• 关于 操作数组单元 的搜索结果

回答

开发者您好, 对于一些高级程序语言的,它的元素类型没有严格的要求,它有一个标准的叫法叫做泛型,它就是说任何一个单元类型都可以放进去。 对于数组,它底层的硬件实现,有一个叫内存管理器的东西,每当你申请数组的话,计算机实际上是在内存中,给你开辟了(申请了)一段连续的地址,每一个地址都可以直接通过内存管理器进行访问。这张图里示意的地方就是它相应的内存地址。直接访问方面,它访问第一个元素和访问中间某个元素,时间复杂度都是一样的。也就是常数时间称为O(1)。从这里可以总结出它可以进行随机地访问任何的一个元素,访问速度非常快,这也是它的特性之一。 对于JS,假如有一个数组含有ABCEFG,我们想把元素D插入到数组中输出ABCDEFG。这个时候需要把EFG往下挪一个位置,而这样的操作导致了时间复杂度不再是常数级了,而是O(n)的时间复杂度。在最坏的情况甚至需要挪动整个数组;最好的情况下插入到最后面就变成了O(1);平均情况下需要移动一半的元素位置。同理可得,进行删除操作的时候一样。平均时间复杂度O(n)。 由此可见,如果对数组进行大量的增删操作,它会涉及到非常多的array copy,这样它的时间复杂度不是特别高效的。其实这个问题不仅仅存在于JS,Java也是如此,举个例子,ensure capacity 所进行的操作其实相对暴力,它会先查找整个数组的实际长度,如果长度够的话就什么都不做;如果长度不够的话,那么它会直接new一个新的数组出来,新的数组长度是当前长度乘以2,把老数组的值拷贝到新数组上面去。 针对您说的,是否在工作中动态扩展阵列或其他一些性能提升算法?我觉得您可以参考工业上那些已经千锤百炼的老代码,他们的做法,从两点触发:空间换时间、升维。 祝您在喜欢的技术道路上越走越好

罗思雨 2020-02-12 14:50:33 0 浏览量 回答数 0

回答

值传递:(形式参数类型是基本数据类型):方法调用时,实际参数把它的值传递给对应的形式参数,形式参数只是用实际参数的值初始化自己的存储单元内容,是两个不同的存储单元,所以方法执行中形式参数值的改变不影响实际参数的值。引用传递:(形式参数类型是引用数据类型参数):也称为传地址。方法调用时,实际参数是对象(或数组),这时实际参数与形式参数指向同一个地址,在方法执行中,对形式参数的操作实际上就是对实际参数的操作,这个结果在方法结束后被保留了下来,所以方法执行中形式参数的改变将会影响实际参数。

游客tfqfrkibcqcqy 2019-12-02 01:39:42 0 浏览量 回答数 0

回答

值传递:(形式参数类型是基本数据类型):方法调用时,实际参数把它的值传递给对应的形式参数,形式参数只是用实际参数的值初始化自己的存储单元内容,是两个不同的存储单元,所以方法执行中形式参数值的改变不影响实际参数的值。 引用传递:(形式参数类型是引用数据类型参数):也称为传地址。方法调用时,实际参数是对象(或数组),这时实际参数与形式参数指向同一个地址,在方法执行中,对形式参数的操作实际上就是对实际参数的操作,这个结果在方法结束后被保留了下来,所以方法执行中形式参数的改变将会影响实际参数。

1537445919627494 2019-12-02 01:39:38 0 浏览量 回答数 0

问题

Java SWT操作Excel(OLE),如何给单元格区域赋值?

蛮大人123 2019-12-01 19:32:11 2244 浏览量 回答数 1

回答

Azure数据工厂复制活动提供了一流的安全,可靠和高性能的数据加载解决方案。它使您能够在各种云和本地数据存储中每天复制数十TB的数据。复制活动提供了高度优化的数据加载体验,易于配置和设置。如果您希望使用Azure数据工厂复制活动更快地传输数据,Azure提供了三种方法来实现更高的吞吐量:数据集成单元。数据集成单元(DIU)(以前称为云数据移动单元或DMU)是表示数据工厂中单个单元的功率(CPU,内存和网络资源分配的组合)的度量。您可以使用更多数据集成单元(DIU)来实现更高的吞吐量。您需要根据复制操作的总时间收费。您为数据移动计费的总持续时间是DIU的持续时间总和。并行复制。我们可以使用parallelCopies属性来指示您希望Copy Activity使用的并行性。对于每个Copy Activity运行,Data Factory确定用于将数据从源数据存储复制到目标数据存储的并行副本数。分阶段的副本。将数据从源数据存储复制到接收器数据存储时,可以选择将Blob存储用作临时存储存储。您可以采用这些方法使用“复制活动”调整数据工厂服务的性能。

