• 关于 创造更大空间 的搜索结果

回答

新颁布的《汽车销售管理办法》明确规定打破汽车品牌销售单一授权体制,取消总经销商和品牌经销商备案管理制度,实行授权和非授权两种模式并行。 也就是说,新政实施后,销售汽车不再必需汽车品牌商授权,整个市场环境将更加开放,更多的渠道和平台将参与到汽车销售业务中,为汽车市场的健康持续发展创造了空间和条件。 网上购车,应该会对我们消费者买车带来极大的便利,省掉去各品牌的4S店看车过程,一站式就可以体验到所有车,还能一站式完成所有购车流程

游客7bbshkix4l6fi 2019-12-02 03:04:26 0 浏览量 回答数 0

问题

【转载】:云计算时代,停止学习,开始创造

wangleheng 2019-12-01 20:22:13 10494 浏览量 回答数 2

问题

如何建立一个优秀的外贸网站?

网时 2019-12-01 21:38:57 6665 浏览量 回答数 0

试用中心

为您提供0门槛上云实践机会,企业用户最高免费12个月

回答

ReIDC行业头脑风暴室-有视频、有真相、讨论开始啦 从实际角度讲,IDC的重资产转化为轻资产,降低直接和间接成本倒是十分诱人的,但是不是十分直观的能够看得到这个空间有多大? ------------------------- ReIDC行业头脑风暴室-有视频、有真相、讨论开始啦 从全局角度讲,IDC转型后将面临旧资产处置的问题,同时原有业务及运营体系也将随之变更,代价和风险还是很高的。 ------------------------- 回13楼niubai的帖子 哈~这是个好case,现在有多少终端用户体会过传统IDC解决方案的短处,又有多少客户能够体验到云计算的优势,这个人群所占的比例有多大,将直接影响未来的云计算市场。 ------------------------- ReIDC行业头脑风暴室-有视频、有真相、讨论开始啦 依中国的国情,有很大一个群体是倾向私有云解决方案的,如何让这份用户接受公有云也是一个老大难的问题,路还很长~ ------------------------- 回29楼niubai的帖子 那就只能期待云计算普及那一天早点到来了~要不就只能挨家挨户的给客户讲老奶奶存钱的故事了~ ------------------------- 回30楼shutong的帖子 兄台形容的及其的形象和恰当,在这个演变的过程中其实是需要有人来引领一下节奏的,无论是云计算的创造者还是使用者都可以。IDC行业是需要这样一个节奏来转型的,要不然快了、慢了都很危险。 ------------------------- ReIDC行业头脑风暴室-有视频、有真相、讨论开始啦 阿里云计算的云服务器和存储类OSS、RDS等产品和传统IDC的产品形态是不同的,包括管理、配置、定价体系等,直接引入只能做价格和服务差异化的东西,间接引入又需要阿里云高度灵活的支持,而且就这个行业来讲差异化的东西确实不太好做,最后又回归到价格战,可操作空间就更小了。

zhangxh9067 2019-12-01 23:48:03 0 浏览量 回答数 0

问题

阿里云启动API创新大赛 设视频技术为场景赛题

樰篱 2019-12-01 22:09:32 4434 浏览量 回答数 3

问题

绿色环保是数据中心永恒的主题

elainebo 2019-12-01 21:03:37 8480 浏览量 回答数 1

回答

在这个信息时代高速发展的情况下,很多人会对自己该往哪个方向发展感到迷茫,下面我就浅显的给大家介绍一下五大流行区域的发展前景。大数据的发展前景:当前大数据行业真的是人才稀缺吗?学了几年后,大数据行业会不会产能过剩?大数据行业最终需要什么样的人才?接下来就带你们看看分析结果:当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。”需要什么样的大数据人才?今年3月份,教育部公布了第二批获准开设“数据科学与大数据技术”的高校名单,加上第一批获批的北京大学、对外经济贸易大学、中南大学,一共35所高校获批该专业。今年开始,部分院校将招收第一届大数据专业本科生。大数据人才培养涉及到两方面问题:交叉性学科的人才培养方案是否与市场需求相匹配;学科建设的周期与行业快速更新之间的差距怎样弥合。对于第一个问题,“电商热”时期开设的电子商务专业是一个可吸取经验的样本。2000年,教育部高教司批准了第一批高校开设电子商务本科专业。作为一个复合型专业,电子商务的本科教学涵盖了管理、技术、营销三方面的课程。电子商务领域人才需求量大,但企业却无法从电子商务专业中找到合适的人才,原因何在?职业规划专家姜萌认为,并不是某一个专业对应一个行业热点,而是一个专业集群对应一个行业热点。“比如电子商务专业,我们到电子商务公司里会发现,不是学电子商务的人在做这些工作,而是每个专业各司其职,比如计算机、设计、物流管理、营销、广告、金融等等。现在行业的复合型工作都是由一个专业集群来完成的,而不是一个人来复合一堆专业特点。”大数据专业的人才培养也同样走复合型路线,复旦大学大数据学院的招生简章显示,学院本科人才培养以统计学、计算机科学和数学为三大基础支撑性学科,以生物学、医学、环境科学、经济学、社会学、管理学等为应用拓展性学科,具备典型的交叉学科特征。LinkedIn(领英)中国技术副总裁王迪指出,“从企业应用的角度来看,大数据行业里从事相关职能的同学背景是各异的,大数据作为一个人才培养方向还在探索中,在这个阶段,高校尝试开设硕士课程是很好的实践,但开设一类的本科专业还为时过早。”另一方面,专业人才培养的周期较长,而行业热点不断更新轮替,中间产生的时间差使得新兴专业的志愿填报具备了一定风险。王迪认为,“从今天的产业实践上看,大数据领域依然是从现有专业中挑选人才,教育和市场发展总是有一定差距的,学生本科四年,加上硕士阶段已经是七年之后的事情了,产业已经演进了很多,而教学大纲并不会跟进得那么快。”因此,尽管大数据的应用前景毋庸置疑,但在人才培养层面,复合型人才培养方案会不会重走电子商务专业的老路?学校教育如何赶上行业发展速度?这些都是值得进一步商榷的问题。面对热门专业,志愿填报需要注意啥?了解了大数据行业、公司和大数据专业后,姜萌对于考生填报像大数据相关的热门专业,提出了几条建议:报考热的专业和就业热的专业并不一定是重合的,比如软件、计算机、金融,这些专业的就业率实际并没有那么高,地质勘探、石油、遥感等专业,虽然报考上是冷门,但行业需求大,就业率更高。选择热门专业,更需要考虑就业质量。专业就业好,是统计学意义,指的是平均收入水平高,比如金融专业的收入,比其他纯文科专业的平均收入较高,但落实到个体层面,就业情况就不一样了,尤其像金融专业是典型的名校高学历好就业,但对于考试成绩较低的同学来说,如果去一些普通院校、专科院校学习金融,最后就业情况可能还不如会计专业。志愿填报,除了专业,城市因素也很重要:如果想从事金融、互联网的工作,更适合去一线城市,如果是去三、四线城市的学生可以考虑应用面比较广的专业,就是各行各业都能用到的专业,比如会计专业,专科层次的会计和985层次的会计都有就业渠道。如果先选择报考城市,也可以针对所在城市的行业特点选择专业,比如沿海城市外贸相对发达,选择国际贸易、外语类专业就业情况更好,比如武汉有光谷,选择光电类专业更好就业。最终家长和考生更需要考虑个人与专业匹配的问题,金融、计算机等热门专业不是所有人都适合学,好专业不见得对所有个体都是好的。java的发展前景:由于Java的诸多优点,Java的发展前景十分广泛。比如,在我们中国的市场,Java无论在企业级应用,还是在面向大众的服务方面都取得了不少进展,在中国的电信、金融等关键性业务中发挥着举足轻重的作用。由于SUN、TBM、Oracle等国际厂商相继推出各种基于Java技术的应用服务器以及各种应用软件,推动了Java在金融、电信、制造等领域日益广泛的应用,如清华大学计算机系利用Java、XML和Web技术研制开发了多个软件平台,东方科技的TongWeb、中创的Inforweb等J2EE应用服务器。由此可见,在巨大市场需求下,企业对于Java人才的渴求已经是不争的事实。你问我火了这么多年的Java语言的发展前景怎么样?那来看看吧Java在WEB、移动设备以及云计算方面前景广阔,随着云计算以及移动领域的扩张,更多的企业在考虑将其应用部署在Java平台上。无论是本地主机,公共云,Java都是目前最适合的选择。;另外在Oracle的技术投资担保下,Java也是企业在云应用方面回避微软平台、在移动应用方面回避苹果公司的一个最佳选择。Java可以参与制作大部分网络应用程序系统,而且与如今流行的WWW浏览器结合很好,这一优点将促进Java的更大范围的推广。因为在未来的社会,信息将会传送的更加快速,这将推动程序向WEB程序方向发展,由于Java具有编写WEB程序的能力,并且Java与浏览器结合良好,这将使得Java前景充满光明的发展。Python的发展前景:Python程序员的发展前景是怎样的?随着Python的技术的流行, Python在为人们带来工作与生活上的便捷后,关注者们开始慢慢关心Python的发展前景与方向。从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C#、.net更彻底。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式,网络连接等程序变得相当容易。能运行在多种计算机平台和操作系统中,如各位unix,windows,MacOS,OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。从市场需求与薪资看Python发展Python得到越来越多公司的青睐,使得Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。学习Python的程序员,除去Python开发工程师、Python高级工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。区块链的发展前景:区块链开发 ? 155---0116---2665 ?可是区块链技术到底是什么,大多数人都是模糊没有概念。通俗来讲,如果我们把数据库假设成一本账本,读写数据库就可以看做一种记账的行为,区块链技术的原理就是在一段时间内找出记账最快最好的人,由这个人来记账,然后将账本的这一页信息发给整个系统里的其他所有人。区块链技术也称分布式账本(或账簿)技术,属于互联网数据库技术,由参与者共同完成数据库记录,特点是去中心化和公开透明。此外,在每个区块的信息写入并获得认可后,整个区块链数据库完整保存在互联网的节点中,难以被修改,因此数据库的安全性极高。人们普遍认为,区块链技术是实现数字产品(如货币和知识产权)快速、安全和透明地对等(P2P)转账或转让的重要手段。在以色列Zen Protocol公司,区块链应用软件开发专家阿希尔·曼宁介绍说,他们公司正在开发Zen区块链平台,其将用于支持金融产品在无中介的环境下自动和自由交易。通常,人们将钱存放在银行,依靠银行管理自己的资金。但是,在支配资金时往往会受到银行规定的限制,或在汇款时存在耗时长、费用高等问题。区块链技术平台将让人们首次拥有自己管理和支配钱财的能力,他相信去中心化金融管理体系具有广阔的市场,有望极大地改变传统的金融市场。2018年伊始这一轮区块链的热潮,主要起源于虚拟货币的炒作热情。站在风口,区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。很多人不禁要问“区块链又和比特币又是什么关系?”记者查询了大量资料发现,比特币2009年被一位名叫中本聪的人提出,之后比特币这套去中心化的机制一直稳定运行,这引起很多人对这套历史上并不存在的运行机制强烈关注。于是人们把从比特币技术抽象提取出来的技术运用于其他领域,称之为区块链。这过程就好像人们先发明了面条,然后人们发现其背后面粉不仅可以做面条还可以做馒头、面包。比特币是面条,区块链是面粉。也就是说,区块链和比特币的关系即比特币算是区块链技术的一种应用,或者说一种使用了区块链技术的产品形态。而说到区块链不得不说的就是ICO,它是一种公开发行的初始数字货币。对于投资人来说,出于对市场信号的敏感和长期关注价值投资项目,目前炙手可热的区块链也成为诸多投资人关注的新兴项目之一。“区块链对于我们来说就是省去了中间环节,节约了交易成本,节省了交易时间,但是目前来看各方面环境还不够成熟,有待观望。”一位投资人这样说道。记者发现,在春节期间,不少互金圈的朋友熬夜到凌晨进入某个探讨区块链的微信群热聊,此群还吸引了不少知名人士,诸如明星加入,同时还有大咖在群里解读区块链的投资方式和未来发展等等。一时间,关于区块链的讨论群接二连三出现,也引发了各个行业对区块链的关注。出于对于区块链技术懵懂的状态,记者追问了身边的一些互金圈的朋友,为何如此痴迷区块链?多数朋友认为“区块链能赚钱,抱着试试看的心态,或许能像之前比特币一样从中获取收益。”显然,区块链技术具有广阔的应用潜力,但是在其逐步进入社会改善民众生活的过程中,也面临许多的问题,需要积极去寻求相应的对策,最终让其发挥出潜力。只有这样,10年或20年后人们才能真正享受区块链技术创造的美好环境。人工智能的发展前景:人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,国内外的高科技公司以及风险投资机构纷纷布局人工智能产业链。科技部部长万钢3月10日表示,加快实施新一代人工智能科学基础的关键技术系统集成研发,使那些研发成果尽快能够进入到开放平台,在开放使用中再一次把它增强完善。万钢称,马上就要发布人工智能项目指南和细则,来突破基础前沿理论关键部分的技术。人工智能发展趋势据前瞻产业研究院《人工智能行业市场前瞻与投资战略规划分析报告》指出,2017年中国人工智能核心产业规模超过700亿元,随着国家规划的出台,各地人工智能相关建设将逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,增长率达到26.2%。报告认为,从产业投资回报率分析,智能安防、智能驾驶等领域的快速发展都将刺激计算机视觉分析类产品的需求,使得计算机视觉领域具备投资价值;而随着中国软件集成水平和人们生活水平的提高,提供教育、医疗、娱乐等专业化服务的服务机器人和智能无人设备具备投资价值。人工智能现状当前,人工智能受到的关注度持续提升,大量的社会资本和智力、数据资源的汇集驱动人工智能技术研究不断向前推进。从发展层次来看,人工智能技术可分为计算智能、感知智能和认知智能。当前,计算智能和感知智能的关键技术已经取得较大突破,弱人工智能应用条件基本成熟。但是,认知智能的算法尚未突破,前景仍不明朗。今年,随着智力资源的不断汇集,人工智能核心技术的研究重点可能将从深度学习转为认知计算,即推动弱人工智能向强人工智能不断迈进。一方面,在人工智能核心技术方面,在百度等大型科技公司和北京大学、清华大学等重点院校的共同推动下,以实现强人工智能为目标的类脑智能有望率先突破。另一方面,在人工智能支撑技术方面,量子计算、类脑芯片等核心技术正处在从科学实验向产业化应用的转变期,以数据资源汇集为主要方向的物联网技术将更加成熟,这些技术的突破都将有力推动人工智能核心技术的不断演进。工业大数据2022 年我国工业大数据有望突破 1200 亿元, 复合增速 42%。 工业大数据是提升制造智能化水平,推动中国制造业转型升级的关键动力,具体包括企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据的主要来源。工业大数据不仅可以优化现有业务,实现提质增效,而且还有望推动企业业务定位和盈利模式发生重大改变,向个性化定制、智能化生产、网络化协同、服务化延伸等智能化场景转型。预计到 2022 年,中国工业大数据市场规模有望突破 1200亿元,年复合增速 42%。IT的未来是人工智能这是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,及由此带来的计算力的极大提升。这就是所谓的摩尔定律。在互联网时代,互联的终端数也是超线性的增长,而网络的效力大致与联网终端数的平方成正比。今天,大数据时代产生的数据正在呈指数级增加。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。未来的计算能力人工智能需要强大的计算能力。计算机的性能过去30年提高了一百万倍。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待一些新的技术突破。先谈一下类脑计算。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟100万个神经元,2亿5千万个神经突触。未来几年,我们会看到类脑计算机的进一步的发展与应用随着互联网的普及、传感器的泛在、大数据的涌现、电子商务的发展、信息社区的兴起,数据和知识在人类社会、物理空间和信息空间之间交叉融合、相互作用,人工智能发展所处信息环境和数据基础发展了巨大的变化。伴随着科学基础和实现载体取得新的突破,类脑计算、深度学习、强化学习等一系列的技术萌芽预示着内在动力的成长,人工智能的发展已进入一个新的阶段。发展发展前景好,代表你现在学习会比后来者起步快,占有更大的优势,当然,你也要明白兴趣是最好的老师,选择自己感兴趣的相信你学的会更加而牢固。记住,最重要的一点:方向最重要!!!希望大家多多关注. ,加微信zhanglindashuju 可以获取更多资料哦作者:失色的瞳孔链接:https://juejin.im/post/5b1a6531e51d45067e6fc24a来源:掘金著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

