• 关于 分页算法 的搜索结果

问题

如何对分库后的数据进行分页查询?

a123456678 2019-12-01 20:24:36 2096 浏览量 回答数 1

回答

你的问题就是每次分页进行了后台访问,而又没有对后台写一定的算法去判定该不该赋予这个角色,要不要清除以前赋予的角色,直接用了修改,当然就只有刚刚选的那页了,所以解决办法有两个,这里就说一个吧:首先你要知道,你的角色在多也不会在10万,百万以上,所以可以用完全查询,js实现分页,这样就不会进行后台访问了,再用过form表单包含所有的角色,再在每个前面放个复选框,name属性相同,后台通过request.getparametervalues()方法获取所有的角色,这样你分页前的角色也会存在,再修改下就可以了。

云栖技术 2019-12-02 02:33:03 0 浏览量 回答数 0

回答

解决了吗?感觉是版本的问题 ######请问楼主解决了吗?我现在也遇到了相同的问题######这个是由于当时IK分词器还不支持solr5.3版本。现在百度已经能找到solr5.3版本下的ik分词器代码了。######https://github.com/EugenePig/ik-analyzer-solr5   下载这个 然后直接编译 按照reademe 的说明配置即可######基于微博数据检测的Solr实战开发 课程观看地址: http://www.xuetuwuyou.com/course/145 课程出自学途无忧网: http://www.xuetuwuyou.com solrcloud5.2.1+zookeeper一部精通 课程观看地址: http://www.xuetuwuyou.com/course/15 一、课程用到的软件 1.centos6.7 2.apache-tomcat-7.0.47 3.solr-5.5 4.zookeeper 3.4.6 5.eclipse-jee-neon-R-win32-x86_64  二、课程目标 在海量数据的情况下,传统的关系型数据库已经力不从心,快速检索已经成为了应用系统所必备的功能之一。本课程从实战角度出发,让学员能从实战中学习到: 搜索引擎的原理及架构。  掌握在大数据环境下经典检索算法。  掌握如何使用solr实现系统快速检索目标。  掌握solr在开发中常见的技术大坑与调优技术。 三、适用人群 开发人员、架构师、对分布式搜索引擎有兴趣的朋友。 四、课程内容介绍: 第1课、Solr简介与部署     知识点:Solr基本概念以及应用的介绍、Solr单机版的搭建 第2课、Solr建库实战     知识点:介绍managed-schame和solrConfig两大配置文件,并建立Solr库开始实操 第3课、Solr中文分词器与全量数据导入     知识点:对比中文分词器IK与MMSeg4j的特点、Solr配置MMSeg4j中文分词器、把Mysql中的数据导入到Solr索引库上 第4课、Solr增量数据导入及新管理UI实战     知识点:把Mysql的数据增量导入到Solr索引库上、对Solr5最新的UI进行全面介绍 第5课、Solr数据查询详解     知识点:基于UI管理界面,实战Solr q查询、fq查询以及分页、高亮、Facet等高级特性的使用 第6课、Solrj编程实战之索引增删改     知识点:基于Eclipse开发环境、搭建Solrj工程项目,对Solr的索引库的进行增、删、改的操作 第7课、Solrj编程实战之索引查询与分页     知识点:基于Solrj实现q查询、fq查询以及分页查询的操作 第8课、Solrj编程实战之高亮与Facet     知识点:基于Solrj实现高亮查询、Facet查询的操作 第9课、Solrj编程实战之设计模式     知识点:基于前阶段所写的代码,发现代码中的不足,并使用单例模式、模块方法、回调方法的设计模式进行仿Spring Data的开发 第10课、Solr缓存与预热机制剖析     知识点:从算法、应用场景以及实例的多个维度,剖析Solr中的四大缓存,并且站在SolrIndexSearcher的生命周期上解剖预热机制及其注意事项 第11课、Solr高级特性之近实时、实时检索     知识点:从概念、原理以及实例的多个维度,剖析Solr近实时、实时检索 第12课、Solr高级特性之原子更新     知识点:Solr在应用层面上对Lucene进行了封装,在Solr4之后提出了原子更新的新概念,从此在应用层面操作上方便我们进行索引更新 第13课、Solr高级特性之深度分页及性能调优     知识点:Solr4的又一大特性,在面临海量据的情况下,占用更低的资源进行数据检索正是深度分页的一大亮点、后半节结合讲师的实际开发经验,分享Solr性能调优的策略 第14课、SolrCloud部署运维之集群搭建     知识点:基于Centos、zookeeper环境下,搭建SolrCloud系统  第15课、SolrCloud部署运维之库管理     知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud库的管理,包括库的新增、删除以及动态更新  第16课、SolrCloud部署运维之副本与扩容     知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud分片的管理,包括分片的备份与库的扩容 第17课、中文分词器配置与使用Solrj操作SolrCloud     知识点:配置中文分词器以及使用Solrj操作SolrCloud来实现增、删、改、查  第18课、项目介绍与环境搭建     知识点:介绍项目的背景以及总体架构、突出Solr在实际项目中的角色。基于Maven搭建开发环境  第19课、框架代码开发之Spring集成Solrj之CRUD(maven版)     知识点:Spring是一个JavaEE企业级框架,它很多主流的主件都进行集成支持。本节学习Spring与Solrj的集成,进行增、删、改、查操作 第20课、框架代码开发之Spring集成Solrj之(maven版)     知识点:Spring是一个JavaEE企业级框架,它对很多主流的组件都进行集成支持。本节学习Spring与Solrj的集成,进行实时检索、高亮、深度分页、Facet查询操作 第21课、基于dom4j的导库组件开发(maven版)     知识点:基于dom4j解析XML文件,并将数据批量高效导入到SolrCloud分布式索引库上进行检索分析 第22课、高级检索组件开发一     知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第23课、高级检索组件开发二         知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第24课、相似匹配组件开发一     知识点:基于SolrCloud实现相似性检索操作 第25课、相似匹配组件开发二     知识点:基于SolrCloud实现相似性检索操作 第26课、课程总结与Solr6的展望     知识点:课程大总结,并对最新版的Solr6进行亮点分析以及未来的展望

