• 关于

    控制器controller基础应用

    的搜索结果

回答

一 容器 在学习k8s前,首先要了解和学习容器概念和工作原理。 什么是容器? 容器是一种轻量级、可移植、自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行。开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机、物理服务器或公有云主机上运行。 容器的优势 容器使软件具备了超强的可移植能力。 对于开发人员 – Build Once, Run Anywhere 容器意味着环境隔离和可重复性。开发人员只需为应用创建一次运行环境,然后打包成容器便可在其他机器上运行。另外,容器环境与所在的 Host 环境是隔离的,就像虚拟机一样,但更快更简单。 对于运维人员 – Configure Once, Run Anything 只需要配置好标准的 runtime 环境,服务器就可以运行任何容器。这使得运维人员的工作变得更高效,一致和可重复。容器消除了开发、测试、生产环境的不一致性。 Docker概念 “Docker” 一词指代了多个概念,包括开源社区项目、开源项目使用的工具、主导支持此类项目的公司 Docker Inc. 以及该公司官方支持的工具。技术产品和公司使用同一名称,的确让人有点困惑。 我们来简单说明一下: IT 软件中所说的 “Docker” ,是指容器化技术,用于支持创建和使用容器。 开源 Docker 社区致力于改进这类技术,并免费提供给所有用户,使之获益。 Docker Inc. 公司凭借 Docker 社区产品起家,它主要负责提升社区版本的安全性,并将技术进步与广大技术社区分享。此外,它还专门对这些技术产品进行完善和安全固化,以服务于企业客户。 借助 Docker,您可将容器当做轻巧、模块化的虚拟机使用。同时,您还将获得高度的灵活性,从而实现对容器的高效创建、部署及复制,并能将其从一个环境顺利迁移至另一个环境,从而有助于您针对云来优化您的应用。 Docker有三大核心概念: 镜像(Image)是一个特殊的文件系统,提供容器运行时所需的程序、库、配置等,构建后不会改变 容器(Container)实质是进程,拥有自己独立的命名空间。 仓库(Repository)一个仓库可以包含多个标签(Tag),每个标签对应一个镜像 容器工作原理 Docker 技术使用 Linux 内核和内核功能(例如 Cgroups 和 namespaces)来分隔进程,以便各进程相互独立运行。这种独立性正是采用容器的目的所在;它可以独立运行多种进程、多个应用,更加充分地发挥基础设施的作用,同时保持各个独立系统的安全性。 二 Kubernetes入门知识指南 Kubernets的知识都可以在官方文档查询,网址如下: https://kubernetes.io/zh/docs/home/ Kubernetes基础知识 Kubernetes是什么? Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。 为什么需要 Kubernetes 容器是打包和运行应用程序的好方式。在生产环境中,您需要管理运行应用程序的容器,并确保不会停机。例如,如果一个容器发生故障,则需要启动另一个容器。如果由操作系统处理此行为,会不会更容易? Kubernetes 为您提供: 服务发现和负载均衡 Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果到容器的流量很大,Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。 存储编排 Kubernetes 允许您自动挂载您选择的存储系统,例如本地存储、公共云提供商等。 自动部署和回滚 您可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态更改为所需状态。例如,您可以自动化 Kubernetes 来为您的部署创建新容器,删除现有容器并将它们的所有资源用于新容器。 自动二进制打包 Kubernetes 允许您指定每个容器所需 CPU 和内存(RAM)。当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。 自我修复 Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。 密钥与配置管理 Kubernetes 允许您存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。您可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。 Kubernetes 组件 初学者首先要了解Kubernetes的基本概念,包括master、node、pod等。 Master Master是Kubernetes集群的大脑,运行着的守护进程服务包括kube-apiserver、kube-scheduler、kube-controller-manager、etcd和Pod网络等。 kube-apiserver 主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。 kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 etcd etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。 kube-scheduler 主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。 调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。 kube-controller-manager 在主节点上运行控制器的组件。 从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。 这些控制器包括: 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。 副本控制器(Replication Controller): 负责为系统中的每个副本控制器对象维护正确数量的 Pod。 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌. 云控制器管理器-(cloud-controller-manager) cloud-controller-manager 运行与基础云提供商交互的控制器 cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。 cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。 以下控制器具有云提供商依赖性: 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除 路由控制器(Route Controller): 用于在底层云基础架构中设置路由 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷 Node 节点组件在每个节点上运行,维护运行 Pod 并提供 Kubernetes 运行环境。 kubelet 一个在集群中每个节点上运行的代理。它保证容器都运行在 Pod 中。 kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。 kube-proxy kube-proxy 是集群中每个节点上运行的网络代理,实现 Kubernetes Service 概念的一部分。 kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。 如果有 kube-proxy 可用,它将使用操作系统数据包过滤层。否则,kube-proxy 会转发流量本身。 容器运行环境(Container Runtime) 容器运行环境是负责运行容器的软件。 Kubernetes 支持多个容器运行环境: Docker、 containerd、cri-o、 rktlet 以及任何实现 Kubernetes CRI (容器运行环境接口)。 Pod 在Kubernetes中,最小的管理元素不是一个个独立的容器,而是Pod。Pod是管理,创建,计划的最小单元. 一个Pod相当于一个共享context的配置组,在同一个context下,应用可能还会有独立的cgroup隔离机制,一个Pod是一个容器环境下的“逻辑主机”,它可能包含一个或者多个紧密相连的应用,这些应用可能是在同一个物理主机或虚拟机上。 Pod 的context可以理解成多个linux命名空间的联合 PID 命名空间(同一个Pod中应用可以看到其它进程) 网络 命名空间(同一个Pod的中的应用对相同的IP地址和端口有权限) IPC 命名空间(同一个Pod中的应用可以通过VPC或者POSIX进行通信) UTS 命名空间(同一个Pod中的应用共享一个主机名称) 同一个Pod中的应用可以共享磁盘,磁盘是Pod级的,应用可以通过文件系统调用。 由于docker的架构,一个Pod是由多个相关的并且共享磁盘的容器组成,Pid的命名空间共享还没有应用到Docker中 和相互独立的容器一样,Pod是一种相对短暂的存在,而不是持久存在的,正如我们在Pod的生命周期中提到的,Pod被安排到结点上,并且保持在这个节点上直到被终止(根据重启的设定)或者被删除,当一个节点死掉之后,上面的所有Pod均会被删除。特殊的Pod永远不会被转移到的其他的节点,作为替代,他们必须被replace. 三 通过kubeadm方式创建一个kubernetes 对kubernetes的概念和组件有所了解以后,就可以通过kubeadm的方式创建一个kubernetes集群。 安装前准备工作 创建虚拟机 创建至少2台虚拟机,可以在本地或者公有云。 下载部署软件 需要下载的软件包括calico、demo-images、docker-ce、kube、kube-images、kubectl、metrics-server 安装部署 具体安装过程参考官网文档: https://kubernetes.io/zh/docs/reference/setup-tools/kubeadm/kubeadm/ 四 安装后的练习 安装后详读官方文档,做下面这些组件的练习操作,要达到非常熟练的程度。 Node Namespace Pod Deployment DaemonSet Service Job Static Pod ConfigMap Secrets Volume Init-containers Affinity and Anti-Affinity Monitor and logs Taints and Tolerations Cordon and Drain Backing up etcd 这些内容都非常熟练以后,基本就达到了入门的水平。