孟志昂 2019-12-02 01:45:13 0 浏览量 回答数 0

问题

【教程免费下载】   r的极客理想——高级开发篇

沉默术士 2019-12-01 22:08:01 1089 浏览量 回答数 1

回答

定位(Positioning),由美国著名营销专家艾·里斯(AlRies)与杰克·特劳特(Jack Trout)于70年代早期提出。   2001年,定位被美国营销学会评为有史以来对美国营销业影响最大的观念。   2007年,美国权威媒体评选“全球十大顶尖商业战略大师”,艾·里斯与彼得·德鲁克、杰克·韦尔奇等并列其中。   2009年,美国《财富》杂志(Fortune,2009年2月刊)推出“历史上百本最佳商业经典著作”前十位介绍,由艾·里斯与杰克·特劳特合著的《定位》名列首位。   当时,他们在美国《广告时代》发表了名为《定位时代》系列文章。只后,他们将这些观点和理论集中反映在他们合作的第一本著作《广告攻心战略》一书中。正如他们所言,这是一本关于传播沟通的教科书。   1996年,杰克·特劳特整理了25年来的工作经验,写出了《新定位》一书。也许是更加符合了时代的要求,但其核心思想却仍然源自于他们于1972年提出的定位论。定位理论的产生,源于人类各种信息传播渠道的拥挤和阻塞,可以归结为信息爆炸时代对商业运作的影响结果。科技进步和经济社会的发展,几乎把消费者推到了无所适从的境地。首先是媒体的爆炸:广播、电视、互联网,录音带、录像带、光盘使消费者目不暇接。其次是产品的爆炸:仅电视就有大屏幕的、小屏幕的,平面直角的、超平的、纯平的,从耐用消费品到日用品,都给人以眼花缭乱的感觉。再就是广告的爆炸:电视广告、广播广告、报刊广告、街头广告、楼门广告、电梯广告,真可谓无孔不入。因此,定位就显得非常必要。   定位是对产品在未来的潜在顾客的脑海里确定一个合理的位置。定位的基本原则不是去创造某种新奇的或与众不同的东西,而是去操纵人们心中原本的想法,去打开联想之结。定位的真谛就是“攻心为上”,消费者的心灵才是营销的终级战场。消费者有五大思考模式:消费者只能接收有限的信息、消费者喜欢简单,讨厌复杂、消费者缺乏安全感、消费者对品牌的印象不会轻易改变、消费者的想法容易失去焦点。掌握这些特点有利于以帮助企业占领消费者心目中的位置。而定位的方法有多种,如强化自己已有的定位、比附定位、单一位置策略、寻找空隙策略、类别品牌定位、再定位等。   按照艾·里斯与杰克·特劳特的观点:定位,是从产品开始,可以是一件商品,一项服务,一家公司,一个机构,甚至于是一个人,也可能是你自己。定位并不是要你对产品做什么事情,定位是你对产品在未来的潜在顾客的脑海里确定一个合理的位置,也就是把产品定位在你未来潜在顾客的心目中。定位可以看成是对现有产品的一种创造性试验。“改变的是名称、价格及包装,实际上对产品则完全没有改变,所有的改变,基本上是在作着修饰而已,其目的是在潜在顾客心中得到有利的地位”。   所谓定位,就是令你的企业和产品与众不同,形成核心竞争力;对受众而言,即鲜明地建立品牌。   ——杰克·特劳特   所谓定位,就是让品牌在消费者的心智中占据最有利的位置,使品牌成为某个类别或某种特性的代表品牌。这样当消费者产生相关需求时,便会将定位品牌作为首选,也就是说这个品牌占据了这个定位。   —— 特劳特(中国)品牌战略咨询有限公司总裁 邓德隆 编辑本段定位的前提   按照艾·里斯与杰克·特劳特的理论,我们目前已成为一个传播过多的社会,而消费者只能接受有限的信息,消费者抵御这种“信息爆炸”的最有力武器就是最小努力法则--痛恨复杂,喜欢简单。现有产品在顾客心目中都有一定的位置,例如,人们认为可口可乐是世界上最大饮料生产商,格兰仕是中国最大的微波炉生产商,北京同仁医院是中国最著名的眼科医院等,这些产品和服务的提供者在与消费者长期的交易中所拥有的地位,是其他人很难取代的。也就是说,消费者对品牌的印象不会轻易改变。定位的基本原则不是去创造某种新奇的或与众不同的东西,而是去操纵人们心中原本的想法,去打开联想之结,目的是要在顾客心目中,占据有利的地位。唯其如此,方能在市场上赢得有利的竞争地位。   一般说来,企业在营销中的失策表现为两大类:   一是在市场逐渐成熟后,如果企业不能及时构思新的定位,从而使其陷入困境。例如,在冰箱、电视机等已成为国内的成熟技术之时,再有一个厂家去宣传自己是第一个引进外国技术,就会让人笑掉大牙。而海尔、长虹等企业诉求“海尔,中国造”、“长虹,以振兴民族工业为已任”,则收到了极好的效果。   二是随着企业不断扩张和进行多元化角逐,而使消费者对产品的印象愈来愈模糊。美国雪佛莱汽车公司就经历过这样的事情。过去,雪佛莱汽车是美国家庭汽车的代名词,但在雪佛莱将生产线扩大到涵盖卡车、跑车等车型后,消费者心中原有的“雪佛莱就是美国家庭房车”的印象焦点反而模糊了,而让福特站上了第一品牌的宝座。在我国,“三九胃泰”曾是著名的胃药生产商,而后,又扩张到啤酒的生产,这无疑是为厂家出了个大难题:饮酒对胃肠道是一个不良刺激,自己生产的产品又是治疗胃病,是酒好还是胃药好。这不正是“矛盾”这一古代寓言的现代翻版吗。然而,这也正是“定位”理论的用武之地。   定位的真谛就是“攻心为上”,消费者的心灵才是营销的终级战场。从广告传播的角度来看定位,它不是要琢磨产品,因为产品已是生出来的孩子,已经定型,不大容易改变,而容易改变的是消费者的“心”。 编辑本段消费者五大思考模式   要抓住消费者的心,必须了解他们的思考模式,这是进行定位的前提。《新定位》一书列出了消费者的五大思考模式,以帮助企业占领消费者心目中的位置。 模式一:消费者只能接收有限的信息。   在超载的信息中,消费者会按照个人的经验、喜好、兴趣甚至情绪,选择接受哪些信息,记忆哪些信息。因此,较能引起兴趣的产品种类和品牌,就拥有打入消费者记忆的先天优势。例如,我国的杭州娃哈哈集团,最初是以生产“娃哈哈”儿童营养液而一举成名。它的成功就是由于,产品定位准确,而广告定位更是让人过目不忘,因为它源于一首人人熟知的儿歌,很容易引进儿童与家长的共鸣。 模式二:消费者喜欢简单,讨厌复杂。   在各种媒体广告的狂轰滥炸下,消费者最需要简单明了的信息。广告传播信息简化的诀窍,就是不要长篇大论,而是集中力量将一个重点清楚地打入消费者心中,突破人们痛恨复杂的心理屏障。在这一点上最令人称道是我国的一种驱虫药广告,只须服两片,治蛲虫是两片,治钩虫也是两片。人们也许记不住复杂的药品名称,但只需说“两片”,药店的售货员就知道你要的是什么药。反过来,如果厂家在广告中介绍它的产品如何如何先进,效果如何显著,其结果可想而知。 模式三:消费者缺乏安全感。   由于缺乏安全感,消费者会买跟别人一样的东西,免除花冤枉钱或被朋友批评的危险。所以,人们在购买商品前(尤其是耐用消费品),都要经过缜密的商品调查。而广告定位传达给消费者简单而又易引进兴趣的信息,正好使自己的品牌易于在消费者中传播。如果一位消费者要买驱虫药,必然先向朋友打听,一说“两片”,既满足了消费者安全感的需要,也无须记一些专业名词。   模式四: 消费者对品牌的印象不会轻易改变 。 虽然一般认为新品牌有新鲜感,较能引人注目,但是消费者真能记到脑子里的信息,还是耳熟能详的东西。比如,对可口可乐公司的员工而言,它是总部设在亚特兰大市的一个“公司”,一个“机构”,而在一般消费者心目中,可口可乐是一种甜美的、深色的、加了碳酸气的饮料,可口可乐是一个著名饮料品牌。如果,可口可乐公司哪天心血来潮,去生产热门的香烟或者是啤酒,也许正是可口可乐的可叹可悲之时。 模式五:消费者的想法容易失去焦点。   虽然盛行一时的多元化、扩张生产线增加了品牌多元性,但是却使消费者模糊了原有的品牌印象。美国舒洁公司在纸业的定位就是一例。舒洁原本是以生产舒洁卫生纸起家的,后来,它把自己的品牌拓展到舒洁纸面巾、舒洁纸餐巾以及其他纸产品,以至于在数十亿美元的市场中,拥有了最大的市场占有率。然而,正是这些盲目延伸的品牌,使消费者失去了对其注意的焦点,最终让宝洁公司乘虚而入。难怪一位营销专家以美国人幽默方式发问:舒洁餐巾纸,舒洁卫生纸,到底哪个牌子是为鼻子而设计的呢。   