kun坤 2020-06-01 09:57:39 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至102元/年

新用户专场,1核2G 102元/年起,2核4G 699.8元/年起

回答

楼主的程序是什么?  我当初部署到阿里云,发现网站加载很慢,总要等个2-3秒。 在我之前的物理服务器上没有问题。 查看网站的 CPU 带宽 IO 都很小。 最后我把怀疑点集中到了 动态菜单上,类似于淘宝的分类菜单,鼠标上移出现一块各级分类。 首页动态菜单(20大类  100+二级  每个二级下 大概10个三级分类),我将菜单程序屏蔽,发现 访问秒开。 后来重做了菜单,改成生成静态文件。 每次根据大类不同AJAX调用静态显示。 问题解决。 一开始没找到的原因是,之前服务器上没问题,是因为自己的服务器很强劲。 而布置到阿里 1核 CPU吃不消。 其实CPU占用上 根本看不出来, IO也很低。 所以楼主我建议你排查程序算法。人少没问题,人多就卡。  不知道你们的程序是什么。 曾经我这里招了一个员工,做了一个后台文章管理,起初没什么问题,后来编辑部反应文件管理打开 较慢。 我看了下程序,居然没有分页读取,把整个表给读取了再假分页。 所以楼主同时排查下程序问题看。

banian 2019-12-02 02:59:05 0 浏览量 回答数 0

回答

你的JDK是错的把,直接用的Eclipse自带的,你换一下试试回复<aclass='referer'target='_blank'>@朋也:Causedby:java.lang.NoSuchMethodError:org.apache.commons.codec.binary.Base64.<init>(I)V这个报错通常是使用的ECLIPSE自带的JDK导致的,应该重新配置成自己的JDK。回复<aclass='referer'target='_blank'>@首席撸出血:配置了的,是jdk1.8,开发工具是idea或者你本地的JDK环境有没有配置缺jar包啊,<spanstyle="color:#444444;font-family:'MicrosoftYaHei',Verdana,sans-serif,宋体;font-size:14px;line-height:normal;background-color:#FFFFFF;">apache.commons.codec这个包估计所使用的jar版本过低了;如果有多个,可删除低版本的试试这个包有的Base64是commons-codec1.0才加入的类,确认下本地的版本是不是不对,另外也确认下是不是存在两个不同版本的jar包冲突<divclass='ref'> 引用来自“逝水fox”的评论Base64是commons-codec1.0才加入的类,确认下本地的版本是不是不对,另外也确认下是不是存在两个不同版本的jar包冲突 基于微博数据检测的Solr实战开发 课程观看地址:<atarget="_blank"rel="nofollow">http://www.xuetuwuyou.com/course/145 课程出自学途无忧网:<atarget="_blank"rel="nofollow">http://www.xuetuwuyou.com solrcloud5.2.1+zookeeper一部精通 课程观看地址:<atarget="_blank"rel="nofollow">http://www.xuetuwuyou.com/course/15 一、课程用到的软件 1.centos6.7 2.apache-tomcat-7.0.47 3.solr-5.5 4.zookeeper3.4.6 5.eclipse-jee-neon-R-win32-x86_64  二、课程目标 在海量数据的情况下,传统的关系型数据库已经力不从心,快速检索已经成为了应用系统所必备的功能之一。本课程从实战角度出发,让学员能从实战中学习到: 1.搜索引擎的原理及架构。  2.掌握在大数据环境下经典检索算法。  3.掌握如何使用solr实现系统快速检索目标。  4.掌握solr在开发中常见的技术大坑与调优技术。 三、适用人群 开发人员、架构师、对分布式搜索引擎有兴趣的朋友。 