来说实践DDD有两个过程: 1. 套概念阶段 了解了一些DDD的概念,然后在代码中“使用”Aggregation Root,Bonded Context,Repository等等这些概念。更进一步,也会使用一定的分层策略。然而这种做法一般对复杂度的治理并没有多大作用。 2. 融会贯通阶段 术语已经不再重要,理解DDD的本质是统一语言、边界划分和面向对象分析的方法。 大体上而言,我大概是在1.7的阶段,因为有一个问题一直在困扰我,就是哪些能力应该放在Domain层,是不是按照传统的做法,将所有的业务都收拢到Domain上,这样做合理吗?说实话,这个问题我一直没有想清楚。 因为在现实业务中,很多的功能都是用例特有的(Use case specific)的,如果“盲目”的使用Domain收拢业务并不见得能带来多大的益处。相反,这种收拢会导致Domain层的膨胀过厚,不够纯粹,反而会影响复用性和表达能力。 鉴于此,我最近的思考是我们应该采用能力下沉的策略。 所谓的能力下沉,是指我们不强求一次就能设计出Domain的能力,也不需要强制要求把所有的业务功能都放到Domain层,而是采用实用主义的态度,即只对那些需要在多个场景中需要被复用的能力进行抽象下沉,而不需要复用的,就暂时放在App层的Use Case里就好了。 注:Use Case是《架构整洁之道》里面的术语,简单理解就是响应一个Request的处理过程 通过实践,我发现这种循序渐进的能力下沉策略,应该是一种更符合实际、更敏捷的方法。因为我们承认模型不是一次性设计出来的,而是迭代演化出来的。 下沉的过程如下图所示,假设两个use case中,我们发现uc1的step3和uc2的step1有类似的功能,我们就可以考虑让其下沉到Domain层,从而增加代码的复用性。 指导下沉有两个关键指标:代码的复用性和内聚性。 复用性是告诉我们When(什么时候该下沉了),即有重复代码的时候。 内聚性是告诉我们How(要下沉到哪里),功能有没有内聚到恰当的实体上,有没有放到合适的层次上(因为Domain层的能力也是有两个层次的,一个是Domain Service这是相对比较粗的粒度,另一个是Domain的Model这个是最细粒度的复用)。 比如,在我们的商品域,经常需要判断一个商品是不是最小单位,是不是中包商品。像这种能力就非常有必要直接挂载在Model上。 public class CSPU { private String code; private String baseCode; //省略其它属性 /** * 单品是否为最小单位。 * */ public boolean isMinimumUnit(){ return StringUtils.equals(code, baseCode); } /** * 针对中包的特殊处理 * */ public boolean isMidPackage(){ return StringUtils.equals(code, midPackageCode); } } 之前,因为老系统中没有领域模型,没有CSPU这个实体。你会发现像判断单品是否为最小单位的逻辑是以StringUtils.equals(code, baseCode)的形式散落在代码的各个角落。这种代码的可理解性是可想而知的,至少我在第一眼看到这个代码的时候,是完全不知道什么意思。 业务技术要怎么做 写到这里,我想顺便回答一下很多业务技术同学的困惑,也是我之前的困惑:即业务技术到底是在做业务,还是做技术?业务技术的技术性体现在哪里? 通过上面的案例,我们可以看到业务所面临的复杂性并不亚于底层技术,要想写好业务代码也不是一件容易的事情。 业务技术和底层技术人员唯一的区别是他们所面临的问题域不一样。业务技术面对的问题域变化更多、面对的人更加庞杂。而底层技术面对的问题域更加稳定、但对技术的要求更加深。比如,如果你需要去开发Pandora,你就要对Classloader有更加深入的了解才行。 但是,不管是业务技术还是底层技术人员,有一些思维和能力都是共通的。比如,分解问题的能力,抽象思维,结构化思维等等。 用我的话说就是:“做不好业务开发的,也做不好技术底层开发,反之亦然。业务开发一点都不简单,只是我们很多人把它做“简单”了因此,如果从变化的角度来看,业务技术的难度一点不逊色于底层技术,其面临的挑战甚至更大。 因此,我想对广大的从事业务技术开发的同学说:沉下心来,夯实自己的基础技术能力、OO能力、建模能力... 不断提升抽象思维、结构化思维、思辨思维... 持续学习精进,写好代码。我们可以在业务技术岗做的很”技术“!。

茶什i 2020-01-10 11:53:44 0 浏览量 回答数 0

问题

【精品问答】110+数据挖掘面试题集合

珍宝珠 2019-12-01 21:56:45 2713 浏览量 回答数 3

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 3129 浏览量 回答数 1

回答

必须是C语言 C++的也勉强。 其它的就不行了 比如java是不被接受的 1、既然会C++了,基本等于掌握了C。 C++已经包含了C的。可以说C++只是在C的基础上增加了对象的概念! 如果果求不用C++,只要使用C++面向对象的编程思想就可以了(也就是C了,什么cin,cout都换成C常用的输入输出就可以了)。 2、计算机专业有:计算机系统结构,计算机软件与理论,计算机应用技术,计算机科学与技术,(专业学位)计算机技术,模式识别与智能系统。 方向是由导师决定的,导师研究什么就学什么。像什么数据挖掘,信息安全,图形图像处理,经济信息处理与仿真,数据库技术及其应用,计算机网络,多媒体信息处理,企业信息化,软件工程,计算智能,信息检索与自然语言处理等很多,在报名的时候可以看到。 还有就是计算机专业研究生毕业,别人不会问是计算机什么方向的,只会在乎做了什么项目,有什么样的经验。在毕业证上也只有专业名称(如计算机应用技术)没有什么方向。

liujae 2019-12-02 01:22:24 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

问题

【精品问答】Java基础测试题答案

游客pklijor6gytpx 2019-12-01 22:02:11 2957 浏览量 回答数 3

问题

Spark,一种快速数据分析替代方案:报错

kun坤 2020-06-06 11:49:13 0 浏览量 回答数 1

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。

剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

问题

10个迷惑新手的Cocoa,Objective-c开发难点和问题? 400 报错

爱吃鱼的程序员 2020-05-31 00:44:29 0 浏览量 回答数 1

回答

Kafka 是一个消息系统,原本开发自 LinkedIn,用作 LinkedIn 的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。现在它已被多家公司作为多种类型的数据管道和消息系统使用。活动流数据是几乎所有站点在对其网站使用情况做报表时都要用到的数据中最常规的部分。活动数据包括页面访问量(Page View)、被查看内容方面的信息以及搜索情况等内容。这种数据通常的处理方式是先把各种活动以日志的形式写入某种文件,然后周期性地对这些文件进行统计分析。运营数据指的是服务器的性能数据(CPU、IO 使用率、请求时间、服务日志等等数据),总的来说,运营数据的统计方法种类繁多。Kafka 专用术语Broker:Kafka 集群包含一个或多个服务器,这种服务器被称为 broker。Topic:每条发布到 Kafka 集群的消息都有一个类别,这个类别被称为 Topic。(物理上不同 Topic 的消息分开存储,逻辑上一个 Topic 的消息虽然保存于一个或多个 broker 上,但用户只需指定消息的 Topic 即可生产或消费数据而不必关心数据存于何处)。Partition:Partition 是物理上的概念,每个 Topic 包含一个或多个 Partition。Producer:负责发布消息到 Kafka broker。Consumer:消息消费者,向 Kafka broker 读取消息的客户端。Consumer Group:每个 Consumer 属于一个特定的 Consumer Group(可为每个 Consumer 指定 group name,若不指定 group name 则属于默认的 group)。Kafka 交互流程Kafka 是一个基于分布式的消息发布-订阅系统,它被设计成快速、可扩展的、持久的。与其他消息发布-订阅系统类似,Kafka 在主题当中保存消息的信息。生产者向主题写入数据,消费者从主题读取数据。由于 Kafka 的特性是支持分布式,同时也是基于分布式的,所以主题也是可以在多个节点上被分区和覆盖的。信息是一个字节数组,程序员可以在这些字节数组中存储任何对象,支持的数据格式包括 String、JSON、Avro。Kafka 通过给每一个消息绑定一个键值的方式来保证生产者可以把所有的消息发送到指定位置。属于某一个消费者群组的消费者订阅了一个主题,通过该订阅消费者可以跨节点地接收所有与该主题相关的消息,每一个消息只会发送给群组中的一个消费者,所有拥有相同键值的消息都会被确保发给这一个消费者。Kafka 设计中将每一个主题分区当作一个具有顺序排列的日志。同处于一个分区中的消息都被设置了一个唯一的偏移量。Kafka 只会保持跟踪未读消息,一旦消息被置为已读状态,Kafka 就不会再去管理它了。Kafka 的生产者负责在消息队列中对生产出来的消息保证一定时间的占有,消费者负责追踪每一个主题 (可以理解为一个日志通道) 的消息并及时获取它们。基于这样的设计,Kafka 可以在消息队列中保存大量的开销很小的数据,并且支持大量的消费者订阅。利用 Apache Kafka 系统架构的设计思路示例:网络游戏假设我们正在开发一个在线网络游戏平台,这个平台需要支持大量的在线用户实时操作,玩家在一个虚拟的世界里通过互相协作的方式一起完成每一个任务。由于游戏当中允许玩家互相交易金币、道具,我们必须确保玩家之间的诚信关系,而为了确保玩家之间的诚信及账户安全,我们需要对玩家的 IP 地址进行追踪,当出现一个长期固定 IP 地址忽然之间出现异动情况,我们要能够预警,同时,如果出现玩家所持有的金币、道具出现重大变更的情况,也要能够及时预警。此外,为了让开发组的数据工程师能够测试新的算法,我们要允许这些玩家数据进入到 Hadoop 集群,即加载这些数据到 Hadoop 集群里面。对于一个实时游戏,我们必须要做到对存储在服务器内存中的数据进行快速处理,这样可以帮助实时地发出预警等各类动作。我们的系统架设拥有多台服务器,内存中的数据包括了每一个在线玩家近 30 次访问的各类记录,包括道具、交易信息等等,并且这些数据跨服务器存储。我们的服务器拥有两个角色:首先是接受用户发起的动作,例如交易请求,其次是实时地处理用户发起的交易并根据交易信息发起必要的预警动作。为了保证快速、实时地处理数据,我们需要在每一台机器的内存中保留历史交易信息,这意味着我们必须在服务器之间传递数据,即使接收用户请求的这台机器没有该用户的交易信息。为了保证角色的松耦合,我们使用 Kafka 在服务器之间传递信息 (数据)。Kafka 特性Kafka 的几个特性非常满足我们的需求:可扩展性、数据分区、低延迟、处理大量不同消费者的能力。这个案例我们可以配置在 Kafka 中为登陆和交易配置同一个主题。由于 Kafka 支持在单一主题内的排序,而不是跨主题的排序,所以我们为了保证用户在交易前使用实际的 IP 地址登陆系统,我们采用了同一个主题来存储登陆信息和交易信息。当用户登陆或者发起交易动作后,负责接收的服务器立即发事件给 Kafka。这里我们采用用户 id 作为消息的主键,具体事件作为值。这保证了同一个用户的所有的交易信息和登陆信息被发送到 Kafka 分区。每一个事件处理服务被当作一个 Kafka 消费者来运行,所有的消费者被配置到了同一个消费者群组,这样每一台服务器从一些 Kafka 分区读取数据,一个分区的所有数据被送到同一个事件处理服务器 (可以与接收服务器不同)。当事件处理服务器从 Kafka 读取了用户交易信息,它可以把该信息加入到保存在本地内存中的历史信息列表里面,这样可以保证事件处理服务器在本地内存中调用用户的历史信息并做出预警,而不需要额外的网络或磁盘开销。图 1. 游戏设计图图 1. 游戏设计图为了多线程处理,我们为每一个事件处理服务器或者每一个核创建了一个分区。Kafka 已经在拥有 1 万个分区的集群里测试过。切换回 Kafka上面的例子听起来有点绕口:首先从游戏服务器发送信息到 Kafka,然后另一台游戏服务器的消费者从主题中读取该信息并处理它。然而,这样的设计解耦了两个角色并且允许我们管理每一个角色的各种功能。此外,这种方式不会增加负载到 Kafka。测试结果显示,即使 3 个结点组成的集群也可以处理每秒接近百万级的任务,平均每个任务从注册到消费耗时 3 毫秒。上面例子当发现一个事件可疑后,发送一个预警标志到一个新的 Kafka 主题,同样的有一个消费者服务会读取它,并将数据存入 Hadoop 集群用于进一步的数据分析。因为 Kafka 不会追踪消息的处理过程及消费者队列,所以它在消耗极小的前提下可以同时处理数千个消费者。Kafka 甚至可以处理批量级别的消费者,例如每小时唤醒一次一批睡眠的消费者来处理所有的信息。Kafka 让数据存入 Hadoop 集群变得非常简单。当拥有多个数据来源和多个数据目的地时,为每一个来源和目的地配对地编写一个单独的数据通道会导致混乱发生。Kafka 帮助 LinkedIn 规范了数据通道格式,并且允许每一个系统获取数据和写入数据各一次,这样极大地减少数据通道的复杂性和操作耗时。LinkedIn 的架构师 Jay Kreps 说:“我最初是在 2008 年完成键值对数据存储方式后开始的,我的项目是尝试运行 Hadoop,将我们的一些处理过程移动到 Hadoop 里面去。我们在这个领域几乎没有经验,花了几个星期尝试把数据导入、导出,另外一些事件花在了尝试各种各样的预测性算法使用上面,然后,我们开始了漫漫长路”。与 Flume 的区别Kafka 与 Flume 很多功能确实是重复的。以下是评估两个系统的一些建议:Kafka 是一个通用型系统。你可以有许多的生产者和消费者分享多个主题。相反地,Flume 被设计成特定用途的工作,特定地向 HDFS 和 HBase 发送出去。Flume 为了更好地为 HDFS 服务而做了特定的优化,并且与 Hadoop 的安全体系整合在了一起。基于这样的结论,Hadoop 开发商 Cloudera 推荐如果数据需要被多个应用程序消费的话,推荐使用 Kafka,如果数据只是面向 Hadoop 的,可以使用 Flume。Flume 拥有许多配置的来源 (sources) 和存储池 (sinks)。然后,Kafka 拥有的是非常小的生产者和消费者环境体系,Kafka 社区并不是非常支持这样。如果你的数据来源已经确定,不需要额外的编码,那你可以使用 Flume 提供的 sources 和 sinks,反之,如果你需要准备自己的生产者和消费者,那你需要使用 Kafka。Flume 可以在拦截器里面实时处理数据。这个特性对于过滤数据非常有用。Kafka 需要一个外部系统帮助处理数据。无论是 Kafka 或是 Flume,两个系统都可以保证不丢失数据。然后,Flume 不会复制事件。相应地,即使我们正在使用一个可以信赖的文件通道,如果 Flume agent 所在的这个节点宕机了,你会失去所有的事件访问能力直到你修复这个受损的节点。使用 Kafka 的管道特性不会有这样的问题。Flume 和 Kafka 可以一起工作的。如果你需要把流式数据从 Kafka 转移到 Hadoop,可以使用 Flume 代理 (agent),将 kafka 当作一个来源 (source),这样可以从 Kafka 读取数据到 Hadoop。你不需要去开发自己的消费者,你可以使用 Flume 与 Hadoop、HBase 相结合的特性,使用 Cloudera Manager 平台监控消费者,并且通过增加过滤器的方式处理数据。结束语综上所述,Kafka 的设计可以帮助我们解决很多架构上的问题。但是想要用好 Kafka 的高性能、低耦合、高可靠性、数据不丢失等特性,我们需要非常了解 Kafka,以及我们自身的应用系统使用场景,并不是任何环境 Kafka 都是最佳选择。

