• 关于

    计算器业务实现

    的搜索结果

回答

本文简要介绍使用函数计算的流程。函数计算帮助您无需管理服务器(Serverless),仅专注于函数代码就能快速搭建应用。函数计算能够弹性地伸缩,您只需要按使用量付费。 开发者工具 您可以使用 fcli 或者控制台搭建服务和查询日志等。更多详情,请参阅 命令行工具fcli、命令行工具fun 和 可视化界面控制台。 使用简介 使用函数计算前,您需要在 产品详情页 开通服务。以下流程图包含了使用函数计算搭建服务的必要步骤: Flowchart 创建服务。 创建函数,编写代码,将应用部署到函数中。 以事件源触发函数。 查看执行日志。 查看服务的监控。 创建服务 服务(Service)是管理函数计算的基本资源单位。您可以在服务级别上授权、配置日志和创建函数等。 有关服务的更多信息请参阅 服务简介 。 有关服务操作的更多信息请参阅 服务的增删改查。 创建函数 函数(Function)是调度与运行的基本单位,更是一段代码的处理逻辑。您需要根据函数计算提供的函数接口形式编写代码,并将代码以函数的形式部署到函数计算。函数计算中的服务对应于软件应用架构领域中的微服务。在函数计算平台构建应用时,首先根据需求将业务逻辑抽象为微服务,然后再实现为函数计算中的服务。 一个服务下可以创建多个函数,每个函数可以设置不同的内存规格、环境变量等属性,并可以结合用户的实际业务场景来决定是否开启 Initializer 功能。这种服务或者函数层次化的抽象,在系统抽象和实现灵活度上能够取得很好的平衡。例如,实现一个微服务,调用阿里云语音合成服务,将文字转成语音,再把这段语音和一系列图片组合为视频。其中文字转语音函数是调用其他服务,可以设置很小的内存规格。而视频合成函数是计算密集型,需要更大的内存。因此您可以组合多个不同规格的函数实现微服务,优化成本。 有关函数的更多信息请参阅 函数简介。 有关函数操作的更多信息请参阅 函数的增删改查。 触发函数 函数计算支持事件触发,即当某个事件发生时触发函数的执行。例如配置 OSS 触发器后,当 OSS 对应 Bucket 中有对象新增或删除后都会触发函数的执行,方便您处理上传的对象。配置日志服务触发器,当日志服务对应 Logstore 中有新日志写入后可以触发函数的执行,方便您处理写入的日志。您需要设置触发器来设置事件触发的方式。 函数计算目前支持的触发器请参考 触发器列表 。 有关触发器的更多信息请参阅 触发器简介。 有关触发器操作的更多信息请参阅 触发器的增删改查。 如果不配置触发器,您也可以使用控制台、命令行工具 fcli 或者 SDK 等方式直接调用函数执行。 查看执行日志 查看日志是帮助您调试的一个重要环节。关于使用函数计算配置日志并查看日志,请参阅 函数日志。 查看服务监控 您可以在函数计算 控制台 上查看服务监控。 关于监控指标的更多信息,请参阅 监控指标参考手册。 关于监控数据访问的更多信息,请参阅 监控数据访问指南。

1934890530796658 2020-03-27 16:03:17 0 浏览量 回答数 0

回答

可以写一个触发器,a,b,c表的指定字段的变化触发一个计算送货金额并写入某张表的动作。但是实际业务实现不太建议这么做,更简单的做法是在代码中实现,凡是写入a,b,c表的代码都同时计算一个送货金额并写入其他表,如果要保证严格一致可以加上事务。

yu_hc200 2019-12-02 00:05:21 0 浏览量 回答数 0

问题

【参考架构】视频点播

穹桑 2019-12-01 21:24:40 9768 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

优势互补 云计算与虚拟化结合技术分析

hupan 2019-12-01 20:01:43 7935 浏览量 回答数 2

问题

淘宝Fourinone和Hadoop的完整对比 热:报错

kun坤 2020-06-07 20:34:57 1 浏览量 回答数 1

问题

云数据库 Memcache版的应用场景有哪些

云栖大讲堂 2019-12-01 21:30:29 1115 浏览量 回答数 0

问题

高性能计算有哪些功能

boxti 2019-12-01 21:49:12 1002 浏览量 回答数 0

问题

人脸大数据系统发展的趋势是什么?

dlieng 2019-12-01 19:36:27 998 浏览量 回答数 4

回答

工业大脑是基于阿里云大数据的一体化计算平台,通过数据工厂对企业系统数据、工厂设备数据、传感器数据、人员管理数据等多方工业企业数据进行汇集,借助语音交互、图像/视频识别、机器学习和人工智能算法,激活海量数据价值,为解决工业制作业的核心问题而打造的数据智能产品。阿里云工业大脑开放平台架构如下图所示。 工业大脑开放平台是集数据工厂、算法工厂、AI创作间以及应用工厂于一体的智能应用平台,各模块说明如下。 数据工厂:负责接入与管理来自不同渠道的数据。包括来自生产设备、仪器仪表、工业软件、图像、语音与视频的数据,甚至是来自外部的电商数据与天气数据都可被有序的、实时的纳入数据工厂管理。根据数据不同的特性与用途进行统一管理,确保数据的全量、干净、与标准,为各种业务应用提供统一标准的数据服务。 AI创作间:所见即所得的可视化业务编排工具,用户可以使用拖拉拽的方式构建制造型企业产线业务流程的物理模型,将设备数据映射到物理模型,实时监控物理设备的运行,且可基于业务数据字典、业务规则、行业引擎进行任意的组装,从而实现业务场景的人工智能建模,可形成对各类业务的预测、推荐、优化等一系列AI模型,作用于业务,完成数据智能应用闭环。 算法工厂:为算法提供各种工具上的支持,包括提供数据格式和数据接入的管理,支持接入多种计算平台的算法,对算法进行版本的管理、定义算法所能使用的数据范围、资源范围和场景等。 应用工厂:为用户提供一站式工业智能应用服务平台,涵盖工业特色的应用开发、部署、运维全生命周期能力。应用工厂通过可视化的应用搭建和应用模板提高应用开发和交付的效率,并通过图形化、3D渲染等数据展示方法提升业务人员的数据访问体验。

剑曼红尘 2020-03-24 11:20:28 0 浏览量 回答数 0

回答

实时计算提供整套开发工具辅助您进行开发测试工作,推荐流程如下:在数据开发页面进行SQL开发,使用SQL编辑器的DDL生成、SQL智能提示、语法检测等工具实现快速开发。在数据开发的在线调试功能,进行模拟容器调试。该调试过程不会影响线上代码和数据上下游存储。将发布调试完成的代码,到生产运维试运行。经过真实业务和数据验证后,该SQL作业进入生产状态。在数据开发页面修改代码,是不影响生产作业,直到您点击上线以后,同时重新启动生产运行的该作业,该代码才算做正式发布线上。

李博 bluemind 2019-12-02 01:42:38 0 浏览量 回答数 0

问题

2013年企业决策者聚焦云运营:开放式混合云大行其道

elainebo 2019-12-01 21:04:45 8691 浏览量 回答数 5

问题

数学之美:布隆过滤器 6月24日 【今日算法】

游客ih62co2qqq5ww 2020-06-25 11:44:02 1 浏览量 回答数 0

回答

Serverless 工作流本身没有提供定时触发工作流执行的功能,借助于函数计算 (FunctionCompute,简称 FC)的定时触器可以很方便的实现工作流定时调用。本文介绍如何使用 Serverless 工作流提供的定时触发工作流应用,来达到定时执行工作流的目的。 应用框架 定时触发工作流的执行流程如下: FC 定时触发器会定时执行 FC 函数。 FC 函数通过 Serverless 工作流 SDK 调用 StartExecution API 执行 Serverless 工作流。8b0732b23943d746 应用部署 创建定时触发工作流应用 在 Serverless 工作流应用中心 创建定时触发工作流应用。 81ade77a13121123 说明 应用名称:自定义的资源编排服务 ROS 资源栈名称,同一个账号下需保证唯一。 Cron 定时触发工作流的 Cron 表达式,参见 FC 定时触发器,默认为每分钟触发一次。 Input 触发执行工作流的输入,必须为 JSON 格式,默认为空。 部署成功后可看到应用创建的所有资源。de339104fa7aaff8其中包括: RAM 角色:fnf-timer-demo-serviceRole、fnf-timer-demo-flowRole。 FC 资源: 服务 fnf-timer-demo-service、函数 timer、函数 hello、定时触发器 trigger。 Serverless 工作流 资源:工作流 fnf-timer-demo-flow。 验证生效 前往 Serverless 工作流控制台可看到应用创建的工作流 fnf-timer-demo-flow 被定时触发 。17b3faa193bafe86示例工作流使用 任务步骤 调用 FC 函数 hello,定义如下。 version: v1 type: flow steps: - type: task name: hello resourceArn: 'acs:fc:::services/fnf-time-demo-service/functions/hello' 您可以修改该工作流的定义实现自身的业务逻辑。