四、课程内容介绍: 第1课、Solr简介与部署   知识点:Solr基本概念以及应用的介绍、Solr单机版的搭建 第2课、Solr建库实战   知识点:介绍managed-schame和solrConfig两大配置文件,并建立Solr库开始实操 第3课、Solr中文分词器与全量数据导入   知识点:对比中文分词器IK与MMSeg4j的特点、Solr配置MMSeg4j中文分词器、把Mysql中的数据导入到Solr索引库上 第4课、Solr增量数据导入及新管理UI实战   知识点:把Mysql的数据增量导入到Solr索引库上、对Solr5最新的UI进行全面介绍 第5课、Solr数据查询详解   知识点:基于UI管理界面,实战Solrq查询、fq查询以及分页、高亮、Facet等高级特性的使用 第6课、Solrj编程实战之索引增删改   知识点:基于Eclipse开发环境、搭建Solrj工程项目,对Solr的索引库的进行增、删、改的操作 第7课、Solrj编程实战之索引查询与分页   知识点:基于Solrj实现q查询、fq查询以及分页查询的操作 第8课、Solrj编程实战之高亮与Facet   知识点:基于Solrj实现高亮查询、Facet查询的操作 第9课、Solrj编程实战之设计模式   知识点:基于前阶段所写的代码,发现代码中的不足,并使用单例模式、模块方法、回调方法的设计模式进行仿SpringData的开发 第10课、Solr缓存与预热机制剖析   知识点:从算法、应用场景以及实例的多个维度,剖析Solr中的四大缓存,并且站在SolrIndexSearcher的生命周期上解剖预热机制及其注意事项 第11课、Solr高级特性之近实时、实时检索   知识点:从概念、原理以及实例的多个维度,剖析Solr近实时、实时检索 第12课、Solr高级特性之原子更新   知识点:Solr在应用层面上对Lucene进行了封装,在Solr4之后提出了原子更新的新概念,从此在应用层面操作上方便我们进行索引更新 第13课、Solr高级特性之深度分页及性能调优   知识点:Solr4的又一大特性,在面临海量据的情况下,占用更低的资源进行数据检索正是深度分页的一大亮点、后半节结合讲师的实际开发经验,分享Solr性能调优的策略 第14课、SolrCloud部署运维之集群搭建   知识点:基于Centos、zookeeper环境下,搭建SolrCloud系统  第15课、SolrCloud部署运维之库管理   知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud库的管理,包括库的新增、删除以及动态更新  第16课、SolrCloud部署运维之副本与扩容   知识点:SolrCloud的运维之道,从UI管理界面以及命令行的两个维度去剖析SolrCloud分片的管理,包括分片的备份与库的扩容 第17课、中文分词器配置与使用Solrj操作SolrCloud   知识点:配置中文分词器以及使用Solrj操作SolrCloud来实现增、删、改、查  第18课、项目介绍与环境搭建   知识点:介绍项目的背景以及总体架构、突出Solr在实际项目中的角色。基于Maven搭建开发环境  第19课、框架代码开发之Spring集成Solrj之CRUD(maven版)   知识点:Spring是一个JavaEE企业级框架,它很多主流的主件都进行集成支持。本节学习Spring与Solrj的集成,进行增、删、改、查操作 第20课、框架代码开发之Spring集成Solrj之(maven版)   知识点:Spring是一个JavaEE企业级框架,它对很多主流的组件都进行集成支持。本节学习Spring与Solrj的集成,进行实时检索、高亮、深度分页、Facet查询操作 第21课、基于dom4j的导库组件开发(maven版)   知识点:基于dom4j解析XML文件,并将数据批量高效导入到SolrCloud分布式索引库上进行检索分析 第22课、高级检索组件开发一   知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第23课、高级检索组件开发二     知识点:基于SolrCloud实现高级检索,包括多条件查询、高亮、分页操作 第24课、相似匹配组件开发一   知识点:基于SolrCloud实现相似性检索操作 第25课、相似匹配组件开发二   知识点:基于SolrCloud实现相似性检索操作 第26课、课程总结与Solr6的展望   知识点:课程大总结,并对最新版的Solr6进行亮点分析以及未来的展望