社区小助手 2019-12-02 01:51:01 0 浏览量 回答数 0

问题

宣传一下我的C语言库 内存管理 日志记录 堆栈跟踪 通用容器 单元测试 多线程 文件 流:报错

kun坤 2020-06-06 15:33:54 3 浏览量 回答数 1

问题

HBase数据模型解析和基本的表设计分析

pandacats 2019-12-20 21:05:54 0 浏览量 回答数 0

问题

schema设计原则是什么

云栖大讲堂 2019-12-01 21:31:30 1293 浏览量 回答数 0

问题

关于iOS内存释放的问题

爵霸 2019-12-01 20:19:24 1135 浏览量 回答数 1

回答

一。zval、引用计数、变量分离、写时拷贝我们一步步来理解1、php语言特性PHP是脚本语言,所谓脚本语言,就是说PHP并不是独立运行的,要运行PHP代码需要PHP解析器,用户编写的PHP代码最终都会被PHP解析器解析执行PHP的执行是通过Zend engine(ZE, Zend引擎),ZE是用C编写的用户编写的PHP代码最终都会被翻译成PHP的虚拟机ZE的虚拟指令(OPCODES)来执行也就说最终会被翻译成一条条的指令既然这样,有什么结果和你预想的不一样,查看php源码是最直接最有效的 2、php变量的存储结构在PHP中,所有的变量都是用一个结构zval结构来保存的,在Zend/zend.h中可以看到zval的定义:zval结构包括:① value —— 值,是真正保存数据的关键部分,定义为一个联合体(union)② type —— 用来储存变量的类型 ③ is_ref —— 下面介绍④ refcount —— 下面介绍 声明一个变量$addr="北京";PHP内部都是使用zval来表示变量的,那对于上面的脚本,ZE是如何把addr和内部的zval结构联系起来的呢?变量都是有名字的(本例中变量名为addr)而zval中并没有相应的字段来体现变量名。PHP内部肯定有一个机制,来实现变量名到zval的映射在PHP中,所有的变量都会存储在一个数组中(确切的说是hash table)当你创建一个变量的时候,PHP会为这个变量分配一个zval,填入相应的信息,然后将这个变量的名字和指向这个zval的指针填入一个数组中。当你获取这个变量的时候,PHP会通过查找这个数组,取得对应的zval 注意:数组和对象这类复合类型在生成zval时,会为每个单元生成一个zval3、我们经常说每个变量都有一个内存地址,那这个zval和变量的内存地址,这俩有什么关系吗?定义一个变量会开辟一块内存,这块内存好比一个盒子,盒子里放了zval,zval里保存了变量的相关信息,需要开辟多大的内存,是由zval所占空间大小决定的zval是内存对象,垃圾回收的时候会把zval和内存地址(盒子)分别释放掉 4、引用计数、变量分离、写时拷贝zval中的refcount和is_ref还没有介绍,我们知道PHP是一个长时间运行的服务器端脚本。那么对于它来说,效率和资源占用率是一个很重要的衡量标准,也就是说,PHP必须尽量减少内存占用率。考虑下面这段代码:第一行代码创建了一个字符串变量,申请了一个大小为9字节的内存,保存了字符串“laruence”和一个NULL(0)的结尾第二行定义了一个新的字符串变量,并将变量var的值“复制”给这个新的变量第三行unset了变量var 这样的代码是很常见的,如果PHP对于每一个变量赋值都重新分配内存,copy数据的话,那么上面的这段代码就要申请18个字节的内存空间,为了申请新的内存,还需要cpu执行某些计算,这当然会加重cpu的负载而我们也很容易看出来,上面的代码其实根本没有必要申请两份空间,当第三句执行后,$var被释放了,我们刚才的设想(申请18个字节内存空间)突然变的很滑稽,这次复制显得好多余。如果早知道$var不用了,直接让$var_dup用$var的内存不就行了,还复制干嘛?如果你觉得9个字节没什么,那设想下如果$var是个10M的文件内容,或者20M,是不是我们的计算机资源消耗的有点冤枉呢?