1934890530796658 2020-03-27 10:52:42 0 浏览量 回答数 0

回答

函数计算是事件驱动的全托管计算服务。使用函数计算,您无需采购与管理服务器等基础设施,只需编写并上传代码。函数计算为您准备好计算资源,弹性地可靠地运行任务,并提供日志查询、性能监控和报警等功能。 借助函数计算,您可以快速构建任何类型的应用和服务,并且只需为任务实际消耗的资源付费。 工作流程 函数计算工作流程如下图所示: 数据流向 编号说明 ①. 开发者使用编程语言编写应用和服务。函数计算支持的开发语言请参考 开发语言列表。 ②. 开发者上传应用到函数计算。上传途径包括 函数计算控制台(推荐)、命令行工具 Fun(推荐)、API/SDK 以及 命令行工具 fcli。 ③. 触发函数执行。触发方式包括 OSS、API 网关、日志服务、表格存储以及函数计算 API/SDK 等。 ④. 动态扩容以响应请求。函数计算可以根据用户请求量自动扩容,该过程对您和您的用户均透明无感知。 ⑤. 根据函数的实际执行时间按量计费。函数执行结束后,可以通过账单来查看执行费用,收费粒度精确到 100 ms。更多详情,请参阅 计费方式。 集成服务 函数计算以事件驱动的方式连接其他服务。借助这些方式,您可以构建弹性的、可靠的以及安全的应用和服务,甚至在数天内就能完成一套多媒体数据处理后端服务。当事件源触发事件时,我们会自动调用关联的函数处理事件。例如,对象存储(OSS)在新对象创建 / 删除事件(ObjectCreated/ObjectRemoved)时会自动触发函数处理。或者 API 网关在收到 HTTP 请求时自动触发函数处理请求。此外,函数还可以由 日志服务 或者 表格存储 等其他阿里云服务触发。 函数计算支持的事件源类型请参考文章 触发器列表。 无服务器架构 假设您计划采购服务器开发一款短视频社交应用,那么您需要考虑很多的问题,例如: 如何构建和运维一套弹性的稳定的视频处理后端服务? 需要采购多少台服务器? 服务器采用什么规格? 如何配置网络和操作系统? 如何部署环境? 如何负载均衡? 如何动态伸缩? 如何升级配置? 如何应对服务器宕机? 如何应对用户请求峰值? 如何应对系统监控报警? …… 可喜的是,基础设施的云化,使您能快速调动和使用海量计算资源,无需担心如何短时间内获取合适规格的服务器。但当前云计算的抽象粒度大多在机器级别,要管理和使用这些计算资源仍然有不小的门槛和成本。阿里云函数计算为解决计算成本和效率问题而生,将计算服务的抽象粒度提高到了函数级别,打造无服务器概念的应用设计模式。 使用函数计算,你无需管理底层的基础设施,只需要将您的代码部署到函数计算,并以事件驱动的方式触发函数执行,服务就可以平稳运行。您无需再为环境部署、服务器扩容、服务器宕机等问题烦恼,函数计算提供弹性的扩容机制,并按量计费。此外,函数计算提供日志查询、性能监控和报警等功能,帮助您快速定位问题、排查故障。 产品优势 因此,函数计算主要具备以下优势: 您无需采购和管理服务器等基础设施,运维成本低。 您只需专注业务逻辑的开发,使用函数计算支持的 开发语言 设计、优化、测试、审核以及上传自己的应用代码。 以事件驱动的方式触发应用响应用户请求。与阿里云 对象存储OSS、API 网关、日志服务 和 表格存储 等服务无缝对接,帮助您快速构建应用。例如,通过 OSS 解决图片和视频的存储问题,当有新数据写入您的 OSS 资源时,自动触发函数处理数据。 提供日志查询、性能监控和报警等功能快速排查故障。 毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力。 按需付费,支持百毫秒级别收费。只需为实际使用的计算资源付费,适合有明显波峰波谷的用户访问场景。更多详情,请参阅 计费方式。 学习路径 您可以通过 函数计算学习路径图 快速了解产品,由浅入深学习使用和运维函数计算。

1934890530796658 2020-03-27 16:02:38 0 浏览量 回答数 0

回答

背景 目前有很多 web 应用是基于 express 框架写的,这样的 web 应用按照传统的部署方式可能部署在云主机上,用户可能不想购买云主机,也不想在运维上投入太多成本,函数计算是一个不错的选择,函数计算的入口方法如何适配 express 是一个相当复杂的问题,我们需要适配 http 触发器和 API 网关这两种类型的触发,但是这两种类型的函数方法签名是不一样的,我们需要分别做适配,比如 API 网关方式触发函数,需要把 event 映射到 express 的 request 对象上,而 express 的 response 对象需要映射到 callback 的数据参数上。具体细节可以参考另一篇文章:移植 express.js 应用到函数计算。 现在,我们提供了一个模板,通过该模板,可以快速将 express 项目接入函数计算,不管你的函数希望通过 http 触发器,还是 API 网关触发。并且,该模板还支持 es6 代码编译成 es5,并且剪切打包压缩成一个 js 文件。 快速开始 安装 node curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.5/install.sh | bash nvm install 8 安装 fun 工具 npm install @alicloud/fun -g fun 工具的某些子命令可能会用到 docker,所以你需要安装好 docker,具体参考文档:Fun 安装教程。 通过 fun 模板生成项目 fun init -n demo https://github.com/muxiangqiu/fc-express-nodejs8.git 项目生成好后,在根目录下有个 README.md 文件,阅读该文件可以帮你快速了解项目骨架为你做了什么,以及相关的命令。具体详情:README.md。 安装依赖 cd demo # 切换到项目根下面,后面的所有命令,都是在项目根下面执行 npm install 注意:有少数特殊 npm 模块的安装可能会依赖当前系统环境,为了能正确安装函数运行时的系统环境的 npm 模块,可以通过 fun install 命令来实现,比如 puppeteer,具体参考:开发函数计算的正确姿势 —— 安装第三方依赖。 编译 生产编译 npm run build 开发编译(这种编译方式不会进行代码混淆,并且生成 source map 信息,方便开发调试) npm run dev 本地运行函数 fun local start 运行调试函数 运行调试之前,请先用 npm run dev 命令编译源码,然后以调试的方式运行函数: fun local start -d 3000 如下图所示:debug_fc_http 部署函数到云端 部署函数的时候需要用到 AK 等下信息,可以通过 fun config 来配置,如果配置过请忽略,部署函数命令如下: fun deploy 小结 通过该模板,我们可以快速让 express 在函数计算上运行起来,你的原生请求的 headers 或者 body 都会透传给你的 express 应用,你不用关心是如何透传过去的,这些对你来说都是透明的,你只需要按照 express 标准方式写你的业务代码即可。如果你想要了解更多底层实现原理,可以参考另一篇文章:移植 express.js 应用到函数计算。