爱吃鱼的程序员 2020-06-12 15:21:44 0 浏览量 回答数 0

回答

为了实现数据的完整性,可以在已有的 key value 结构上引入中间数据结构,以粉丝列表数据结构为例,大致如下:struct RelationNode { fansAmount 粉丝数量 fansListKey 通过该 key 从 reids 中获取粉丝列表 fansListExtKey 超出最大显示数量时利用此 key 去 reids 中仍可获取粉丝列表 // 关注、双向关注等其它关列类似处理,此处省略下面的结构定义 }fansListKey 的生成规则可以是 uid + Fans 如:12345Fans fansListExtKey 生成规则可以是 uid + ExtFans 如 12345ExtFans 从 reids 中读取粉丝数据 1:通过 uid 读取 RelationNode 对象: uid ---> relationNode 2:通过 relationNode.fansListKey 读取粉丝列表: relationNode.fansListKey ---> fansList 3:通过 relationNode.fansListExtKey 读取超出部分的粉丝列表 relationNode.fansListExtKey ---> fansExtList 以上只是一个很直白的简单的方案,具体实现时可以有很多的优化,例如 fansListExtKey 可以省去,仅仅去利用约定的生成方式就可以得到 key 值,还可以对超出 5000 的粉丝进行分页存放,那么生成的 key 可能是 uidFansListKeyPn (n >= 1) Pn 可以通过 fansAmount 与 pageSize 计算出来 经过优化过的方案,读取方式可能如下: 1:通过 uid 读取 RelationNode 对象 2:通过 fansAmount 与 pageSize (假定是新浪微博使用的5000) 得到 Pn 3:通过 uid + FansListKey + Pn 得到某一页的粉丝,如:12345FansListKeyP1,第一页正好是需要显示的 5000 个 当然,上面的设计只是大致解决存取的问题,要做一些复杂业务时可能还要继续优化,例如需要得到某两个人共同的粉丝列表,假如是两个大 V 共同的粉丝列表可能会出现性能问题 总体的设计方向是引入一个或多个中间数据结构并且分多步对 reids 进行存取,再根据具体的业务规模与特点进行数据结构和算法的进一步优化

落地花开啦 2019-12-02 01:49:21 0 浏览量 回答数 0

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。

游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0

回答

1、LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。 好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下: 在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。 2、隐式转换 SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句: 其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。 3、关联更新、删除 虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。 执行计划: 重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒 执行计划简化为: 4、混合排序 MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。 执行计划显示为全表扫描: 由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。 5、EXISTS语句 MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句: 执行计划为: 去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。 新的执行计划: 6、条件下推外部查询条件不能够下推到复杂的视图或子查询的情况有: 聚合子查询; 含有 LIMIT 的子查询; UNION 或 UNION ALL 子查询; 输出字段中的子查询; 如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后 确定从语义上查询条件可以直接下推后,重写如下: 执行计划变为: 7、提前缩小范围 先上初始 SQL 语句: 数为90万,时间消耗为12秒。 由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。 再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。 8、中间结果集下推 再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件): 那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。 但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写: 总结数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

茶什i 2020-01-13 11:11:06 0 浏览量 回答数 0

问题

云服务器 ECS Linux 系统 CPU 占用率较高问题如何排查

boxti 2019-12-01 22:02:38 1978 浏览量 回答数 0

问题

【精品问答】初级程序员必备2020最新MYSQL面试题

问问小秘 2020-03-31 13:32:17 1670 浏览量 回答数 1

问题

【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?