hiekay 2019-12-02 01:42:10 0 浏览量 回答数 0

问题

深入理解Magento – 第六章 – 高级Magento模型 :报错

kun坤 2020-06-14 15:19:25 0 浏览量 回答数 1

问题

深入理解Magento – 第六章 – 高级Magento模型:配置报错 

kun坤 2020-06-02 14:47:07 2 浏览量 回答数 1

问题

深入理解Magento – 第六章 – 高级Magento模型 - Magento报错

montos 2020-06-03 20:30:01 2 浏览量 回答数 1

回答

简介 如果您听说过 Node,或者阅读过一些文章,宣称 Node 是多么多么的棒,那么您可能会想:“Node 究竟是什么东西?”尽管不是针对所有人的,但 Node 可能是某些人的正确选择。 为试图解释什么是 Node.js,本文探究了它能解决的问题,它如何工作,如何运行一个简单应用程序,最后,Node 何时是和何时不是一个好的解决方案。本文不涉及如何编写一个复杂的 Node 应用程序,也不是一份全面的 Node 教程。阅读本文应该有助于您决定是否应该学习 Node,以便将其用于您的业务。 Node 旨在解决什么问题? Node 公开宣称的目标是 “旨在提供一种简单的构建可伸缩网络程序的方法”。当前的服务器程序有什么问题?我们来做个数学题。在 Java™ 和 PHP 这类语言中,每个连接都会生成一个新线程,每个新线程可能需要 2 MB 配套内存。在一个拥有 8 GB RAM 的系统上,理论上最大的并发连接数量是 4,000 个用户。随着您的客户端基础的增长,您希望您的 web 应用程序支持更多用户,这样,您必须添加更多服务器。当然,这会增加业务成本,尤其是服务器成本、运输成本和人工成本。除这些成本上升外,还有一个技术问题:用户可能针对每个请求使用不同的服务器,因此,任何共享资源都必须在所有服务器之间共享。例如,在 Java 中,静态变量和缓存需要在每个服务器上的 JVMs 之间共享。这就是整个 web 应用程序架构中的瓶颈:一个服务器能够处理的并发连接的最大数量。 Node 解决这个问题的方法是:更改连接连接到服务器的方式。每个连接都创建一个进程,该进程不需要配套内存块,而不是为每个连接生成一个新的 OS 线程(并向其分配一些配套内存)。Node 声称它绝不会死锁,因为它根本不允许使用锁,它不会直接阻塞 I/O 调用。Node 还宣称,运行它的服务器能支持数万个并发连接。事实上,Node 通过将整个系统中的瓶颈从最大连接数量更改到单个系统的流量来改变服务器面貌。 现在您有了一个能处理数万条并发连接的程序,那么您能通过 Node 实际构建什么呢?如果您有一个 web 应用程序需要处理这么多连接,那将是一件很 “恐怖” 的事!那是一种 “如果您有这个问题,那么它根本不是问题” 的问题。在回答上面的问题之前,我们先看看 Node 如何工作以及它被设计的如何运行。 Node 肯定不是什么 没错,Node 是一个服务器程序。但是,它肯定不 像 Apache 或 Tomcat。那些服务器是独立服务器产品,可以立即安装并部署应用程序。通过这些产品,您可以在一分钟内启动并运行一个服务器。Node 肯定不是这种产品。Apache 能添加一个 PHP 模块来允许开发人员创建动态 web 页,使用 Tomcat 的程序员能部署 JSPs 来创建动态 web 页。Node 肯定不是这种类型。 在 Node 的早期阶段(当前是 version 0.4.6),它还不是一个 “运行就绪” 的服务器程序,您还不能安装它,向其中放置文件,拥有一个功能齐全的 web 服务器。即使是要实现 web 服务器在安装完成后启动并运行这个基本功能,也还需要做大量工作。 Node 如何工作 Node 本身运行 V8 JavaScript。等等,服务器上的 JavaScript?没错,您没有看错。服务器端 JavaScript 是一个相对较新的概念,这个概念是大约两年前在 developerWorks 上讨论 Aptana Jaxer 产品时提到的(参见 参考资料)。尽管 Jaxer 一直没有真正流行,但这个理念本身并不是遥不可及的 — 为何不能在服务器上使用客户机上使用的编程语言? 什么使 V8?V8 JavaScript 引擎是 Google 用于他们的 Chrome 浏览器的底层 JavaScript 引擎。很少有人考虑 JavaScript 在客户机上实际做了些什么?实际上,JavaScript 引擎负责解释并执行代码。使用 V8,Google 创建了一个以 C++ 编写的超快解释器,该解释器拥有另一个独特特征;您可以下载该引擎并将其嵌入任何 应用程序。它不仅限于在一个浏览器中运行。因此,Node 实际上使用 Google 编写的 V8 JavaScript 引擎并将其重建为在服务器上使用。太完美了!既然已经有一个不错的解决方案可用,为何还要创建一种新语言呢? 事件驱动编程 许多程序员接受的教育使他们认为,面向对象编程是完美的编程设计,而对其他编程方法不屑一顾。Node 使用一个所谓的事件驱动编程模型。 清单 1. 客户端上使用 jQuery 的事件驱动编程 复制代码 代码如下: // jQuery code on the client-side showing how Event-Driven programming works // When a button is pressed, an Event occurs - deal with it // directly right here in an anonymous function, where all the // necessary variables are present and can be referenced directly $("#myButton").click(function(){ if ($("#myTextField").val() != $(this).val()) alert("Field must match button text"); }); 实际上,服务器端和客户端没有任何区别。没错,这没有按钮点击操作,也没有向文本字段键入的操作,但在一个更高的层面上,事件正在 发生。一个连接被建立 — 事件!数据通过连接接收 — 事件!数据通过连接停止 — 事件! 为什么这种设置类型对 Node 很理想?JavaScript 是一种很棒的事件驱动编程语言,因为它允许匿名函数和闭包,更重要的是,任何写过代码的人都熟悉它的语法。事件发生时调用的回调函数可以在捕获事件处编写。这样,代码容易编写和维护,没有复杂的面向对象框架,没有接口,没有在上面架构任何内容的潜能。只需监听事件,编写一个回调函数,然后,事件驱动编程将照管好一切! 示例 Node 应用程序 最后,我们来看一些代码!让我们将讨论过的所有内容综合起来,创建我们的第一个 Node 应用程序。由于我们已经知道,Node 对于处理高流量应用程序很理想,我们就来创建一个非常简单的 web 应用程序 — 一个为实现最大速度而构建的应用程序。下面是 “老板” 交代的关于我们的样例应用程序的具体要求:创建一个随机数字生成器 RESTful API。这个应用程序应该接受一个输入:一个名为 “number” 的参数。然后,应用程序返回一个介于 0 和该参数之间的随机数字,并将生成的数字返回调用者。由于 “老板” 希望它成为一个广泛流行的应用程序,因此它应该能处理 50,000 个并发用户。我们来看看代码: 清单 2. Node 随机数字生成器 复制代码 代码如下: // these modules need to be imported in order to use them. // Node has several modules. They are like any #include // or import statement in other languages var http = require("http"); var url = require("url"); // The most important line in any Node file. This function // does the actual process of creating the server. Technically, // Node tells the underlying operating system that whenever a // connection is made, this particular callback function should be // executed. Since we're creating a web service with REST API, // we want an HTTP server, which requires the http variable // we created in the lines above. // Finally, you can see that the callback method receives a 'request' // and 'response' object automatically. This should be familiar // to any PHP or Java programmer. http.createServer(function(request, response) { // The response needs to handle all the headers, and the return codes // These types of things are handled automatically in server programs // like Apache and Tomcat, but Node requires everything to be done yourself response.writeHead(200, {"Content-Type": "text/plain"}); // Here is some unique-looking code. This is how Node retrives // parameters passed in from client requests. The url module // handles all these functions. The parse function // deconstructs the URL, and places the query key-values in the // query object. We can find the value for the "number" key // by referencing it directly - the beauty of JavaScript. var params = url.parse(request.url, true).query; var input = params.number; // These are the generic JavaScript methods that will create // our random number that gets passed back to the caller var numInput = new Number(input); var numOutput = new Number(Math.random() * numInput).toFixed(0); // Write the random number to response response.write(numOutput); // Node requires us to explicitly end this connection. This is because // Node allows you to keep a connection open and pass data back and forth, // though that advanced topic isn't discussed in this article. response.end(); // When we create the server, we have to explicitly connect the HTTP server to // a port. Standard HTTP port is 80, so we'll connect it to that one. }).listen(80); // Output a String to the console once the server starts up, letting us know everything // starts up correctly console.log("Random Number Generator Running..."); 将上面的代码放到一个名为 “random.js” 的文件中。现在,要启动这个应用程序并运行它(进而创建 HTTP 服务器并监听端口 80 上的连接),只需在您的命令提示中输入以下命令:% node random.js。下面是服务器已经启动并运行时它看起来的样子: 复制代码 代码如下: root@ubuntu:/home/moila/ws/mike# node random.js Random Number Generator Running... 访问应用程序 应用程序已经启动并运行。Node 正在监听任何连接,我们来测试一下。由于我们创建了一个简单的 RESTful API,我们可以使用我们的 web 浏览器来访问这个应用程序。键入以下地址(确保您完成了上面的步骤):localhost/?number=27。 