红亮 2020-03-02 11:09:17 0 浏览量 回答数 0

回答

什么是Kubernetes? Kubernetes是一种轻便的可伸展的开源平台,用来管理容器化的工作或者服务,拥有声明化配置和自动化等优点。它现在拥有一个快速扩大与成长的生态系统,其服务,工具和技术支持可被广泛用于各个方面。 为什么我需要Kubernetes,它用来做些什么? Kubernetes拥有大量的特性,比如: 容器平台 微服务平台 轻量化云服务平台 等等 Kubernetes提供了一个以容器为中心的管理环境,它根据用户的工作负载来协调计算,网络和储存基础架构。它既有PaaS的简化性,又具有IaaS的灵活性,并支持跨基础架构的可移植性 为什么Kubernetes是一个平台? 尽管Kubernetes提供了大量的功能性,总会有新的场景需要新的功能。一些特性的应用程序工作流程可以被简化来加快开发速度。最初的部署通常需要大规模的应用自动化。这就是为什么Kubernetes被设计成一个平台服务,用来创建一个包含工具和其他组成部分的系统环境,来使部署,测量和管理应用更加容易。 Label可以授权用户按照他们的想法来组织他们的资源。Annotation允许用户布置含有自定义信息的资源,来使工作流更加顺畅,并为管理工具提供到checkpoint状态的一种更简单的方式。 此外,Kubernetes控制平面基于开发人员和用户可用的相同API构建。用户可以编写他们自己的 controller,比如schedulers,这些API可以通过通用命令行工具进行定位。 这种设计使得许多其他系统能够在Kubernetes上面构建 Kubernetes不是什么 Kubernetes不是一个传统的,包罗万象的PaaS(平台即服务)系统。由于Kubernetes在容器级而不是在硬件级运行,因此它能提供一些PaaS产品常用的通用功能,比如部署,扩展,负载均衡,日志记录和监控。但是,Kubernetes并不是一个整体,这些默认解决方案都是可选和可插拔的。Kubernetes提供了构建人员平台的构建模块,但是在一些重要的地方保留了用户选择和灵活性。 Kubernetes: 不限制支持的应用程序类型。Kubernetes旨在支持各种各样的工作负载,包括无状态,有状态和数据处理工作负载。 如果一个应用程序可以在一个容器中运行,它应该在Kubernetes上运行得很好。 不部署源代码并且不构建您的应用程序。持续集成,交付和部署(CI / CD)工作流程由组织和偏好以及技术要求决定。 不提供应用程序级服务,例如中间件(例如,消息总线),数据处理框架(例如,Spark),数据库(例如,mysql),高速缓存,也不提供集群存储系统(例如,Ceph)。 在服务中。 这些组件可以在Kubernetes上运行,和/或可以通过便携式机制(例如Open Service Broker)在Kubernetes上运行的应用程序访问。 不指示日志,监视或警报解决方案。 它提供了一些集成作为概念证明,以及收集和导出指标的机制。 不提供或授权配置语言/系统(例如,jsonnet)。 它提供了一个声明性API,可以通过任意形式的声明性规范来实现。 不提供或采用任何全面的机器配置,维护,管理或自我修复系统。 此外,Kubernetes不仅仅是一个编排系统。 实际上,它消除了编排的需要。 业务流程的技术定义是执行定义的工作流程:首先执行A,然后运行B,然后运行C.相反,Kubernetes由一组独立的,可组合的控制流程组成,这些流程将当前状态持续推向所提供的所需状态。 如何从A到C无关紧要。也不需要集中控制。 这使得系统更易于使用且功能更强大,更具弹性且可扩展 为什么使用容器 过去部署应用的方式,是将应用安装在一个使用操作系统软件包管理器的主机上。这样做的缺点是应用程序的可执行文件、配置、库和生命周期互相影响,也会和操作系统纠缠不清。你也可以构建一个不可被修改的虚拟机镜像来实现可预测的部署和回滚,但是这样显然不够轻量化而且不可被移植 新的方式是在虚拟化的操作系统层来部署容器,而不是在虚拟化的硬件层。这些容器之间彼此独立,相对主机也保持独立。它们有自己单独的文件系统,也不能看到其他容器的进程,而且它们对于计算资源的使用量可以被限制。它们比虚拟机更容易被构建,因为它们从底层基础架构和主机文件系统中解耦出来,也可以跨单机与云之间移植。 因为容器小巧且轻快,一个应用程序可以被打包放到每个容器镜像中。这种一对一的应用对镜像的关系可以使容器发挥出最大功效。有了容器,不可变的容器镜像可以在构建时被创建,而不是在部署时,因为每个应用都不需要依赖于程序的其它应用部分,也不依赖于基础生产环境。同样,容器比VM更加透明,这有利于监控和管理。当容器的生命周期由基础架构管理而不是隐藏在流程管理器之后时,尤其如此。最后,当一个应用被部署在每个容器时,管理容器就变得和管理程序部署一样了。 阿里云导入自建K8S集群 更多阿里云帮助文档 https://help.aliyun.com 希望对您有帮助!