呵呵,PHP的开发者也看出来了: 刚才说了,PHP中的变量是用一个存储在symbol_table中的符号名,对应一个zval来实现的,比如对于上面的第一行代码,会在symbol_table中存储一个值“var”,对应的有一个指针指向一个zval结构,变量值“laruence”保存在这个zval中,所以不难想象,对于上面的代码来说,我们完全可以让“var”和“var_dup”对应的指针都指向同一个zval就可以了(额,鸟哥一会说hash table,一会说symbol_table,暂且理解为symbol_table是hash table的子集) PHP也是这样做的,这个时候就需要介绍一下zval结构中的refcount字段了refcount,引用计数,记录了当前的zval被引用的次数(这里的引用并不是真正的 & ,而是有几个变量指向它)比如对于代码:第一行,创建了一个整形变量,变量值是1。 此时保存整形1的这个zval的refcount为1第二行,创建了一个新的整形变量(通过赋值的方式),变量也指向刚才创建的zval,并将这个zval的refcount加1,此时这个zval的refcount为2所以,这个时候(通过值传递的方式赋值给别的变量),并没有产生新的zval,两个变量指向同一zval,通过一个计数器来共用zval及内存地址,以达到节省内存空间的目的当一个变量被第一次创建的时候,它对应的zval结构的refcount的值会被初始化为1,因为只有这一个变量在用它。但是当你把这个变量赋值给别的变量时,refcount属性便会加1变成2,因为现在有两个变量在用这个zval结构了 PHP提供了一个函数可以帮助我们了解这个过程debug_zval_dump输出:long(1) refcount(2)long(1) refcount(3)如果你奇怪 ,var的refcount应该是1啊?我们知道,对于简单变量,PHP是以传值的形式传参数的。也就是说,当执行debug_zval_dump($var)的时候,$var会以传值的方式传递给debug_zval_dump,也就是会导致var的refcount加1,所以只要能看到,当变量赋值给一个变量以后,能导致zval的refcount加1这个结果即可现在我们回头看上面的代码, 当执行了最后一行unset($var)以后,会发生什么呢?unset($var)的时候,它删除符号表里的$var的信息,准备清理它对应的zval及内存空间,这时它发现$var对应的zval结构的refcount值是2,也就是说,还有另外一个变量在一起用着这个zval,所以unset只需把这个zval的refcount减去1就行了上代码:输出:string(8) "laruence" refcount(2) 但是,对于下面的代码呢?很明显在这段代码执行以后,$var_dup的值应该还是“laruence”,那么这又是怎么实现的呢?这就是PHP的copy on write机制(简称COW):PHP在修改一个变量以前,会首先查看这个变量的refcount,如果refcount大于1,PHP就会执行一个分离的过程(在Zend引擎中,分离是破坏一个引用对的过程)对于上面的代码,当执行到第三行的时候,PHP发现$var想要改变,并且它指向的zval的refcount大于1,那么PHP就会复制一个新的zval出来,改变其值,将改变的变量指向新的zval(哪个变量指向新复制的zval其实已经无所谓了),并将原zval的refcount减1,并修改symbol_table里该变量的指针,使得$var和$var_dup分离(Separation)。这个机制就是所谓的copy on write(写时复制,这里的写包括普通变量的修改及数组对象里的增加、删除单元操作)如果了解了is_ref之后,上面说的并不严谨 上代码测试:输出:long(1) refcount(2)string(8) "laruence" refcount(2) 现在我们知道,当使用变量复制的时候 ,PHP内部并不是真正的复制,而是采用指向相同的zval结构来节约开销。那么,对于PHP中的引用,又是如何实现呢?这段代码结束以后,$var也会被间接的修改为1,这个过程称作(change on write:写时改变)那么ZE是怎么知道,这次的复制不需要Separation呢?