您的浏览器窗口将更改到一个介于 0 到 27 之间的随机数字。单击浏览器上的 “重新载入” 按钮,将得到另一个随机数字。就是这样,这就是您的第一个 Node 应用程序! Node 对什么有好处? 到此为止,应该能够回答 “Node 是什么” 这个问题了,但您可能还不清楚什么时候应该使用它。这是一个需要提出的重要问题,因为 Node 对有一些东西有好处,但相反,对另一些东西而言,目前 Node 可能不是一个好的解决方案。您需要小心决定何时使用 Node,因为在错误的情况下使用它可能会导致一个多余编码的 LOT。 它对什么有好处? 正如您此前所看到的,Node 非常适合以下情况:您预计可能有很高的流量,而在响应客户端之前服务器端逻辑和处理所需不一定是巨大的。Node 表现出众的典型示例包括: 1.RESTful API 提供 RESTful API 的 web 服务接收几个参数,解析它们,组合一个响应,并返回一个响应(通常是较少的文本)给用户。这是适合 Node 的理想情况,因为您可以构建它来处理数万条连接。它还不需要大量逻辑;它只是从一个数据库查找一些值并组合一个响应。由于响应是少量文本,入站请求时少量文本,因此流量不高,一台机器甚至也可以处理最繁忙的公司的 API 需求。 2.Twitter 队列 想像一下像 Twitter 这样的公司,它必须接收 tweets 并将其写入一个数据库。实际上,每秒几乎有数千条 tweets 达到,数据库不可能及时处理高峰时段需要的写入数量。Node 成为这个问题的解决方案的重要一环。如您所见,Node 能处理数万条入站 tweets。它能迅速轻松地将它们写入一个内存排队机制(例如 memcached),另一个单独进程可以从那里将它们写入数据库。Node 在这里的角色是迅速收集 tweet 并将这个信息传递给另一个负责写入的进程。想象一下另一种设计 — 一个常规 PHP 服务器自己试图处理对数据库的写入 — 每个 tweet 将在写入数据库时导致一个短暂的延迟,这是因为数据库调用正在阻塞通道。由于数据库延迟,一台这样设计的机器每秒可能只能处理 2000 条入站 tweets。每秒 100 万条 tweets 需要 500 个服务器。相反,Node 能处理每个连接而不会阻塞通道,从而能捕获尽可能多的 tweets。一个能处理 50,000 条 tweets 的 Node 机器只需要 20 个服务器。 3.映像文件服务器 一个拥有大型分布式网站的公司(比如 Facebook 或 Flickr)可能会决定将所有机器只用于服务映像。Node 将是这个问题的一个不错的解决方案,因为该公司能使用它编写一个简单的文件检索器,然后处理数万条连接。Node 将查找映像文件,返回文件或一个 404 错误,然后什么也不用做。这种设置将允许这类分布式网站减少它们服务映像、.js 和 .css 文件等静态文件所需的服务器数量。 它对什么有坏处? 当然,在某些情况下,Node 并非理想选择。下面是 Node 不擅长的领域: 1.动态创建的页 目前,Node 没有提供一种默认方法来创建动态页。例如,使用 JavaServer Pages (JSP) 技术时,可以创建一个在这样的 JSP 代码段中包含循环的 index.jsp 页。Node 不支持这类动态的、HTML 驱动的页面。同样,Node 不太适合作为 Apache 和 Tomcat 这样的网页服务器。因此,如果您想在 Node 中提供这样一个服务器端解决方案,必须自己编写整个解决方案。PHP 程序员不想在每次部署 web 应用程序时都编写一个针对 Apache 的 PHP 转换器,当目前为止,这正是 Node 要求您做的。 2. 关系数据库重型应用程序 Node 的目的是快速、异步和非阻塞。数据库并不一定分享这些目标。它们是同步和阻塞的,因为读写时对数据库的调用在结果生成之前将一直阻塞通道。因此,一个每个请求都需要大量数据库调用、大量读取、大量写入的 web 应用程序非常不适合 Node,这是因为关系数据库本身就能抵销 Node 的众多优势。(新的 NoSQL 数据库更适合 Node,不过那完全是另一个主题了。) 结束语 问题是 “什么是 Node.js?” 应该已经得到解答。阅读本文之后,您应该能通过几个清晰简洁的句子回答这个问题。如果这样,那么您已经走到了许多编码员和程序员的前面。我和许多人都谈论过 Node,但它们对 Node 究竟是什么一直很迷惑。可以理解,他们具有的是 Apache 的思维方式 — 服务器是一个应用程序,将 HTML 文件放入其中,一切就会正常运转。而 Node 是目的驱动的。它是一个软件程序,使用 JavaScript 来允许程序员轻松快速地创建快速、可伸缩的 web 服务器。Apache 是运行就绪的,而 Node 是编码就绪的。 Node 完成了它提供高度可伸缩服务器的目标。它并不分配一个 “每个连接一个线程” 模型,而是使用一个 “每个连接一个流程” 模型,只创建每个连接需要的内存。它使用 Google 的一个非常快速的 JavaScript 引擎:V8 引擎。它使用一个事件驱动设计来保持代码最小且易于阅读。所有这些因素促成了 Node 的理想目标 — 编写一个高度可伸缩的解决方案变得比较容易。 与理解 Node 是 什么同样重要的是,理解它不是 什么。Node 并不是 Apache 的一个替代品,后者旨在使 PHP web 应用程序更容易伸缩。事实确实如此。在 Node 的这个初始阶段,大量程序员使用它的可能性不大,但在它能发挥作用的场景中,它的表现非常好。 将来应该期望从 Node 得到什么呢?这也许是本文引出的最重要的问题。既然您知道了它现在的作用,您应该会想知道它下一步将做什么。在接下来的一年中,我期待着 Node 提供与现有的第三方支持库更好地集成。现在,许多第三方程序员已经研发了用于 Node 的插件,包括添加文件服务器支持和 MySQL 支持。希望 Node 开始将它们集成到其核心功能中。最后,我还希望 Node 支持某种动态页面模块,这样,您就可以在 HTML 文件中执行在 PHP 和 JSP(也许是一个 NSP,一个 Node 服务器页)中所做的操作。最后,希望有一天会出现一个 “部署就绪” 的 Node 服务器,可以下载和安装,只需将您的 HTML 文件放到其中,就像使用 Apache 或 Tomcat 那样。Node 现在还处于初始阶段,但它发展得很快,可能不久就会出现在您的视野中。 答案来源于网络

养狐狸的猫 2019-12-02 02:17:03 0 浏览量 回答数 0

回答

软件工程(Software Engineering,简称为SE)是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。 在现代社会中,软件应用于多个方面。典型的软件比如有电子邮件,嵌入式系统,人机界面,办公套件,操作系统,编译器,数据库,游戏等。同时,各个行业几乎都有计算机软件的应用,比如工业,农业,银行,航空,政府部门等。这些应用促进了经济和社会的发展,使得人们的工作更加高效,同时提高了生活质量。 软件工程师是对应用软件创造软件的人们的统称,软件工程师按照所处的领域不同可以分为系统分析员,软件设计师,系统架构师,程序员,测试员等等。人们也常常用程序员来泛指各种软件工程师。 软件工程(SoftWare Engineering)的框架可概括为:目标、过程和原则。 (1)软件工程目标:生产具有正确性、可用性以及开销合宜的产品。正确性指软件产品达到预期功能的程度。可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜是指软件开发、运行的整个开销满足用户要求的程度。这些目标的实现不论在理论上还是在实践中均存在很多待解决的问题,它们形成了对过程、过程模型及工程方法选取的约束。 (2)软件工程过程:生产一个最终能满足需求且达到工程目标的软件产品所需要的步骤。软件工程过程主要包括开发过程、运作过程、维护过程。它们覆盖了需求、设计、实现、确认以及维护等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。设计活动一般包括概要设计和详细设计。概要设计建立整个软件系统结构,包括子系统、模块以及相关层次的说明、每一模块的接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。维护活动包括使用过程中的扩充、修改与完善。伴随以上过程,还有管理过程、支持过程、培训过程等。 (3)软件工程的原则是指围绕工程设计、工程支持以及工程管理在软件开发过程中必须遵循的原则。 一、软件工程概述 概念:应需而生 软件工程是一类工程。工程是将理论和知识应用于实践的科学。就软件工程而言,它借鉴了传统工程的原则和方法,以求高效地开发高质量软件。其中应用了计算机科学、数学和管理科学。计算机科学和数学用于构造模型与算法,工程科学用于制定规范、设计范型、评估成本及确定权衡,管理科学用于计划、资源、质量和成本的管理。 软件工程这一概念,主要是针对20世纪60年代“软件危机”而提出的。它首次出现在1968年NATO(北大西洋公约组织)会议上。自这一概念提出以来,围绕软件项目,开展了有关开发模型、方法以及支持工具的研究。其主要成果有:提出了瀑布模型,开发了一些结构化程序设计语言(例如PASCAL语言,Ada语言)、结构化方法等。并且围绕项目管理提出了费用估算、文档复审等方法和工具。综观60年代末至80年代初,其主要特征是,前期着重研究系统实现技术,后期开始强调开发管理和软件质量。 70年代初,自“软件工厂”这一概念提出以来,主要围绕软件过程以及软件复用,开展了有关软件生产技术和软件生产管理的研究与实践。其主要成果有:提出了应用广泛的面向对象语言以及相关的面向对象方法,大力开展了计算机辅助软件工程的研究与实践。尤其是近几年来,针对软件复用及软件生产,软件构件技术以及软件质量控制技术、质量保证技术得到了广泛的应用。目前各个软件企业都十分重视资质认证,并想通过这些工作进行企业管理和技术的提升。软件工程所涉及的要素可概括如下: 根据这一框架,可以看出:软件工程涉及了软件工程的目标、软件工程原则和软件工程活动。 目标:我的眼里只有“产品” 软件工程的主要目标是:生产具有正确性、可用性以及开销合宜的产品。正确性意指软件产品达到预期功能的程度。可用性指软件基本结构、实现及文档为用户可用的程度。开销合宜性是指软件开发、运行的整个开销满足用户要求的程度。这些目标的实现不论在理论上还是在实践中均存在很多问题有待解决,它们形成了对过程、过程模型及工程方法选取的约束。 软件工程活动是“生产一个最终满足需求且达到工程目标的软件产品所需要的步骤”。主要包括需求、设计、实现、确认以及支持等活动。需求活动包括问题分析和需求分析。问题分析获取需求定义,又称软件需求规约。需求分析生成功能规约。设计活动一般包括概要设计和详细设计。概要设计建立整个软件体系结构,包括子系统、模块以及相关层次的说明、每一模块接口定义。详细设计产生程序员可用的模块说明,包括每一模块中数据结构说明及加工描述。实现活动把设计结果转换为可执行的程序代码。确认活动贯穿于整个开发过程,实现完成后的确认,保证最终产品满足用户的要求。支持活动包括修改和完善。伴随以上活动,还有管理过程、支持过程、培训过程等。 框架:四项基本原则是基石 软件工程围绕工程设计、工程支持以及工程管理,提出了以下四项基本原则: 第一,选取适宜开发范型。该原则与系统设计有关。在系统设计中,软件需求、硬件需求以及其他因素之间是相互制约、相互影响的,经常需要权衡。因此,必须认识需求定义的易变性,采用适宜的开发范型予以控制,以保证软件产品满足用户的要求。 第二,采用合适的设计方法。在软件设计中,通常要考虑软件的模块化、抽象与信息隐蔽、局部化、一致性以及适应性等特征。合适的设计方法有助于这些特征的实现,以达到软件工程的目标。 第三,提供高质量的工程支持。“工欲善其事,必先利其器”。在软件工程中,软件工具与环境对软件过程的支持颇为重要。软件工程项目的质量与开销直接取决于对软件工程所提供的支撑质量和效用。 第四,重视开发过程的管理。软件工程的管理,直接影响可用资源的有效利用,生产满足目标的软件产品,提高软件组织的生产能力等问题。因此,仅当软件过程得以有效管理时,才能实现有效的软件工程。 这一软件工程框架告诉我们,软件工程的目标是可用性、正确性和合算性;实施一个软件工程要选取适宜的开发范型,要采用合适的设计方法,要提供高质量的工程支撑,要实行开发过程的有效管理;软件工程活动主要包括需求、设计、实现、确认和支持等活动,每一活动可根据特定的软件工程,采用合适的开发范型、设计方法、支持过程以及过程管理。根据软件工程这一框架,软件工程学科的研究内容主要包括:软件开发范型、软件开发方法、软件过程、软件工具、软件开发环境、计算机辅助软件工程(CASE) 及软件经济学等。 作用:高效开发高质量软件 自从软件工程概念提出以来,经过30多年的研究与实践,虽然“软件危机”没得到彻底解决,但在软件开发方法和技术方面已经有了很大的进步。尤其应该指出的是,自80年代中期,美国工业界和政府部门开始认识到,在软件开发中,最关键的问题是软件开发组织不能很好地定义和管理其软件过程,从而使一些好的开发方法和技术都起不到所期望的作用。也就是说,在没有很好定义和管理软件过程的软件开发中,开发组织不可能在好的软件方法和工具中获益。 根据调查,中国的现状几乎和美国10多年前的情况一样,软件开发过程没有明确规定,文档不完整,也不规范,软件项目的成功往往归功于软件开发组的一些杰出个人或小组的努力。这种依赖于个别人员上的成功并不能为全组织的软件生产率和质量的提高奠定有效的基础,只有通过建立全组织的过程改善,采用严格的软件工程方法和管理,并且坚持不懈地付诸实践,才能取得全组织的软件过程能力的不断提高。 这一事实告诉我们,只有坚持软件工程的四条基本原则,既重视软件技术的应用,又重视软件工程的支持和管理,并在实践中贯彻实施,才能高效地开发出高质量的软件。