所以,企业在定位中一定要掌握好这些原则:消费者接受信息的容量是有限的,广告宣传“简单”就是美,一旦形成的定位很难在短时间内消除,盲目的品牌延伸会摧毁自己在消费者心目中的既有定位。所以,无论是产品定位,还是广告定位一定要慎之又慎。 编辑本段定位方法   在广告泛滥、信息爆炸,消费者必然要用尽心力筛选掉大部分垃圾。例如,尽管市场上饮料众多,人们只知道有可口可乐、娃哈哈、乐百氏等几种品牌,并且这些品牌在他们心目中还是有一定顺序的,不用说,可口可乐一定是第一,至于第二、第三就要看厂家的定位策略了。   人们总是容易记住第一名,如谁都知道世界第一高峰是珠穆拉玛峰,但极少有人能说出第二大高峰,人们能很快说出体育比赛的冠军,亚军则不易给人留下印象。所以,在具体操作中营销人员要善于找出自己品牌所拥有的令人信服的某种重要属性或利益。通过一定的策略和方法,让自己的品牌给人们留下深刻的印象。这些方法一般有: 强化自己已有的定位   既然现有的产品和服务在消费者心目中都有一定的位置,如果这种定位对企业有利的话,就要反复向人们宣传这种定位,强化本企业的产品在消费者心目的形象,也就是自己的特色,而这种强化必须是实事求是的。如,在我国的冰箱生产厂家中,海尔反复强调自己的“高品质”,新飞则宣传自己是节能冰箱,而美菱把文章做在了“保鲜”上。 比附定位   使定位对象与竞争对象(已占有牢固位置)发生关联,并确立与竞争对象的定位相反的或可比的定位概念。如美国一家处于第二位的出租汽车公司,在广告中反复宣传:我们是第二,所以我们更加努力啊。这样,既强化了自己与第一的关系,又表明了自己处于弱者的位置,更易引起人们“同情弱者”的共鸣。 第一定位   处于领导地位者,要以另外的新品牌来压制竞争者。因为每一个品牌都在其潜在顾客心目中安置了独自所占据的一个特定处所。这是作为市场领导者所要采取的策略。既然自己是老大,“卧榻之侧,岂容他人酣睡”,因此,在各种场合宣传自己第一的形象自然就在情理之中。 市场空白   寻求消费者心目中的空隙,然后加以填补。其中有价格(高低),性别,年龄,一天中的时段,分销渠道,大量使用者的位置等各种空隙。如,万宝路在美国是著名的香烟品牌,而一个叫窈窕牌的香烟品牌,就是以女性抽烟者为突破口挑战万宝路而大获成功。 品类   当一个强大的品牌名称成了产品类别名称的代表或代替物时,必须给公司一个真正成功的新产品以一个新的名称,而不能采用“搭便车”的做法,沿袭公司原有产品的名称。这像“跷跷板”原理,当一种上来时,另一种就下去。因为一个名称不能代表两个迥然不同的产品。宝洁公司的多品牌策略就大有可取之处。 再定位   也就是重新定位,意即打破事物(例如产品)在消费者心目中所保持的原有位置与结构,使事物按照新的观念在消费者心目中重新排位,调理关系,以创造一个有利于自己的新的秩序。这意味着必须先把旧的观念或产品搬出消费者的记忆,才能把另一个新的定位装进去。海尔在最初是以宣传自己冰箱的品质优良作为定位,而在产品延伸之后,很快就突出了“中国造”、“向国际营销商授权”等新的定位。   需要指出的是,由于艾·里斯与杰克·特劳特都是广告人出身,他们的定位理论往往局限于一种广告传播策略,强调让产品占领消费者心目中的空隙。目前,定位理论对营销的影响远远超过了原先把它作为一种传播技巧的范畴,而演变为营销策略的一个基本步骤。这反映在营销大师科特勒对定位下的定义中。他认为,定位是对公司的提供物(原文是offer)和形象的策划行为,目的是使它在目标消费者的心目中占据一个独特的有价值的位置。因此,“营销人员必须从零开始,使产品特色确实符合所选择的目标市场。”科特勒把艾尔·列斯与杰克·特罗的定位理论归结为“对产品的心理定位和再定位”。显然,除此之外,还有对潜在产品的定位。这就给定位理论留下了更为广阔的发展空间。 编辑本段定位理论在中国的发展   定位的一个中心、两个基本点   定位理论传入中国后,定位理论和中国实践相结合,取得中部定位第一人、著名品牌定位专家鲁建华首次提出:定位理论的核心是一个中心、两个基本点,以打造品牌为中心,以竞争导向和进入顾客心智为基本点。 以打造品牌为中心    从根本的角度思考,营销的过程就是创造顾客、打造品牌的过程,营销就是打造品牌;从更广义的角度讲,创建伟大企业的过程其实就是创造顾客、打造品牌的过程,做企业就是做品牌,企业运营的本质就是打造品牌。   定位理论所有的概念、观点、体系都服务于打造品牌这个目的,是围绕打造品牌而展开的。离开打造品牌这个中心,谈论定位理论,必然会误入歧途,不得要领。 以竞争导向为基本点   顾客重要还是竞争重要。传统的营销理论认为,顾客更重要,没有顾客就不会有竞争,营销就是满足顾客的需要和需求。“顾客是上帝”观念至高无上,广为流传。至今顾客导向的观念仍然深入人心。   从纯理论的角度讲,顾客确实比竞争重要;但从实战的角度看,解决竞争才是最重要的。从满足、服务顾客的角度看营销,营销必然走向趋同,没有差异,最终只有沦落到打价格战的深渊;而从竞争角度看营销,营销就会有活力,营销必然走向创造顾客、创造需求的新境界,不断引领企业开创新的未来。   竞争导向要求营销者首先考虑的问题是如何让自己的品牌与竞争品牌区分开来,实现差异化,把生意从竞争对手那里转换过来。这是定位思考的起点。   营销就是战争,商场就是战场。定位就是在与竞争对手正式开战之前进入和占据一个最有利的位置。定位是建立在竞争之上,随着竞争的发展而发展的。   竞争导向的观念是定位理论的第一个基本点。 以进入顾客心智为基本点   营销中没有事实,只有认知。   这是商业中最隐秘、最基本的真理,三个方面的原因导致了这一点:   一是从事实到认知有一个过程,你不能跨越这个过程。这个过程就是事实要经过大脑的过滤、解读,最终体现事实的认知。   二是人们已经形成既有的认知和观念,他们认为自己的这些既有认知、观念就是事实。而这些既有的认知、观念会影响人们对新事物的认知。这表现在两个方面:其一,心智中既有的认知、观念会让人们有选择地接收信息,你“看到”、“听到”、“尝到”的事物往往是你“希望看到”、“希望听到”、“希望尝到”的事物;其二,心智中既有的认知、观念有时会误导你,比如在一个装满自来水的瓶子上贴上某纯净水品牌的商标,你对这个品牌既有的认知(纯净水)会影响到你对事实(自来水)的判断。   三是顾客的认知逻辑与企业的认知逻辑往往相反。虽然他们都认为质量更好的产品一定会胜出,企业判断质量的标准是产品的技术指标、最好的检测仪器(他们很自然地认为自己的产品质量更好),而顾客判断质量的标准是哪一种产品得到更多顾客青睐哪一种产品的质量就更好,顾客没有能力也没有精力去理会那些所谓的技术指标。这就是心智认知规律所揭示的事实。   其实所有的广告都是要影响你的认知,如果没有影响你,广告就是失败的;影响了你,那它就是成功的。离开认知,就没有办法谈营销。   营销之战不是事实之战,不是产品之战,不是市场之战,而是认知之战。商战的地点不是事实,不是产品,不是市场,而是心智。   商战的目的其实就是设法进入心智认知并占据一席之地。定位就是选择、占据心智认知上最有利的位置,通过商战实现这一目的。商战在顾客的心智中进行,心智是你获胜的地方,也是你落败的地方,心智决定成败。商战中没有事实,只有认知,认知即事实,认知决定成败。   坚持占据顾客心智是定位理论的第二个基本点。 辩证关系   心智是竞争的内容,竞争是进入心智的手段。竞争在心智中展开,心智是竞争的战场。心智为竞争开辟了全新的内容、提供了一个差异化的竞争角度,竞争是进入、占据心智的必由之路。心智认知规律决定竞争规律,竞争发现和提升了心智认知的价值和作用。竞争导向与占据心智这两个基本点有机结合,相互运动,共同服务于打造品牌。这就是定位理论的核心─一个中心、两个基本点的辩证关系。

青衫无名 2019-12-02 01:17:12 0 浏览量 回答数 0

问题

阿里云的API经济:你可能错过了一个2.2万亿美元的市场

仙游 2019-12-01 21:17:27 2673 浏览量 回答数 0

问题

单价几分钱的API产品,却能激活万亿经济?