这个时候就要用到zval中的is_ref字段了:对于上面的代码,当第二行执行以后,$var所代表的zval的refcount变为2,并且设置is_ref为1到第三行的时候,PHP先检查var_ref对应的zval的is_ref字段(is_ref 表示该zval是否被&引用,仅表示真或假,就像开关的开与关一样,zval的初始化情况下为0,即非引用),如果为1,则不分离,直接更改(否则需要执行刚刚提到的zval分离),更改共享的zval实际上也间接更改了$var的值,因为引擎想所有的引用变量都看到这一改变php源码做了这样一个判断,大体逻辑示意如下:如果这个zval中的if_ref为1(即被引用),或者该zval引用计数小于2任何一种方式:都不会进行分离 尽管已经存在写时复制和写时改变,但仍然还存在一些不能通过is_ref和refcount来解决的问题对于如下的代码,又会怎样呢?这里$var、$var_dup、$var_ref三个变量将共用一个zval结构(其实这是不可能的,一个zval不可能既被&,又被指向),有两个属于change-on-write组合($var和$var_ref),有两个属于copy-on-write组合($var和$var_dup),那is_ref和refcount该怎样工作,才能正确的处理好这段复杂的关系呢?答案是不可能!在这种情况下,变量的值必须分离成两份完全独立的存在当执行第二行代码的时候,和前面讲过的一样,$var_dup 和 $var 指向相同的zval, refcount为2当执行第三行的时候,PHP发现要操作的zval的refcount大于1,则PHP会执行Separation(也就是说php将一个zval的is_ref从0设为1 之前,当然此时refcount还没有增加,会看该zval的refcount,如果refcount>1,则会分离), 将$var_dup分离出去,并将$var和$var_ref做change on write关联。也就是,refcount=2, is_ref=1;所以内存会给变量var_dup 分配出一个新的zval,类型与值同 $var和$var_ref指向的zval一样,是新分配出来的,尽管他们拥有同样的值,但是必须通过两个zval来实现。试想一下,如果三者指向同一个zval的话,改边 $var_dup 的值,那么 $var和$var_ref 也会受到影响,这样就乱套了图解:下面的这段代码在内核中同样会产生歧义,所以需要强制复制!也就是说一个zval不会既被引用,又被指向,必须分离 基于这样的分析,我们就可以让debug_zval_dump出refcount为1的结果来:输出:string(8) "laruence" refcount(1) 为什么结果是refcount(1)呢debug_zval_dump()中参数是引用的话,refcount永远为1这两段代码在执行的时候是这样的逻辑:PHP先看变量指向的zval是否被引用,如果是引用,则不再产生新的zval甭管哪个变量引用了它,比如有个变量$a被引用了,$b=&$a,就算自己引用自己$a=&$a,$a所指向的zval都不会被复制,改变其中一个变量的值,另一个值也被改变(写时改变)如果is_ref为0且refcount大于1,改变其中一个变量时,复制新的zval(写时复制) 还有一个知识点需要了解下,就是PHP数组复制的机制复制一个数组,就是把一个数组赋值给一个变量便可。会把数组指针位置一同复制。这里面有两种情况:① 指针位置合法,这时直接复制,无影响② 原数组指针位置非法时(移出界),“新”数组指针会初始化(这里的新为什么要加引号?请看下文),而老的数组指针位置不变,还是false先看例子: 结果:!结果:出现这种情况好像不对?$arr2 难道不是新数组?新数组的数组指针应该重置了啊这里注意了:$arr2 = $arr1 ,在俩变量都没发生写操作时,他们其实引用的是同一个内存地址。在其中一个变量发生写操作后,内存地址会复制一份,发生改变的变量会去引用它,并把数组指针初始化。所以 $arr1 会去引用复制的内存地址,并将指针初始化二。.foreach循环时调用current等函数!结果: 56按照之前说的,foreach先赋值,再移动指针,再执行循环体,第一次结果为2可以理解为什么三次都是2呢?咋就这么2呢?因为current函数是按引用传递的函数 在zval笔记中说了,一个zval不能既被引用,又被指向所以,变量分离,重新拷贝一份数组专门用于current函数 当然,如果数组zval的is_ref为1,则不会拷贝数组了或者:结果:current是引用传参