云篆 2019-12-02 01:21:35 0 浏览量 回答数 0

问题

详解 Spring 3.0 基于 Annotation 的依赖注入实现 配置报错 

kun坤 2020-06-01 09:44:47 3 浏览量 回答数 1

回答

初识 MyBatis MyBatis 是第一个支持自定义 SQL、存储过程和高级映射的类持久框架。MyBatis 消除了大部分 JDBC 的样板代码、手动设置参数以及检索结果。MyBatis 能够支持简单的 XML 和注解配置规则。使 Map 接口和 POJO 类映射到数据库字段和记录。 MyBatis 的特点 那么 MyBatis 具有什么特点呢?或许我们可以从如下几个方面来描述 MyBatis 中的 SQL 语句和主要业务代码分离,我们一般会把 MyBatis 中的 SQL 语句统一放在 XML 配置文件中,便于统一维护。 解除 SQL 与程序代码的耦合,通过提供 DAO 层,将业务逻辑和数据访问逻辑分离,使系统的设计更清晰,更易维护,更易单元测试。SQL 和代码的分离,提高了可维护性。 MyBatis 比较简单和轻量 本身就很小且简单。没有任何第三方依赖,只要通过配置 jar 包,或者如果你使用 Maven 项目的话只需要配置 Maven 以来就可以。易于使用,通过文档和源代码,可以比较完全的掌握它的设计思路和实现。 屏蔽样板代码 MyBatis 回屏蔽原始的 JDBC 样板代码,让你把更多的精力专注于 SQL 的书写和属性-字段映射上。 编写原生 SQL,支持多表关联 MyBatis 最主要的特点就是你可以手动编写 SQL 语句,能够支持多表关联查询。 提供映射标签,支持对象与数据库的 ORM 字段关系映射 ORM 是什么?对象关系映射(Object Relational Mapping,简称ORM) ,是通过使用描述对象和数据库之间映射的元数据,将面向对象语言程序中的对象自动持久化到关系数据库中。本质上就是将数据从一种形式转换到另外一种形式。 提供 XML 标签,支持编写动态 SQL。 你可以使用 MyBatis XML 标签,起到 SQL 模版的效果,减少繁杂的 SQL 语句,便于维护。 MyBatis 整体架构 MyBatis 最上面是接口层,接口层就是开发人员在 Mapper 或者是 Dao 接口中的接口定义,是查询、新增、更新还是删除操作;中间层是数据处理层,主要是配置 Mapper -> XML 层级之间的参数映射,SQL 解析,SQL 执行,结果映射的过程。上述两种流程都由基础支持层来提供功能支撑,基础支持层包括连接管理,事务管理,配置加载,缓存处理等。 接口层 在不与Spring 集成的情况下,使用 MyBatis 执行数据库的操作主要如下: InputStream is = Resources.getResourceAsStream("myBatis-config.xml"); SqlSessionFactoryBuilder builder = new SqlSessionFactoryBuilder(); SqlSessionFactory factory = builder.build(is); sqlSession = factory.openSession(); 其中的SqlSessionFactory,SqlSession是 MyBatis 接口的核心类,尤其是 SqlSession,这个接口是MyBatis 中最重要的接口,这个接口能够让你执行命令,获取映射,管理事务。 数据处理层 配置解析 在 Mybatis 初始化过程中,会加载 mybatis-config.xml 配置文件、映射配置文件以及 Mapper 接口中的注解信息,解析后的配置信息会形成相应的对象并保存到 Configration 对象中。之后,根据该对象创建SqlSessionFactory 对象。待 Mybatis 初始化完成后,可以通过 SqlSessionFactory 创建 SqlSession 对象并开始数据库操作。 SQL 解析与 scripting 模块 Mybatis 实现的动态 SQL 语句,几乎可以编写出所有满足需要的 SQL。 Mybatis 中 scripting 模块会根据用户传入的参数,解析映射文件中定义的动态 SQL 节点,形成数据库能执行的SQL 语句。 SQL 执行 SQL 语句的执行涉及多个组件,包括 MyBatis 的四大核心,它们是: Executor、StatementHandler、ParameterHandler、ResultSetHandler。SQL 的执行过程可以用下面这幅图来表示 MyBatis 层级结构各个组件的介绍(这里只是简单介绍,具体介绍在后面): SqlSession: ,它是 MyBatis 核心 API,主要用来执行命令,获取映射,管理事务。接收开发人员提供 Statement Id 和参数。并返回操作结果。Executor :执行器,是 MyBatis 调度的核心,负责 SQL 语句的生成以及查询缓存的维护。StatementHandler : 封装了JDBC Statement 操作,负责对 JDBC Statement 的操作,如设置参数、将Statement 结果集转换成 List 集合。ParameterHandler : 负责对用户传递的参数转换成 JDBC Statement 所需要的参数。ResultSetHandler : 负责将 JDBC 返回的 ResultSet 结果集对象转换成 List 类型的集合。TypeHandler : 用于 Java 类型和 JDBC 类型之间的转换。MappedStatement : 动态 SQL 的封装SqlSource : 表示从 XML 文件或注释读取的映射语句的内容,它创建将从用户接收的输入参数传递给数据库的 SQL。Configuration: MyBatis 所有的配置信息都维持在 Configuration 对象之中。 基础支持层 反射模块 Mybatis 中的反射模块,对 Java 反射进行了很好的封装,提供了简易的 API,方便上层调用,并且对反射操作进行了一系列的优化,比如,缓存了类的 元数据(MetaClass)和对象的元数据(MetaObject),提高了反射操作的性能。 类型转换模块 Mybatis 的别名机制,能够简化配置文件,该机制是类型转换模块的主要功能之一。类型转换模块的另一个功能是实现 JDBC 类型与 Java 类型的转换。在 SQL 语句绑定参数时,会将数据由 Java 类型转换成 JDBC 类型;在映射结果集时,会将数据由 JDBC 类型转换成 Java 类型。 日志模块 在 Java 中,有很多优秀的日志框架,如 Log4j、Log4j2、slf4j 等。Mybatis 除了提供了详细的日志输出信息,还能够集成多种日志框架,其日志模块的主要功能就是集成第三方日志框架。 资源加载模块 该模块主要封装了类加载器,确定了类加载器的使用顺序,并提供了加载类文件和其它资源文件的功能。 解析器模块 该模块有两个主要功能:一个是封装了 XPath,为 Mybatis 初始化时解析 mybatis-config.xml配置文件以及映射配置文件提供支持;另一个为处理动态 SQL 语句中的占位符提供支持。 数据源模块 Mybatis 自身提供了相应的数据源实现,也提供了与第三方数据源集成的接口。数据源是开发中的常用组件之一,很多开源的数据源都提供了丰富的功能,如连接池、检测连接状态等,选择性能优秀的数据源组件,对于提供ORM 框架以及整个应用的性能都是非常重要的。 事务管理模块 一般地,Mybatis 与 Spring 框架集成,由 Spring 框架管理事务。但 Mybatis 自身对数据库事务进行了抽象,提供了相应的事务接口和简单实现。 缓存模块 Mybatis 中有一级缓存和二级缓存,这两级缓存都依赖于缓存模块中的实现。但是需要注意,这两级缓存与Mybatis 以及整个应用是运行在同一个 JVM 中的,共享同一块内存,如果这两级缓存中的数据量较大,则可能影响系统中其它功能,所以需要缓存大量数据时,优先考虑使用 Redis、Memcache 等缓存产品。 Binding 模块 在调用 SqlSession 相应方法执行数据库操作时,需要制定映射文件中定义的 SQL 节点,如果 SQL 中出现了拼写错误,那就只能在运行时才能发现。为了能尽早发现这种错误,Mybatis 通过 Binding 模块将用户自定义的Mapper 接口与映射文件关联起来,系统可以通过调用自定义 Mapper 接口中的方法执行相应的 SQL 语句完成数据库操作,从而避免上述问题。注意,在开发中,我们只是创建了 Mapper 接口,而并没有编写实现类,这是因为 Mybatis 自动为 Mapper 接口创建了动态代理对象。 MyBatis 核心组件 在认识了 MyBatis 并了解其基础架构之后,下面我们来看一下 MyBatis 的核心组件,就是这些组件实现了从 SQL 语句到映射到 JDBC 再到数据库字段之间的转换,执行 SQL 语句并输出结果集。首先来认识 MyBatis 的第一个核心组件 SqlSessionFactory 对于任何框架而言,在使用该框架之前都要经历过一系列的初始化流程,MyBatis 也不例外。MyBatis 的初始化流程如下 String resource = "org/mybatis/example/mybatis-config.xml"; InputStream inputStream = Resources.getResourceAsStream(resource); SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream); sqlSessionFactory.openSession(); 上述流程中比较重要的一个对象就是SqlSessionFactory,SqlSessionFactory 是 MyBatis 框架中的一个接口,它主要负责的是 MyBatis 框架初始化操作 为开发人员提供SqlSession 对象 SqlSessionFactory 有两个实现类,一个是 SqlSessionManager 类,一个是 DefaultSqlSessionFactory 类 DefaultSqlSessionFactory : SqlSessionFactory 的默认实现类,是真正生产会话的工厂类,这个类的实例的生命周期是全局的,它只会在首次调用时生成一个实例(单例模式),就一直存在直到服务器关闭。 SqlSessionManager : 已被废弃,原因大概是: SqlSessionManager 中需要维护一个自己的线程池,而使用MyBatis 更多的是要与 Spring 进行集成,并不会单独使用,所以维护自己的 ThreadLocal 并没有什么意义,所以 SqlSessionManager 已经不再使用。 ####SqlSessionFactory 的执行流程 下面来对 SqlSessionFactory 的执行流程来做一个分析 首先第一步是 SqlSessionFactory 的创建 SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream); 1 从这行代码入手,首先创建了一个 SqlSessionFactoryBuilder 工厂,这是一个建造者模式的设计思想,由 builder 建造者来创建 SqlSessionFactory 工厂 然后调用 SqlSessionFactoryBuilder 中的 build 方法传递一个InputStream 输入流,Inputstream 输入流中就是你传过来的配置文件 mybatis-config.xml,SqlSessionFactoryBuilder 根据传入的 InputStream 输入流和environment、properties属性创建一个XMLConfigBuilder对象。SqlSessionFactoryBuilder 对象调用XMLConfigBuilder 的parse()方法,流程如下。 XMLConfigBuilder 会解析/configuration标签,configuration 是 MyBatis 中最重要的一个标签,下面流程会介绍 Configuration 标签。 MyBatis 默认使用 XPath 来解析标签,关于 XPath 的使用,参见 https://www.w3school.com.cn/xpath/index.asp 在 parseConfiguration 方法中,会对各个在 /configuration 中的标签进行解析 重要配置 说一下这些标签都是什么意思吧 properties,外部属性,这些属性都是可外部配置且可动态替换的,既可以在典型的 Java 属性文件中配置,亦可通过 properties 元素的子元素来传递。 <properties> <property name="driver" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/test" /> <property name="username" value="root" /> <property name="password" value="root" /> </properties> 一般用来给 environment 标签中的 dataSource 赋值 <environment id="development"> <transactionManager type="JDBC" /> <dataSource type="POOLED"> <property name="driver" value="${driver}" /> <property name="url" value="${url}" /> <property name="username" value="${username}" /> <property name="password" value="${password}" /> </dataSource> </environment> 还可以通过外部属性进行配置,但是我们这篇文章以原理为主,不会介绍太多应用层面的操作。 settings ,MyBatis 中极其重要的配置,它们会改变 MyBatis 的运行时行为。 settings 中配置有很多,具体可以参考 https://mybatis.org/mybatis-3/zh/configuration.html#settings 详细了解。这里介绍几个平常使用过程中比较重要的配置 一般使用如下配置 <settings> <setting name="cacheEnabled" value="true"/> <setting name="lazyLoadingEnabled" value="true"/> </settings> typeAliases,类型别名,类型别名是为 Java 类型设置的一个名字。 它只和 XML 配置有关。 <typeAliases> <typeAlias alias="Blog" type="domain.blog.Blog"/> </typeAliases> 当这样配置时,Blog 可以用在任何使用 domain.blog.Blog 的地方。 typeHandlers,类型处理器,无论是 MyBatis 在预处理语句(PreparedStatement)中设置一个参数时,还是从结果集中取出一个值时, 都会用类型处理器将获取的值以合适的方式转换成 Java 类型。 在 org.apache.ibatis.type 包下有很多已经实现好的 TypeHandler,可以参考如下 你可以重写类型处理器或创建你自己的类型处理器来处理不支持的或非标准的类型。 具体做法为:实现 org.apache.ibatis.type.TypeHandler 接口, 或继承一个很方便的类 org.apache.ibatis.type.BaseTypeHandler, 然后可以选择性地将它映射到一个 JDBC 类型。 objectFactory,对象工厂,MyBatis 每次创建结果对象的新实例时,它都会使用一个对象工厂(ObjectFactory)实例来完成。默认的对象工厂需要做的仅仅是实例化目标类,要么通过默认构造方法,要么在参数映射存在的时候通过参数构造方法来实例化。如果想覆盖对象工厂的默认行为,则可以通过创建自己的对象工厂来实现。 public class ExampleObjectFactory extends DefaultObjectFactory { public Object create(Class type) { return super.create(type); } public Object create(Class type, List constructorArgTypes, List constructorArgs) { return super.create(type, constructorArgTypes, constructorArgs); } public void setProperties(Properties properties) { super.setProperties(properties); } public boolean isCollection(Class type) { return Collection.class.isAssignableFrom(type); } } 然后需要在 XML 中配置此对象工厂 <objectFactory type="org.mybatis.example.ExampleObjectFactory"> <property name="someProperty" value="100"/> </objectFactory> plugins,插件开发,插件开发是 MyBatis 设计人员给开发人员留给自行开发的接口,MyBatis 允许你在已映射语句执行过程中的某一点进行拦截调用。