1934890530796658 2020-03-27 17:34:49 0 浏览量 回答数 0

问题

客户案例分享——云络科技

申木 2019-12-01 21:49:30 9891 浏览量 回答数 1

回答

前言 随着计算机技术和 Internet 的日新月异,视频点播技术因其良好的人机交互性和流媒体传输技术倍受教育、娱乐等行业青睐,而在当前, 云计算平台厂商的产品线不断成熟完善, 如果想要搭建视频点播类应用,告别刀耕火种, 直接上云会扫清硬件采购、 技术等各种障碍,以阿里云为例: image 这是一个非常典型的解决方案, 对象存储 OSS 可以支持海量视频存储,采集上传的视频被转码以适配各种终端,CDN 加速终端设备播放视频的速度。此外还有一些内容安全审查需求, 比如鉴黄、鉴恐等。 而在视频点播解决方案中, 视频转码是最消耗计算力的一个子系统,虽然您可以使用云上专门的转码服务,但在很多情况下,您会选择自己搭建转码服务。比如: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? 您有并发处理大量视频的需求。 您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF。后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF、获取视频或者音频的时长,自己搭建成本更低。 各种格式的音频转换或者各种采样率自定义、音频降噪等功能 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将它们再迁移到 OSS 上。 如果您的视频处理系统有上述需求,或者您期望实现一个 弹性、高可用、低成本、免运维、灵活支持任意处理逻辑 的视频处理系统,那么本文则是您期待的最佳实践方案。 Serverless 自定义音视频处理 在介绍具体方案之前, 先介绍两款产品: 函数计算 :阿里云函数计算是事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询、性能监控、报警等功能。 函数工作流:函数工作流(Function Flow,以下简称 FnF)是一个用来协调多个分布式任务执行的全托管云服务。您可以用顺序,分支,并行等方式来编排分布式任务,FnF 会按照设定好的步骤可靠地协调任务执行,跟踪每个任务的状态转换,并在必要时执行用户定义的重试逻辑,以确保工作流顺利完成。 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 函数计算可靠的执行任意逻辑, 逻辑可以是利用 FFmpeg 对视频任何处理操作, 也可以更新视频 meta 数据到数据库等。函数工作流对相应的函数进行编排, 比如第一步的函数是转码, 第二步的函数是转码成功后,将相应 meta 数据库写入数据库等。 至此,您应该初步理解了函数计算的自定义处理能力 + 函数工作流编排能力几乎满足您任何自定义处理的需求,接下来,本文以一个具体的示例展示基于函数计算和函数工作流打造的一个弹性高可用的 Serverless 视频处理系统,并与传统方案进行性能、成本和工程效率的对比。 Simple 视频处理系统 假设您是对视频进行单纯的处理, 架构方案图如下: image 如上图所示, 用户上传一个视频到 OSS, OSS 触发器自动触发函数执行, 函数调用 FFmpeg 进行视频转码, 并且将转码后的视频保存回 OSS。 OSS 事件触发器, 阿里云对象存储和函数计算无缝集成。您可以为各种类型的事件设置处理函数,当 OSS 系统捕获到指定类型的事件后,会自动调用函数处理。例如,您可以设置函数来处理 PutObject 事件,当您调用 OSS PutObject API 上传视频到 OSS 后,相关联的函数会自动触发来处理该视频。 Simple 视频处理系统示例工程地址 强大的监控系统: 您可以直接基于示例工程部署您的 Simple 音视频处理系统服务, 但是当您想要处理超大视频(比如 test_huge.mov ) 或者对小视频进行多种组合操作的时候, 您会发现函数会执行失败,原因是函数计算的执行环境有最大执行时间为 10 分钟的限制,如果最大的 10 分钟不能满足您的需求, 您可以选择: 对视频进行分片 -> 转码 -> 合成处理, 详情参考:fc-fnf-video-processing, 下文会详细介绍; 联系函数计算团队(钉钉群号: 11721331) 或者提工单: 适当放宽执行时长限制; 申请使用更高的函数内存 12G(8vCPU) 为了突破函数计算执行环境的限制(或者说加快大视频的转码速度), 进行各种复杂的组合操作, 此时引入函数工作流 FnF 去编排函数实现一个功能强大的视频处理工作流系统是一个很好的方案。 视频处理工作流系统 image 如上图所示, 假设用户上传一个 mov 格式的视频到 OSS,OSS 触发器自动触发函数执行, 函数调用 FnF,会同时进行 1 种或者多种格式的转码(由您触发的函数环境变量DST_FORMATS 参数控制)。 所以您可以实现如下需求: 一个视频文件可以同时被转码成各种格式以及其他各种自定义处理,比如增加水印处理或者在 after-process 更新信息到数据库等。 当有多个文件同时上传到 OSS,函数计算会自动伸缩, 并行处理多个文件, 同时每次文件转码成多种格式也是并行。 结合 NAS + 视频切片, 可以解决超大视频(大于 3G )的转码, 对于每一个视频,先进行切片处理,然后并行转码切片,最后合成,通过设置合理的切片时间,可以大大加速较大视频的转码速度。 所谓的视频切片,是将视频流按指定的时间间隔,切分成一系列分片文件,并生成一个索引文件记录分片文件的信息 视频处理工作流系统示例工程地址 示例效果: gif 函数计算 + 函数工作流 Serverless 方案 VS 传统方案 卓越的工程效率 自建服务 函数计算 + 函数工作流 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 并行&分布式视频处理 需要很强的开发能力和完善的监控系统来保证稳定性 通过 FnF 资源编排即可实现多个视频的并行处理以及单个大视频的分布式处理,稳定性和监控交由云平台 学习上手成本 除了编程语言开发能力和熟悉 FFmpeg 以外,可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码和熟悉 FFmpeg 使用即可 项目上线周期 在具体业务逻辑外耗费大量的时间和人力成本,保守估计大约 30 人天,包括硬件采购、软件和环境配置、系统开发、测试、监控报警、灰度发布系统等 预计 3 人天, 开发调试(2人天)+ 压测观察(1 人天) 弹性伸缩免运维,性能优异 自建服务 函数计算 + 函数工作流 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维,视频处理工作流系统 (FnF + FC) 压测;性能优异, 详情见下面的转码性能表 监控报警查询 ECS 或者容器级别的 metrics 提供更细粒度的 FnF 流程执行以及函数执行情况, 同时可以查询每次函数执行的 latency 和日志等, 更加完善的报警监控机制 函数计算 + 函数工作流 Serverless 方案转码性能表 实验视频为是 89s 的 mov 文件 4K 视频: 4K.mov,云服务进行 mov -> mp4 普通转码需要消耗的时间为 188s, 将这个参考时间记为 T 视频切片时间 FC转码耗时 性能加速百分比 45s 160s 117.5% 25s 100s 188% 15s 70s 268.6% 10s 45s 417.8% 5s 35s 537.1% 性能加速百分比 = T / FC转码耗时 从上表可以看出,设置的视频切片时间越短, 视频转码时间越短, 函数计算可以自动瞬时调度出更多的计算资源来一起完成这个视频的转码, 转码性能优异。 更低的成本 具有明显波峰波谷的视频处理场景(比如只有部分时间段有视频处理请求,其他时间很少甚至没有视频处理请求),选择按需付费,只需为实际使用的计算资源付费。 没有明显波峰波谷的视频处理场景,可以使用预付费(包年包月),成本仍然具有竞争力。 函数计算成本优化最佳实践文档。 假设有一个基于 ECS 搭建的视频转码服务,由于是 CPU 密集型计算, 因此在这里将平均 CPU 利用率作为核心参考指标对评估成本,以一个月为周期,10 台 C5 ECS 的总计算力为例, 总的计算量约为 30% 场景下, 两个解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元 函数计算按量付费占整个计算量的占比 <= 10%,费用约为 3×864×10% = 259.2 元,(3G 规格的函数满负载跑满一个月费用为:0.00011108×3×30×24×3600 = 863.8,详情查看计费) ITEM 平均CPU利用率 计算费用 总计 函数计算组合付费 >=80% 998(246.27×3+259.2) <= 998 按峰值预留ECS <=30% 2190(10*219) >=2190 在这个模型预估里面,可以看出 FC 方案具有很强的成本竞争力,在实际场景中, 基于 ECS 自建的视频转码服务 CPU 利用甚至很难达到 20%, 理由如下: 可能只有部分时间段有视频转码请求 为了用户体验,视频转码速度有一定的要求,可能一个视频转码就需要 10 台 ECS 并行处理来转码, 因此只能预备很多 ECS 因此,在实际场景中, FC 在视频处理上的成本竞争力远强于上述模型。 即使和云厂商视频转码服务单价 PK, 该方案仍有很强的成本竞争力 我们这边选用点播视频中最常用的两个格式(mp4、flv)之间进行相互转换,经实验验证, 函数内存设置为3G,基于该方案从 mp4 转码为 flv 的费用概览表: 实验视频为是 89s 的 mp4 和 flv 格式的文件视频, 测试视频地址: 480P.mp4 720P.mp4 1080P.mp4 4K.mp4 480P.flv 720P.flv 1080P.flv 4K.flv 测试命令: ffmpeg -i test.flv test.mp4 和 ffmpeg -i test.flv test.mp4 mp4 转 flv: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 889 kb/s 24 11.2s 0.003732288 0.032 88.3% 高清 1280720 1963 kb/s 24 20.5s 0.00683142 0.065 89.5% 超清 19201080 3689 kb/s 24 40s 0.0133296 0.126 89.4% 4K 38402160 11185 kb/s 24 142s 0.04732008 0.556 91.5% flv 转 mp4: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 712 kb/s 24 34.5s 0.01149678 0.032 64.1% 高清 1280720 1806 kb/s 24 100.3s 0.033424 0.065 48.6% 超清 19201080 3911 kb/s 24 226.4s 0.0754455 0.126 40.1% 4K 38402160 15109 kb/s 24 912s 0.30391488 0.556 45.3% 成本下降百分比 = (某云视频处理费用 - FC 转码费用)/ 云视频处理费用 某云视频处理,计费使用普通转码,转码时长不足一分钟,按照一分钟计算,这里计费采用的是 2 min,即使采用 1.5 min 计算, 成本下降百分比基本在10%以内浮动 从上表可以看出, 基于函数计算 + 函数工作流的方案在计算资源成本上对于计算复杂度较高的 flv 转 mp4 还是计算复杂度较低的 mp4 转 flv, 都具有很强的成本竞争力。 根据实际经验, 往往成本下降比上表列出来的更加明显, 理由如下: 测试视频的码率较高, 实际上很多场景绝大部分都是标清或者流畅视频的转码场景, 码率也比测试视频低,这个时候计算量变小, FC 执行时间短, 费用会降低, 但是通用的云转码服务计费是不变的. 很多视频分辨率在通用的云转码服务是计费是有很大损失的, 比如转码的视频是 856480 或者 1368768, 都会进入云转码服务的下一档计费单价, 比如856480 进入 1280720 高清转码计费档,1368768 进入 19201080 超清转码计费档, 单价基本是跨越式上升, 但是实际真正的计算量增加可能还不到30%, 而函数计算则是真正能做到按计算量付费. 操作部署 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 详情见各自示例工程的 README Simple 视频处理系统示例工程地址 视频处理工作流系统示例工程地址 总结 基于函数计算 FC 和函数工作流 FnF 的弹性高可用视频处理系统天然继承了这两个产品的优点: 无需采购和管理服务器等基础设施,只需专注视频处理业务逻辑的开发,大幅缩短项目交付时间和人力成本 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发响应用户请求 免运维,毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,性能优异 成本极具竞争力 相比于通用的转码处理服务: 超强自定义,对用户透明, 基于 FFmpeg 或者其他音视频处理工具命令快速开发相应的音视频处理逻辑 原有基于 FFmpeg 自建的音视频处理服务可以一键迁移 弹性更强, 可以保证有充足的计算资源为转码服务,比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完 各种格式的音频转换或者各种采样率自定义、音频降噪等功能, 比如专业音频处理工具 aacgain 和 mp3gain 可以和 serverless 工作流完成更加复杂、自定义的任务编排,比如视频转码完成后,记录转码详情到数据库,同时自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力 更多的方式的事件驱动, 比如可以选择 OSS 自动触发(丰富的触发规则), 也可以根据业务选择 MNS 消息(支持 tag 过滤)触发 在大部分场景下具有很强的成本竞争力相比于其他自建服务: 毫秒级弹性伸缩,弹性能力超强,支持大规模资源调用,可弹性支持几万核.小时的计算力,比如 1 万节课半个小时完成转码 只需要专注业务逻辑代码即可,原生自带事件驱动模式,简化开发编程模型,同时可以达到消息(即音视频任务)处理的优先级,可大大提高开发运维效率 函数计算采用 3AZ 部署, 安全性高,计算资源也是多 AZ 获取, 能保证每个用户需要的算力峰值 开箱即用的监控系统, 如上面 gif 动图所示,可以多维度监控函数的执行情况,根据监控快速定位问题,同时给用户提供分析能力, 比如视频的格式分布, size 分布等 在大部分场景下具有很强的成本竞争力, 因为在函数计算是真正的按量付费(计费粒度在百毫秒), 可以理解为 CPU 的利用率为 100% 最后一一回答一下之前列出的问题: Q1: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? A: 如工程示例所示,在虚拟机/容器平台上基于 FFmpeg 的服务可以轻松切换到函数计算, FFmpeg 相关命令可以直接移值到函数计算,改造成本较低, 同时天然继承了函数计算弹性高可用性特性。 Q2:您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF 等。 自己搭建成本更低。 A: 函数计算天生就是解决这些自定义问题, 你的代码你做主, 代码中快速执行几个 FFmpeg 的命令即可完成需求。典型示例: fc-oss-ffmpeg Q3: 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案),after-process 中可以做一些自定义的操作, 您还可以基于此流程再做一些额外处理等, 比如: 再增加后续流程 最开始增加 pre-process Q4: 您有并发同时处理大量视频的需求。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), 当有多个文件同时上传到 OSS, 函数计算会自动伸缩, 并行处理多个文件。详情可以参考 视频处理工作流系统 (FnF + FC) 压测 Q5:您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。A: 详情可以参考视频处理工作流系统 (FnF + FC) 压测, 可以通过控制分片的大小, 可以使得每个大视频都有足够多的计算资源参与转码计算, 大大提高转码速度。 Q6: 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF,后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), FnF 只负责编排调用函数, 因此只需要更新相应的处理函数即可,同时函数有 version 和 alias 功能, 更好地控制灰度上线, 函数计算版本管理 Q7: 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将他们再迁移到 OSS 上。 A: 函数计算可以挂载 NAS, 直接对 NAS 中的文件进行处理