阿里朵 2019-12-02 02:19:54 0 浏览量 回答数 0

问题

连续十几小时,追逐三大所谓的web-full-stack框架,我不玩了 热:报错

kun坤 2020-06-09 23:31:32 1 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

本文为您介绍容器服务 ACK 中涉及的几个基本概念,以便于您更好地理解 ACK 产品。 基本概念 集群 一个集群指容器运行所需要的云资源组合,关联了若干服务器节点、负载均衡、专有网络等云资源。 托管集群(Managed Kubernetes Cluster) 只需创建 Worker 节点,Master 节点由容器服务创建并托管。具备简单、低成本、高可用、无需运维管理 Kubernetes 集群 Master 节点的特点。 专有集群(Dedicated Kubernetes Cluster) 需要创建3个 Master(高可用)节点及若干 Worker 节点,可对集群基础设施进行更细粒度的控制,需要自行规划、维护、升级服务器集群。 Serverless集群(Serverless Kubernetes Cluster) 无需创建和管理 Master 节点及 Worker 节点,即可通过控制台或者命令配置容器实例的资源、指明应用容器镜像以及对外服务的方式,直接启动应用程序。 节点 一台服务器(可以是虚拟机实例或者物理服务器)已经安装了 Docker Engine,可以用于部署和管理容器;容器服务的 Agent 程序会安装到节点上并注册到一个集群上。集群中的节点数量可以伸缩。 容器 一个通过 Docker 镜像创建的运行实例,一个节点可运行多个容器。 镜像 Docker 镜像是容器应用打包的标准格式,在部署容器化应用时可以指定镜像,镜像可以来自于 Docker Hub,阿里云镜像服务,或者用户的私有 Registry。镜像 ID 可以由镜像所在仓库 URI 和镜像 Tag(缺省为 latest)唯一确认。 Kubernetes 相关概念 管理节点(Master Node) 管理节点是 Kubernetes 集群的管理者,运行着的服务包括 kube-apiserver、kube-scheduler、kube-controller-manager、etcd 和容器网络等组件。一般3个管理节点组成 HA 的架构。 工作节点(Worker Node) 工作节点是 Kubernetes 集群中承担工作负载的节点,可以是虚拟机也可以是物理机。工作节点承担实际的 Pod 调度以及与管理节点的通信等。一个工作节点上的服务包括 Docker 运行时环境、kubelet、Kube-Proxy 以及其它一些可选的 Addon 组件。 命名空间(Namespace) 命名空间为 Kubernetes 集群提供虚拟的隔离作用。Kubernetes 集群初始有 3 个命名空间,分别是默认命名空间 default、系统命名空间 kube-system 和 kube-public ,除此以外,管理员可以创建新的命名空间以满足需求。 Pod Pod 是 Kubernetes 部署应用或服务的最小的基本单位。一个 Pod 封装多个应用容器(也可以只有一个容器)、存储资源、一个独立的网络 IP 以及管理控制容器运行方式的策略选项。 副本控制器(Replication Controller,RC) RC 确保任何时候 Kubernetes 集群中有指定数量的 pod 副本(replicas)在运行。通过监控运行中的 Pod 来保证集群中运行指定数目的 Pod 副本。指定的数目可以是多个也可以是 1 个;少于指定数目,RC 就会启动运行新的 Pod 副本;多于指定数目,RC 就会终止多余的 Pod 副本。 副本集(Replica Set,RS) ReplicaSet(RS)是 RC 的升级版本,唯一区别是对选择器的支持,RS 能支持更多种类的匹配模式。副本集对象一般不单独使用,而是作为 Deployment 的理想状态参数使用。 部署(Deployment) 部署表示用户对 Kubernetes 集群的一次更新操作。部署比 RS 应用更广,可以是创建一个新的服务,更新一个新的服务,也可以是滚动升级一个服务。滚动升级一个服务,实际是创建一个新的 RS,然后逐渐将新 RS 中副本数增加到理想状态,将旧 RS 中的副本数减小到 0 的复合操作;这样一个复合操作用一个 RS 是不太好描述的,所以用一个更通用的 Deployment 来描述。不建议您手动管理利用 Deployment 创建的 RS。 服务(Service) Service 也是 Kubernetes 的基本操作单元,是真实应用服务的抽象,每一个服务后面都有很多对应的容器来提供支持,通过 Kube-Proxy 的 port 和服务 selector 决定服务请求传递给后端的容器,对外表现为一个单一访问接口,外部不需要了解后端如何运行,这给扩展或维护后端带来很大的好处。 标签(labels) Labels 的实质是附着在资源对象上的一系列 Key/Value 键值对,用于指定对用户有意义的对象的属性,标签对内核系统是没有直接意义的。标签可以在创建一个对象的时候直接赋予,也可以在后期随时修改,每一个对象可以拥有多个标签,但 key 值必须唯一。 存储卷(Volume) Kubernetes 集群中的存储卷跟 Docker 的存储卷有些类似,只不过 Docker 的存储卷作用范围为一个容器,而 Kubernetes 的存储卷的生命周期和作用范围是一个 Pod。每个 Pod 中声明的存储卷由 Pod 中的所有容器共享。支持使用 Persistent Volume Claim 即 PVC 这种逻辑存储,使用者可以忽略后台的实际存储技术,具体关于 Persistent Volumn(pv)的配置由存储管理员来配置。 持久存储卷(Persistent Volume,PV)和持久存储卷声明(Persistent Volume Claim,PVC) PV 和 PVC 使得 Kubernetes 集群具备了存储的逻辑抽象能力,使得在配置 Pod 的逻辑里可以忽略对实际后台存储技术的配置,而把这项配置的工作交给 PV 的配置者。存储的 PV 和 PVC 的这种关系,跟计算的 Node 和 Pod 的关系是非常类似的;PV 和 Node 是资源的提供者,根据集群的基础设施变化而变化,由 Kubernetes 集群管理员配置;而 PVC 和 Pod是资源的使用者,根据业务服务的需求变化而变化,由 Kubernetes 集群的使用者即服务的管理员来配置。 Ingress Ingress 是授权入站连接到达集群服务的规则集合。你可以通过 Ingress 配置提供外部可访问的 URL、负载均衡、SSL、基于名称的虚拟主机等。用户通过 POST Ingress 资源到 API server 的方式来请求 Ingress。 Ingress controller 负责实现 Ingress,通常使用负载均衡器,它还可以配置边界路由和其他前端,这有助于以 HA 方式处理流量。