剑曼红尘 2020-04-27 14:35:38 0 浏览量 回答数 1

问题

程序员报错行为大赏-配置报错

问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

问题

ES 写入数据的工作原理是什么啊?ES 查询数据的工作原理是什么啊?【Java问答学堂】27期

剑曼红尘 2020-05-27 20:28:45 22 浏览量 回答数 1

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。

玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

回答

如果Linux系统的ECS实例CPU持续保持高使用率,则会对系统稳定性和业务运行造成影响。可以按如下步骤进行处理。 定位问题。找到影响CPU使用率过高的具体进程。 分析处理。查看影响CPU使用率过高的进程是否正常,并分类进行处理。 对于正常进程:您需要对程序进行优化或者升级服务器配置。 对于异常进程:您可以手动对进程进行查杀,也可以使用第三方安全工具去查杀。 CPU负载的查询分析 在Linux系统中,查看进程的常用命令如下所示。本文主要介绍vmstat和top。 vmstat top ps -aux ps -ef 使用vmstat命令查看 通过vmstat命令,从系统维度查看CPU资源的使用情况。命令格式类似如下,表示结果一秒刷新一次。 vmstat -n 1 示例如下。 procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 1 0 0 2684984 310452 2364304 0 0 5 17 19 35 4 2 94 0 0 0 0 0 2687504 310452 2362268 0 0 0 252 1942 4326 5 2 93 0 0 0 0 0 2687356 310460 2362252 0 0 0 68 1891 4449 3 2 95 0 0 0 0 0 2687252 310460 2362256 0 0 0 0 1906 4616 4 1 95 0 0 注:返回结果中的主要数据列说明如下。 r:表示系统中CPU等待处理的线程。一个CPU每次只能处理一个线程,所以该数值越大,通常表示系统运行越慢。 us:用户模式消耗的CPU时间百分比。该值较高时,说明用户进程消耗的CPU时间比较多。如果该值长期超过50%,则需要对程序算法或代码等进行优化。 sy:内核模式消耗的CPU时间百分比。 wa:IO等待消耗的CPU时间百分比。该值较高时,说明IO等待比较严重,这可能磁盘大量作随机访问造成的,也可能是磁盘性能出现了瓶颈。 id:处于空闲状态的CPU时间百分比。如果该值持续为0,同时sy是us的两倍,则通常说明系统面临CPU资源短缺。 使用top命令查看 登录Linux实例,关于如何登录Linux实例,请参考使用管理终端连接Linux实例。 执行如下命令,从进程纬度来查看CPU、内存等资源的使用情况。命令格式类似如下。 top 系统显示类似如下。 top - 17:27:13 up 27 days, 3:13, 1 user, load average: 0.02, 0.03, 0.05 Tasks: 94 total, 1 running, 93 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.3 us, 0.1 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.1 st KiB Mem: 1016656 total, 946628 used, 70028 free, 169536 buffers KiB Swap: 0 total, 0 used, 0 free. 448644 cached Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1 root 20 0 41412 3824 2308 S 0.0 0.4 0:19.01 systemd 2 root 20 0 0 0 0 S 0.0 0.0 0:00.04 kthreadd 针对负载问题,您只需关注回显的第一行和第三行信息,详细说明如下。 top命令的第一行显示的内容17:27:13 up 27 days, 3:13, 1 user, load average: 0.02, 0.03, 0.05,依次为系统当前时间、系统到目前为止已运行的时间、当前登录系统的用户数量、系统负载,这与直接执行uptime命令查询结果一致。 top命令的第三行会显示当前CPU资源的总体使用情况,下方会显示各个进程的资源占用情况。 通过 P 键,可以对CPU使用率进行倒序排列,进而定位系统中占用CPU较高的进程。 提示:通过 M 键,您可以对系统内存使用情况进行排序。如果有多核CPU,数字键1可以显示每核CPU的负载状况。 执行如下命令,可以查看每个进程ID对应的程序文件。 ll /proc/PID/exe 操作案例 案例一:使用top命令终止CPU消耗较大的进程 通过top命令查看系统的负载问题,并定位耗用较多CPU资源的进程,在运行界面快速终止相应的异常进程。 想要终止某个进程,先键入小写字母 k。 输入想要终止的进程PID,默认为输出结果的第一个PID。如下图所示,假如想要终止PID为23的进程,输入23后回车。 操作成功后,界面会出现类似Send pid 23 signal [15/sigterm]的提示信息让用户进行确认。按回车确认即可。 案例二:CPU使用率较低但负载较高 问题描述 当前Linux系统没有业务程序运行。通过top命令观察,发现CPU很空闲,但是load average却非常高,如下图所示。 处理办法 load average是对CPU负载进行评估的,其值越高说明其任务队列越长,处于等待执行的任务越多。出现此种情况时,可能是由于僵死进程导致的。可以通过ps -axjf命令查看是否存在 D+ 状态进程,该状态是指不可中断的睡眠状态。处于该状态的进程无法终止,也无法自行退出。只能通过恢复其依赖的资源或者重启系统来解决。 案例三:kswapd0进程占用CPU较高 操作系统使用分页机制来管理物理内存。操作系统将磁盘的一部分划出来作为虚拟内存,由于内存的速度要比磁盘快得多,所以操作系统要按照某种换页机制将不需要的页面换到磁盘中,将需要的页面调到内存中。由于内存持续不足,这个换页动作持续进行。kswapd0是虚拟内存管理中负责换页的进程,当服务器内存不足的时候kswapd0会执行换页操作,这个换页操作是十分消耗主机CPU资源的。如果通过top命令发现该进程持续处于非睡眠状态,且运行时间较长,可以初步判定系统在持续的进行换页操作,可以将问题转向内存不足的原因来排查。 问题描述 kswapd0进程占用了系统大量CPU资源。 处理办法 执行如下命令,查看kswapd0进程。 top 系统显示类似如下,发现kswapd0进程持续处于非睡眠状态,且运行时间较长并持续占用较高CPU资源,则通常是由于系统在持续的进行换页操作所致。 通过free 、ps等指令进一步查询系统及系统内进程的内存占用情况,做进一步排查分析。 针对系统当前内存不足的问题,您可以重启一些服务,释放内存。 提示:从长远的角度来看,您需要对内存大小进行升级。