MyBatis 允许使用插件来拦截的方法调用包括:Executor、ParameterHandler、ResultSetHandler、StatementHandler 接口,这几个接口也是 MyBatis 中非常重要的接口,我们下面会详细介绍这几个接口。 environments,MyBatis 环境配置,MyBatis 可以配置成适应多种环境,这种机制有助于将 SQL 映射应用于多种数据库之中。例如,开发、测试和生产环境需要有不同的配置;或者想在具有相同 Schema 的多个生产数据库中 使用相同的 SQL 映射。 这里注意一点,虽然 environments 可以指定多个环境,但是 SqlSessionFactory 只能有一个,为了指定创建哪种环境,只要将它作为可选的参数传递给 SqlSessionFactoryBuilder 即可。 SqlSessionFactory factory = new SqlSessionFactoryBuilder().build(reader, environment); SqlSessionFactory factory = new SqlSessionFactoryBuilder().build(reader, environment, properties); databaseIdProvider ,数据库厂商标示,MyBatis 可以根据不同的数据库厂商执行不同的语句,这种多厂商的支持是基于映射语句中的 databaseId 属性。 <databaseIdProvider type="DB_VENDOR"> <property name="SQL Server" value="sqlserver"/> <property name="DB2" value="db2"/> <property name="Oracle" value="oracle" /> </databaseIdProvider> mappers,映射器,这是告诉 MyBatis 去哪里找到这些 SQL 语句,mappers 映射配置有四种方式 上面的一个个属性都对应着一个解析方法,都是使用 XPath 把标签进行解析,解析完成后返回一个 DefaultSqlSessionFactory 对象,它是 SqlSessionFactory 的默认实现类。这就是 SqlSessionFactoryBuilder 的初始化流程,通过流程我们可以看到,初始化流程就是对一个个 /configuration 标签下子标签的解析过程。 SqlSession 在 MyBatis 初始化流程结束,也就是 SqlSessionFactoryBuilder -> SqlSessionFactory 的获取流程后,我们就可以通过 SqlSessionFactory 对象得到 SqlSession 然后执行 SQL 语句了。具体来看一下这个过程‘ 在 SqlSessionFactory.openSession 过程中我们可以看到,会调用到 DefaultSqlSessionFactory 中的 openSessionFromDataSource 方法,这个方法主要创建了两个与我们分析执行流程重要的对象,一个是 Executor 执行器对象,一个是 SqlSession 对象。执行器我们下面会说,现在来说一下 SqlSession 对象 SqlSession 对象是 MyBatis 中最重要的一个对象,这个接口能够让你执行命令,获取映射,管理事务。SqlSession 中定义了一系列模版方法,让你能够执行简单的 CRUD 操作,也可以通过 getMapper 获取 Mapper 层,执行自定义 SQL 语句,因为 SqlSession 在执行 SQL 语句之前是需要先开启一个会话,涉及到事务操作,所以还会有 commit、 rollback、close 等方法。这也是模版设计模式的一种应用。 MapperProxy MapperProxy 是 Mapper 映射 SQL 语句的关键对象,我们写的 Dao 层或者 Mapper 层都是通过 MapperProxy 来和对应的 SQL 语句进行绑定的。下面我们就来解释一下绑定过程 这就是 MyBatis 的核心绑定流程,我们可以看到 SqlSession 首先调用 getMapper 方法,我们刚才说到 SqlSession 是大哥级别的人物,只定义标准(有一句话是怎么说的来着,一流的企业做标准,二流的企业做品牌,三流的企业做产品)。 SqlSession 不愿意做的事情交给 Configuration 这个手下去做,但是 Configuration 也是有小弟的,它不愿意做的事情直接甩给小弟去做,这个小弟是谁呢?它就是 MapperRegistry,马上就到核心部分了。MapperRegistry 相当于项目经理,项目经理只从大面上把握项目进度,不需要知道手下的小弟是如何工作的,把任务完成了就好。最终真正干活的还是 MapperProxyFactory。看到这段代码 Proxy.newProxyInstance ,你是不是有一种恍然大悟的感觉,如果你没有的话,建议查阅一下动态代理的文章,这里推荐一篇 (https://www.jianshu.com/p/95970b089360) 也就是说,MyBatis 中 Mapper 和 SQL 语句的绑定正是通过动态代理来完成的。 通过动态代理,我们就可以方便的在 Dao 层或者 Mapper 层定义接口,实现自定义的增删改查操作了。那么具体的执行过程是怎么样呢?上面只是绑定过程,别着急,下面就来探讨一下 SQL 语句的执行过程。 MapperProxyFactory 会生成代理对象,这个对象就是 MapperProxy,最终会调用到 mapperMethod.execute 方法,execute 方法比较长,其实逻辑比较简单,就是判断是 插入、更新、删除 还是 查询 语句,其中如果是查询的话,还会判断返回值的类型,我们可以点进去看一下都是怎么设计的。 很多代码其实可以忽略,只看我标出来的重点就好了,我们可以看到,不管你前面经过多少道关卡处理,最终都逃不过 SqlSession 这个老大制定的标准。 我们以 selectList 为例,来看一下下面的执行过程。 这是 DefaultSqlSession 中 selectList 的代码,我们可以看到出现了 executor,这是什么呢?我们下面来解释。 Executor 还记得我们之前的流程中提到了 Executor(执行器) 这个概念吗?我们来回顾一下它第一次出现的位置。 由 Configuration 对象创建了一个 Executor 对象,这个 Executor 是干嘛的呢?下面我们就来认识一下 Executor 的继承结构 每一个 SqlSession 都会拥有一个 Executor 对象,这个对象负责增删改查的具体操作,我们可以简单的将它理解为 JDBC 中 Statement 的封装版。 也可以理解为 SQL 的执行引擎,要干活总得有一个发起人吧,可以把 Executor 理解为发起人的角色。 首先先从 Executor 的继承体系来认识一下 如上图所示,位于继承体系最顶层的是 Executor 执行器,它有两个实现类,分别是BaseExecutor和 CachingExecutor。 BaseExecutor 是一个抽象类,这种通过抽象的实现接口的方式是适配器设计模式之接口适配 的体现,是Executor 的默认实现,实现了大部分 Executor 接口定义的功能,降低了接口实现的难度。BaseExecutor 的子类有三个,分别是 SimpleExecutor、ReuseExecutor 和 BatchExecutor。 SimpleExecutor : 简单执行器,是 MyBatis 中默认使用的执行器,每执行一次 update 或 select,就开启一个Statement 对象,用完就直接关闭 Statement 对象(可以是 Statement 或者是 PreparedStatment 对象) ReuseExecutor : 可重用执行器,这里的重用指的是重复使用 Statement,它会在内部使用一个 Map 把创建的Statement 都缓存起来,每次执行 SQL 命令的时候,都会去判断是否存在基于该 SQL 的 Statement 对象,如果存在 Statement 对象并且对应的 connection 还没有关闭的情况下就继续使用之前的 Statement 对象,并将其缓存起来。因为每一个 SqlSession 都有一个新的 Executor 对象,所以我们缓存在 ReuseExecutor 上的 Statement作用域是同一个 SqlSession。 BatchExecutor : 批处理执行器,用于将多个 SQL 一次性输出到数据库 CachingExecutor: 缓存执行器,先从缓存中查询结果,如果存在就返回之前的结果;如果不存在,再委托给Executor delegate 去数据库中取,delegate 可以是上面任何一个执行器。 Executor 的创建和选择 我们上面提到 Executor 是由 Configuration 创建的,Configuration 会根据执行器的类型创建,如下 这一步就是执行器的创建过程,根据传入的 ExecutorType 类型来判断是哪种执行器,如果不指定 ExecutorType ,默认创建的是简单执行器。它的赋值可以通过两个地方进行赋值: 可以通过 标签来设置当前工程中所有的 SqlSession 对象使用默认的 Executor <settings> <!--取值范围 SIMPLE, REUSE, BATCH --> <setting name="defaultExecutorType" value="SIMPLE"/> </settings> 另外一种直接通过Java对方法赋值的方式 session = factory.openSession(ExecutorType.BATCH); Executor 的具体执行过程 Executor 中的大部分方法的调用链其实是差不多的,下面是深入源码分析执行过程,如果你没有时间或者暂时不想深入研究的话,给你下面的执行流程图作为参考。 我们紧跟着上面的 selectList 继续分析,它会调用到 executor.query 方法。 当有一个查询请求访问的时候,首先会经过 Executor 的实现类 CachingExecutor ,先从缓存中查询 SQL 是否是第一次执行,如果是第一次执行的话,那么就直接执行 SQL 语句,并创建缓存,如果第二次访问相同的 SQL 语句的话,那么就会直接从缓存中提取。 上面这段代码是从 selectList -> 从缓存中 query 的具体过程。可能你看到这里有些觉得类都是什么东西,我想鼓励你一下,把握重点,不用每段代码都看,从找到 SQL 的调用链路,其他代码想看的时候在看,看源码就是很容易发蒙,容易烦躁,但是切记一点,把握重点。 上面代码会判断缓存中是否有这条 SQL 语句的执行结果,如果没有的话,就再重新创建 Executor 执行器执行 SQL 语句,注意, list = doQuery 是真正执行 SQL 语句的过程,这个过程中会创建我们上面提到的三种执行器,这里我们使用的是简单执行器。 到这里,执行器所做的工作就完事了,Executor 会把后续的工作交给 StatementHandler 继续执行。下面我们来认识一下 StatementHandler 上面代码会判断缓存中是否有这条 SQL 语句的执行结果,如果没有的话,就再重新创建 Executor 执行器执行 SQL 语句,注意, list = doQuery 是真正执行 SQL 语句的过程,这个过程中会创建我们上面提到的三种执行器,这里我们使用的是简单执行器。 到这里,执行器所做的工作就完事了,Executor 会把后续的工作交给 StatementHandler 继续执行。下面我们来认识一下 StatementHandler StatementHandler 的继承结构 有没有感觉和 Executor 的继承体系很相似呢?最顶级接口是四大组件对象,分别有两个实现类 BaseStatementHandler 和 RoutingStatementHandler,BaseStatementHandler 有三个实现类, 他们分别是 SimpleStatementHandler、PreparedStatementHandler 和 CallableStatementHandler。 RoutingStatementHandler : RoutingStatementHandler 并没有对 Statement 对象进行使用,只是根据StatementType 来创建一个代理,代理的就是对应Handler的三种实现类。在MyBatis工作时,使用的StatementHandler 接口对象实际上就是 RoutingStatementHandler 对象。 BaseStatementHandler : 是 StatementHandler 接口的另一个实现类,它本身是一个抽象类,用于简化StatementHandler 接口实现的难度,属于适配器设计模式体现,它主要有三个实现类 SimpleStatementHandler: 管理 Statement 对象并向数据库中推送不需要预编译的SQL语句。PreparedStatementHandler: 管理 Statement 对象并向数据中推送需要预编译的SQL语句。CallableStatementHandler:管理 Statement 对象并调用数据库中的存储过程。 StatementHandler 的创建和源码分析 我们继续来分析上面 query 的调用链路,StatementHandler 的创建过程如下 MyBatis 会根据 SQL 语句的类型进行对应 StatementHandler 的创建。我们以预处理 StatementHandler 为例来讲解一下 执行器不仅掌管着 StatementHandler 的创建,还掌管着创建 Statement 对象,设置参数等,在创建完 PreparedStatement 之后,我们需要对参数进行处理了。 如 如果用一副图来表示一下这个执行流程的话我想是这样 这里我们先暂停一下,来认识一下第三个核心组件 ParameterHandler ParameterHandler - ParameterHandler 介绍 ParameterHandler 相比于其他的组件就简单很多了,ParameterHandler 译为参数处理器,负责为 PreparedStatement 的 sql 语句参数动态赋值,这个接口很简单只有两个方法 ParameterHandler 只有一个实现类 DefaultParameterHandler , 它实现了这两个方法。 getParameterObject: 用于读取参数setParameters: 用于对 PreparedStatement 的参数赋值ParameterHandler 的解析过程 上面我们讨论过了 ParameterHandler 的创建过程,下面我们继续上面 parameterSize 流程 这就是具体参数的解析过程了,下面我们来描述一下 下面用一个流程图表示一下 ParameterHandler 的解析过程,以简单执行器为例 我们在完成 ParameterHandler 对 SQL 参数的预处理后,回到 SimpleExecutor 中的 doQuery 方法 上面又引出来了一个重要的组件那就是 ResultSetHandler,下面我们来认识一下这个组件 ResultSetHandler - ResultSetHandler 简介 ResultSetHandler 也是一个非常简单的接口 ResultSetHandler 是一个接口,它只有一个默认的实现类,像是 ParameterHandler 一样,它的默认实现类是DefaultResultSetHandler ResultSetHandler 解析过程 MyBatis 只有一个默认的实现类就是 DefaultResultSetHandler,DefaultResultSetHandler 主要负责处理两件事 处理 Statement 执行后产生的结果集,生成结果列表 处理存储过程执行后的输出参数 按照 Mapper 文件中配置的 ResultType 或 ResultMap 来封装成对应的对象,最后将封装的对象返回即可。 其中涉及的主要对象有: ResultSetWrapper : 结果集的包装器,主要针对结果集进行的一层包装,它的主要属性有 ResultSet : Java JDBC ResultSet 接口表示数据库查询的结果。 有关查询的文本显示了如何将查询结果作为java.sql.ResultSet 返回。 然后迭代此ResultSet以检查结果。 TypeHandlerRegistry: 类型注册器,TypeHandlerRegistry 在初始化的时候会把所有的 Java类型和类型转换器进行注册。 ColumnNames: 字段的名称,也就是查询操作需要返回的字段名称 ClassNames: 字段的类型名称,也就是 ColumnNames 每个字段名称的类型 JdbcTypes: JDBC 的类型,也就是 java.sql.Types 类型 ResultMap: 负责处理更复杂的映射关系 在 DefaultResultSetHandler 中处理完结果映射,并把上述结构返回给调用的客户端,从而执行完成一条完整的SQL语句。 内容转载自:CSDN博主:cxuann 原文链接:https://blog.csdn.net/qq_36894974/article/details/104132876?depth_1-utm_source=distribute.pc_feed.none-task&request_id=&utm_source=distribute.pc_feed.none-task