1934890530796658 2020-03-26 11:23:18 0 浏览量 回答数 0

问题

容器服务 基本概念

青蛙跳 2019-12-01 21:32:38 529 浏览量 回答数 0

回答

DevOps 这个概念最早是在 2007 年提出的,那时云计算基础设施的概念也才刚刚提出没多久,而随着互联网的逐渐普及,应用软件的需求爆发式增长,软件开发的理念也逐渐从瀑布模型(waterfall)转向敏捷开发(agile)。传统的软件交付模式(应用开发人员专注于软件开发、IT 运维人员负责将软件部署到服务器运行),再也无法满足互联网软件快速迭代的需求。于是,DevOps 作为一种打破研发和运维之间隔阂、加快软件交付流程、提高软件交付质量的文化理念和最佳实践 逐渐普及至今。 DevOps 的现状 DevOps 的流行得益于业界对于应用软件敏捷开发、高质量交付的诉求,所以为开发和运维开辟了一块“公共的空间”,让双方可以在这里紧密合作。那时软件研发依旧属于一个新兴行业,人们习惯于向成熟的制造业学习,制造业解决大规模生产的方式,就是构建流水线,通过流水线规范化每个步骤对接的内容,而流水线上的工人们则只需要各司其职,快速熟练的完成自己这部分生产内容。 所以,DevOps 借鉴了制造业的经验,开始构建持续集成 / 持续交付(CI/CD)的流水线,催生出了一系列自动化 / 半自动化工具(如 puppet、chef、ansible 等),结合编写脚本的可扩展能力,将研发和运维的大量操作规范化,从而达到彼此协作的目标。但是最终还是要有人投入到这些工具的构建中,于是就出现了 DevOps 团队。DevOps 团队构建的工具和平台,帮助研发更容易地接近生产环境,让研发在持续集成、持续交付的过程中可以一键部署、快速试错,从而很大程度提前暴露和避免了软件在实际运行过程中的问题。 从本质上讲,DevOps 是为运维服务的。 它把生产环境的运维流程通过自动化的工具提供出来了,屏蔽了基础设施细节,同时让软件本身的问题更容易暴露,从而把这些问题尽量提前交给研发去解决。这些,其实都是在帮助运维减轻负担。 这一套模式在一开始运转良好,但是问题也随着时间的推移慢慢暴露出来了。DevOps 本身不为企业带来直接的利润,也不增加产品的功能,它们是企业的成本中心,所以许多企业不愿意为 DevOps 投入太多的成本。久而久之,DevOps 的能力便无法与研发人员增长的需求所匹配,不愿意继续伴随着云和开源社区的发展向前演进,反而成为软件研发的瓶颈。试想一下,有多少大公司的技术人员,对自己公司里的“研发效能”工具表示满意呢? 云计算的普及 聪明的企业总能从自己的需求中发现业界共有的需求,AWS 便是这么诞生的,他们早在 2006 年便首次把软件部署需要的网络、计算、存储等基础设施当做服务提供给用户,允许任何人在不购买服务器等物理硬件的情况下构建互联网应用程序,规模化使得整体的成本比用户自建更低。而云计算 IaaS、PaaS、SaaS 的概念也正是在那一年开始逐渐清晰的。 云计算的初期,用户主要使用的是 IaaS 服务,如虚拟机、存储等,使用云计算服务的企业依旧需要运维来管理这一类基础设施,只是运维管理的对象从物理机切换到虚拟机而已,并没有太本质的区别。 而随着云计算的快速发展,云的能力不断补充、增强,渐渐将原先由运维提供的方方面面的能力都转换成为了云上的服务,这其中自然包含了管理软件完整生命周期的各类服务,从代码托管、持续集成、持续交付,到监控、报警、自动扩缩容等一系列的能力,均能在云上找到对应的服务。品类之多、数量之巨,令人瞠目结舌。 但是 DevOps 依然有着用武之地。云的对接难度实在太大了,涉及到的云服务又多,不同云厂商提供的服务还不统一,为了使用云上的产品不得不投入大量的时间学习,而为了防止云厂商的绑定又不得不做多厂商的适配,DevOps 依旧需要像过去一样为开发屏蔽实际环境的复杂性,只不过这次他们要负责管理的基础设施变成了云资源。 改变一切的 Kubernetes Kubernetes 的本质是现代应用基础设施,它关注如何将应用与“云”天然地集成在一起,将“云”的最大价值发挥出来。Kubernetes 强调让基础设施能更好的配合应用、以更高效的方式为应用“输送”基础设施能力,而不是反之。在这个过程中,Kubernetes 、Docker、Operator 等在云原生生态中起到了关键作用的开源项目,正在在把应用管理与交付推上一个跟以前完全不一样的境况:Kubernetes 的使用者只通过声明式的方式描述自己应用的终态是什么,然后一切就结束了。Kubernetes 会处理后面的所有事情。 这也是为什么 Kubernetes 非常强调声明式 API。通过这种方式,Kubernetes 本身接入的基础设施能力越强,Kubernetes 的使用者能够声明的终态就越丰富,他的职责也就约单纯。现在,我们不仅能够通过 Kubernetes 声明应用的运行终态,比如;“这个应用需要 10 个实例”,我们还能够声明应用的很多运维终态,比如:“这个应用使用金丝雀发布策略进行升级”,以及 “当它的 CPU 使用量大于 50% 时,请自动扩展 2 个实例出来”。 这就让传统的 DevOps 工具和团队受到了挑战:如果一个业务研发自己只需要通过声明式 API 声明他的应用的所有终态甚至包括完整的 SLA,后面的一切就都会有 Kubernetes 来自动的搞定,那么他还有什么理由去对接和学习各式各样的 DevOps 流水线呢? 换句话说,长久以来,DevOps 实际上是在充当研发与基础设施之间的那一层“胶水”。而现在,Kubernetes 通过它极具生命力的声明式 API 和无限接入的应用基础设施能力,正在完美的扮演这个“胶水层”的作用。这也提醒了我们,上一个正在被 Kubernetes 体系强烈挑战的“胶水层”,其实叫做“传统中间件”:它正遭受到 Service Mesh 的巨大冲击。 DevOps 会消失吗? 近几年,Kubernetes 项目经常被描述成 DevOps 的“最佳拍档”。类似的观点认为, Kubernetes 跟 Docker 一样,解决的是软件运行时的问题。这意味着 Kubernetes 更像一种“时髦”的 IaaS,只不过运行时从虚拟机变成了容器。所以,只要能够将现有 DevOps 思想和流程对接到 Kubernetes 上来,就可以享受到容器技术带来的轻量级与弹性。这对于提倡“敏捷”的 DevOps 来说,显然是最好的组合。 不过,至少目前看来,Kubernetes 的发展路径并不是一个类 IaaS 的角色。它虽然关注接入底层的基础设施能力,但它本身却又不是基础设施能力的提供方。而且,相比于软件运行时,Kubernetes 似乎更关心软件的生命周期和状态流转。不仅如此,它还提供了一种叫做“控制器模型”的机制来将软件的实际状态与期望状态不断逼近,这显然都已经超出了一个“软件运行时”的范畴。 Kubernetes 项目对应用本身的“额外关注”,让它与一个类 IaaS 基础设施有着明显的区别,也让它“胶水”的定位更加明显。而如果 Kubernetes 的能力足够强大,那么作为研发与基础设施之间现有的“胶水层”, DevOps 是否还有必要存在?在所谓的云原生时代,应用研发与交付是不是真的会走向“一次声明”就可以“撒手不管”,从而让 DevOps 彻底消失呢? 不过,至少目前看来,Kubernetes 项目距离这个愿景,还有不少困难需要克服。 “Platform for Platform” API 的局限性 Kubernetes 是一个典型的 “Platform for Platform”项目,所以它的 API,距离纯研发视角还是非常遥远的。就比如一个 Deployment 对象,就既包括了研发侧关心的镜像,也包括了基础设施侧的资源配置,甚至是容器安全配置。此外, Kubernetes API 并没有提供出对“运维能力”的描述与定义方式,这也使得声明之后的“撒手不管”变得遥不可及。这也是为什么目前 DevOps 依然被需要的原因:Kubernetes 的大多数字段,还是必须经过研发和运维共同协作的流程来进行填充。 无法对更多的云资源进行描述 K8s 的原生 API 只包含了云资源的很少一部分,比如用 PV/PVC 表达存储,用 Ingress 表达负载均衡,但这对于一个完全声明式的应用描述来说是完全不够的。比如,研发希望在 K8s 上找到一个概念来表达数据库、VPC、消息队列等需求的时候,就会感到非常困惑。而现有的所有方案则完全依赖于云厂商的实现从而带来了新的 vendor lock-in 困惑。 Operator 体系缺乏互操作性 Kubernetes 的 Operator 机制是这个项目的能力能够无限增长的公开秘密。但令人遗憾的是,目前所有 Operator 之间的关系,就像是一个又一个的烟囱,互相之间没有任何交互与协作的可能。比如,我们把云上的 RDS 通过 CRD 和 Operator 扩展到了 K8s 声明式 API 的体系中,但是当第三方希望写一个定时备份 RDS 持久化文件的 CRD Operator 去配合的时候,却往往无从下手。这就又需要 DevOps 的体系介入来解决问题。 未来? 显然,现在的 Kubernetes 项目,依然需要借助 DevOps 体系来真正完成软件的高效迭代与交付工作。这是不可避免的:尽管 Kubernetes 声称自己是“以应用为中心”的基础设施,但它作为一个从 Google Borg 衍生出来的系统级项目,其本身的设计和工作层次还是更多的基础设施领域徘徊。但另一方面,我们绝不可否认的是,Kubernetes 在它的关键路径上,始终保持着对研发侧 “NoOps” 的追求。这种渴望,从它第一天提出“声明式应用管理”理论的时候就已经“昭然若揭”,而 CRD 和 Operator 体系的建立,更让这种应用级别的关心终于有了落地的机会。我们已经看到很多 DevOps 流程正在“下沉”为 Kubernetes 里的声明式对象与控制循环,比如 Tekton CD 项目。 如果 Kubernetes 的未来是 100% 的声明式应用管理,那么我们有理由相信 DevOps 最终会从技术领域消失然后彻底蜕变成一种文化。毕竟,那个时候的运维工程师,可能都会成为 Kubernetes Controller/Operator 的编写者或者设计者。而研发呢?他们可能根本不会知道原来 Kubernetes 这个东西曾经如此显赫的存在过。