杨冬芳 2019-12-02 02:26:33 0 浏览量 回答数 0

问题

什么是数据库/表组/表/分区?

nicenelly 2019-12-01 21:25:03 1067 浏览量 回答数 0

问题

什么是数据库/表组/表/分区?

nicenelly 2019-12-01 21:10:08 1371 浏览量 回答数 0

回答

输入一个元素,检查数组列表中的每个元素,将其插入到一个已经排好序的数列中的适当位置,使数列依然有序,当最后一个元素放入合适位置时,该数组排序完毕。  function insertSort(&$arr){        for ($i=1; $i <count($arr) ; $i++) {            $insertValue=$arr[$i];            $insertKey=$i-1;             while ( $insertkey>=0 && $insertValue<$arr[$insertkey]) {                $arr[$insertKey+1]=$arr[$insertKey];                                $insertkey--;           }           $arr[$insertkey+1]=$insertValue;        }    }内容扩充 内容扩充 例1:输入一个数,插入一个各元素已经按照升序排列的数组中,插入后使数组中元素仍然是按照升序排列的。思想:把欲插入的数与数组中各数逐个比较, 当找到第一个比插入数大的元素i时,该元素之前即为插入位置。然后从数组最后一个元素开始到该元素为止,逐个后移一个单元。最后把插入数赋予元素a[i]即可。如果被插入数比所有的元素值都小则插入最前位置。C语言: #include stdio.hvoid main(){    int    m, i, j;    int    a[11] = { 2, 6, 7, 9, 13, 16, 19, 21, 25, 29 }; /* 由于后面有插入1个元素的操作,故数组长度定为11(虽然数组中只有10个元素) */    scanf( %d, &m );    for ( i = 0; i < 10; i++ )        if ( m < a[i] )            break;    {        for ( j = 9; j >= i; j-- )            a[j + 1] = a[j];    }    a[i] = m;    for ( i = 0; i < 11; i++ )        printf( %d\t, a[i] );}例2:输入一个数,插入一个各元素已经按照降序排列的数组中,插入后使数组中元素仍然是按照降序排列的。思想:把欲插入的数与数组中各数逐个比较, 当找到第一个比插入数小的元素i时。如果被插入数比所有的元素值都小则插入最后位置。C语言: #include <stdio.h>void main(){    int    i, j, p, q, s, n;    int    a[11] = { 162, 127, 105, 87, 68, 54, 28, 18, 6, 3 };    printf( input number:\n );    scanf( %d, &n );    for ( i = 0; i < 10; i++ )        if ( n > a[i] )            break;    {        for ( s = 9; s >= i; s-- )            a[s + 1] = a[s];    }    a[i] = n;    for ( i = 0; i <= 10; i++ )        printf( %d , a[i] );    printf( \n );}/*eg.3 * 使用插入排序对一个随机序列进行排序*/void charupx( int before[], int m )                             /* 获取一个数组,m表示它的元素个数 */{    int varout, varin, temp;    for ( varout = 1; varout < m; varout++ )    {        temp    = before[varout];                       /* 这是目标数(假设的) */        varin    = varout - 1 ;             while ( varin >= 0 && temp < before[varin] )        {            before[varin + 1] = before[varin];      /* 所有数组下标向后一个,值不变 */            varin--;                                /*看前一个数是否还要移动 */        }        before[varin + 1] = temp;                       /* 插入 */    }}

liujae 2019-12-02 01:19:11 0 浏览量 回答数 0

问题

日志服务的基本问题有哪些?

轩墨 2019-12-01 22:03:54 1194 浏览量 回答数 0

问题

Accordion:HBase一种内存压缩算法

pandacats 2019-12-18 16:06:15 1 浏览量 回答数 0

问题

Lua直接调用动态链接库(DLL或so文件):报错

kun坤 2020-06-08 11:01:53 3 浏览量 回答数 1

问题

CodePipeline常见问题:常见概念

行者武松 2019-12-01 21:56:09 1209 浏览量 回答数 0

问题

使用阿里云服务器进行开发的小结

gameover 2019-12-01 21:06:23 15827 浏览量 回答数 23

问题

词汇表是什么样的?(S-V)