1934890530796658 2020-03-26 00:48:16 0 浏览量 回答数 0

问题

19年BAT常问面试题汇总:JVM+微服务+多线程+锁+高并发性能

游客pklijor6gytpx 2020-01-09 10:31:29 1271 浏览量 回答数 3

回答

mysql的聚簇索引是指innodb引擎的特性,mysiam并没有,如果需要该索引,只要将索引指定为主键(primary key)就可以了。比如:create table blog_user( user_Name char(15) not null check(user_Name !=''), user_Password char(15) not null, user_emial varchar(20) not null unique, primary key(user_Name) )engine=innodb default charset=utf8 auto_increment=1;其中的 primary key(user_Name) 这个就是聚簇索引索引了;聚簇索引的叶节点就是数据节点,而非聚簇索引的叶节点仍然是索引节点,并保留一个链接指向对应数据块。聚簇索引主键的插入速度要比非聚簇索引主键的插入速度慢很多。相比之下,聚簇索引适合排序,非聚簇索引(也叫二级索引)不适合用在排序的场合。因为聚簇索引本身已经是按照物理顺序放置的,排序很快。非聚簇索引则没有按序存放,需要额外消耗资源来排序。当你需要取出一定范围内的数据时,用聚簇索引也比用非聚簇索引好。另外,二级索引需要两次索引查找,而不是一次才能取到数据,因为存储引擎第一次需要通过二级索引找到索引的叶子节点,从而找到数据的主键,然后在聚簇索引中用主键再次查找索引,再找到数据。innodb索引分类:聚簇索引(clustered index)    1)  有主键时,根据主键创建聚簇索引    2)  没有主键时,会用一个唯一且不为空的索引列做为主键,成为此表的聚簇索引    3) 如果以上两个都不满足那innodb自己创建一个虚拟的聚集索引辅助索引(secondary index)   非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引 myisam索引:因为myisam的索引和数据是分开存储存储的,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索                         索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因     innodb索引:innodb的数据和索引放在一起,当找到索引也就找到了数据 自适应哈希索引:innodb会监控表上的索引使用情况,如果观察到建立哈希索引可以带来速度的提升,那就建立哈希索引,自 适应哈希索引通过缓冲池的B+树构造而来,                               因此建立的速度很快,不需要将整个表都建哈希索引,InnoDB 存储引擎会自动根据访问的频率和模式来为某些页建立哈希索引。自适应哈希索引不需要                               存储磁盘的,当停库内容会丢失,数据库起来会自己创建,慢慢维护索引。     聚簇索引:MySQL InnoDB一定会建立聚簇索引,把实际数据行和相关的键值保存在一块,这也决定了一个表只能有一个聚簇索引,即MySQL不会一次把数据行保存在二个地方。     1)  InnoDB通常根据主键值(primary key)进行聚簇     2) 如果没有创建主键,则会用一个唯一且不为空的索引列做为主键,成为此表的聚簇索引     3) 上面二个条件都不满足,InnoDB会自己创建一个虚拟的聚集索引 优点:聚簇索引的优点,就是提高数据访问性能。聚簇索引把索引和数据都保存到同一棵B+树数据结构中,并且同时将索引列与相关数据行保存在一起。这意味着,当你访问同一数据页不同行记录时,已经把页加载到了Buffer中,再次访问的时候,会在内存中完成访问,不必访问磁盘。不同于MyISAM引擎,它将索引和数据没有放在一块,放在不同的物理文件中,索引文件是缓存在key_buffer中,索引对应的是磁盘位置,不得不通过磁盘位置访问磁盘数据。  缺点:1) 维护索引很昂贵,特别是插入新行或者主键被更新导至要分页(page split)的时候。建议在大量插入新行后,选在负载较低的时间段,通过OPTIMIZE TABLE优化表,因为必须被移动的行数据可能造成碎片。使用独享表空间可以弱化碎片   2) 表因为使用UUId作为主键,使数据存储稀疏,这就会出现聚簇索引有可能有比全表扫面更慢,所以建议使用int的auto_increment作为主键 3) 如果主键比较大的话,那辅助索引将会变的更大,因为辅助索引的叶子存储的是主键值;过长的主键值,会导致非叶子节点占用占用更多的物理空间  辅助索引在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找。