仙游 2019-12-01 21:21:04 2734 浏览量 回答数 2

问题

AliOS携手康佳发布会议新品 共同构建智能办公生态圈

os君 2019-12-01 21:48:56 1125 浏览量 回答数 0

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。

茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

问题

老而不死的三种编程语言?

珍宝珠 2020-01-13 11:06:22 472 浏览量 回答数 1

回答

  定位(Positioning),是由著名的美国营销专家艾尔·列斯(AlRies)与杰克·特罗(Jack   Trout)于70年代早期提出来的,当时,他们在美国《广告时代》发表了名为《定位时代》系列文章,以后,他们又把这些观点和理论集中反映在他们的第一本著作《广告攻心战略》一书中,正如他们所言,这是一本关于传播沟通的教科书。1996年,杰克·特罗整理了25年来的工作经验,写出了《新定位》一书。也许是更加符合了时代的要求,但其核心思想却仍然源自于他们于1972年提出的定位论。定位理论的产生,源于人类各种信息传播渠道的拥挤和阻塞,可以归结为信息爆炸时代对商业运作的影响结果。科技进步和经济社会的发展,几乎把消费者推到了无所适从的境地。首先是媒体的爆炸:广播、电视、互联网,录音带、录像带、光盘使消费者目不暇接。其次是产品的爆炸:仅电视就有大屏幕的、小屏幕的,平面直角的、超平的、纯平的,从耐用消费品到日用品,都给人以眼花缭乱的感觉。再就是广告的爆炸:电视广告、广播广告、报刊广告、街头广告、楼门广告、电梯广告,真可谓无孔不入。因此,定位就显得非常必要。   按照艾尔·列斯与杰克·特罗的观点:定位,是从产品开始,可以是一件商品,一项服务,一家公司,一个机构,甚至于是一个人,也可能是你自己。定位并不是要你对产品做什么事情,定位是你对产品在未来的潜在顾客的脑海里确定一个合理的位置,也就是把产品定位在你未来潜在顾客的心目中。定位可以看成是对现有产品的一种创造性试。“改变的是名称、价格及包装,实际上对产品则完全没有改变,所有的改变,基本上是在作着修饰而已,其目的是在潜在顾客心中得到有利的地位”。   定位的前提   按照艾尔·列斯与杰克·特罗的理论,我们目前已成为一个传播过多的社会,而消费者只能接受有限的信息,消费者抵御这种“信息爆炸”的最有力武器就是最小努力法则--痛恨复杂,喜欢简单。现有产品在顾客心目中都有一定的位置,例如,人们认为可口可乐是世界上最大饮料生产商,格兰仕是中国最大的微波炉生产商,北京同仁医院是中国最著名的眼科医院等,这些产品和服务的提供者在与消费者长期的交易中所拥有的地位,是其他人很难取代的。也就是说,消费者对品牌的印象不会轻易改变。定位的基本原则不是去创造某种新奇的或与众不同的东西,而是去操纵人们心中原本的想法,去打开联想之结,目的是要在顾客心目中,占据有利的地位。唯其如此,方能在市场上赢得有利的竞争地位。   一般说来,企业在营销中的失策表现为两大类:一是在市场逐渐成熟后,如果企业不能及时构思新的定位,从而使其陷入困境。例如,在冰箱、电视机等已成为国内的成熟技术之时,再有一个厂家去宣传自己是第一个引进外国技术,就会让人笑掉大牙。而海尔、长虹等企业诉求“海尔,中国造”、“长虹,以振兴民族工业为已任”,则收到了极好的效果。二是随着企业不断扩张和进行多元化角逐,而使消费者对产品的印象愈来愈模糊。美国雪佛莱汽车公司就经历过这样的事情。过去,雪佛莱汽车是美国家庭汽车的代名词,但在雪佛莱将生产线扩大到涵盖卡车、跑车等车型后,消费者心中原有的“雪佛莱就是美国家庭房车”的印象焦点反而模糊了,而让福特站上了第一品牌的宝座。在我国,“三九胃泰”曾是著名的胃药生产商,而后,又扩张到啤酒的生产,这无疑是为厂家出了个大难题:饮酒对胃肠道是一个不良刺激,自己生产的产品又是治疗胃病,是酒好还是胃药好。这不正是“矛盾”这一古代寓言的现代翻版吗。然而,这也正是“定位”理论的用武之地。   定位的真谛就是“攻心为上”,消费者的心灵才是营销的终级战场。从广告传播的角度来看定位,它不是要琢磨产品,因为产品已是生出来的孩子,已经定型,不大容易改变,而容易改变的是消费者的“心”。   要抓住消费者的心,必须了解他们的思考模式,这是进行定位的前提。《新定位》一书列出了消费者的五大思考模式,以帮助企业占领消费者心目中的位置。   模式一:消费者只能接收有限的信息。在超载的信息中,消费者会按照个人的经验、喜好、兴趣甚至情绪,选择接受哪些信息,记忆哪些信息。因此,较能引起兴趣的产品种类和品牌,就拥有打入消费者记忆的先天优势。例如,我国的杭州娃哈哈集团,最初是以生产“娃哈哈”儿童营养液而一举成名。它的成功就是由于,产品定位准确,而广告定位更是让人过目不忘,因为它源于一首人人熟知的儿歌,很容易引进儿童与家长的共鸣。   模式二:消费者喜欢简单,讨厌复杂。在各种媒体广告的狂轰滥炸下,消费者最需要简单明了的信息。广告传播信息简化的诀窍,就是不要长篇大论,而是集中力量将一个重点清楚地打入消费者心中,突破人们痛恨复杂的心理屏障。在这一点上最令人称道是我国的一种驱虫药广告,只须服两片,治蛲虫是两片,治钩虫也是两片。人们也许记不住复杂的药品名称,但只需说“两片”,药店的售货员就知道你要的是什么药。反过来,如果厂家在广告中介绍它的产品如何如何先进,效果如何显著,其结果可想而知。   模式三:消费者缺乏安全感。由于缺乏安全感,消费者会买跟别人一样的东西,免除花冤枉钱或被朋友批评的危险。所以,人们在购买商品前(尤其是耐用消费品),都要经过缜密的商品调查。而广告定位传达给消费者简单而又易引进兴趣的信息,正好使自己的品牌易于在消费者中传播。如果一位消费者要买驱虫药,必然先向朋友打听,一说“两片”,既满足了消费者安全感的需要,也无须记一些专业名词。   模式四:消费者对品牌的印象不会轻易改变。虽然一般认为新品牌有新鲜感,较能引人注目,但是消费者真能记到脑子里的信息,还是耳熟能详的东西。比如,对可口可乐公司的员工而言,它是总部设在亚特兰大市的一个“公司”,一个“机构”,而在一般消费者心目中,可口可乐是一种甜美的、深色的、加了碳酸气的饮料,可口可乐是一个著名饮料品牌。如果,可口可乐公司那天心血来潮,去生产热门的香烟或者是啤酒,也许正是可口可乐的可叹可悲之时。   模式五:消费者的想法容易失去焦点。虽然盛行一时的多元化、扩张生产线增加了品牌多元性,但是却使消费者模糊了原有的品牌印象。美国舒洁公司在纸业的定位就是一例。舒洁原本是以生产舒洁卫生纸起家的,后来,它把自己的品牌拓展到舒洁纸面巾、舒洁纸餐巾以及其他纸产品,以至于在数十亿美元的市场中,拥有了最大的市场占有率。然而,正是这些盲目延伸的品牌,使消费者失去了对其注意的焦点,最终让宝洁公司乘虚而入。难怪一位营销专家以美国人幽默方式发问:舒洁餐巾纸,舒洁卫生纸,到底哪个牌子是为鼻子而设计的呢。   所以,企业在定位中一定要掌握好这些原则:消费者接受信息的容量是有限的,广告宣传“简单”就是美,一旦形成的定位很难在短时间内消除,盲目的品牌延伸会摧毁自己在消费者心目中的既有定位。所以,无论是产品定位,还是广告定位一定要慎之又慎。   定位的方法   在广告泛滥、信息爆炸,消费者必然要用尽心力筛选掉大部分垃圾。例如,尽管市场上饮料众多,人们只知道有可口可乐、娃哈哈、乐百氏等几种品牌,并且这些品牌在他们心目中还是有一定顺序的,不用说,可口可乐一定是第一,至于第二、第三就要看厂家的定位策略了。人们总是容易记住第一名,如谁都知道世界第一高峰是珠穆拉玛峰,但极少有人能说出第二大高峰,人们能很快说出体育比赛的冠军,亚军则不易给人留下印象。所以,在具体操作中营销人员要善于找出自己品牌所拥有的令人信服的某种重要属性或利益。通过一定的策略和方法,让自己的品牌给人们留下深刻的印象。这些方法一般有:   强化自己已有的定位。既然现有的产品和服务在消费者心目中都有一定的位置,如果这种定位对企业有利的话,就要反复向人们宣传这种定位,强化本企业的产品在消费者心目的形象,也就是自己的特色,而这种强化必须是实事求是的。如,在我国的冰箱生产厂家中,海尔反复强调自己的“高品质”,新飞则宣传自己是节能冰箱,而美菱把文章做在了“保鲜”上。   比附定位。使定位对象与竞争对象(已占有牢固位置)发生关联,并确立与竞争对象的定位相反的或可比的定位概念。如美国一家处于第二位的出租汽车公司,在广告中反复宣传:我们是第二,所以我们更加努力啊。这样,既强化了自己与第一的关系,又表明了自己处于弱者的位置,更易引起人们“同情弱者”的共鸣。   单一位置策略。处于领导地位者,要以另外的新品牌来压制竞争者。因为每一个品牌都在其潜在顾客心目中安置了独自所占据的一个特定处所。这是作为市场领导者所要采取的策略。既然自己是老大,“卧榻之侧,哪容他人酣睡”,因此,在各种场合宣传自己第一的形象自然就在情理之中。   寻找空隙策略。寻求消费者心目中的空隙,然后加以填补。其中有价格(高低),性别,年龄,一天中的时段,分销渠道,大量使用者的位置等各种空隙。如,万宝路在美国是著名的香烟品牌,而一个叫窈窕牌的香烟品牌,就是以女性抽烟者为突破口挑战万宝路而大获成功。   类别品牌定位。当一个强大的品牌名称成了产品类别名称的代表或代替物时,必须给公司一个真正成功的新产品以一个新的名称,而不能采用“搭便车”的做法,沿袭公司原有产品的名称。这像“跷跷板”原理,当一种上来时,另一种就下去。因为一个名称不能代表两个迥然不同的产品。宝洁公司的多品牌策略就大有可取之处。   再定位。也就是重新定位,意即打破事物(例如产品)在消费者心目中所保持的原有位置与结构,使事物按照新的观念在消费者心目中重新排位,调理关系,以创造一个有利于自己的新的秩序。这意味着必须先把旧的观念或产品搬出消费者的记忆,才能把另一个新的定位装进去。海尔在最初是以宣传自己冰箱的品质优良作为定位,而在产品延伸之后,很快就突出了“中国造”、“向国际营销商授权”等新的定位。   需要指出的是,由于艾尔·列斯与杰克·特罗都是广告人出身,他们的定位理论往往局限于一种广告传播策略,强调让产品占领消费者心目中的空隙。目前,定位理论对营销的影响远远超过了原先把它作为一种传播技巧的范畴,而演变为营销策略的一个基本步骤。这反映在营销大师科特勒对定位下的定义中。他认为,定位是对公司的提供物(原文是offer)和形象的策划行为,目的是使它在目标消费者的心目中占据一个独特的有价值的位置。因此,“营销人员必须从零开始,使产品特色确实符合所选择的目标市场。”科特勒把艾尔·列斯与杰克·特罗的定位理论归结为“对产品的心理定位和再定位”。显然,除此之外,还有对潜在产品的定位。这就给定位理论留下了更为广阔的发展空间。