问问小秘 2020-03-05 15:44:27 0 浏览量 回答数 0

回答

首先,澄清下1楼的说法,这并不是所谓的安卓MVP模式的写法,而是JAVA语法的特性(多态),看来学Android的人JAVA都不怎么好啊,大家好好巩固下JAVA基础吧。 然后,这种写法,主要是为了对外解耦,规范外部调用,让调用者不用关心我的实现,而我自己也可以有多种实现方式。######回复 @菜鸟早起 : 谢谢指导,确实是多态,很久没回顾JAVA了,概念有点混淆######你确定这是继承,而不是多态?######楼主说的对。这是MVP模式里面的一种用法,你可以去看看######就是最近在看MVP不是很肯定我的想法,上这来请教的。谢谢!######楼主没说mvp吧,而且这个和mvp没有关系######楼主的问题本身有问题,应该改成:“一个变量或字段是接口类型的,它的值是一个类的实例,这个类实现了该接口,比如:IUserModel iuser = new UserModel();”,实例跟对象指的是同一个东西,类是创建对象的模板,对象是类的实例,所以创建对象也叫实例化。 所以不是“将UserModel中的接口赋值给iuser”而是将UserModel的实例赋值给iuser。 在Java8引入接口默认方法之前,接口中的方法都是没有实现的,说“方法的实现是在UserModel中”没有问题,但在Java8中就不一定了。######说完了楼主问题中的问题,再来回答一下楼主的问题:“为什么能这样写?”,因为Java作为一个面向对象的语言遵循了“里氏替换原则”,即一个对象可以赋值给它所继承的类或所实现的接口的变量。

kun坤 2020-06-09 09:35:21 0 浏览量 回答数 0

问题

【教程免费下载】C++程序设计教程(第3版)