辅助索引叶子节点存储的不再是行的物理位置,而是主键值。通过辅助索引首先找到的是主键值,再通过主键值找到数据行的数据叶,再通过数据叶中的Page Directory找到数据行。复合索引由多列创建的索引称为符合索引,在符合索引中的前导列必须出现在where条件中,索引才会被使用ALTER TABLE test.users ADD INDEX idx_users_id_name (name(10) ASC, id ASC) ; 前缀索引当索引的字符串列很大时,创建的索引也就变得很大,为了减小索引体积,提高索引的扫描速度,就用索引的前部分字串索引,这样索引占用的空间就会大大减少,并且索引的选择性也不会降低很多。而且是对BLOB和TEXT列进行索引,或者非常长的VARCHAR列,就必须使用前缀索引,因为MySQL不允许索引它们的全部长度。使用:列的前缀的长度选择很重要,又要节约索引空间,又要保证前缀索引的选择性要和索引全长度选择性接近。 唯一索引唯一索引比较好理解,就是索引值必须唯一,这样的索引选择性是最好的 主键索引主键索引就是唯一索引,不过主键索引是在创建表时就创建了,唯一索引可以随时创建。说明主键和唯一索引区别     1) 主键是主键约束+唯一索引     2) 主键一定包含一个唯一索引,但唯一索引不是主键     3) 唯一索引列允许空值,但主键列不允许空值     4) 一个表只能有一个主键,但可以有多个唯一索引 索引扫描方式:紧凑索引扫描(dense index):在最初,为了定位数据需要做权表扫描,为了提高扫描速度,把索引键值单独放在独立的数据的数据块里,并且每个键值都有个指向原数据块的指针,因为索引比较小,扫描索引的速度就比扫描全表快,这种需要扫描所有键值的方式就称为紧凑索引扫描 松散索引扫描(sparse index):为了提高紧凑索引扫描效率,通过把索引排序和查找算法(B+trre),发现只需要和每个数据块的第一行键值匹配,就可以判断下一个数据块的位置或方向,因此有效数据就是每个数据块的第一行数据,如果把每个数据块的第一行数据创建索引,这样在这个新创建的索引上折半查找,数据定位速度将更快。这种索引扫描方式就称为松散索引扫描。 覆盖索引扫描(covering index):包含所有满足查询需要的数据的索引称为覆盖索引,即利用索引返回select列表中的字段,而不必根据索引再次读取数据文件索引相关常用命令:1) 创建主键 CREATE TABLE pk_tab2 (  id int(11) NOT NULL AUTO_INCREMENT,  a1 varchar(45) DEFAULT NULL,  PRIMARY KEY (id)) ENGINE=InnoDB DEFAULT CHARSET=utf8; 2) 创建唯一索引create unique index indexname on tablename(columnname); alter table tablename add unique index indexname(columnname); 3) 创建单列一般索引create index indexname on tablename(columnname);alter table tablename add index indexname(columnname); 4) 创建单列前缀索引create index indexname on tablename(columnname(10));    //单列的前10个字符创建前缀索引alter table tablename add index indexname(columnname(10)); //单列的前10个字符创建前缀索引 5) 创建复合索引create index indexname on tablename(columnname1,columnname2);    //多列的复合索引create index indexname on tablename(columnname1,columnname2(10));    //多列的包含前缀的复合索引alter table tablename add index indexname(columnname1,columnname2); //多列的复合索引alter table tablename add index indexname(columnname1,columnname(10)); //多列的包含前缀的复合索引 6) 删除索引drop index indexname on tablename;;alter table tablename drop  index indexname; 7) 查看索引show index from tablename;show create table pk_tab2;作者:大树叶 来源:CSDN 原文:https://blog.csdn.net/bigtree_3721/article/details/51335479 版权声明:本文为博主原创文章,转载请附上博文链接!