寒凝雪 2019-12-02 01:17:15 0 浏览量 回答数 0

问题

厉华:写一个开源容器引擎会是什么样的体验? 热:报错

kun坤 2020-06-10 10:01:12 3 浏览量 回答数 1

问题

不搞清这8大算法思想,刷再多题效果也不好的 7月23日 【今日算法】

游客ih62co2qqq5ww 2020-07-29 11:10:09 3 浏览量 回答数 1

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

回答

要了解CDN 的实现原理,首先让我们来回顾一下网站传统的访问过程,以便理解其与CDN 访问方式之间的差别: 由上图可见,传统的网站访问过程为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,获得此域名对应的IP 地址; 3. 浏览器利用所得到的IP 地址,向该IP 对应的服务器发出访问请求; 4. 服务器对此响应,将数据回传至用户浏览器端显示出来。 与传统访问方式不同,CDN 网络则是在用户和服务器之间增加 Cache 层,将用户的访问请求引导到Cache 节点而不是服务器源站点,要实现这一目的,主要是通过接管DNS 实现,下图为使用CDN 缓存后的网站访问过程: 由上图可见,使用CDN 缓存后的网站访问过程演变为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,由于CDN 对域名解析过程进行了调整,所以用户端一般得到的是该域名对应的 CNAME 记录,此时浏览器需要再次对获得的 CNAME 域名进行解析才能得到缓存服务器实际的IP 地址。 注:在此过程中,全局负载均衡DNS 解析服务器会根据用户端的源IP 地址,如地理位置(深圳还是上海)、接入网类型(电信还是网通)将用户的访问请求定位到离用户路由最短、位置最近、负载最轻的Cache 节点(缓存服务器)上,实现就近定位。定位优先原则可按位置、可按路由、也可按负载等。 3. 再次解析后浏览器得到该域名CDN 缓存服务器的实际IP 地址,向缓存服务器发出访问请求; 4. 缓存服务器根据浏览器提供的域名,通过Cache 内部专用DNS 解析得到此域名源服务器的真实IP 地址,再由缓存服务器向此真实IP 地址提交访问请求; 5. 缓存服务器从真实 IP 地址得到内容后,一方面在本地进行保存,以备以后使用,同时把得到的数据发送到客户端浏览器,完成访问的响应过程; 6. 用户端得到由缓存服务器传回的数据后显示出来,至此完成整个域名访问过程。 通过以上分析可以看到,不论是否使用CDN 网络,普通用户客户端设置不需做任何改变,直接使用被加速网站原有域名访问即可。对于要加速的网站,只需修改整个访问过程中的域名解析部分,便能实现透明的网络加速服务。 CDN 应用与架构 CDN 速度快、传输安全、扩展性强,尤其在应对大容量迸发时游刃有余,主要应用于跨地域的门户及行业网站,如游戏、娱乐、IT、新闻传媒、VOD、远程教育、音视频、下载、IPTV、金融证券等。 利用CDN 网络,网站用户无需投资价值不菲的服务器、网络带宽及相应的人力成本,便能实现将网站内容发布到离终端用户距离最近、路由最短的网际边缘Cache 节点,创造完美、快捷的网站使用体验。 构建 CDN 网络的通常有三类机构,一是基础电信运营商(如中国电信、中国网通等),二是纯粹以 CDN 为主营业务的专业服务商(如 ChinaCache 等),三是 IDC 运营服务商(如 SouIDC 等)。虽然上述机构建设CDN 网络的出发点、侧重点不尽相同,但有一点却是相通的,即都是为用户提供完美的网站加速服务。 IDC 运营商部署在各地的 IDC 中心机房,非常有利于其快速建立起适合自身业务拓展的 CDN 网络,投资少见效快。其最大优势在于可以利用现有的 IDC 托管用户资源,进一步挖掘其潜在的增值服务空间。同时对于其 IDC 托管用户来讲,只需很少的投入便可实现网站的平滑加速,并保持了服务及支持上的无缝延续。 SynCDN 便是SouIDC 构建的CDN 网站加速运营平台。 一般来讲,CDN 网络主要由中心节点、边缘节点两部分构成。 CDN 架构导引 最简单的 CDN 网络只需一台负责全局负载均衡的 DNS 和各节点一台 Cache,即可运行。 DNS 支持根据用户源 IP 地址解析不同的 IP,实现就近访问。为了保证高可用性等,CDN 网管中心需要监控各节点的流量、健康状况等。一个节点的单台Cache 承载数量不够时,才需要多台 Cache,多台Cache 同时工作时,才需要负载均衡器,使Cache 群协同工作。 CDN 中心节点 中心节点包括CDN 网管中心和全局负载均衡DNS 重定向解析系统,负责整个CDN 网络的分发及管理。 CDN 网管中心是整个CDN 能够正常运转的基础保证,它不仅能对整个CDN 网络中的各个子系统和设备进行实时监控,对各种故障产生相应的告警,还可以实时监测到系统中总的流量和各节点的流量,并保存在系统数据库中,使网管人员能够方便地进行进一步分析。一套完善的网管系统,允许用户按需对系统配置进行修改。 全局负载均衡DNS 通过一组预先定义好的策略,将当时最接近用户的Cache 节点地址提供给用户,使用户能够得到快速的服务。同时,它还与分布在各地的所有CDN 节点保持持续通信,搜集各节点的通信状态,确保不会将用户的请求分发到不可用、或不健康的 Cache 节点上。 CDN 边缘节点 CDN 边缘节点主要指异地分发节点,由负载均衡设备、高速缓存服务器两部分组成。 负载均衡设备负责每个节点中各个Cache 的负载均衡,保证节点的工作效率;同时还负责收集节点与周围环境的信息,保持与全局负载均衡DNS 的通信,实现整个系统的负载均衡。 高速缓存服务器(Cache)负责存储客户网站的大量信息,就像一个靠近用户的网站服务器一样响应本地用户的访问请求。通过全局负载均衡DNS 的控制,用户的请求被透明地指向离他最近的节点,节点中Cache 服务器就像网站的原始服务器一样,响应终端用户的请求。因其距离用户更近,故其响应时间才更快。 答案来源于网络

养狐狸的猫 2019-12-02 02:37:34 0 浏览量 回答数 0

回答

要了解CDN 的实现原理,首先让我们来回顾一下网站传统的访问过程,以便理解其与CDN 访问方式之间的差别: 由上图可见,传统的网站访问过程为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,获得此域名对应的IP 地址; 3. 浏览器利用所得到的IP 地址,向该IP 对应的服务器发出访问请求; 4. 服务器对此响应,将数据回传至用户浏览器端显示出来。 与传统访问方式不同,CDN 网络则是在用户和服务器之间增加 Cache 层,将用户的访问请求引导到Cache 节点而不是服务器源站点,要实现这一目的,主要是通过接管DNS 实现,下图为使用CDN 缓存后的网站访问过程: 由上图可见,使用CDN 缓存后的网站访问过程演变为: 1. 用户在浏览器中输入要访问的域名; 2. 浏览器向域名解析服务器发出解析请求,由于CDN 对域名解析过程进行了调整,所以用户端一般得到的是该域名对应的 CNAME 记录,此时浏览器需要再次对获得的 CNAME 域名进行解析才能得到缓存服务器实际的IP 地址。 注:在此过程中,全局负载均衡DNS 解析服务器会根据用户端的源IP 地址,如地理位置(深圳还是上海)、接入网类型(电信还是网通)将用户的访问请求定位到离用户路由最短、位置最近、负载最轻的Cache 节点(缓存服务器)上,实现就近定位。定位优先原则可按位置、可按路由、也可按负载等。 3. 再次解析后浏览器得到该域名CDN 缓存服务器的实际IP 地址,向缓存服务器发出访问请求; 4. 缓存服务器根据浏览器提供的域名,通过Cache 内部专用DNS 解析得到此域名源服务器的真实IP 地址,再由缓存服务器向此真实IP 地址提交访问请求; 5. 缓存服务器从真实 IP 地址得到内容后,一方面在本地进行保存,以备以后使用,同时把得到的数据发送到客户端浏览器,完成访问的响应过程; 6. 用户端得到由缓存服务器传回的数据后显示出来,至此完成整个域名访问过程。 通过以上分析可以看到,不论是否使用CDN 网络,普通用户客户端设置不需做任何改变,直接使用被加速网站原有域名访问即可。对于要加速的网站,只需修改整个访问过程中的域名解析部分,便能实现透明的网络加速服务。 CDN 应用与架构 CDN 速度快、传输安全、扩展性强,尤其在应对大容量迸发时游刃有余,主要应用于跨地域的门户及行业网站,如游戏、娱乐、IT、新闻传媒、VOD、远程教育、音视频、下载、IPTV、金融证券等。 利用CDN 网络,网站用户无需投资价值不菲的服务器、网络带宽及相应的人力成本,便能实现将网站内容发布到离终端用户距离最近、路由最短的网际边缘Cache 节点,创造完美、快捷的网站使用体验。 构建 CDN 网络的通常有三类机构,一是基础电信运营商(如中国电信、中国网通等),二是纯粹以 CDN 为主营业务的专业服务商(如 ChinaCache 等),三是 IDC 运营服务商(如 SouIDC 等)。虽然上述机构建设CDN 网络的出发点、侧重点不尽相同,但有一点却是相通的,即都是为用户提供完美的网站加速服务。 IDC 运营商部署在各地的 IDC 中心机房,非常有利于其快速建立起适合自身业务拓展的 CDN 网络,投资少见效快。其最大优势在于可以利用现有的 IDC 托管用户资源,进一步挖掘其潜在的增值服务空间。同时对于其 IDC 托管用户来讲,只需很少的投入便可实现网站的平滑加速,并保持了服务及支持上的无缝延续。 SynCDN 便是SouIDC 构建的CDN 网站加速运营平台。 一般来讲,CDN 网络主要由中心节点、边缘节点两部分构成。 CDN 架构导引 最简单的 CDN 网络只需一台负责全局负载均衡的 DNS 和各节点一台 Cache,即可运行。 DNS 支持根据用户源 IP 地址解析不同的 IP,实现就近访问。为了保证高可用性等,CDN 网管中心需要监控各节点的流量、健康状况等。一个节点的单台Cache 承载数量不够时,才需要多台 Cache,多台Cache 同时工作时,才需要负载均衡器,使Cache 群协同工作。 CDN 中心节点 中心节点包括CDN 网管中心和全局负载均衡DNS 重定向解析系统,负责整个CDN 网络的分发及管理。 CDN 网管中心是整个CDN 能够正常运转的基础保证,它不仅能对整个CDN 网络中的各个子系统和设备进行实时监控,对各种故障产生相应的告警,还可以实时监测到系统中总的流量和各节点的流量,并保存在系统数据库中,使网管人员能够方便地进行进一步分析。一套完善的网管系统,允许用户按需对系统配置进行修改。 全局负载均衡DNS 通过一组预先定义好的策略,将当时最接近用户的Cache 节点地址提供给用户,使用户能够得到快速的服务。同时,它还与分布在各地的所有CDN 节点保持持续通信,搜集各节点的通信状态,确保不会将用户的请求分发到不可用、或不健康的 Cache 节点上。 CDN 边缘节点 CDN 边缘节点主要指异地分发节点,由负载均衡设备、高速缓存服务器两部分组成。 负载均衡设备负责每个节点中各个Cache 的负载均衡,保证节点的工作效率;同时还负责收集节点与周围环境的信息,保持与全局负载均衡DNS 的通信,实现整个系统的负载均衡。 高速缓存服务器(Cache)负责存储客户网站的大量信息,就像一个靠近用户的网站服务器一样响应本地用户的访问请求。通过全局负载均衡DNS 的控制,用户的请求被透明地指向离他最近的节点,节点中Cache 服务器就像网站的原始服务器一样,响应终端用户的请求。因其距离用户更近,故其响应时间才更快。 答案来源于网络