1934890530796658 2020-03-27 18:21:36 0 浏览量 回答数 0

问题

统一通信与SaaS OA的紧密集成

cserversoft 2019-12-01 20:12:51 7696 浏览量 回答数 1

问题

我们如何创建一个表约束,将一列限制为x个相同值?

祖安文状元 2020-01-05 14:06:22 0 浏览量 回答数 1

回答

前言 这篇文章适合所有的 C# 开发新手、老鸟以及想准备学习开发 C# 的程序猿。.NET Core是一个开源通用的开发框架,支持跨平台, 阿里云函数计算推出了 dotnetcore2.1 runtime, 使用 C# 编写 serverless 函数, 详情见官方文档:C# 函数入口. 在官方文档描述中,我们获知阿里云函数计算可以很好支持 asp.net core 的 Applicaiton: ASP.NET Core Web API ASP.NET Core Web App ASP.NET Core Web App (Model-View-Controller) 在介绍 Serverless Web 开发新模式之前,我们先了解下将 C# WebApi/WebApp Serverless 化的好处: 无需采购和管理服务器等基础设施 弹性伸缩,动态扩容 免运维, 极大降低人力成本 按需付费,财务成本低 本文以部署一个完善的 asp.net core 工程 Blogifier 为例,在函数计算环境中为例,向您讲解如何使用阿里云函数计算快速构建或移植基于 asp.net core 开发的 WebApi/WebApp ,通过本文,您将会了解以下内容: 案例概览 传统服务器架构 VS Serverless架构 Serverless架构详解 函数计算运行 Asp.net core App 原理 案例开发配置步骤 案例概览 在本教程中,我们讲解如何利用函数计算一步一步来构建 Web 的 Server 端,该案例是把一个 asp.net core 工程Blogifier 部署到函数计算,本文旨在展示函数计算做 Web Backend 能力,具体表现为以下几点: 完善的 ASP.NET Core Web 系统迁移到 FC 的成本不高 FC 打通了专有网络 VPC 功能,用户的函数可以配置访问专有网络的云资源,比如本案例中 NAS 案例体验入口: http://dotnet.mofangdegisn.cn/ https://dotnet.mofangdegisn.cn/ 传统服务器架构 VS Serverless架构 正常来说,用户开发 Server 端服务,常常面临开发效率,运维成本高,机器资源弹性伸缩等痛点,而使用 Serverless 架构可以很好的解决上述问题。下面是传统架构和 Serverless 架构的对比: image 阿里云函数计算是一个事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询,性能监控,报警等功能。借助于函数计算,您可以快速构建任何类型的应用和服务,无需管理和运维。 Serverless 架构详解 image.png 从上面的示例图中,整体架构十分简单明了, 用 FC 替代了 Web 服务器,但是换来的是免运维,弹性扩容,按需付费等一系列优点 函数计算运行 Asp.net Core App 原理 Asp.net Core App 运行在服务器上 image A http request to your website will go through IIS/Nginx, then Kestrel, and finally will be passed on to ASP.NET Core Asp.net Core App 运行在函数计算上 image 请求通过函数(with http trigger), 最后到达ASP.NET Core tips: 基于函数计算环境运行新建 asp.net core app 可以参考dotnet runtime HTTP 触发器的函数入口示例 在本文中,我们展示把一个现有的成熟的 asp.net core 工程低成本无缝迁移到函数计算环境。 案例开发配置步骤 准备工作 1. 创建 NAS 挂接点,配置 VPC , 具体参考函数计算nas使用示例 注:在本示例中使用 sqlite3 数据库,这种文件类型的数据库直接放置在 nas 即可,如果使用 mysql 等其他数据库, 需要创建 RDS 数据库, 配置 VPC , 具体参考通过 VPC 访问 RDS 实例 可选操作,在准备函数的 region 创建日志,用于函数的调试, 具体参考函数计算配置日志服务 创建函数 创建 Service (假设是 csharp-web), 配置准备 vpc config , nas config 和日志服务,比如案例体验的 Service 配置如下图: image 下载 asp.net core 工程,Blogifier, 用 vs 打开, debug 本地可以正常运行。 注:本地安装 dotnetcore2.1 在工程中增加入口函数,使得该工程可在函数计算执行环境运行,diff dotnet publish -c Release, 跳转到publish目录, 将相关的静态资源/可写/共享目录移动到上述配置的 NAS 的某个目录(这里假设是 www目录, 对应步骤2中的diff) dotnet publish -c Release cp -r plugins/Common/bin/Release/netcoreapp2.1/publish/* src/App/bin/Release/netcoreapp2.1/publish/ src/App/bin/Release/netcoreapp2.1/publish/ mkdir lib // 选择函数计算执行环境所需要的so, 其他的删除即可 cp runtimes/linux-x64/native/libe_sqlite3.so ./lib // 这里是传送对应的静态文件和 app.db 到 nas 中, 详情看下面的描述 rm -rf wwwroot app.db runtimes zip -r code.zip * // 最后使用这个 code.zip 创建 handler 为 App::App.FcRemoteEntrypoint::HandleRequest 函数 将 publish 目录下的 wwwroot 和 app.db 传送到 nas 的 www 目录, 可以使用 ecs 挂载 nas 传输过去, 也可以采用如下简单函数传输过去 |-- index.py |-- www 注: www目录下面有 wwwroot 和 app.db index.py代码: -- coding: utf-8 -- import logging import os def handler(event, context): os.system("mkdir -p /mnt/share/www") os.system("cp -r /code/www/* /mnt/share/www/") os.system("chmod -R 777 /mnt/share/www") print( os.system("ls -ll /mnt/share/www") ) return 'ok' 基于上述代码创一个函数 move-res-nas , 执行函数,将相关静态和共享资源移动到 NAS 的/mnt/share/www/ 目录。 注:最新版本的 Fun 工具已经支持 NAS 相关操作, 有兴趣的同学可以使用 Fun 完成 NAS, VPC 的自动生成、配置以及网站工程文件上传到 NAS 创建入口函数 blog (使用上一步骤中的 code.zip ), 给函数设置 http trigger ,类型为 anonymous , 类型都选上。给函数入口配置自定义域名(操作过程请参考:绑定自定义域名示例), 具体配置假设如下: image 注意: 绑定自定义域名之后,不用使用控制台来进行调试,就只能使用浏览器来触发函数,日志服务来进行调试。 总结 函数计算有如下优势: 无需采购和管理服务器等基础设施 专注业务逻辑的开发 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发应用响应用户请求 毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力 按需付费。只需为实际使用的计算资源付费,适合有明显波峰波谷的用户访问场景 除了上面所列的优势,FC 可以做为 Web Backend,只需要编写一个函数实现传统 Web 服务器中的 conf 中的逻辑,就可以将一个完整的 Web 工程迁移到 FC ,从而从传统的 Web 网站运维,监控等繁琐的事务中解放出来。