孟志昂 2019-12-02 01:45:11 0 浏览量 回答数 0

回答

一、数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。 1、IO瓶颈 第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。 第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。 2、CPU瓶颈 第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。 第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。 二、分库分表 1、水平分库 概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。 结果: 每个库的结构都一样; 每个库的数据都不一样,没有交集; 所有库的并集是全量数据; 场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。 分析:库多了,io和cpu的压力自然可以成倍缓解。 2、水平分表 概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。 结果: 每个表的结构都一样; 每个表的数据都不一样,没有交集; 所有表的并集是全量数据; 场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。推荐:一次SQL查询优化原理分析 分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。 3、垂直分库 概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。 结果: 每个库的结构都不一样; 每个库的数据也不一样,没有交集; 所有库的并集是全量数据; 场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。 分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。 4、垂直分表 概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。 结果: 每个表的结构都不一样; 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据; 所有表的并集是全量数据; 场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。 分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。 但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。 三、分库分表工具 sharding-sphere:jar,前身是sharding-jdbc; TDDL:jar,Taobao Distribute Data Layer; Mycat:中间件。 注:工具的利弊,请自行调研,官网和社区优先。 四、分库分表步骤 根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。 扩展:MySQL:分库分表与分区的区别和思考 五、分库分表问题 1、非partition key的查询问题 基于水平分库分表,拆分策略为常用的hash法。 端上除了partition key只有一个非partition key作为条件查询 映射法 基因法 注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。 根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。 端上除了partition key不止一个非partition key作为条件查询 映射法 冗余法 注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢? 后台除了partition key还有各种非partition key组合条件查询 NoSQL法 冗余法 2、非partition key跨库跨表分页查询问题 基于水平分库分表,拆分策略为常用的hash法。 注:用NoSQL法解决(ES等)。 3、扩容问题 基于水平分库分表,拆分策略为常用的hash法。 水平扩容库(升级从库法) 注:扩容是成倍的。 水平扩容表(双写迁移法) 第一步:(同步双写)修改应用配置和代码,加上双写,部署; 第二步:(同步双写)将老库中的老数据复制到新库中; 第三步:(同步双写)以老库为准校对新库中的老数据; 第四步:(同步双写)修改应用配置和代码,去掉双写,部署; 注:双写是通用方案。 六、分库分表总结 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。 只要能满足需求,拆分规则越简单越好。 七、分库分表示例 示例GitHub地址:https://github.com/littlecharacter4s/study-sharding 来源:cnblogs.com/littlecharacter/p/9342129.html 俩元

AA大大官 2020-03-31 12:45:48 0 浏览量 回答数 0

问题

Go-SDK之如何实现管理文件?

青衫无名 2019-12-01 21:47:06 1303 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

什么是B+树 6月1日【今日算法】

游客ih62co2qqq5ww 2020-06-01 14:50:52 1 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SSL证书 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 2020中国云原生 阿里云云栖号