养狐狸的猫 2019-12-02 03:03:30 0 浏览量 回答数 0

回答

BRD文档(商业需求文档) 定义:BRD 是英文”Business Requirement Document“的缩写,根据英文直译过来就是”商业需求文档“的意思,指的就是基于商业目标或价值所描述的产品需求内容文档(报告),其核心的用途就是用于产品在投入研发之前,由企业高层作为决策评估的重要依据。一般来说全新的产品、未来发展有潜力的产品提供BRD! 真相君:市场前景无限大;用户需求未满足;同类竞品没做到;好机会啊,老板 MRD(市场需求文档) 定义:MRD 是英文”Market Requirements Document“的缩写,根据英文直译过来就是”市场需求文档“的意思,主要是描述什么样的功能和特点的产品(包含产品版本)可以在市场上取得成功。一般新功能的实现,上线新的产品提供MRD! 真相君:老板,市场真的很大,产品路线图我都规划好了,我们按照产品路线发展,肯定能成。 PRD(产品需求文档) 定义:PRD 是英文”Product Requirement Document“的缩写,根据英文直译过来就是”产品需求文档“的意思, PRD文档是产品项目由“概念化”阶段进入到“图纸化”阶段的最主要的一个文档,其作用就是“对MRD中的内容进行指标化和技术化”,这个文档的质量好坏直接影响产品能否顺利的实施完成。一般产品的功能改善、产品的细节说明提供PRD文档! 真相君:确保文档可读性;名词不要有歧义;从概念到图纸化;设计开发全靠它。 用户场景 用户场景是什么?是人物、时间、地点、欲望、手段五要素所组成的特定关系。在xx时间(when),xx地点(where),特定类型的用户(who)萌发了某种欲望(desire),会想通过某种手段(method)来满足欲望。 真相君:产品原型很简单;洞察用户才最难;带入场景去分析;用户心理全了然 MVP 简单的说法就是用最小的成本开发出可表达项目创意、可用且能用于表达核心理念的原型产品,功能极简而且能用于快速验证想法的最小化产品。 真相君:糟了,老板明天要验收;别慌,他不懂技术;咱先拿个半成品忽悠他。 灰度发布 定义:灰度发布(又名金丝雀发布)是指让一部分用户继续用产品特性A,一部分用户开始用产品特性B,如果用户对B没有什么反对意见,那么逐步扩大范围,把所有用户都迁移到B上面来。灰度发布可以保证整体系统的稳定,在初始灰度的时候就可以发现、调整问题,以保证其影响度。经常与A/B测试一起使用,用于测试选择多种方案。 真相君:不知新版发布会不会挨骂?;找群白鼠测一下;如果反馈还不错;那就逐步推出它。 用户研究 定义:用户研究是指通过对用户的任务操作特性、知觉特征、认知心理特征的研究,使用户的实际需求成为产品设计的导向,使您的产品更符合用户的习惯、经验和期待。 在互联网领域内,用户研究主要应用于两个方面: 对于新产品来说,用户研究一般用来明确用户需求点,帮助设计师选定产品的设计方向; 对于已经发布的产品来说,用户研究一般用于发现产品问题,帮助设计师优化产品体验。 真相君:用户研究不简单;定性定量都精通;还得数据来建模;产品决策要靠它。 用户画像 定义:用户画像就是你的粉丝群体属性的数据,比如性别、学历、职业、收入水平、手机型号、兴趣爱好等等。是根据用户在互联网留下的种种数据,主动或被动地收集,最后加工成一系列的标签。 真相君:平时上网别乱点;行为历史有记录;根据数据贴标签;再想撕掉难上天 A / B测试 定义:AB测试是为Web或App界面或流程制作两个(A/B)或多个(A/B/n)版本,在同一时间维度,分别让组成成分相同(相似)的访客群组(目标人群)随机的访问这些版本,收集各群组的用户体验数据和业务数据,最后分析、评估出最好版本,正式采用。 真相君:不知道功能上线后效果好不好,先找一部分用户测试看看,好了再全面推广。 UCD 定义:(User Centered Design)是一种设计思维、模式,指以用户为中心的设计。是在设计过程中以用户体验为设计决策的中心,强调用户优先的设计模式。 真相君:先不要考虑盈利,先让用户用的爽再说。 智能推送 定义:将用户“个性”和“商品、服务、内容”属性进行精准的匹配,达到用户所见即所需所想的目的,缩短了信息触达用户的路径,减少用户流失,促进用户快速转化。 真相君:你想看什么,就给你推送什么。 AIOT 定义:智联网(AIOT,是AI + IOT物联网的结合) 2018年开始崛起,核心是能够运用大量传感设备,综合语音、视觉、动作、温度等数据,实现IOT设备的全自然化的人机交互。 真相君:物联网喊了好多年;体验提升太有限;如今终于有突破;人机交互成关键。 AM敏捷开发 定义:以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。在敏捷开发中,软件项目在构建初期被切分成多个子项目,各个子项目的成果都经过测试,具备可视、可集成和可运行使用的特征。换言之,就是把一个大项目分为多个相互联系,但也可独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态。 真相君:一点点来,不要想一口吃个胖子。 PLC 定义:产品生命周期(Product Life Cycle),简称PLC,是产品的市场寿命,即一种新产品从开始进入市场到被市场淘汰的整个过程。这个过程其实就是经历了一个从“启动、成长、成熟一直到衰退”的阶段。 真相君:一个产品四阶段;阶段策略各不同;快速验证和开发;尽力延长成熟期。 可用性测试 定义:让一群具有代表性的用户对产品进行典型操作,同时观察员和开发人员在一旁观察,聆听,做记录。 真相君:观察用户使用产品。 商业闭环 定义:商业闭环是围绕着顾客一系列关联性消费需求,逐一提供相应的产品予以满足的商业模式。主要在商业体系中营造循环圈,各个环节都可以相互依靠,既可以作为个体支撑点也可以协同合作。 真相君:产品分步走;逻辑真是乱;怎么讲清楚;就得靠闭环! 互联网上半场/下半场 定义: 互联网上半场即消费互联网时代,注重的是入口和流量,线上打造; 而下半场即产业互联网时代,注重的是服务和价值,线上线下充分融合。 真相君:上半场玩的是流量,现在流量已经被占完,再看产业和互联;线上线下共融合;下半场来临! CRUD 创建(Create)、检索(Retrieve)、更新(Update)、删除(Delete),有时候也简称“增删改查”这是面向对象设计中最常用的4个基本方法。说来这是数据库里的必备的知识,但作为互联网公司的产品经理,这也是经常会提起的功能点。 真相君:就是后台功能操作分为:增删改查和搜索。 用户任务的闭环 定义:指的是一系列帮助用户完成任务的环节,这些环节可以应对任务可能出现的各种情况。 真相君:就是用户做一件事情要能做完。 KPI 定义:KPI绩效考核,又称“关键业绩指标”考核法,是企业绩效考核的方法之一。这种方法的优点是标准比较鲜明,易于做出评估。它的缺点是对简单的工作制定标准难度较大,缺乏一定的定量性。 真相君:就是给你分配的任务。 蓝海与红海 定义:所谓蓝海,指的是未知的市场空间,即尚未有人涉足,或是只有极少人涉足并且还没有做出太大成绩的市场。这样的市场,如果成功进入,则会是一段绝佳的时期,因为这段时间内你处于绝对的垄断地位,直到你的竞争对手赶上来。做好核心业务,做足差异化,能够帮助你将你的蓝海时段尽可能地延长,保证你的利益。 所谓红海,指的是已经发展的比较成熟,竞争非常激烈的市场。通常红海里的新人很难在短时间内做出成就,除非你在某一方面比你的竞争对手优势更大,或者你让投资人和初期用户看到了你巨大的发展潜力,又或者你在另一片红海中有着极佳的口碑,现在跨界进入这个行业。 真相君:蓝海就是竞争没那么激烈,红海就是竞争很激烈,刺刀见红。 进入壁垒 定义:进入壁垒值得是进入某一市场的难度,这一高度取决于自身的技术、成本、对特定资源的占有情况,以及对手的发展程度。 真相君:就是进入的门槛到底。 商业价值 定义:商业价值指的是一款产品如何创造价值。 真相君:就是如何赚钱。 墨菲定律 定义:事情如果有变坏的可能,不管这种可能性有多小,它总会发生。 真相君:越怕出事,越会出事。 放到互联网行业通常就是这样: 凡是输入框,都会遭遇灌水、SPAM、脚本注入 凡是积分,都会被刷 凡是推到网站首页的内容,都会出现色情、政治 凡是用户间沟通的渠道,都会被广告机器人利用 而对于项目管理而言,又可能是这样: 一项工作如果只有一个人负责,这个人肯定会休假或者离职 认为没有技术难点的地方,都会成为技术难点或性能瓶颈 羊群效应 定义:头羊往哪里走,后面的羊就跟着往哪里走。 真相君:说白了,其实就是从众心理。 破窗理论 定义:如果有人打坏了一幢建筑物的窗户玻璃,而这扇窗户又得不到及时的维修,别人就可能受到某些示范性的纵容去打烂更多的窗户。 真相君:环境中的不良现象如果被放任存在,会诱使人们仿效,甚至变本加厉。 二八定律 定义:也叫巴莱多定律,19世纪末20世纪初意大利的经济学家巴莱多认为,在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多数,却是次要的。社会约80%的财富集中在20%的人手里,而80%的人只拥有20%的社会财富。80%的回报来源于20%的有效付出。这种统计的不平衡性在社会、经济及生活中无处不在,这就是二八法则。 真相君:一个人的时间和精力都是非常有限的,要想真正做好每一件事情几乎是不可能的,要学会抓住主要矛盾,合理分配我们的时间和精力。要想面面俱到还不如重点突破,把80%的资源花在能出关键效益的20%的方面,这20%的方面又能带动其余80%的发展。 马太效应 定义:指强者愈强,弱者愈弱的现象。《圣经—马太福音》中有一句名言:凡有的,还要加给他,让他有余;没有的,连他所有的,也要夺过来。社会学家从中引申出马太效应这一概念,用以描述社会生活领域中普遍存在的两极分化现象。 真相君:好的愈好,坏的愈坏,多的愈多,少的愈少。