1934890530796658 2020-03-27 17:30:59 0 浏览量 回答数 0

问题

让云计算真正省钱,解决云存储架构九个问题让云计算真正省钱

hamtyb 2019-12-01 20:27:33 11001 浏览量 回答数 4

问题

阿里技术架构简览

叔至 2019-12-01 22:05:15 18489 浏览量 回答数 5

回答

前言概述 本文介绍了使用函数计算部署深度学习 AI 推理的最佳实践, 其中包括使用 FUN 工具一键部署安装第三方依赖、一键部署、本地调试以及压测评估, 全方位展现函数计算的开发敏捷特性、自动弹性伸缩能力、免运维和完善的监控设施。 1.1 DEMO 概述 image 通过上传一个猫或者狗的照片, 识别出这个照片里面的动物是猫还是狗 DEMO 示例效果入口: http://sz.mofangdegisn.cn DEMO 示例工程地址: https://github.com/awesome-fc/cat-dog-classify 开通服务 免费开通函数计算, 按量付费,函数计算有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 1.2 解决方案 image 如上图所示, 当多个用户通过对外提供的 url 访问推理服务时候,每秒的请求几百上千都没有关系, 函数计算平台会自动伸缩, 提供足够的执行实例来响应用户的请求, 同时函数计算提供了完善的监控设施来监控您的函数运行情况。 1.3. Serverless 方案与传统自建服务方案对比 1.3.1 卓越的工程效率 自建服务 函数计算 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 学习上手成本 可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码即可 1.3.2 弹性伸缩免运维 自建服务 函数计算 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维 监控报警查询 ECS 级别的 metrics 提供更细粒度的函数执行情况,每次访问函数执行的 latency 和日志等, 更加完善的报警监控机制 1.3.3 更低的成本 函数计算 (FC) 固有自动伸缩和负载均衡功能,用户不需要购买负载均衡 (SLB) 和弹性伸缩。 具有明显波峰波谷的用户访问场景(比如只有部分时间段有请求,其他时间甚至没有请求),选择按需付费,只需为实际使用的计算资源付费。 对于明显波峰波谷或者稀疏调用具有低成本优势, 同时还保持了弹性能力,以后业务规模做大以后并没有技术切换成本,同时财务成本增长配合预付费也能保持平滑。 部分请求持续平稳的场景下,可以配合预付费解决按需付费较高单价问题。函数计算成本优化最佳实践文档。 假设有一个在线计算服务,由于是CPU 密集型计算, 因此在这里我们将平均 CPU 利用率作为核心参考指标对成本,以一个月为周期,10台 C5 ECS 的总计算力为例,总的计算量约为 30% 场景下, 各解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元,按量: 446.4 元 包月10 Mbps 的 SLB: 526.52 元(这里做了一定的流量假设), 弹性伸缩免费 饱和使用下,函数计算按量付费的一台机器成本约为按量付费 C5 ECS 的2 倍 平均CPU使用率 计算费用 SLB 总计 函数计算组合付费 >=80% 738+X(246.273+X) 无 <= 738+X 按峰值预留ECS <=30% 2190(10219) 526.52 >=2716.52 弹性伸缩延迟敏感 <=50% 1314(102193/5) 526.52 >= 1840.52 弹性伸缩成本敏感 <=70% 938.57 (102193/7) 526.52 >= 1465.09 注: 这里假设函数逻辑没有公网下行流量费用, 即使有也是一致的, 这里成本比较暂不参与 延时敏感,当 CPU 利用率大于等于 50% 就需要开始进行扩容,不然更来不及应对峰值 成本敏感,当 CPU 利用率大约 80% 即开始进行扩容, 能容受一定几率的超时或者5XX 上表中, 其中函数计算组合付费中的 X 为按需付费的成本价,假设按需付费的计算量占整个计算量的 10%,假设 CPU 利用率为100%, 对应上表,那么需要 3 台 ECS 的计算能力即可。因此 FC 按量付费的成本 X = 3 ️ 446.4 ️ 10% ️ 2 = 267.84 ( FC 按量付费是按量 ECS 的2倍),这个时候函数计算组合付费总计 1005.8 元。 在这个模型预估里面, 只要 FC 按量付费占整个计算量小于 20%, 即使不考虑 SLB, 单纯考虑计算成本, 都是有一定优势的。 1.3.4. 小结 基于函数计算进行 AI 推理等 CPU 密集型的主要优势: 上手简单, 只专注业务逻辑开发, 极大提高工程开发效率。 自建方案有太多学习和配置成本,如针对不同场景,ESS 需要做各种不同的参数配置 系统环境的维护升级等 免运维,函数执行级别粒度的监控和告警。 毫秒级弹性扩容,保证弹性高可用,同时能覆盖延迟敏感和成本敏感类型。 在 CPU 密集型的计算场景下, 通过设置合理的组合计费模式, 在如下场景中具有成本优势: 请求访问具有明显波峰波谷, 其他时间甚至没有请求 有一定稳定的负载请求, 但是有部分时间段请求量突变剧烈 打包代码ZIP包和部署函数 FUN 操作简明视频教程 开通服务 免费开通函数计算, 按量付费,函数计算有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 2.1 安装第三方包到本地并上传到NAS 2.1.1 安装最新的Fun 安装版本为8.x 最新版或者10.x 、12.x nodejs 安装 funcraf 2.1.2 Clone 工程 & Fun 一键安装第三方库到本地 git clone https://github.com/awesome-fc/cat-dog-classify.git 复制 .env_example 文件为 .env, 并且修改 .env 中的信息为自己的信息 执行 fun install -v, fun 会根据 Funfile 中定义的逻辑安装相关的依赖包 image root@66fb3ad27a4c: ls .fun/nas/auto-default/classify model python root@66fb3ad27a4c: du -sm .fun 697 .fun 根据 Funfile 的定义: 将第三方库下载到 .fun/nas/auto-default/classify/python 目录下 本地 model 目录移到 .fun/nas/auto-default/model 目录下 安装完成后,从这里我们看出, 函数计算引用的代码包解压之后已经达到了 670 M, 远超过 50M 代码包限制, 解决方案是 NAS 详情可以参考: 挂载NAS访问,幸运的是 FUN 工具一键解决了 nas 的配置和文件上传问题。 2.1.3. 将下载的依赖的第三方代码包上传到 NAS fun nas init fun nas info fun nas sync fun nas ls nas://classify:/mnt/auto/ 依次执行这些命令,就将本地中的 .fun/nas/auto-default 中的第三方代码包和模型文件传到 NAS 中, 依次看下这几个命令的做了什么事情: fun nas init: 初始化 NAS, 基于您的 .env 中的信息获取(已有满足条件的nas)或创建一个同region可用的nas fun nas info: 可以查看本地 NAS 的目录位置, 对于此工程是 $(pwd)/.fun/nas/auto-default/classify fun nas sync: 将本地 NAS 中的内容(.fun/nas/auto-default/classify)上传到 NAS 中的 classify 目录 fun nas ls nas:///mnt/auto/: 查看我们是否已经正确将文件上传到了 NAS 登录 NAS 控制台 https://nas.console.aliyun.com 和 VPC 控制台 https://vpc.console.aliyun.com可以观察到在指定的 region 上有 NAS 和相应的 vpc 创建成功 2.2 本地调试函数 在 template.yml 中, 指定了这个函数是 http 类型的函数, 所以根据 fun 的提示: Tips for next step Invoke Event Function: fun local invokeInvoke Http Function: fun local startBuild Http Function: fun buildDeploy Resources: fun deploy 执行 fun local start, 本地就会启动一个 http server 来模拟函数的执行, 然后我们 client 端可以使用 postman, curl 或者浏览器, 比如对于本例: image image 2.3 部署函数到FC平台 本地调试OK 后,我们接下来将函数部署到云平台: 修改 template.yml LogConfig 中的 Project, 任意取一个不会重复的名字即可,有两处地方需要更改,然后执行 fun deploy 注意: template.yml 注释的部分为自定义域名的配置, 如果想在 fun deploy 中完成这个部署工作: 先去域名解析, 比如在示例中, 将域名 sz.mofangdegisn.cn 解析到 123456.cn-hangzhou.fc.aliyuncs.com, 对应的域名、accountId 和 region 修改成自己的 去掉 template.yml 中的注释, 修改成自己的域名 执行 fun deploy 这个时候如果没有自定义域名, 直接通过浏览器访问http trigger 的url, 比如 https://123456.cn-shenzhen.fc.aliyuncs.com/2016-08-15/proxy/classify/cat-dog/ 会被强制下载. 原因:https://help.aliyun.com/knowledge_detail/56103.html#HTTP-Trigger-compulsory-header image 登录控制台https://fc.console.aliyun.com,可以看到service 和函数已经创建成功,并且 service 也已经正确配置。 image 在这里,我们发现第一次打开页面访问函数的时候,执行环境实例冷启动时间非常长, 如果是一个在线AI推理服务,对响应时间非常敏感,冷启动引起的毛刺对于这种类型的服务是不可接受的,接下来,本文讲解如何利用函数计算的预留模式来消除冷启动带来的负面影响。 使用预留模式消除冷启动毛刺 函数计算具有动态伸缩的特性, 根据并发请求量,自动弹性扩容出执行环境来执行环境,在这个典型的深度学习示例中,import keras 消耗的时间很长 , 在我们设置的 1 G 规格的函数中, 并发访问的时候耗时10s左右, 有时甚至20s+ start = time.time() from keras.models import model_from_json print("import keras time = ", time.time()-start) 3.1 函数计算设置预留 预留操作简明视频教程 在 FC 控制台,发布版本,并且基于该版本创建别名 prod,并且基于别名 prod 设置预留, 操作过程请参考:https://help.aliyun.com/document_detail/138103.html 将该函数的 http trigger 和自定义域名的设置执行 prod 版本 image image 一次压测结果 imageimage 从上面图中我们可以看出,当函数执行的请求到来时,优先被调度到预留的实例中被执行, 这个时候是没有冷启动的,所以请求是没有毛刺的, 后面随着测试的压力不断增大(峰值TPS 达到 1184), 预留的实例不能满足调用函数的请求, 这个时候函数计算就自动进行按需扩容实例供函数执行,此时的调用就有冷启动的过程, 从上面我们可以看出,函数的最大 latency 时间甚至达到了 32s,如果这个web AP是延时敏感的,这个 latency 是不可接受的。 总结 函数计算具有快速自动伸缩扩容能力 预留模式很好地解决了冷启动中的毛刺问题 开发简单易上手,只需要关注具体的代码逻辑, Fun 工具助您一键式部署运用 函数计算具有很好监控设施, 您可以可视化观察您函数运行情况, 执行时间、内存等信息