有只黑白猫 2020-01-07 11:35:38 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

回答

  Spring框架推出5.0,其中包含了WebFlux,与过去我们所知的SpringWebMVC的差异是什么?开发者们准备好接受另一套模型了吗?新版Spring的一大特色,就是ReactiveWeb方案的WebFlux,这是用来替代SpringWebMVC的吗?或者,只是终于可以不再基于Servlet容器了?   基于Servlet容器的WebMVC   身为Java开发者,对于Spring框架并不陌生。它最初起源于2002年,是RodJohnson的著作“ExpertOne-on-OneJ2EE设计与开发”中的界面框架。到了2004年,推出Spring1.0,从XML到3.0之后,开始支援JavaConfig设定;进一步地,在2014年时,除了Spring4.0之外,首次发表了SpringBoot,最大的亮点是采用自动组态,令基于Spring的快速开发成为可能。   对Web开发者来说,Spring中的WebMVC框架,也一直随着Spring而成长,然而由于基于Servlet容器,早期被批评测试不易(例如:控制器中包含了ServletAPI)。   不过,从实作Controller介面搭配XML设定,到后来的标注搭配JavaConfig,WebMVC使用越来越便利。如果愿意,也可采用渐进的方式,将基于ServletAPI的Web应用程序,逐步重构为几乎没有ServletAPI的存在(可参考先前专栏文章<筛选框架必要功能>),在程式码层面达到屏壁ServletAPI的效果。   由于不少Java开发者的Web开发经验,都是从Servlet容器中累积起来的,在这个时候,WebMVC框架基于ServletAPI,就会是一项优点。因为,虽然运用WebMVC撰写程式时,可做到不直接面对ServletAPI,然而,也意味着更强烈地受到Spring的约束,有时则是无法在庞杂设定或API中找到对应方案,有时也因为心智模型还是挂在Servlet容器,经验上难以脱离,在搞不出的HttpSession,ServletContext的对应功能时,直接从HttpSession中,ServletContext的下手,毕竟也是个方法。   撰写程式时,就算没用到ServletAPI,WebMVC基于Servlet容器仍是事实,因为,底层还是得借助Servlet容器的功能,例如SpringSecurity,本质上还是基于Servlet容器的过滤器方案。   然而在今日,Servlet被许多开发者视为陈旧,过时技术的象征,或许是因为这样,在JavaEE8宣布推出的这段期间,当我在某些场合谈及Servlet4.0之时,总会听到有人提出「WebFlux可以脱离Servlet了」之类的善心建议。   实现ReactiveStreams的Reactor   WebFlux不依赖Servlet容器是事实,然而,在谈及WebFlux之前,我们必须先知道Reactor专案,它是由Pivotal公司,也就是目前Spring的拥有者推出,实现了ReactiveStreams规范,用来支援Reactive编程的实作品。   既然是实现了ReactiveStreams规范,开发者必然会想到的是RxJava/RxJava2,或者至是Java9的FlowAPI。这也意道着,在能使用WebFlux之前,开发者必须对于ReactiveProgramming典范,有所认识,如果你从未接触过这些玩意儿,可以参考先前专栏。   开发者这时有疑问了,Spring为何不直接基于RxJava2,而是打造专属的ReactiveStreams实作呢?   就技术而言,Reactor是在Java8的基础上开发,并全面拥抱Java8之后的新API,像是Lambda相关介面,新日期与时间API等,这意谓着,专案如果还是基于Java7或更早版本,就无法使用电抗器。   在API层面,RxJava2有着因为历史发展脉络的原因,不得不保留一些令人容易困惑或混淆的模态或操作,而Reactor在这方面,都有着明确的对应API来取代,然而,却也提供与RxJava2(甚至是FlowAPI)间的转换。   另一方面,Reactor较直觉易用,例如最常介绍的Mono与Flux,实现了ReactiveStreams的发布者介绍,并简化了讯息发布,让开发者在许多场合,不用处理Subscriber和Subscription的细节(当然,这些在Reactor也予以实现)。而在SpringWebFlux中,Mono与Flux也是主要的操作对象。想知道如何使用Mono与Flux,可以参考<使用Reactor进行反应式编程>(https://goo.gl/vc2fGc)。   又一个的Web框架?   到了春天5,在Reactor的基础上,新增了WebFlux作为ReactiveWeb方案,我们在许多介绍文件的简单范例,例如<使用Spring5的WebFlux开发反应式Web应用>(https://goo.gl/G5uotZ),就看到当中使用了Flux,Mono来示范,而且,程式码看起来就像是SpringMVC。   这是因为WebFlux提供了基于Java标注的方式,有许多WebMVC中使用的标注,也拿来用于WebFlux之中,让熟悉WebMVC的开发者也容易理解与上手WebFlux,然而,这不过就是新的网络框架吗?   实际上,当然不是如此.WebFlux并非依赖WebMVC,而且它是基于Reactor,本质属于非同步,非阻断,ReactiveProgramming的心智模型,也因此,如果打算将WebFlux运行在Servlet容器之上,必须是支援Servlet3.1以上,因为才有非阻断输入输出的支援,虽然WebFlux的API在某些地方,确实提供了阻断的选项,若单纯只是试着将基于WebMVC的应用程式,改写为套用WebFlux,并不会有任何益处,反而会穷于应付如何在WebFlux实现对应的方案。   例如,SpringSecurity显然就不能用了,毕竟是Spring基于Servlet的安全方案,开发者必须想办法套用SpringSecurityReactive;而且,在储存方案上,也不是直接采用SpringData,而不是SpringData反应等。   就算能套用相关的设定与API,要能获得WebFlux的益处,应用程式中相关的元件,也必须全面检视,重新设计为非阻断,基于ReactiveProgramming方式,这或许才是最困难,麻烦的部份。   除了基于Java标注的方式,让熟悉WebMVC的开发者容易理解之外,WebFlux还提供了基于函数式的设计与组态方式。   实际上,在运用RxJava2/Reactor等ReactiveStreams的实作时,我们也都必须熟悉函数式的思考方式,才能充分掌握,这点在WebFlux并不例外。   可以脱离的Servlet容器了?   Servlet容器是个旧时代的象征,如果能够屏蔽Servlet容器或相关API,许多开发者应应都会很开心,可以少一层抽象,不必使用肥肥的Servlet容器,当然会是使用WebFlux时附带的优点,然而,如果只是为了屏蔽的Servlet,其实,早就有其他技术选择存在。   基于Servlet一路发展过来的WebMVC,虽然目前在某些地方可以安插一些函数式的设计,然而,本质上不变的部分在于,在技术堆叠中所隐含的,仍是一个基于同步,阻断式,命令式的心智模型。如果在这样的堆叠中,开发者老是因为想要实现非同步,非阻断,Reactive,函数式而感到不快,WebFlux也许才会是可考虑的方案,而不单只是用来作为脱离Servlet容器,WebMVC的替代品。   整体而言,WebFlux还算是新技术,也还有待时间验证可行性,如果只是为了想用WebFlux来取代WebMVC,或甚至更小一点的野心,只是想要能脱离Servlet容器,最好在采取行动之前,全面检视一下,确认自身或团队成员是否准备好接受WebFlux的心智模型,或者真的存在着对应的应用场景吧! 原文地址:https://yq.aliyun.com/articles/638706