剑曼红尘 2020-04-09 14:21:15 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

回答

回2楼啊里新人的帖子 在日常的业务开发中,常见使用到索引的地方大概有两类: 第一类.做业务约束需求,比如需要保证表中每行的单个字段或者某几个组合字段是唯一的,则可以在表中创建唯一索引; 比如:需要保证test表中插入user_id字段的值不能出现重复,则在设计表的时候,就可以在表中user_id字段上创建一个唯一索引: CREATE TABLE `test` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`),   UNIQUE KEY `uk_userid` (`user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; 第二类.提高SQL语句执行速度,可以根据SQL语句的查询条件在表中创建合适的索引,以此来提升SQL语句的执行速度; 此过程好比是去图书找一本书,最慢的方法就是从图书馆的每一层楼每一个书架一本本的找过去;快捷一点的方法就是先通过图书检索来确认这一本书在几楼那个书架上,然后直接去找就可以了;当然创建这个索引也需要有一定的代价,需要存储空间来存放,需要在数据行插入,更新,删除的时候维护索引: 例如: CREATE TABLE `test_record` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `user_id` int(11) NOT NULL,   `gmt_create` datetime DEFAULT NULL,   PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5635996 DEFAULT CHARSET=utf8 该表有500w的记录,我需要查询20:00后插入的记录有多少条记录: mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (1.31 sec) 可以看到查询耗费了1.31秒返回了1行记录,如果我们在gmt_create字段上添加索引: mysql> alter table test_record add index ind_gmt_create(gmt_create); Query OK, 0 rows affected (21.87 sec) Records: 0  Duplicates: 0  Warnings: 0 mysql> select count(*) from test_record where gmt_create>'2014-12-17 20:00:00'; +----------+ | count(*) | +----------+ |        1 | +----------+ 1 row in set (0.01 sec) 查询只消耗了0.01秒中就返回了记录. 总的来说,为SQL语句(select,update,delete)创建必要的索引是必须的,这样虽然有一定的性能和空间消耗,但是是值得,尤其是在大并发的请求下,大量的数据被扫描造成系统IO和CPU资源消耗完,进而导致整个数据库不可服务. ------------------------- 怎么学好数据库是一个比较大题目,数据库不仅仅是写SQL那么简单,即使知道了SQL怎么写,还需要很清楚的知道这条SQL他大概扫描了多少数据,返回多少数据,是否需要创建索引。至于SQL优化是一个比较专业的技术活,但是可以通过学习是可以掌握的,你可以把一条sql从执行不出来优化到瞬间完成执行,这个过程的成就感是信心满满的。学习的方法可以有以下一些过程:1、自己查资料,包括书本,在线文档,google,别人的总结等等,试图自己解决2、多做实验,证明自己的想法以及判断3、如果实在不行,再去论坛问,或者问朋友4、如果问题解决了,把该问题的整个解决方法记录下来,以备后来的需要5、多关注别人的问题,或许以后自己就遇到了,并总是试图去多帮助别人6、习惯从多个方面去考虑问题,并且养成良好的总结习惯 下面是一些国内顶级数据库专家学习数据库的经验分享给大家: http://www.eygle.com/archives/2005/08/ecinieoracleouo.html 其实学习任何东西都是一样,没有太多的捷径可走,必须打好了坚实的基础,才有可以在进一步学习中得到快速提高。王国维在他的《人间词话》中曾经概括了为学的三种境界,我在这里套用一下: 古今之成大事业、大学问者,罔不经过三种之境界。"昨夜西风凋碧树。独上高楼,望尽天涯路。"此第一境界也。"衣带渐宽终不悔,为伊消得人憔悴。"此第二境界也。"众里寻他千百度,蓦然回首,那人却在灯火阑珊处。"此第三境界也。 学习Oracle,这也是你必须经历的三种境界。 第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。 这里,注意一个"尽"字,在开始学习的过程中,你必须充分阅读Oracle的基础文档,概念手册、管理手册、备份恢复手册等(这些你都可以在http://tahiti.oracle.com 上找到);OCP认证的教材也值得仔细阅读。打好基础之后你才具备了进一步提升的能力,万丈高楼都是由地而起。 第二层境界是说,尽管经历挫折、打击、灰心、沮丧,也都要坚持不放弃,具备了基础知识之后,你可以对自己感兴趣或者工作中遇到的问题进行深入的思考,由浅入深从来都不是轻而易举的,甚至很多时候你会感到自己停滞不前了,但是不要动摇,学习及理解上的突破也需要时间。 第三次境界是说,经历了那么多努力以后,你会发现,那苦苦思考的问题,那百思不得其解的算法原理,原来答案就在手边,你的思路豁然开朗,宛如拨云见月。这个时候,学习对你来说,不再是个难题,也许是种享受,也许成为艺术。 所以如果你想问我如何速成,那我是没有答案的。 不经一番寒彻骨,哪得梅花扑鼻香。 当然这三种境界在实际中也许是交叉的,在不断的学习中,不断有蓦然回首的收获。 我自己在学习的过程中,经常是采用"由点及面法"。 当遇到一个问题后,一定是深入下去,穷究根本,这样你会发现,一个简单的问题也必定会带起一大片的知识点,如果你能对很多问题进行深入思考和研究,那么在深处,你会发现,这些面逐渐接合,慢慢的延伸到oracle的所有层面,逐渐的你就能融会贯通。这时候,你会主动的去尝试全面学习Oracle,扫除你的知识盲点,学习已经成为一种需要。 由实践触发的学习才最有针对性,才更能让你深入的理解书本上的知识,正所谓:" 纸上得来终觉浅,绝知此事要躬行"。实践的经验于我们是至为宝贵的。 如果说有,那么这,就是我的捷径。 想想自己,经常是"每有所获,便欣然忘食", 兴趣才是我们最好的老师。 Oracle的优化是一门学问,也是一门艺术,理解透彻了,你会知道,优化不过是在各种条件之下做出的均衡与折中。 内存、外存;CPU、IO...对这一切你都需要有充分的认识和相当的了解,管理数据库所需要的知识并不单纯。 作为一个数据库管理人员,你需要做的就是能够根据自己的知识以及经验在各种复杂情况下做出快速正确的判断。当问题出现时,你需要知道使用怎样的手段发现问题的根本;找到问题之后,你需要运用你的知识找到解决问题的方法。 这当然并不容易,举重若轻还是举轻若重,取决于你具备怎样的基础以及经验积累。 在网络上,Howard J. Rogers最近创造了一个新词组:Voodoo Tuning,用以形容那些没有及时更新自己的知识技能的所谓的Oracle技术专家。由于知识的陈旧或者理解的肤浅,他们提供的很多调整建议是错误的、容易使人误解的,甚至是荒诞的。他们提供的某些建议在有些情况下也许是正确的,如果你愿意回到Oracle5版或者6版的年代;但是这些建议在Oracle7.0,8.0 或者 Oracle8i以后往往是完全错误的。 后来基于类似问题触发了互联网内Oracle顶级高手的一系列深入讨论,TOM、Jonathan Lewis、HJR等人都参与其中,在我的网站上(www.eygle.com )上对这些内容及相关链接作了简要介绍,有兴趣的可以参考。 HJR给我们提了很好的一个提示:对你所需要调整的内容,你必须具有充分的认识,否则你做出的判断就有可能是错误的。 这也是我想给自己和大家的一个建议: 学习和研究Oracle,严谨和认真必不可少。 当然 你还需要勤奋,我所熟悉的在Oracle领域有所成就的技术人员,他们共同的特点就是勤奋。 如果你觉得掌握的东西没有别人多,那么也许就是因为,你不如别人勤奋。 要是你觉得这一切过于复杂了,那我还有一句简单的话送给大家: 不积跬步,无以至千里。学习正是在逐渐积累过程中的提高。 现在Itpub给我们提供了很好的交流场所,很多问题都可以在这里找到答案,互相讨论,互相学习。这是我们的幸运,我也因此非常感谢这个网络时代。 参考书籍: 如果是一个新人可以先买一些基本的入门书籍,比如MySQL:《 深入浅出MySQL——数据库开发、优化与管理维护 》,在进阶一点的就是《 高性能MySQL(第3版) 》 oracle的参考书籍: http://www.eygle.com/archives/2006/08/oracle_fundbook_recommand.html 最后建议不要在数据库中使用外键,让应用程序来保证。 ------------------------- Re:回 9楼(千鸟) 的帖子 我有一个问题想问问,现在在做一个与图书有关的项目,其中有一个功能是按图书书名搜索相似图书列表,问题不难,但是想优化一下,有如下问题想请教一下: 1、在图书数据库数据表的书名字段里,按图书书名进行关键字搜索,如何快速搜索相关的图书?   现在由于数据不多,直接用的like模糊查找验证功能而已; 如果数据量不大,是可以在数据库中完成搜索的,可以在搜索字段上创建索引,然后进行搜索查询: CREATE TABLE `book` (   `book_id` int(11) NOT NULL AUTO_INCREMENT,   `book_name` varchar(100) NOT NULL,   .............................   PRIMARY KEY (`book_id`),   KEY `ind_name` (`book_name`) ) ENGINE=InnoDB select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id  where book.book_id=book_search_id.book_id; 但是当数据量变得很大后,就不在适合了,可以采用一些其他的第三方搜索技术比如sphinx; 2、如何按匹配的关键度进行快速排序?比如搜索“算法”,有一本书是《算法》,另一本书是《算法设计》,要求前者排在更前面。 现在的排序是根据数据表中的主键序号id进行的排序,没有达到想要的效果。 root@127.0.0.1 : test 15:57:12> select book_id,book_name from book_search where book_name like '%算%' order by book_name; +---------+--------------+ | book_id | book_name    | +---------+--------------+ |       2 | 算法       | |       1 | 算法设计 | ------------------------- 回 10楼(大黑豆) 的帖子 模糊查询分为半模糊和全模糊,也就是: select * from book where name like 'xxx%';(半模糊) select * from book where name like '%xxx%';(全模糊) 半模糊可以可以使用到索引,全模糊在上面场景是不能使用到索引的,但可以进行一些改进,比如: select book.*  from book , (select book_id from book where book_name like '%算法%')  book_search_id   where book.book_id=book_search_id.book_id; 注意这里book_id是主键,同时在book_name上创建了索引 上面的sql语句可以利用全索引扫描来完成优化,但是性能不会太好;特别在数据量大,请求频繁的业务场景下不要在数据库进行模糊查询; 非得使用数据库的话 ,建议不要在生产库进行查询,可以在只读节点进行查询,避免查询造成主业务数据库的资源消耗完,导致故障. 可以使用一些开源的搜索引擎技术,比如sphinx. ------------------------- 回 11楼(蓝色之鹰) 的帖子 我想问下,sql优化一般从那几个方面入手?