1934890530796658 2020-03-27 18:21:48 0 浏览量 回答数 0

问题

终于开始没日没夜加班了,可是笑不出来了。。。啊哈哈哈哈哈哈 400 请求报错 

kun坤 2020-05-30 14:23:06 0 浏览量 回答数 1

问题

oss前端CORS跨域问题

火雾宗师 2019-12-01 21:08:33 15892 浏览量 回答数 7

问题

开课吧携手OneAPM:在线教育如何应对千万级用户的挑战?

sunny夏筱 2019-12-01 22:07:12 9951 浏览量 回答数 2

回答

你如果用过Windows Azure,就应该明白这次阿里推出的本地(临时)SSD盘的意义了。 此次的本地SSD盘,应该是为了解决应用场景中中需要高IO能力,但是可靠性不高的应用所准备的。比如存放/调用缓存文件这些,不重要但是对IO,对小文件读取比较频繁。 阿里未来应该会推出SSD Based云硬盘,这样就能和目前的机械云硬盘拥有一样的可靠性,还有高IO需求了。 ------------------------- 回 2楼(谢宁松) 的帖子 如果到时候SSD的云硬盘是普通云硬盘的价格的双倍甚至几倍,你会买吗? ------------------------- 回 4楼(谢宁松) 的帖子 云计算这个概念很火,想要达到100%的可用性,不是说搞一个共享存储弄个三份副本就能办成的,而且万一共享存储宕机了呢?风险岂不是更大? 所以光靠物理层进行冗余,显然是不可靠的,云计算要想做到100%的uptime,肯定要在应用层做冗余(微软云,Linode,DO这些厂商虚拟机实例宕机事件也比较频发) 应用层做冗余,大部分的思路就是将应用部署在不同的的可用区(不同的物理机和不同机房的物理机)中,实现地理冗余,灾备。就拿网站来讲,通过负载均衡器,将流量均衡或者按照权值分流给各个后端的web服务器,WEB服务器再和云数据库,云存储服务器等进行配合,从而接近100%的可用性。 西部数码对于“真云”的定义显然是肤浅的,云计算其实是软硬件的融合,而且云计算的业务场景不仅仅是虚拟机/服务器,还有很多应用场景比如:将企业的私有云和公有云通过VPN进行融合,大数据分析,云端渲染等。

high飞起 2019-12-02 01:20:45 0 浏览量 回答数 0

问题

开课吧携手 OneAPM:在线教育如何应对千万级用户的挑战?

doudou1 2019-12-01 21:20:28 10472 浏览量 回答数 0

回答

Apsara SA混合云存储阵列,助力企业数字化转型 随着云计算技术的普及,越来越多的企业开始选择了部署云计算方案,公共云的灵活性,易用性和可靠性也被大家广泛认可。但也有很多企业对传统存储阵列的依赖度很高,在短期内完全迁移到云端会有诸多的挑战,可能会涉及到系统的重新构建或者应用程序的开发,对客户来说改动量很大,也会面临不小的风险。同时还有很多客户对敏感数据的物理存放地有要求,所以越来越多的企业开始采用混合云来实现面向未来的数字化转型。 阿里云混合云存储阵列作为软硬一体的存储设备,集成了阿里云存储服务,融合了公共云存储和传统存储阵列的优点: 简单 客户无需更改原有的IT架构,就可以像使用本地存储设备一样使用阿里云混合云存储阵列,同时使用本地存储空间和云端存储空间,无需关注本地设备存储协议同云存储协议之间的兼容性。 灵活 与阿里云存储无缝结合,充分利用公共云存储的易于扩展,快速部署,按需付费的优势,快速响应客户业务需求的变化。 高效 自动云分层,热数据存放在本地存储空间,确保了数据的高速访问,冷数据放在云端,充分利用公共云存储的海量空间。云缓存功能确保当数据存放在云端的时候,也能利用本地存储空间的缓存功能,为应用提供快速响应。 可靠 阿里云混合云存储阵列采用了全冗余的硬件设计,支持数据加密,集成AD/LDAP,支持ACL,云端分布式存储提供多副本跨区域保护,11个9的数据高可靠性,完备的数据一致性校验,确保用户数据的安全和可靠。 阿里云混合云存储阵列专为对存储有高性能和稳定性要求,并且希望无缝上云的企业客户而设计: 数据能按照策略自动同步到云端,实现数据的云端备份容灾 支持自动云分层和云缓存功能,保证数据的高速访问和存储空间的有效利用 数据压缩和去重,提升数据在云端和本地存储无缝流动的效率 支持完备的主机端协议, FC/iSCSI/FCoE, NFS/CIFS, Cinder等 提供多版本快照,复制等丰富的企业数据服务 支持免网关阵列双活容灾,护驾企业关键应用 支持异构虚拟化,提高旧阵列利用率,降低总IT成本 存储阵列多控扩展,全面提升阵列性能和容量 全冗余设计,安全可靠,支持数据中心机架部署 克隆功能:支持卷克隆功能,可创建读写的卷克隆副本 故障恢复:支持故障切换和故障恢复功能,当控制器故障时,支持在线故障切换,业务连续性不受影响 阿里云混合云存储阵列将云存储的高性价比和可扩展性与本地数据中心架构相结合,帮助客户轻松实现数据在本地数据中心和公共云之间的无缝流动。 阿里云混合云存储阵列Apsara系列产品规格表