auto_answer 2019-12-02 01:48:10 0 浏览量 回答数 0

回答

Spring Cloud 学习笔记(一)——入门、特征、配置 0 放在前面 0.1 参考文档 http://cloud.spring.io/spring-cloud-static/Brixton.SR7/ https://springcloud.cc/ http://projects.spring.io/spring-cloud/ 0.2 maven配置 org.springframework.boot spring-boot-starter-parent 1.5.2.RELEASE org.springframework.cloud spring-cloud-dependencies Dalston.RELEASE pom import org.springframework.cloud spring-cloud-starter-config org.springframework.cloud spring-cloud-starter-eureka 0.3 简介 Spring Cloud为开发人员提供了快速构建分布式系统中的一些通用模式(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线,一次性令牌,全局锁,领导选举,分布式 会话,群集状态)。 分布式系统的协调引出样板模式(boiler plate patterns),并且使用Spring Cloud开发人员可以快速地实现这些模式来启动服务和应用程序。 它们可以在任何分布式环境中正常工作,包括开发人员自己的笔记本电脑,裸机数据中心和受管平台,如Cloud Foundry。 Version: Brixton.SR7 1 特征 Spring Cloud专注于为经典用例和扩展机制提供良好的开箱即用 分布式/版本配置 服务注册与发现 路由选择 服务调用 负载均衡 熔断机制 全局锁 领导人选举和集群状态 分布式消息 2 原生云应用程序 原生云是应用程序开发的一种风格,鼓励在持续交付和价值驱动领域的最佳实践。 Spring Cloud的很多特性是基于Spring Boot的。更多的是由两个库实现:Spring Cloud Context and Spring Cloud Commons。 2.1 Spring Cloud Context: 应用上下文服务 Spring Boot关于使用Spring构建应用有硬性规定:通用的配置文件在固定的位置,通用管理终端,监控任务。建立在这个基础上,Spring Cloud增加了一些额外的特性。 2.1.1 引导应用程序上下文 Spring Cloud会创建一个“bootstrap”的上下文,这是主应用程序的父上下文。对应的配置文件拥有最高优先级,并且,默认不能被本地配置文件覆盖。对应的文件名bootstrap.yml或bootstrap.properties。 可通过设置spring.cloud.bootstrap.enabled=false来禁止bootstrap进程。 2.1.2 应用上下文层级结构 当用SpringApplication或SpringApplicationBuilder创建应用程序上下文时,bootstrap上下文将作为父上下文被添加进去,子上下文将继承父上下文的属性。 子上下文的配置信息可覆盖父上下文的配置信息。 2.1.3 修改Bootstrap配置文件位置 spring.cloud.bootstrap.name(默认是bootstrap),或者spring.cloud.bootstrap.location(默认是空) 2.1.4 覆盖远程配置文件的值 spring.cloud.config.allowOverride=true spring.cloud.config.overrideNone=true spring.cloud.config.overrideSystemProperties=false 2.1.5 定制Bootstrap配置 在/META-INF/spring.factories的key为org.springframework.cloud.bootstrap.BootstrapConfiguration,定义了Bootstrap启动的组件。 在主应用程序启动之前,一开始Bootstrap上下文创建在spring.factories文件中的组件,然后是@Beans类型的bean。 2.1.6 定制Bootstrap属性来源 关键点:spring.factories、PropertySourceLocator 2.1.7 环境改变 应用程序可通过EnvironmentChangedEvent监听应用程序并做出响应。 2.1.8 Refresh Scope Spring的bean被@RefreshScope将做特殊处理,可用于刷新bean的配置信息。 注意 需要添加依赖“org.springframework.boot.spring-boot-starter-actuator” 目前我只在@Controller测试成功 需要自己发送POST请求/refresh 修改配置文件即可 2.1.9 加密和解密 Spring Cloud可对配置文件的值进行加密。 如果有"Illegal key size"异常,那么需要安装JCE。 2.1.10 服务点 除了Spring Boot提供的服务点,Spring Cloud也提供了一些服务点用于管理,注意都是POST请求 /env:更新Environment、重新绑定@ConfigurationProperties跟日志级别 /refresh重新加载配置文件,刷新标记@RefreshScope的bean /restart重启应用,默认不可用 生命周期方法:/pause、/resume 2.2 Spring Cloud Commons:通用抽象 服务发现、负载均衡、熔断机制这种模式为Spring Cloud客户端提供了一个通用的抽象层。 2.2.1 RestTemplate作为负载均衡客户端 通过@Bean跟@LoadBalanced指定RestTemplate。注意URI需要使用虚拟域名(如服务名,不能用域名)。 如下: @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; public String doOtherStuff() { String results = restTemplate.getForObject(" http://stores/stores", String.class); return results; } } 2.2.2 多个RestTemplate对象 注意@Primary注解的使用。 @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate loadBalanced() { return new RestTemplate(); } @Primary @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; @Autowired @LoadBalanced private RestTemplate loadBalanced; public String doOtherStuff() { return loadBalanced.getForObject(" http://stores/stores", String.class); } public String doStuff() { return restTemplate.getForObject(" http://example.com", String.class); } } 2.2.3 忽略网络接口 忽略确定名字的服务发现注册,支持正则表达式配置。 3 Spring Cloud Config Spring Cloud Config提供服务端和客户端在分布式系统中扩展配置。支持不同环境的配置(开发、测试、生产)。使用Git做默认配置后端,可支持配置环境打版本标签。 3.1 快速开始 可通过IDE运行或maven运行。 默认加载property资源的策略是克隆一个git仓库(at spring.cloud.config.server.git.uri')。 HTTP服务资源的构成: /{application}/{profile}[/{label}] /{application}-{profile}.yml /{label}/{application}-{profile}.yml /{application}-{profile}.properties /{label}/{application}-{profile}.properties application是SpringApplication的spring.config.name,(一般来说'application'是一个常规的Spring Boot应用),profile是一个active的profile(或者逗号分隔的属性列表),label是一个可选的git标签(默认为"master")。 3.1.1 客户端示例 创建以Spring Boot应用即可,添加依赖“org.springframework.cloud:spring-cloud-starter-config”。 