轩墨 2019-12-01 22:06:08 2089 浏览量 回答数 0

问题

Excel办公软件【问答合集】

马铭芳 2019-12-01 20:20:11 2031 浏览量 回答数 1

回答

Kafka 是目前主流的分布式消息引擎及流处理平台,经常用做企业的消息总线、实时数据管道,本文挑选了 Kafka 的几个核心话题,帮助大家快速掌握 Kafka,包括: Kafka 体系架构 Kafka 消息发送机制 Kafka 副本机制 Kafka 控制器 Kafka Rebalance 机制 因为涉及内容较多,本文尽量做到深入浅出,全面的介绍 Kafka 原理及核心组件,不怕你不懂 Kafka。 1. Kafka 快速入门 Kafka 是一个分布式消息引擎与流处理平台,经常用做企业的消息总线、实时数据管道,有的还把它当做存储系统来使用。早期 Kafka 的定位是一个高吞吐的分布式消息系统,目前则演变成了一个成熟的分布式消息引擎,以及流处理平台。 1.1 Kafka 体系架构 Kafka 的设计遵循生产者消费者模式,生产者发送消息到 broker 中某一个 topic 的具体分区里,消费者从一个或多个分区中拉取数据进行消费。拓扑图如下: 目前,Kafka 依靠 Zookeeper 做分布式协调服务,负责存储和管理 Kafka 集群中的元数据信息,包括集群中的 broker 信息、topic 信息、topic 的分区与副本信息等。 ** 1.2 Kafka 术语** 这里整理了 Kafka 的一些关键术语: Producer:生产者,消息产生和发送端。 Broker:Kafka 实例,多个 broker 组成一个 Kafka 集群,通常一台机器部署一个 Kafka 实例,一个实例挂了不影响其他实例。 Consumer:消费者,拉取消息进行消费。 一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组,一条消息只能被消费组中一个 Consumer 消费。 Topic:主题,服务端消息的逻辑存储单元。一个 topic 通常包含若干个 Partition 分区。 Partition:topic 的分区,分布式存储在各个 broker 中, 实现发布与订阅的负载均衡。若干个分区可以被若干个 Consumer 同时消费,达到消费者高吞吐量。一个分区拥有多个副本(Replica),这是Kafka在可靠性和可用性方面的设计,后面会重点介绍。 message:消息,或称日志消息,是 Kafka 服务端实际存储的数据,每一条消息都由一个 key、一个 value 以及消息时间戳 timestamp 组成。 offset:偏移量,分区中的消息位置,由 Kafka 自身维护,Consumer 消费时也要保存一份 offset 以维护消费过的消息位置。 1.3 Kafka 作用与特点 Kafka 主要起到削峰填谷(缓冲)、系统解构以及冗余的作用,主要特点有: 高吞吐、低延时:这是 Kafka 显著的特点,Kafka 能够达到百万级的消息吞吐量,延迟可达毫秒级; 持久化存储:Kafka 的消息最终持久化保存在磁盘之上,提供了顺序读写以保证性能,并且通过 Kafka 的副本机制提高了数据可靠性。 分布式可扩展:Kafka 的数据是分布式存储在不同 broker 节点的,以 topic 组织数据并且按 partition 进行分布式存储,整体的扩展性都非常好。 高容错性:集群中任意一个 broker 节点宕机,Kafka 仍能对外提供服务。 2. Kafka 消息发送机制 Kafka 生产端发送消息的机制非常重要,这也是 Kafka 高吞吐的基础,生产端的基本流程如下图所示: 主要有以下方面的设计: 2.1 异步发送 Kafka 自从 0.8.2 版本就引入了新版本 Producer API,新版 Producer 完全是采用异步方式发送消息。生产端构建的 ProducerRecord 先是经过 keySerializer、valueSerializer 序列化后,再是经过 Partition 分区器处理,决定消息落到 topic 具体某个分区中,最后把消息发送到客户端的消息缓冲池 accumulator 中,交由一个叫作 Sender 的线程发送到 broker 端。 这里缓冲池 accumulator 的最大大小由参数 buffer.memory 控制,默认是 32M,当生产消息的速度过快导致 buffer 满了的时候,将阻塞 max.block.ms 时间,超时抛异常,所以 buffer 的大小可以根据实际的业务情况进行适当调整。 