1934890530796658 2020-03-30 16:41:03 0 浏览量 回答数 0

回答

先说结论: 不要对接!不要对接!不要对接! 开个玩笑,以上仅代表个人观点,大家也知道这种“三体式警告”根本没有用的,我自己也研究如何对接,说不定做完后就觉得“真香”了。 为什么要对接? 首先讨论一下为什么要把 Flutter 对接到 Web 生态。 Flutter 现在是一个炙手可热的跨平台技术,能够一套代码运行在 Android、iOS、PC、IoT 以及浏览器上,被认为是下一代跨平台技术。相比于 Weex 和 React Native 可以很好地解决多平台一致性问题,原生渲染性能相近,上层没有 JS 那么厚的封装层次,整体性能会略好一些。 但是大部分兴冲冲去学 Flutter 的人疑惑的第一个问题就是:为什么 Flutter 要用 Dart?一个全新的语言意味着新的学习成本,难道 JS 不香吗?JS 不香不是还有 TypeScript 吗!事实上 Flutter 抛弃的岂止是 JS 这门语言,也抛弃了 HTML 和 CSS,设计了一套解耦得更好的 Widget 体系,Flutter 抛弃的是整个 Web,致力于打造一个新的生态,但是这个生态无法复用 Web 生态的代码和解决方案。尤其是之前所有跨平台方案 Hybrid、React Native、Weex 都是对接 Web 生态的,这让 Flutter 显得有些格格不入,也让大部分前端开发者望而却步。 下面是我整理出来的,前端开发者使用 Flutter 的各方面成本: 因为 Flutter 的开发模式和前端框架比较像(可以说就是抄的 React),所以框架的学习成本并不高,稍微高一些的是 Dart 语言的学习成本,另外还要学习如何用 Widget 组装 UI,虽然很多布局 Widget 设计得和 CSS 很像,灵活度还是差了很多。要想在真实项目中用起来,还要改造整个工具链,以“Native First”的视角做开发,开发 Flutter 和开发原生应用的链路是比较像的,和开发前端页面有较大差异。最高的还是生态成本,前端生态的积累无论是代码还是技术方案都很难复用,这是最痛的一点,生态也是 Flutter 最弱的一环。 无论是为了先进的技术理念还是出于商业私心,先不管 Flutter 为什么抛弃 Web 生态,现实问题是最大的 UI 开发者群体是前端,最丰富的生态是 Web 生态,我觉得 Web 技术也是开发 UI 最高效的方式。如果能在上层使用 Web 技术栈开发,在底层使用 Flutter 实现跨平台渲染,不是可以很好的兼顾开发效率、性能和跨平台一致性吗?还能复用 Web 技术栈大量的技术积累。 可能这些理由也不够充分,暂且先照着这个假设继续分析,最后再重新讨论到底该不该对接。 关于 Flutter 和 Web 生态的对接涉及两个方面: 从 Web 到 Flutter。就是使用 Web 技术栈来开发,然后对接到 Flutter 上实现跨平台渲染。对 Web 来说是解决性能和跨平台一致性问题,对 Flutter 来说是解决生态复用问题。从 Flutter 到 Web。就是官方已经实现的 Web support for Flutter,把已经用 Dart 开发好的 App 编译成 HTML/JS/CSS 然后运行在浏览器上,可以用于降级和外投场景。 如何实现“从 Web 到 Flutter”? 首先分析一下 Flutter 的架构图,看看可以从哪里下手。 Flutter 可以分为 Framework 和 Engine 两部分,Engine 部分比较底层也比较稳定了,最好不要动,需要改的是用 Dart 实现的 Framework。要想对接 Web 生态的话,JS 引擎肯定是要引入的,至于是否保留 Dart VM 有待讨论。图中最上面 Material 和 Cupertino 两个 UI 库前端是不需要的,前端有自己的。关键是 Widget 这部分,是替换成 HTML/CSS 的方式写 UI,还是继续保留 Widget 但是把语言换成 JS,不同方案给出的解法也不一样。 有不少方案可以实现对接,业界有挺多尝试的,我总结了下面三种方式: - TS 魔改:用 JS 引擎替换掉 Dart VM,用 JS/TS 重新实现 Flutter Framework(或者直接 dart2js 编译过来)。 - JS 对接:引入 JS 引擎同时保留 Dart VM,用前端框架对接 Flutter Framework。 - C++ 魔改:用 JS 引擎替换掉 Dart VM,用 C++ 重新实现 Flutter Framework。 TS 魔改 TS 魔改就是完全抛弃掉 Dart VM,用 TypeScript 重新实现一遍用 Dart 写的 Flutter Framework。 为啥是 TS 而不是 JS?这不是因为 TS 是个大热门嘛,而且向下兼容 JS,现在几乎所有时髦的框架都要用 TS 重写了。 这种方案的出发点是“如果能把 Flutter 的 Dart 换成 JS 就好了”,最容易想到的路就是把 Dart 翻译成 TS,或者直接用 dart2js 把代码编译成 js,但是编译出来的代码包含很多 dart:ui 之类的库的封装,生成的包也挺大的,也比较难定制需要导出的接口,不如干脆用 TS 重写一遍,工具链更熟悉一些,还可以加一些定制。 理论上讲翻译之后 Flutter 绝大部分功能都依然支持,可以复用各种 npm 包,还可以动态化,但是丧失了 AOT 能力,JS 语言的执行性能应该是不如 Dart 的。而且所有节点的布局运算都发生在 JS,底层只需要提供基础的图形能力就好了,就好像是基于 Canvas API 写了一套 UI 框架,性能未必有现存前端框架的性能高。 此外最大的问题是如何与官方 Flutter 保持一致,假如现在是从 v1.13 版本翻译过来的,以后官方升级到了 v1.15 要不要同步更新?这个过程没啥技术含量,而且需要持续投入,做起来比较恶心。 另外还需要考虑上层是用 Widget 的方式写 UI,还是用前端熟悉的 HTML+CSS。如果依然用 Widget 的话,那大部分前端组件还是用不了的,UI 还是得重写一遍。反正要重写的话,成本也没降下来,那就用 Dart 重写呗…… 直接用官方原版 Flutter 也避免每次更新都要翻译一遍 Dart 代码。所以既然选择了对接前端生态,那就要对接 CSS,不然就没有足够的价值。然而 CSS 和 Widget 的对接也是很繁琐的过程,而且存在完备性问题。 JS 对接 翻译代码的方式不够优雅,那就保留 Dart,把 JS/CSS 对接到 Widget 上面不就好了? 当然可以,这种方式是仅把 Flutter 当做了底层的渲染引擎,上层保持前端框架的写法,仅把渲染部分对接到 Flutter。现存的很多前端框架都把底层渲染能力做了抽象,可以对接到不同渲染引擎上,如 Vue/Rax 同时支持浏览器和 Weex,用同样的方式,可以再支持一个 Flutter。 这种方式对前端框架的兼容性比较好,但是链路太长了,业务代码调用前端框架接口做渲染,一顿操作之后发出了渲染指令,这个渲染指令要基于通信的方式传给 Flutter Framework,这中间涉及一次 JS 到 C++ 再到 Dart 的跨语言转换,然后再接收到渲染指令之后还要转成相应的 Widget 树,从 CSS 到 Widget 的转换依然很繁琐。而且 Widget 本身是可以带有状态的,本身就是响应式更新的,在更新时会重新生成 widget 并 diff,如果在前端更新 UI 的话,前端框架在 js 里 diff 一次 vdom,传到 Flutter 之后又 diff 一次 widget。 如果要绕过 Widget 直接对接图中的 Rendering 这一层,可以绕过 widget diff 但是得改 Flutter Framework 的渲染链路,既然要改 Flutter Framework 那为什么不直接用 TS 魔改呢,还绕过了 JS 到 Dart 的通信,又回到了第一种方案。 总结来说,这个方案的优点是:实现简单、能最大化保留前端开发体验,缺点是:渲染链路长、通信成本高、响应式逻辑冲突、CSS 转 Widget 不完备等。 C++ 魔改 想要干掉 Dart VM,就需要用其他语言重新实现用 Dart 开发的 Framework,用 JS/TS 可以,用 C++ 当然可以,最硬核的方式就是用 C++ 重新实现 Flutter 的 Framework,然后接入 JS 引擎,通过 binding 把 C++ 接口透出到 JS 环境,上层应用还是用 JS 做开发。 把 Framework 层下沉到 C++ 之后,不仅会有更好的性能,也能支持更多语言。原本 Flutter Framework 是在 Dart VM 之上的,必须依赖 Dart VM 才能运行,所以对 Dart 有强依赖;用 C++ 重新实现之后,JS 引擎是在 C++ 版 Framework 之上的,框架本身并不依赖 JS 引擎,还可以对接其他各种语言,如对接了 JVM 之后可以支持 Java 和 Kotlin,对接回 Dart VM 可以继续支持 Dart。 这个方案可以增强性能,也能保持和 Flutter 的一致性,但是改造成本和维护成本都相当高。C++ 的开发效率肯定不如 Dart,当 Flutter 快速迭代之后如何跟进是很大的问题,如果跟进不及时或者实现不一致那很可能就分化了。从 CSS 到 Widget 的转换也是不得不面对的问题。 几种方案对比 把上面几种方案画在同一张图里是这个样子的: 图中实线部分表示了跨语言的通信,太过频繁会影响性能,虚线部分表示了其他对接可能性。 从下到上,Flutter Engine 是不需要动的,这一层是跨平台的关键。Framework 则有三种语言版本,JS/TS、Dart、C++,性能是 C++ 版本最好,成本是 Dart 版本最低。然后还需要向上处理 HTML/CSS 和 Widget 的问题,可以直接对接一个前端框架,也可以直接在 C++ 层实现(不然需要透出的 binding 接口就太多了,用通信的方式也太过频繁了)。 如何实现“从 Flutter 到 Web”? 