玄学酱 2019-12-01 22:07:48 1450 浏览量 回答数 2

回答

JavaScript (ECMAScript) :JavaScript 是脚本语言。JavaScript和ECMAScript通常被人用来表达相同的含义,但是JavaScript并不是这么一点含义,它是由ECMAScript 核心. DOM 文档对象模型. BOM 浏览器对象模型 这三部分组成。浏览器会在读取代码时,逐行地执行脚本代码。而对于传统编程来说,会在执行前对所有代码进行编译。 组成部分包括语法,类型,语句,关键字,保留字,操作符,对象。 其中,文档对象模型(DOM , Document Object Model)是针对XML但是经过拓展用于HTML的应用程序编程接口。DOM把整个页面映射为一个多层节点结构,开发人员借助DOM Api对节点进行操作。可以通过浏览器F12进入开发者模式,查看层级关系。当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model)。HTML DOM 模型被构造为对象的树。通过可编程的对象模型,JavaScript 获得了足够的能力来创建动态的 HTML。 功能大致上: · JavaScript 能够改变页面中的所有 HTML 元素 · JavaScript 能够改变页面中的所有 HTML 属性 · JavaScript 能够改变页面中的所有 CSS 样式 · JavaScript 能够对页面中的所有事件做出反应 同时,浏览器对象模型(Browser Object Model)使用BOM控制浏览器显示页面意外的部分。 javaScript脚本加载方式 1 通过在网页中加入标记JavaScript的开始和结束,将JavaScript代码放到之间 2 也可以引入一个外部的JavaScript文件,这个JavaScript文件一般以.js作为扩展名 3 原则上,放在之间。但视情况可以放在网页的任何部分 4 一个页面可以有几个,不同部分的方法和变量,可以共享。 javaScript语句开发 (1)对大小写敏感 (2)自动忽略多余的空格 (3)在文本字符串中使用反斜杠对代码行进行换行 (4)单行注释(//)多行注释(/* */) JavaScript 是一个程序语言。语法规则定义了语言结构。 JavaScript 字面量 在编程语言中,一般固定值称为字面量,如 3.14。 数字(Number)字面量 可以是整数或者是小数,或者是科学计数(e)。 字符串(String)字面量 可以使用单引号或双引号: 数组(Array)字面量 定义一个数组: [40, 100, 1, 5, 25, 10] 对象(Object)字面量 定义一个对象: {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"} 函数(Function)字面量 定义一个函数: function myFunction(a, b) { return a * b;} **JavaScript 变量 ** 在编程语言中,变量用于存储数据值。 JavaScript 使用关键字 var 来定义变量, 使用等号来为变量赋值: var x, length x = 5 length = 6 JavaScript 操作符 JavaScript使用 算术运算符 来计算值: (5 + 6) * 10 JavaScript使用赋值运算符给变量赋值: x = 5 y = 6 z = (x + y) * 10 JavaScript语言有多种类型的运算符: JavaScript 语句 在 HTML 中,JavaScript 语句向浏览器发出的命令。 语句是用分号分隔: x = 5 + 6; y = x * 10; JavaScript 关键字 JavaScript 关键字用于标识要执行的操作。 和其他任何编程语言一样,JavaScript 保留了一些关键字为自己所用。 var 关键字告诉浏览器创建一个新的变量: var x = 5 + 6; var y = x * 10; JavaScript 同样保留了一些关键字,这些关键字在当前的语言版本中并没有使用,但在以后 JavaScript 扩展中会用到。 以下是 JavaScript 中最重要的保留字(按字母顺序): JavaScript 注释 不是所有的 JavaScript 语句都是"命令"。双斜杠 // 后的内容将会被浏览器忽略: // 我不会执行 JavaScript 数据类型 JavaScript 有多种数据类型:数字,字符串,数组,对象等等: var length = 16; // Number 通过数字字面量赋值 var points = x * 10; // Number 通过表达式字面量赋值 var lastName = "Johnson"; // String 通过字符串字面量赋值 var cars = ["Saab", "Volvo", "BMW"]; // Array 通过数组字面量赋值 var person = {firstName:"John", lastName:"Doe"}; // Object 通过对象字面量赋值 数据类型的概念 编程语言中,数据类型是一个非常重要的内容。 为了可以操作变量,了解数据类型的概念非常重要。 如果没有使用数据类型,以下实例将无法执行: 16 + "Volvo" 16 加上 "Volvo" 是如何计算呢? 以上会产生一个错误还是输出以下结果呢? "16Volvo" 你可以在浏览器尝试执行以上代码查看效果。 在接下来的章节中你将学到更多关于数据类型的知识。 JavaScript 函数 JavaScript 语句可以写在函数内,函数可以重复引用: 引用一个函数 = 调用函数(执行函数内的语句)。 function myFunction(a, b) { return a * b; // 返回 a 乘以 b 的结果 } JavaScript 字母大小写 JavaScript 对大小写是敏感的。 当编写 JavaScript 语句时,请留意是否关闭大小写切换键。 函数 getElementById 与 getElementbyID 是不同的。 同样,变量 myVariable 与 MyVariable 也是不同的。 JavaScript 字符集 JavaScript 使用 Unicode 字符集。 Unicode 覆盖了所有的字符,包含标点等字符。 三 推荐学习网站 JS具体的语法内容还有很多,可以参考官方API或者学习网站完成掌握,简单易学,推荐网站 菜鸟教程:https://www.runoob.com/js/js-tutorial.html w3cschool:https://www.w3school.com.cn/js/index.asp 四 推荐学习书籍 引用自 https://www.cnblogs.com/xhqq/p/7561384.html 个人觉得不错的,没事可以翻翻的。书籍如下: 《javascript设计模式》,张容铭写的,可能不太适合零基础的,是非常不错的进阶书籍。 《javascript面向对象编程指南》,风格轻松易懂,比较适合初学者,原型那块儿讲得透彻,12种继承方式呢。 《js权威指南》、《js高级程序设计》,这两本书经典是经典,但是太厚,适合把其中任意一章都当成一本书来读。洋洋洒洒,很难一口气看完。比较适合当做参考书。 《你不知道的javascript》狙击js核心细节,闭包、原型、this讲得都还清楚。 《js设计模式与开发实践》js设计模式也是要学的,此书把js的设计模式讲得非常清晰,一点不晦涩,看起来没多少难度。 《正则指引》,分析源码时,如果正则表达式不懂,没法进行下去的。此书相对来说讲得比较清晰。 《基于MVC的JavaScript Web富应用开发》,看完后,基本能写出自己的mvc框架了。是本好书。 《javascript函数式编程》,js是一门函数式语言,此书是函数式编程一个入门,函数是一等公民那是非常重要的。 《js忍者秘籍》,jq作者写的,没有传说中的那么难读,话说就算你看完并理解所有知识点,也不会达到世界高手级别的。因为你还没有做到随心所欲。 《javascript框架设计》,如果初看此书,会觉得此书有罗列代码之嫌。在我看来,此书讲究的是框架的全局观。以上书籍是我认为是成就高手之路上必须看的,也需要反复看。 css相关的书籍,说实话我看得比较少,总共有六七本吧。有两本必须推荐一下: 《css权威指南》,css基础知识点那是讲得非常清楚的。什么层叠优先级、line-height啥的。不是随便一本书都敢叫“权威指南”的。 《css揭秘》,此书我也是不断的看,此书才不屑于全面讲css3各属性呢。css规范文档能讲的,它只会讲你最不在意的。此书解决的47问题,解决思路和解决方案同等重要,很有启发性。以上各书你都可以不买,至少买本此书吧

问问小秘 2020-03-03 09:32:57 0 浏览量 回答数 0

回答

首先,我们先来聊聊各类数据模型。下列相关信息参考自Emil Eifrem的博文及NoSQL数据库说明。文档类数据库传承:受Lotus Notes启发而来。数据模型:文档汇总,包括键-值汇总。实例: CouchDB, MongoDB优势: 数据建模自然、程序员易于上手、开发流程短、兼容网页模式、便于达成CRUD(即添加、查询、更新及删除的简称)。图形类数据库传承:来自 Euler 及图形理论。数据模型:节点及关系,二者结合能够保持键-值间的成对状态实例: AllegroGraph, InfoGrid, Neo4j优势:轻松玩转复杂的图形问题、处理速度快关系类数据库传承:源自 E. F. Codd在大型共享数据库中所提出的数据关系模型理论数据模型:以关系组为基础实例: VoltDB, Clustrix, MySQL优势:性能强大、联机事务处理系统扩展性好、支持SQL访问、视图直观、擅长处理交易关系、与程序员间的交互效果优异面向对象类数据库传承:源自图形数据库方面的研究成果数据模型: 对象实例: Objectivity, Gemstone优势:擅长处理复杂的对象模型、快速的键-值访问及键-功能访问并且兼具图形数据库的各类功能键-值存储传承: Amazon Dynamo中的paper概念及分布式hash表数据模型:对成对键-值的全局化汇总实例: Membase, Riak优势:尺寸掌控得当、擅长处理持续的小规模读写需求、速度快、程序员易于上手BigTable Clones传承自:谷歌BigTable中的paper概念数据模型:纵列群,即在某个表格模型中,每行在理论上至少可以有一套单独的纵列配置实例: HBase, Hypertable, Cassandra优势:尺寸掌控得当、擅长应对大规模写入负载、可用性高、支持多数据中心、支持映射简化数据结构类服务传承: 不明实例: Redis数据模型: 执行过程基于索引、列表、集合及字符串值优势:为数据库应用引入前所未有的新鲜血液网格类数据库传承:源自数据网格及元组空间研究数据模型:基于空间的构架实例: GigaSpaces, Coherence优势:优良的性能表现及上佳的交易处理扩展性我们该为自己的应用程序选择哪套方案?选择的关键在于重新思考我们的应用程序如何依据不同数据模型及不同产品进行有针对性的协同工作。即用正确的数据模型处理对应的现实任务、用正确的产品解决对应的现实问题。要探究哪类数据模型能够切实为我们的应用程序提供帮助,可以参考“到底NoSQL能在我们的工作中发挥什么作用?”一文。在这篇文章中,我试着将各种不同特性、不同功能的常用创建系统中的那些非常规的应用实例综合起来。将应用实例中的客观需求与我们的选择联系起来。这样大家就能够逆向分析出我们的基础架构中适合引入哪些产品。至于具体结论是NoSQL还是SQL,这已经不重要了。关注数据模型、产品特性以及自身需要。产品总是将各种不同的功能集中起来,因此我们很难单纯从某一类数据模型构成方式的角度直接找到最合用的那款。对功能及特性的需求存在优先级,只要对这种优先级具备较为清晰的了解,我们就能够做出最佳选择。如果我们的应用程序需要…复杂的交易:因为没人愿意承受数据丢失,或者大家更倾向于一套简单易用的交易编程模式,那么请考虑使用关系类或网格类数据库。例如:一套库存系统可能需要完整的ACID(即数据库事务执行四要素:原子性、一致性、隔离性及持久性)。顾客选中了一件产品却被告知没有库存了,这类情况显然容易引起麻烦。因为大多数时候,我们想要的并不是额外补偿、而只是选中的那件货品。若是以扩展性为优先,那么NoSQL或SQL都能应对自如。这种情况下我们需要关注那些支持向外扩展、分类处理、实时添加及移除设备、负载平衡、自动分类及整理并且容错率较高的系统。要求持续保有数据库写入功能,则需要较高的可用性。在这种情况下不妨关注BigTable类产品,其在一致性方面表现出众。如有大量的小规模持续读写要求,也就是说工作负载处于波动状态,可以关注文档类、键-值类或是那些提供快速内存访问功能的数据库。引入固态硬盘作为存储媒介也是不错的选择。以社交网络为实施重点的话,我们首先想到的就是图形类数据库;其次则是Riak这种关系类数据库。具备简单SQL功能的常驻内存式关系数据库基本上就可以满足小型数据集合的需求。Redis的集合及列表操作也能发挥作用。如果我们的应用程序需要…在访问模式及数据类型多种多样的情况下,文档类数据库比较值得考虑。这类数据库不仅灵活性好,性能表现也可圈可点。需要完备的脱机报告与大型数据集的话,首选产品是Hadoop,其次则是支持映射简化的其它产品。不过仅仅支持映射简化还不足以提供如Hadoop一样上佳的处理能力。如果业务跨越数个数据中心,Bigtable Clone及其它提供分布式选项的产品能够应对由地域距离引起的延迟现象,并具备较好的分区兼容性。要建立CRUD应用程序,首选文档类数据库。这类产品简化了从外部访问复杂数据的过程。需要内置搜索功能的话,推荐Riak。要对数据结构中的诸如列表、集合、队列及发布/订阅信息进行操作,Redis是不二之选。其具备的分布式锁定、覆盖式日志及其它各种功能都会在这类应用状态下大放异彩。将数据以便于处理的形式反馈给程序员(例如以JSON、HTTP、REST、Javascript这类形式),文档类数据库能够满足这类诉求,键-值类数据库效果次之。如果我们的应用程序需要…以直观视图的形式进行同步交易,并且具备实时数据反馈功能,VoltDB算得上一把好手。其数据汇总以及时间窗口化的表现都非常抢眼。若是需要企业级的支持及服务水平协议,我们需要着眼于特殊市场。Membase就是这样一个例子。要记录持续的数据流,却找不到必要的一致性保障?BigTable Clone交出了令人满意的答卷,因为其工作基于分布式文件系统,所以可以应对大量的写入操作。要让操作过程变得尽可能简单,答案一定在托管或平台即服务类方案之中。它们存在的目的正是处理这类要求。要向企业级客户做出推荐?不妨考虑关系类数据库,因为它们的长项就是具备解决繁杂关系问题的技术。如果需要利用动态方式建立对象之间的关系以使其具有动态特性,图形类数据库能帮上大忙。这类产品往往不需要特定的模式及模型,因此可以通过编程逐步建立。S3这类存储服务则是为支持大型媒体信息而生。相比之下NoSQL系统则往往无法处理大型二进制数据块,尽管MongoDB本身具备文件服务功能。如果我们的应用程序需要…有高效批量上传大量数据的需求?我们还是得找点有对应功能的产品。大多数产品都无法胜任,因为它们不支持批量操作。文档类数据库或是键-值类数据库能够利用流畅的模式化系统提供便捷的上传途径,因为这两类产品不仅支持可选区域、添加区域及删除区域,而且无需建立完整的模式迁移框架。要实现完整性限制,就得选择一款支持SQL DLL的产品,并在存储过程或是应用程序代码中加以运行。对于协同工作极为依赖的时候就要选择图形类数据库,因为这类产品支持在不同实体间的迅速切换。数据的移动距离较短且不必经过网络时,可以在预存程序中做出选择。预存程序在关系类、网格类、文档类甚至是键-值类数据库中都能找到。如果我们的应用程序需要…键-值存储体系擅长处理BLOB类数据的缓存及存储问题。缓存可以用于应对网页或复杂对象的存储,这种方案能够降低延迟、并且比起使用关系类数据库来说成本也较低。对于数据安全及工作状态要求较高的话可以尝试使用定制产品,并且在普遍的工作范畴(例如向上扩展、调整、分布式缓存、分区及反规范化等等)之外一定要为扩展性(或其它方面)准备解决方案。多样化的数据类型意味着我们的数据不能简单用表格来管理或是用纵列来划分,其复杂的结构及用户组成(也可能还有其它各种因素)只有文档类、键-值类以及Bigtable Clone这些数据库才能应付。上述各类数据库都具备极为灵活的数据类型处理能力。有时其它业务部门会需要进行快速关系查询,引入这种查询方式可以使我们不必为了偶尔的查看而重建一切信息。任何支持SQL的数据库都能实现这类查询。至于在云平台上运行并自动充分利用云平台的功能——这种美好的愿望目前还只能是愿望。如果我们的应用程序需要…支持辅助索引,以便通过不同的关键词查找数据,这要由关系类数据库及Cassandra推出的新辅助索引系统共同支持才能实现。创建一套处于不断增长中的数据集合(真正天文数量级的数据)然而访问量却并不大,那么Bigtable Clone是最佳选择,因为它会将数据妥善安排在分布式文件系统当中。需要整合其它类型的服务并确保数据库提供延后写入同步功能?那最好的实现方式是捕捉数据库的各种变化并将其反馈到其它系统中以保障运作的一致性。通过容错性检查了解系统对供电中断、隔离及其它故障情况的适应程度。若是当前的某项技术尚无人问津、自己却感觉大有潜力可挖,不妨在这条路上坚持走下去。这种情况有时会带来意料之外的美好前景。尝试在移动平台上工作并关注CouchDB及移动版couchbase。哪种方案更好?25%的状态改善尚不足以让我们下决心选择NoSQL。选择标准是否恰当取决于实际情况。这类标准对你的方案有指导意义吗?如果你的公司尚处于起步阶段,并且需要尽快推出自己的产品,这时不要再犹豫不决了。无论是SQL还是NoSQL都可以作为参考。