2.2 批量发送 发送到缓冲 buffer 中消息将会被分为一个一个的 batch,分批次的发送到 broker 端,批次大小由参数 batch.size 控制,默认16KB。这就意味着正常情况下消息会攒够 16KB 时才会批量发送到 broker 端,所以一般减小 batch 大小有利于降低消息延时,增加 batch 大小有利于提升吞吐量。 那么生成端消息是不是必须要达到一个 batch 大小时,才会批量发送到服务端呢?答案是否定的,Kafka 生产端提供了另一个重要参数 linger.ms,该参数控制了 batch 最大的空闲时间,超过该时间的 batch 也会被发送到 broker 端。 2.3 消息重试 此外,Kafka 生产端支持重试机制,对于某些原因导致消息发送失败的,比如网络抖动,开启重试后 Producer 会尝试再次发送消息。该功能由参数 retries 控制,参数含义代表重试次数,默认值为 0 表示不重试,建议设置大于 0 比如 3。 3. Kafka 副本机制 前面提及了 Kafka 分区副本(Replica)的概念,副本机制也称 Replication 机制是 Kafka 实现高可靠、高可用的基础。Kafka 中有 leader 和 follower 两类副本。 3.1 Kafka 副本作用 Kafka 默认只会给分区设置一个副本,由 broker 端参数 default.replication.factor 控制,默认值为 1,通常我们会修改该默认值,或者命令行创建 topic 时指定 replication-factor 参数,生产建议设置 3 副本。副本作用主要有两方面: 消息冗余存储,提高 Kafka 数据的可靠性; 提高 Kafka 服务的可用性,follower 副本能够在 leader 副本挂掉或者 broker 宕机的时候参与 leader 选举,继续对外提供读写服务。 3.2 关于读写分离 这里要说明的是 Kafka 并不支持读写分区,生产消费端所有的读写请求都是由 leader 副本处理的,follower 副本的主要工作就是从 leader 副本处异步拉取消息,进行消息数据的同步,并不对外提供读写服务。 Kafka 之所以这样设计,主要是为了保证读写一致性,因为副本同步是一个异步的过程,如果当 follower 副本还没完全和 leader 同步时,从 follower 副本读取数据可能会读不到最新的消息。 3.3 ISR 副本集合 Kafka 为了维护分区副本的同步,引入 ISR(In-Sync Replicas)副本集合的概念,ISR 是分区中正在与 leader 副本进行同步的 replica 列表,且必定包含 leader 副本。 ISR 列表是持久化在 Zookeeper 中的,任何在 ISR 列表中的副本都有资格参与 leader 选举。 ISR 列表是动态变化的,并不是所有的分区副本都在 ISR 列表中,哪些副本会被包含在 ISR 列表中呢?副本被包含在 ISR 列表中的条件是由参数 replica.lag.time.max.ms 控制的,参数含义是副本同步落后于 leader 的最大时间间隔,默认10s,意思就是说如果某一 follower 副本中的消息比 leader 延时超过10s,就会被从 ISR 中排除。Kafka 之所以这样设计,主要是为了减少消息丢失,只有与 leader 副本进行实时同步的 follower 副本才有资格参与 leader 选举,这里指相对实时。 3.4 Unclean leader 选举 既然 ISR 是动态变化的,所以 ISR 列表就有为空的时候,ISR 为空说明 leader 副本也“挂掉”了,此时 Kafka 就要重新选举出新的 leader。但 ISR 为空,怎么进行 leader 选举呢? Kafka 把不在 ISR 列表中的存活副本称为“非同步副本”,这些副本中的消息远远落后于 leader,如果选举这种副本作为 leader 的话就可能造成数据丢失。Kafka broker 端提供了一个参数 unclean.leader.election.enable,用于控制是否允许非同步副本参与 leader 选举;如果开启,则当 ISR 为空时就会从这些副本中选举新的 leader,这个过程称为 Unclean leader 选举。 前面也提及了,如果开启 Unclean leader 选举,可能会造成数据丢失,但保证了始终有一个 leader 副本对外提供服务;如果禁用 Unclean leader 选举,就会避免数据丢失,但这时分区就会不可用。这就是典型的 CAP 理论,即一个系统不可能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)中的两个。