这个功能官方已经实现了,可以把使用 Dart 开发的 App 编译成 Web App 运行在浏览器上,官方文档以介绍用法和 API 为主,我这里简单分析一下内部具体的实现方案。 实现原理 结合 Flutter 的架构图来看,要实现 Web 到 Flutter 需要改造的是上层 Framework,要实现 Flutter 到 Web 需要改造的则是底层 Engine。 Framework 对 Engine 的核心依赖是 dart:ui,这是库是在 Engine 里实现的,抽象出了绘制 UI 图层的接口,底层对接 skia 的实现,向上透出 Dart 语言的接口。这样来看,对接方式就比较简单了: 使用 dart2js 把 Framework 编译成 JS 代码。基于浏览器的 API 重新实现 dart:ui,即 dart:web_ui。 把 Dart 编译成 JS 没什么问题,性能可能会有一点影响,功能都是可以完全保留的,关键是 dart:web_ui 的实现。在原生 Engine 中,dart:ui 依赖 skia 透出的 SkCanvas 实现绘制,这是一套很底层的图形接口,只定义了画线、画多边形、贴图之类的底层能力,用浏览器接口实现这一套接口还是很有挑战的。上图可以看到 Web 版 Engine 是基于 DOM 和 Canvas 实现的,底层定义了 DomCanvas 和 BitmapCanvas 两种图形接口,会把传来的 layer tree 渲染成浏览器的 Element tree,但是节点上仅包含了 position, transform, opacity 之类的样式,只用到 CSS 很小的一个子集,一些更复杂的绘制直接用 2D canvas 实现。 存在的问题 我编译了一个还算复杂的 demo 试了一下,性能很不理想,滑动不流畅,有时候图片还会闪动。生成出来的 js 代码有 1.1MB (minify 之后,未 gzip),节点层次也比较深,我评估这个页面用前端写不会超过 300KB,节点数可以少一半以上。 另外再看一下 Flutter 仓库的 issue,过滤出 platfrom-web 相关的,可以看到大量:文字编辑失效、找不到光标、ListView 在 ios 上不可滚动、checkbox/button 行为不正常、安卓滚动卡顿图片闪烁、字体失效、某些机型视频无法播放、文字选中后无法复制、无法调试…… 感觉 flutter for web 已经陷入泥潭,让人回想起前端当年处理各种浏览器兼容性的噩梦。 这些性能和兼容性问题,核心原因是浏览器未暴露足够的底层能力,以及浏览器处理手势、用户输入和方式和 Flutter 差异巨大。 实现 Flutter Engine 需要的是底层的图形接口和系统能力,虽然canvas 提供了相似的图形接口,如果全部用 canvas 实现的话很难处理可访问性、文本选择、手势、表单等问题,也会存在很多兼容性问题。所以真实方案里用的是 Canvas + DOM 混合的方式,封装层次太高了,渲染链路太长。就好像 Flutter Framework 里进行了一顿猛如虎的操作之后,节点生成好了、布局算好了、绘制属性也处理好了,就差一个画布画出来了,然后交到浏览器手里,又生成一遍 Element,再算一遍布局,在处理一遍绘制,最终才交给了底层的图形库画出来。 再比如长页面的滚动,浏览器里只要一条 CSS (overflow:scroll) 就可以让元素可滚动,手势的监听以及页面的滚动以及滚动动画都是浏览器原生实现的,不需要与 JS 交互,甚至不需要重新 layout 和 paint,只需要 compositing。如上图所示,在 Flutter 中 Animation 和 Gesture 是用 Dart 实现的,编译过来就是 JS 实现的,浏览器本身并不知道这个元素是否可滚,只是不断派发 touchmove 事件,JS 根据事件属性计算节点偏移,然后运算动画,然后把 transform 或者新的 position 作用到节点上,然后浏览器再来一遍完整的渲染流程…… 优化方案 性能和兼容性的问题还是要解决的,短期内先把 issue 解掉,长线的优化方案,官方有两种尝试: 使用 CSS Painting API 做绘制。 a, 这是还处于提案状态的新标准,可以用 JS 实现一些绘制功能,自定义 CSS 属性。 b. 目前还未实现,需要等浏览器先把 CSS Houdini 支持好。 使用 WebAssembly 版本的 Skia 做绘制 https://skia.org/user/modules/canvaskit a, 这样可以发挥 wasm 的性能优势,并且保持 skia 功能的一致。但是目前 wasm 在浏览器环境里未必有性能优势,这里不展开讨论了。 b. 已经部分实现,参考这里的配置启用功能: https://github.com/flutter/flutter/issues/41062#issuecomment-533952994 这两个方案都是想更多的利用到浏览器的底层能力,只有浏览器暴露了更多底层能力,才能更好的实现 Flutter 的 Web Engine。不过这个要等挺久的时间,我们也参与不了,现阶段想要使用 flutter for web,还是得保持现有架构,一起参与进去把 issue 解决掉,优先保障功能,其次优化性能。 一种适应性更好的架构 如果理想化一点,能不能从架构角度让 Flutter 和 Web 生态融合的更好一些呢? 回顾文章最开始的官方架构图,上面是 Framework(Dart),下面是 Engine(C++),切分在 Foundation 这一层,双方之间的交互是几何图形信息。如果还保持这个架构,把切分层次划分的更靠上一些,如下图所示,划分在 Widgets 和 Rendering 这一层,理论上讲对 Flutter 的开发者来说是无感知的,因为上层的开发语言和 Widget 接口都是不变的。 切分在这一层,Framework 和 Engine 之间的交互就不再是几何图形而是节点信息,Widget 的组合、setState 响应式更新、Widget diff 都还在 Dart 中,展开后的 RenderObject 的布局、绘制、裁剪、动画全都在 C++ 中,不仅有更好的性能,还可以与 Engine 有更好的结合。 或者说,还原本保留 Engine 的设计,把下沉的这部分逻辑上划分成 Renderer,就有了如下三层的结构: 这样划分出来的每一层都有明确的定位: Framework: 开发框架。为开发者提供可编程 API,实现响应式的开发模式,提供细粒度 Widget 供开发者自由封装和组合。Renderer: 渲染引擎。专门实现布局、绘制、动画、手势的的处理,这部分功能相对独立,是可以与开发框架解耦的,也不必与特定语言绑定。Engine: 图形引擎。实现跨平台一致的图形接口,合成输入的层并绘制到屏幕上,处理好平台力的接入和适配。 这样切分除了有性能优势以外,也使得渲染引擎摆脱了对 Dart 的依赖,能够支持多种语言,也能支持多种开发模式。对接到 Dart VM 就可以用 Dart 写代码,对接到 JS 引擎就可以用 JS 写代码,对接到 JVM 还可以写 Java,但是无论怎么写,底层的渲染能力是一样的,一套统一的布局算法,动画和手势的处理行为也是一致的。 在这样的架构下,对接 Web 生态就更容易了。Dart 和 Widget 是前端不想要的,希望能换成 JS 和 CSS,但是又想要底层的跨平台一致渲染引擎,那从 Renderer 层开始对接就好了,绕过了所有不想要的,也保留了所有想要的。 要实现 Flutter for Web 也更简单了一些。在 Engine 层做对接,一直苦于浏览器透出的底层能力不够,如果是在 Renderer 之上做对接就更容易一些,基于 JS/CSS/DOM/Canvas 的能力封装出一套 Rendering 接口,供 Widget 调用就好了,这样可以使渲染链路更短一些,但是依然要处理 Widget 和 DOM/CSS 之间的兼容性问题。 再讨论一遍:为什么要对接? 技术上已经分析完了,要想搞定 Flutter 生态和 Web 生态的对接,需要投入很大的成本,所以真正决定做之前,要先讨论清楚为什么要做对接?到底要不要做对接? 首先 Google 官方对 Flutter 的定位就是个问题。Flutter 设计之初就是不考虑 Web 生态的,甚至在刻意回避,倡导的是更贴近原生的开发方式。我之所以在开头说不要对接,原因也很简单:两种技术设计理念不同,不是朝着一个方向发展的,生态不通,技术方案不通,强行融合很可能让彼此都丧失了优势。但是业界又有很多团队在做这种尝试,说明需求是存在的,如果 Google 抵制这个方向,那就不好做了。不过现在官方已经支持了 Flutter for Web,已经向 Web 生态迈了一步,未来是否进一步与 Web 融合,也是有可能的。 另外就是跨平台技术本身的问题,浏览器发展了二三十年,已经是个很强大的跨平台产品了,几乎是 Web 的代名词了,这一点无人能敌。但是也臃肿不堪,有大量历史包袱,性能和体验不够好,和 Native 的结合度差,尤其在移动和 IoT 平台。虽然硬件性能在不断提升,但这是所有软件共享的,浏览器的性能和体验总会比 Native 差一些,差的这一些很可能就是新业务和新场景的发挥空间。观察一下近几年新诞生的业务场景,很多都是利用到了 Native 新提供的能力才火爆起来的,如 AI/AR/ 视频 / 直播 等,有因为新的 Web API 而孵化生出来的商业模式吗? 原文链接: https://mp.weixin.qq.com/s?__biz=MzAxNDEwNjk5OQ==&mid=2650405725&idx=1&sn=0b7476f7c7c01df7fdafda578f9ceb98&chksm=83953345b4e2ba53917ac30b709c07be15bd1c2fd5ae2a8ecfbb129b3813f771621b8fac95ca&scene=27#wechat_redirect

剑曼红尘 2020-03-10 09:54:40 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站