配置application.properties,注意URL为配置服务端的地址 spring.cloud.config.uri: http://myconfigserver.com 3.2 Spring Cloud Config 服务端 针对系统外的配置项(如name-value对或相同功能的YAML内容),该服务器提供了基于资源的HTTP接口。使用@EnableConfigServer注解,该服务器可以很容易的被嵌入到Spring Boot 系统中。使用该注解之后该应用系统就是一个配置服务器。 @SpringBootApplication @EnableConfigServer public class ConfigApplicion { public static void main(String[] args) throws Exception { SpringApplication.run(ConfigApplicion.class, args); } } 3.2.1 资源库环境 {application} 对应客户端的"spring.application.name"属性 {profile} 对应客户端的 "spring.profiles.active"属性(逗号分隔的列表) {label} 对应服务端属性,这个属性能标示一组配置文件的版本 如果配置库是基于文件的,服务器将从application.yml和foo.yml中创建一个Environment对象。高优先级的配置优先转成Environment对象中的PropertySource。 3.2.1.1 Git后端 默认的EnvironmentRepository是用Git后端进行实现的,Git后端对于管理升级和物理环境是很方便的,对审计配置变更也很方便。也可以file:前缀从本地配置库中读取数据。 这个配置库的实现通过映射HTTP资源的{label}参数作为git label(提交id,分支名称或tag)。如果git分支或tag的名称包含一个斜杠 ("/"),此时HTTP URL中的label需要使用特殊字符串"(_)"来替代(为了避免与其他URL路径相互混淆)。如果使用了命令行客户端如 curl,请谨慎处理URL中的括号(例如:在shell下请使用引号''来转义它们)。 Git URI占位符 Spring Cloud Config Server支持git库URL中包含针对{application}和 {profile}的占位符(如果你需要,{label}也可包含占位符, 不过要牢记的是任何情况下label只指git的label)。所以,你可以很容易的支持“一个应用系统一个配置库”策略或“一个profile一个配置库”策略。 模式匹配和多资源库 spring: cloud: config: server: git: uri: https://github.com/spring-cloud-samples/config-repo repos: simple: https://github.com/simple/config-repo special: pattern: special*/dev*,special/dev* uri: https://github.com/special/config-repo local: pattern: local* uri: file:/home/configsvc/config-repo 如果 {application}/{profile}不能匹配任何表达式,那么将使用“spring.cloud.config.server.git.uri”对应的值。在上例子中,对于 "simple" 配置库, 匹配模式是simple/* (也就说,无论profile是什么,它只匹配application名称为“simple”的应用系统)。“local”库匹配所有application名称以“local”开头任何应用系统,不管profiles是什么(来实现覆盖因没有配置对profile的匹配规则,“/”后缀会被自动的增加到任何的匹配表达式中)。 Git搜索路径中的占位符 spring.cloud.config.server.git.searchPaths 3.2.1.2 版本控制后端文件系统使用 伴随着版本控制系统作为后端(git、svn),文件都会被check out或clone 到本地文件系统中。默认这些文件会被放置到以config-repo-为前缀的系统临时目录中。在Linux上,譬如应该是/tmp/config-repo- 目录。有些操作系统routinely clean out放到临时目录中,这会导致不可预知的问题出现。为了避免这个问题,通过设置spring.cloud.config.server.git.basedir或spring.cloud.config.server.svn.basedir参数值为非系统临时目录。 3.2.1.3 文件系统后端 使用本地加载配置文件。 需要配置:spring.cloud.config.server.native.searchLocations跟spring.profiles.active=native。 路径配置格式:classpath:/, classpath:/config,file:./, file:./config。 3.2.1.4 共享配置给所有应用 基于文件的资源库 在基于文件的资源库中(i.e. git, svn and native),这样的文件名application 命名的资源在所有的客户端都是共享的(如 application.properties, application.yml, application-*.properties,etc.)。 属性覆盖 “spring.cloud.config.server.overrides”添加一个Map类型的name-value对来实现覆盖。 例如 spring: cloud: config: server: overrides: foo: bar 会使所有的配置客户端应用程序读取foo=bar到他们自己配置参数中。 3.2.2 健康指示器 通过这个指示器能够检查已经配置的EnvironmentRepository是否正常运行。 通过设置spring.cloud.config.server.health.enabled=false参数来禁用健康指示器。 3.2.3 安全 你可以自由选择任何你觉得合理的方式来保护你的Config Server(从物理网络安全到OAuth2 令牌),同时使用Spring Security和Spring Boot 能使你做更多其他有用的事情。 为了使用默认的Spring Boot HTTP Basic 安全,只需要把Spring Security 增加到classpath中(如org.springframework.boot.spring-boot-starter-security)。默认的用户名是“user”,对应的会生成一个随机密码,这种情况在实际使用中并没有意义,一般建议配置一个密码(通过 security.user.password属性进行配置)并对这个密码进行加密。 3.2.4 加密与解密 如果远程属性包含加密内容(以{cipher}开头),这些值将在通过HTTP传递到客户端之前被解密。 使用略 3.2.5 密钥管理 配置服务可以使用对称(共享)密钥或者非对称密钥(RSA密钥对)。 使用略 3.2.6 创建一个测试密钥库 3.2.7 使用多密钥和循环密钥 3.2.8 加密属性服务 3.3 可替换格式服务 配置文件可加后缀".yml"、".yaml"、".properties" 3.4 文本解释服务 /{name}/{profile}/{label}/{path} 3.5 嵌入配置服务器 一般配置服务运行在单独的应用里面,只要使用注解@EnableConfigServer即可嵌入到其他应用。 3.6 推送通知和总线 添加依赖spring-cloud-config-monitor,激活Spring Cloud 总线,/monitor端点即可用。 当webhook激活,针对应用程序可能已经变化了的,配置服务端将发送一个RefreshRemoteApplicationEvent。 3.7 客户端配置 3.7.1 配置第一次引导 通过spring.cloud.config.uri属性配置Config Server地址 3.7.2 发现第一次引导 如果用的是Netflix,则用eureka.client.serviceUrl.defaultZone进行配置。 3.7.3 配置客户端快速失败 在一些例子里面,可能希望在没有连接配置服务端时直接启动失败。可通过spring.cloud.config.failFast=true进行配置。 3.7.4 配置客户端重试 添加依赖spring-retry、spring-boot-starter-aop,设置spring.cloud.config.failFast=true。默认的是6次重试,初始补偿间隔是1000ms,后续补偿为1.1指数乘数,可通过spring.cloud.config.retry.*配置进行修改。 3.7.5 定位远程配置资源 路径:/{name}/{profile}/{label} "name" = ${spring.application.name} "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles()) "label" = "master" label对于回滚到之前的版本很有用。 3.7.6 安全 通过spring.cloud.config.password、spring.cloud.config.username进行配置。 答案来源于网络