多表之间的连接方式:Nested Loops,Hash Join 和 Sort Merge Join,是不是Hash Join最优连接? SQL优化需要了解优化器原理,索引的原理,表的存储结构,执行计划等,可以买一本书来系统的进行学习,多多实验; 不同的数据库优化器的模型不一样,比如oracle支持NL,HJ,SMJ,但是mysql只支持NL,不通的连接方式适用于不同的应用场景; NL:对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择 HJ:对于列连接是做大数据集连接时的常用方式 SMJ:通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接 ------------------------- Re:回 19楼(原远) 的帖子 有个问题:分类表TQueCategory,问题表TQuestion(T-SQL) CREATE TABLE TQueCategory ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题分类ID NAME VARCHAR(20)        --问题分类名称 ) CREATE TABLE TQuestion ( ID INT IDENTITY(1,1) PRIMARY KEY,        --问题ID CateID INT NOT NULL,        --问题分类ID TITLE VARCHAR(50),        --问题标题 CONTENT VARCHAR(500)        --问题内容 ) 当前要统计某个分类下的问题数,有两种方式: 1.每次统计,在TQuestion通过CateID进行分组统计 SELECT CateID,COUNT(1) AS QueNum FROM TQuestion GROUP BY CateID WHERE 1=1 2.在TQueCategory表增加字段QueNum,用于标识该分类下的问题数量 ALTER TABLE TQueCategory ADD QueNum INT SELECT CateID,QueNum FROM TQueCategory 问:在哪种业务应用场景下采用上面哪种方式性能比较好,为什么? ############################################################################################### 方案 一 需要对 TQuestion 的 CateID字段 进行分组 ,可以在 CateID上创建一个索引,这样就可以索引扫描来完成查询; 方案 二 需要对 TQueCategory 进行扫描就可以得出结果,但是必须在问题表有插入,删除的时候维护quenum数量; 单单从SQL的性能来看, 分类表的数量应该是远远小于问题表的数量的,所以方案二的性能会比较好; 但是如果 TQuestion 的插入非常频繁的话,会带来对 TQueCategory的频繁更新,一次 TQuestion 的 insert或deleted就会带来一次 TQueCategory 的update,这个代价其实是蛮高的; 如果这个分类统计的查询不是非常频繁的话,建议还是使用方案一; 同时还可能还会其他的业务逻辑统计需求(例如: CateID +时间),这个时候在把逻辑放到 TQueCategory就不合适了。 ------------------------- 回 20楼(原远) 的帖子 经验之谈,仅供参考 使用外键在开发上确实省去了很多功夫,但是把业务逻辑交由数据库来完成,对后期的维护来说是很麻烦的事情,不利于维护. ------------------------- 回 21楼(玩站网) 的帖子 无关技术方面: 咨询一下,现在mysql新的版本,5.5.45后貌似修改了开源协议。 是否意味着今后我们商业化使用mysql将受到限制? 如果甲骨文真周到那一步,rds是否会受到影响? 一个疑惑: 为什么很少见到有人用mysql正则匹配?性能不好还是什么原因? ######################################## MySQL有商业版 和 社区版,RDS的MySQL采用开源的社区版进行改进,由专门的RDS MySQL源码团队来维护,国内TOP 10的mysql源码贡献者大部分都在RDS,包括了@丁奇 ,@彭立勋 ,@印风 等; 不在数据库中做业务计算,是保证数据库运行稳定的一个好的设计经验; 是否影响性能与你的sql的执行频率,需要参与的计算数据量相关,当然了还包括数据库所在主机的IO,cpu,内存等资源,离开了这些谈性能是没有多大意义的; ------------------------- 回 22楼(比哥) 的帖子 分页该怎么优化才行??? ######################### 可以参考这个链接,里面有很多的最佳实践,其中就包括了分页语句的优化: http://bbs.aliyun.com/read/168647.html?spm=5176.7114037.1996646101.1.celwA1&pos=1 普通写法: select  *  from t where sellerid=100 limit 100000,20 普通limit M,N的翻页写法,往往在越往后翻页的过程中速度越慢,原因 mysql会读取表中的前M+N条数据,M越大,性能就越差: 优化写法: select t1.* from  t t1,             (select id from t  sellerid=100 limit 100000,20) t2 where t1.id=t2.id; 优化后的翻页写法,先查询翻页中需要的N条数据的主键id,在根据主键id 回表查询所需要的N条数据,此过程中查询N条数据的主键ID在索引中完成 注意:需要在t表的sellerid字段上创建索引 create index ind_sellerid on t(sellerid); 案例: user_A (21:42:31): 这个sql该怎么优化,执行非常的慢: | Query   |   51 | Sending data | select id, ... from t_buyer where sellerId = 765922982 and gmt_modified >= '1970-01-01 08:00:00' and gmt_modified <= '2013-06-05 17:11:31' limit 255000, 5000 SQL改写:selectt2.* from (selectid from t_buyer where sellerId = 765922982   andgmt_modified >= '1970-01-01 08:00:00'   andgmt_modified <= '2013-06-05 17:11:31' limit255000, 5000)t1,t_buyer t2 where t1.id=t2.id index:seller_id,gmt_modified user_A(21:58:43): 好像很快啊。神奇,这个原理是啥啊。牛!!! user_A(21:59:55): 5000 rows in set (4.25 sec), 前面要90秒。 ------------------------- 回 27楼(板砖大叔) 的帖子 这里所说的索引都是普通的b-tree索引,mysql,sqlserver,oracle 的关系数据库都是默认支持的; ------------------------- 回 32楼(veeeye) 的帖子 可以详细说明一下“最后建议不要在数据库中使用外键,让应用程序来保证。 ”的原因吗?我们公司在项目中经常使用外键,用程序来保证不是相对而言更加复杂了吗? 这里的不建议使用外键,主要考虑到 : 第一.维护成本上,把一些业务逻辑交由数据库来保证,当业务需求发生改动的时候,需要同时考虑应用程序和数据库,有时候一些数据库变更或者bug,可能会导致外键的失效;同时也给数据库的管理人员带来维护的麻烦,不便于管理。 第二.性能上考虑,当大量数据写入的时候,外键肯定会带来一定的性能损耗,当出现这样的问题时候,再来改造去除外键,真的就不值得了; 最后,不在数据库中参与业务的计算(存储过程,函数,触发器,外键),是保证数据库运行稳定的一个好的最佳实践。 ------------------------- 回 33楼(优雅的固执) 的帖子 ReDBA专家门诊一期:索引与sql优化 十分想请大师分享下建立索引的经验 我平时简历索引是这样的 比如订单信息的话 建立 订单号  唯一聚集索引 其他的比如   客户编号 供应商编号 商品编号 这些建立非聚集不唯一索引   ################################################## 建立索引,需要根据你的SQL语句来进行创建,不是每一个字段都需要进行创建,也不是一个索引都不创建,,可以把你的SQL语句,应用场景发出来看看。 索引的创建确实是一个非常专业的技术活,需要掌握:表的存储方式,索引的原理,数据库的优化器,统计信息,最后还需要能够读懂数据库的执行计划,以此来判断索引是否创建正确; 所以需要进行系统的学习才能掌握,附件是我在2011年的时候的一次公开课的ppt,希望对你有帮助,同时可以把你平时遇到的索引创建的疑惑发到论坛上来,大家可以一起交流。 ------------------------- 回 30楼(几几届) 的帖子 我也是这样,简单的会,仔细写也会写出来,但是就是不知道有没有更快或者更好的 #################################################### 多写写SQL,掌握SQL优化的方法,自然这些问题不在话下了。 ------------------------- 回 40楼(小林阿小林) 的帖子 mysql如何查询需要优化的语句,比如慢查询的步奏,如何找出需要通知程序员修改或者优化的sql语句 ############################################################ 可以将mysql的慢日志打开,就可以记录执行时间超过指定阀值的慢SQL到本地文件或者数据库的slow_log表中; 在RDS中默认是打开了慢日志功能的:long_query_time=1,表示会记录执行时间>=1秒的慢sql; 如何快速找到mysql瓶颈: 简单一点的方法,可以通过监控mysql所在主机的性能(CPU,IO,load等)以及mysql本身的一些状态值(connections,thread running,qps,命中率等); RDS提供了完善的数据库监控体系,包括了CPU,IOPS,Disk,Connections,QPS,可以重点关注cpu,IO,connections,disk 4个 指标; cpu,io,connections主要体现在了性能瓶颈,disk主要体现了空间瓶颈; 有时候一条慢sql语句的频繁调用,也可能导致整个实例的cpu,io,connections达到100%;也有可能一条排序的sql语句,消耗大量的临时空间,导致实例的空间消耗完。 ------------------------- 下面是分析一个cpu 100%的案例分析:该实例的cpu已经到达100% 查看当前数据库的活动会话信息:当前数据库有较多的活跃线程在数据库中执行查看当前数据库正在执行的sql: 可以看到这条sql执行的非常缓慢:[tr=rgb(100, 204, 255)]delete from task_process where task_id='1801099' 查看这个表的索引: CREATE TABLE `task_process` (  `id` int(11) NOT NULL AUTO_INCREMENT,    ................  `task_id` int(11) NOT NULL DEFAULT '0' COMMENT '??????id',   ................  PRIMARY KEY (`id`),  KEY `index_over_task` (`is_over`,`task_id`),  KEY `index_over` (`is_over`,`is_auto`) USING BTREE,  KEY `index_process_sn` (`process_sn`,`is_over`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=32129710; 可以看到这个表有3KW的数据,但是没有task_id字段开头的索引,导致该sql语句删除需要进行全表扫描: 在我们的诊断报告中已经将该sql语句捕获到,同时给你提出该怎样进行索引的添加。 广告:诊断报告将会在1月底发布到控制台,到时候用户可以直接查看诊断建议,来完成你的数据库优化。 ------------------------- 回 45楼(dentrite) 的帖子 datetime和int都是占用数据库4个字节,所以在空间上没有什么差别;但是为了可读性,建议还是使用datetime数据类型。 ------------------------- 回 48楼(yuantel) 的帖子 麻烦把ecs_brand和ecs_goods的表结构发出来一下看看 。 ------------------------- 回 51楼(小林阿小林) 的帖子 普通的 ECS服务器上目前还没有这样的慢SQL索引建议的工具。 不过后续有IDBCloud将会集成这样的sql诊断功能,使用他来管理ECS上的数据库就可以使用这样的功能了 。

玄惭 2019-12-02 01:16:11 0 浏览量 回答数 0

问题

如何分清云计算与虚拟化的关系

wyc_luck 2019-12-01 20:19:00 12823 浏览量 回答数 2

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播