a123456678 2019-12-02 03:00:14 0 浏览量 回答数 0

回答

计算机科学与技术专业课程 课程简介 1.数字逻辑电路: “数字逻辑”是计算机专业本科生的一门主要课程,具有自身的理论体系和很强的实践性。它是计算机组成原理的主要先导课程之一,是计算机应用专业关于计算机系统结构方面的主干课程之一。 课程的主要目的是使学生了解和掌握从对数字系统提出要求开始,一直到用集成电路实现所需逻辑功能为止的整个过程的完整知识。内容有数制和编码、布尔代数和逻辑函数、组合逻辑电路的分析和设计,时序逻辑电路的分析和设计,中、大规模集成电路的应用。通过对该课程的学习,可以为计算机组成原理、微型计算机技术、计算机系统结构等课程打下坚实的基础。 2.计算机组成原理: 本课程是计算机系本科生的一门重要专业基础课。在各门硬件课程中占有举足轻重的地位。它的先修课程是《数字逻辑电路》,后继课程有《微机接口技术》、《计算机系统结构》。从课程地位来说,本课程在先修课和后继课中起着承上启下的作用。主要讲解计算机五大部件的组成及工作原理,逻辑设计与实现方法,整机的互连技术,培养学生具有初步的硬件系统分析、设计、开发和使用的能力。具体内容包括:数制与码制、基本逻辑部件、运算方法与运算器、指令系统与寻址方式,中央处理器(CPU)的工作原理及设计方法。存储系统和输入/输出(I/O)系统等。通过该课程的学习,可以使学生较深地掌握单台计算机的组成及工作原理,进一步加深对先修课程的综合理解及灵活应用,为后继课程的学习建立坚实的基础知识。 3.微机接口技术: 本课程是计算机科学与技术专业学生必修的核心课程之一,它的先修课程为数字逻辑、计算机组成原理。本课程对于训练学生掌握硬件接口设计技术,熟悉微处理器和各种接口芯片的硬件设计和软件调试技术都有重要作用,在软件方面要求掌握汇编语言,在硬件方面要掌握中断、DMA、计数器/定时器等设计技术。通过该课程的学习使学生学会微机接口设计的基本方法和技能。 4.计算机系统结构: 计算机系统结构主要是研究高性能计算机组织与结构的课程。主要包括:计算机系统结构的基本概念、指令的流水处理与向量计算机、高性能微处理器技术、并行处理机结构及算法和多处理机技术。结合现代计算机系统结构的新发展,介绍近几年来计算机系统结构所出现的一些新概念和新技术。 5.数据库概论: 数据库已是计算机系本科生不可缺少的专业基础课,它是计算机应用的重要支柱之一。该课程讲授数据库技术的特点,数据库系统的结构,三种典型数据模型及系统(以关系型系统为主)、数据库规范化理论,数据库的设计与管理,以及数据库技术的新进展等。通过本课程学习,掌握基本概念、理论和方法,学会使用数据库管理系统设计和建立数据库的初步能力,为以后实现一个数据库管理系统及进行系统的理论研究打下基础。 6.算法与数据结构: “数据结构”是计算机程序设计的重要理论技术基础,是计算机科学与技术专业的必修课,是计算机学科其它专业课的先修课程。通过学习本课程使学生掌握数据结构的基本逻辑结构和存储结构及其基本算法的设计方法,并在实际应用中能灵活使用。学会分析研究数据对象的特性,选择合适的逻辑结构、存储结构及设计相应的算法。初步掌握算法的时空分析技巧,同时进行程序设计训练。使学生学会应用抽象数据类型概念进行抽象设计。主要内容有:线性表、链表、栈、队列、数组、广义表、树与二叉树、图、查找、排序、内存管理、文件存储管理。 7.离散数学: “离散数学”是计算机科学与技术专业必修课程,其主要内容包括:命题逻辑;一阶命题逻辑;集合、关系与映射;代数系统、布尔代数 ;图论等。这些内容为学习计算机专业课程,如编译原理、数据结构提供重要的理论工具,同时也是计算机应用不可缺少的理论基础。 离散数学主要培养学生对事物的抽象思维能力和逻辑推理能力,为今后处理离散信息,从事计算机软件的开发和设计,以及计算机的其它实际应用打好数学基础。 8.操作系统: 操作系统是现代计算机系统中不可缺少的重要组成部分。它的先修课程是数据结构和计算机基础,在此基础上讲解操作系统的主要内容:CPU管理、存储器管理、作业管理、I/O设备管理和文件管理。这些基本原理告诉人们作为计算机系统中各种资源的管理者和各种活动的组织者、指挥者,操作系统是如何使整个计算机系统有条不率地高效工作,以及它为用户使用计算机系统提供了哪些便利手段。掌握了这些知识,人们就会对计算机系统的总体框架、工作流程和使用方法有了一个全面的认识,就会清楚后续专业课程所述内容在计算机系统中所处的地位和作用,这样不仅便于理解后续课程内容,而且能使人们把计算机的各部分知识有机地联系起来。此外,由于多处理机系统和计算机网络的盛行,本课程中也包含了对多处理机操作系统和网络操作系统的概述,从而使学习者可以跟上计算机技术的发展速度。 9.数据通信与计算机网: 该课程主要介绍网络基本理论和网络最新实用技术,分基础理论、实用技术和新技术三部分进行讲述。主要讲解计算机网络的功能和组成,数据传输,链路控制,多路复用,差错检测,网络体系结构,网络分层协议及局域网、广域网等。要求学生掌握数据通信的基本原理和计算机网络的体系结构,打下坚实的理论基础,培养实际应用的能力,为今后从事计算机网络的科研和设计工作打下基础。 10.高级语言程序设计: 本课程介绍了C与C++的全集。它从语法入手,同时强调程序设计的基本方法,以使学生能在较短的时间内,掌握C语言的结构化程序设计方法与C++语言的面向对象程序设计方法。主要内容有:1、过程初步;2、过程组织和管理;3、C++的数据类型;4、类与对象;5、继承;6、I/O流。 11.软件工程: 软件工程课程是计算机专业的一门主要专业课程,是培养高水平软件研制和开发人员的一门重程。该课程主要介绍软件工程的概念、原理及典型的方法技术,进述软件生存周期各阶段的任务、过程、方法和工具,讨论了软件工程使用的科学管理技术。 12.数据库应用: 通过实践方式使学生进一步掌握数据库知识和技术,掌握C/S(客户/服务)模式下的大型数据库的设计与实现,培养同行间的合作精神,学习应用合作方法。 13.软件编程实践: 主要介绍最新的常规的软件编程平台、工具和方法。本课程面向应用技术和实用技术,培养学生自学新技术的能力,在WINDOWS下的综合编程能力,实际解决问题能力。 14.计算机网络工程: 计算机技术与通信技术相结合导致了计算机网络的产生。计算机网络已成为当今大型信息系统的基础。-------------------------高等数学、大学英语、概率统计、离散数学、电路、模拟电子、数字电子、数据结构、操作系统、编译原理、计算机网络、数据库原理、软件工程、汇编语言、C++程序设计、接口技术、Java、VC++、计算机病毒分析、信息安全、等。 高数学的是微积分,线性代数,概率论与数理统计。英语是大学英语上下。还有就是专业的计算机知识,数据分析,c语言,java,还有计算机的系统分析,各种软件技术,学会写代码,程序等。

琴瑟 2019-12-02 01:22:34 0 浏览量 回答数 0

回答

Java - Java编程语言(新版)介绍 Java 基本语法、Java 平台应用、 Java 的核心概念:JVM、JDK、JRE以及 java 面向对象思想,同时会学到如何在系统中搭建 Java 开发环境,以及如何利用第三方工具进行 Java 程序的开发。Java - Java进阶之设计模式介绍常用的设计模式以及 Java 语言的实现实例来学习 java 设计模式。从中我们可以学习到很多类型的设计模式,其中包括工厂模式、抽象工厂模式、单例模式、适配器模式、观察者模式、装饰者模式等等。Java - JDK 核心 API学习包括 java.lang 包,java.util 包,http://java.io 包以及泛型的相关知识SQL - MySQL基础课程该教程实验内容从MySQL的安装开始,介绍了MySQL基础、常用的操作,内容较为简单,如果想要更深入地学习SQL,请学习实验楼其他相关课程。Linux - 正则表达式基础在Linux Shell环境中学习正则表达式基本概念,并实践如何使用正则表达式对文本字符串进行处理。Java - JDBC 入门教程本实验通过学习 JDBC 定义和架构,回顾 SQL 语法,搭建 JDBC 的环境,通过实例来深入学习 JDBC。从中我们将学习到如何用 java 连接到数据库,并练习编写了一个信息管理的程序,在此基础上可以提高自己的数据库管理能力。Java - Java 8 新特性指南Java 8是近年来一个Java编程语言发行版本,由Oracle 2014年3月发布。该版本为Java带来许多新特性,是一个具有重大改变的版本。 本教程适用于Java初学者或者是具有一定编程经验的开发者,学习该课为自己的技能升级打补丁。Java - J2SE核心开发实战java基础的进阶课程,主要讲解IO、Util等常用类库的使用、Swing图形化编程、多线程编程等知识点。

inzaghi1984 2019-12-02 00:32:32 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

Java开发工程师必备技能

小柒2012 2019-12-01 20:55:20 11780 浏览量 回答数 3
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板