养狐狸的猫 2019-12-02 02:18:34 0 浏览量 回答数 0

回答

前言 这篇文章适合所有的 C# 开发新手、老鸟以及想准备学习开发 C# 的程序猿。.NET Core是一个开源通用的开发框架,支持跨平台, 阿里云函数计算推出了 dotnetcore2.1 runtime, 使用 C# 编写 serverless 函数, 详情见官方文档:C# 函数入口. 在官方文档描述中,我们获知阿里云函数计算可以很好支持 asp.net core 的 Applicaiton: ASP.NET Core Web API ASP.NET Core Web App ASP.NET Core Web App (Model-View-Controller) 在介绍 Serverless Web 开发新模式之前,我们先了解下将 C# WebApi/WebApp Serverless 化的好处: 无需采购和管理服务器等基础设施 弹性伸缩,动态扩容 免运维, 极大降低人力成本 按需付费,财务成本低 本文以部署一个完善的 asp.net core 工程 Blogifier 为例,在函数计算环境中为例,向您讲解如何使用阿里云函数计算快速构建或移植基于 asp.net core 开发的 WebApi/WebApp ,通过本文,您将会了解以下内容: 案例概览 传统服务器架构 VS Serverless架构 Serverless架构详解 函数计算运行 Asp.net core App 原理 案例开发配置步骤 案例概览 在本教程中,我们讲解如何利用函数计算一步一步来构建 Web 的 Server 端,该案例是把一个 asp.net core 工程Blogifier 部署到函数计算,本文旨在展示函数计算做 Web Backend 能力,具体表现为以下几点: 完善的 ASP.NET Core Web 系统迁移到 FC 的成本不高 FC 打通了专有网络 VPC 功能,用户的函数可以配置访问专有网络的云资源,比如本案例中 NAS 案例体验入口: http://dotnet.mofangdegisn.cn/ https://dotnet.mofangdegisn.cn/ 传统服务器架构 VS Serverless架构 正常来说,用户开发 Server 端服务,常常面临开发效率,运维成本高,机器资源弹性伸缩等痛点,而使用 Serverless 架构可以很好的解决上述问题。下面是传统架构和 Serverless 架构的对比: image 阿里云函数计算是一个事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询,性能监控,报警等功能。借助于函数计算,您可以快速构建任何类型的应用和服务,无需管理和运维。 Serverless 架构详解 image.png 从上面的示例图中,整体架构十分简单明了, 用 FC 替代了 Web 服务器,但是换来的是免运维,弹性扩容,按需付费等一系列优点 函数计算运行 Asp.net Core App 原理 Asp.net Core App 运行在服务器上 image A http request to your website will go through IIS/Nginx, then Kestrel, and finally will be passed on to ASP.NET Core Asp.net Core App 运行在函数计算上 image 请求通过函数(with http trigger), 最后到达ASP.NET Core tips: 基于函数计算环境运行新建 asp.net core app 可以参考dotnet runtime HTTP 触发器的函数入口示例 在本文中,我们展示把一个现有的成熟的 asp.net core 工程低成本无缝迁移到函数计算环境。 案例开发配置步骤 准备工作 1. 创建 NAS 挂接点,配置 VPC , 具体参考函数计算nas使用示例 注:在本示例中使用 sqlite3 数据库,这种文件类型的数据库直接放置在 nas 即可,如果使用 mysql 等其他数据库, 需要创建 RDS 数据库, 配置 VPC , 具体参考通过 VPC 访问 RDS 实例 可选操作,在准备函数的 region 创建日志,用于函数的调试, 具体参考函数计算配置日志服务 创建函数 创建 Service (假设是 csharp-web), 配置准备 vpc config , nas config 和日志服务,比如案例体验的 Service 配置如下图: image 下载 asp.net core 工程,Blogifier, 用 vs 打开, debug 本地可以正常运行。 注:本地安装 dotnetcore2.1 在工程中增加入口函数,使得该工程可在函数计算执行环境运行,diff dotnet publish -c Release, 跳转到publish目录, 将相关的静态资源/可写/共享目录移动到上述配置的 NAS 的某个目录(这里假设是 www目录, 对应步骤2中的diff) dotnet publish -c Release cp -r plugins/Common/bin/Release/netcoreapp2.1/publish/* src/App/bin/Release/netcoreapp2.1/publish/ src/App/bin/Release/netcoreapp2.1/publish/ mkdir lib // 选择函数计算执行环境所需要的so, 其他的删除即可 cp runtimes/linux-x64/native/libe_sqlite3.so ./lib // 这里是传送对应的静态文件和 app.db 到 nas 中, 详情看下面的描述 rm -rf wwwroot app.db runtimes zip -r code.zip * // 最后使用这个 code.zip 创建 handler 为 App::App.FcRemoteEntrypoint::HandleRequest 函数 将 publish 目录下的 wwwroot 和 app.db 传送到 nas 的 www 目录, 可以使用 ecs 挂载 nas 传输过去, 也可以采用如下简单函数传输过去 |-- index.py |-- www 注: www目录下面有 wwwroot 和 app.db index.py代码: -- coding: utf-8 -- import logging import os def handler(event, context): os.system("mkdir -p /mnt/share/www") os.system("cp -r /code/www/* /mnt/share/www/") os.system("chmod -R 777 /mnt/share/www") print( os.system("ls -ll /mnt/share/www") ) return 'ok' 基于上述代码创一个函数 move-res-nas , 执行函数,将相关静态和共享资源移动到 NAS 的/mnt/share/www/ 目录。 注:最新版本的 Fun 工具已经支持 NAS 相关操作, 有兴趣的同学可以使用 Fun 完成 NAS, VPC 的自动生成、配置以及网站工程文件上传到 NAS 创建入口函数 blog (使用上一步骤中的 code.zip ), 给函数设置 http trigger ,类型为 anonymous , 类型都选上。给函数入口配置自定义域名(操作过程请参考:绑定自定义域名示例), 具体配置假设如下: image 注意: 绑定自定义域名之后,不用使用控制台来进行调试,就只能使用浏览器来触发函数,日志服务来进行调试。 总结 函数计算有如下优势: 无需采购和管理服务器等基础设施 专注业务逻辑的开发 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发应用响应用户请求 毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力 按需付费。只需为实际使用的计算资源付费,适合有明显波峰波谷的用户访问场景 除了上面所列的优势,FC 可以做为 Web Backend,只需要编写一个函数实现传统 Web 服务器中的 conf 中的逻辑,就可以将一个完整的 Web 工程迁移到 FC ,从而从传统的 Web 网站运维,监控等繁琐的事务中解放出来。

1934890530796658 2020-03-27 17:30:59 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 37578 浏览量 回答数 11
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站