所以在这个问题上,Kafka 赋予了我们选择 C 或 A 的权利。 我们可以根据实际的业务场景选择是否开启 Unclean leader选举,这里建议关闭 Unclean leader 选举,因为通常数据的一致性要比可用性重要的多。 4. Kafka 控制器 控制器(Controller)是 Kafka 的核心组件,它的主要作用是在 Zookeeper 的帮助下管理和协调整个 Kafka 集群。集群中任意一个 broker 都能充当控制器的角色,但在运行过程中,只能有一个 broker 成为控制器。 这里先介绍下 Zookeeper,因为控制器的产生依赖于 Zookeeper 的 ZNode 模型和 Watcher 机制。Zookeeper 的数据模型是类似 Unix 操作系统的 ZNode Tree 即 ZNode 树,ZNode 是 Zookeeper 中的数据节点,是 Zookeeper 存储数据的最小单元,每个 ZNode 可以保存数据,也可以挂载子节点,根节点是 /。基本的拓扑图如下: Zookeeper 有两类 ZNode 节点,分别是持久性节点和临时节点。持久性节点是指客户端与 Zookeeper 断开会话后,该节点依旧存在,直到执行删除操作才会清除节点。临时节点的生命周期是和客户端的会话绑定在一起,客户端与 Zookeeper 断开会话后,临时节点就会被自动删除。 Watcher 机制是 Zookeeper 非常重要的特性,它可以在 ZNode 节点上绑定监听事件,比如可以监听节点数据变更、节点删除、子节点状态变更等事件,通过这个事件机制,可以基于 ZooKeeper 实现分布式锁、集群管理等功能。 4.1 控制器选举 当集群中的任意 broker 启动时,都会尝试去 Zookeeper 中创建 /controller 节点,第一个成功创建 /controller 节点的 broker 则会被指定为控制器,其他 broker 则会监听该节点的变化。当运行中的控制器突然宕机或意外终止时,其他 broker 能够快速地感知到,然后再次尝试创建 /controller 节点,创建成功的 broker 会成为新的控制器。 4.2 控制器功能 前面我们也说了,控制器主要作用是管理和协调 Kafka 集群,那么 Kafka 控制器都做了哪些事情呢,具体如下: 主题管理:创建、删除 topic,以及增加 topic 分区等操作都是由控制器执行。 分区重分配:执行 Kafka 的 reassign 脚本对 topic 分区重分配的操作,也是由控制器实现。 Preferred leader 选举:这里有一个概念叫 Preferred replica 即优先副本,表示的是分配副本中的第一个副本。Preferred leader 选举就是指 Kafka 在某些情况下出现 leader 负载不均衡时,会选择 preferred 副本作为新 leader 的一种方案。这也是控制器的职责范围。 集群成员管理:控制器能够监控新 broker 的增加,broker 的主动关闭与被动宕机,进而做其他工作。这里也是利用前面所说的 Zookeeper 的 ZNode 模型和 Watcher 机制,控制器会监听 Zookeeper 中 /brokers/ids 下临时节点的变化。 数据服务:控制器上保存了最全的集群元数据信息,其他所有 broker 会定期接收控制器发来的元数据更新请求,从而更新其内存中的缓存数据。 从上面内容我们大概知道,控制器可以说是 Kafka 的心脏,管理和协调着整个 Kafka 集群,因此控制器自身的性能和稳定性就变得至关重要。 社区在这方面做了大量工作,特别是在 0.11 版本中对控制器进行了重构,其中最大的改进把控制器内部多线程的设计改成了单线程加事件队列的方案,消除了多线程的资源消耗和线程安全问题,另外一个改进是把之前同步操作 Zookeeper 改为了异步操作,消除了 Zookeeper 端的性能瓶颈,大大提升了控制器的稳定性。 5. Kafka 消费端 Rebalance 机制 前面介绍消费者术语时,提到了消费组的概念,一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组 ,一条消息只能被消费组中的一个消费者进行消费。我们用下图表示Kafka的消费模型。 5.1 Rebalance 概念 就 Kafka 消费端而言,有一个难以避免的问题就是消费者的重平衡即 Rebalance。Rebalance 是让一个消费组的所有消费者就如何消费订阅 topic 的所有分区达成共识的过程,在 Rebalance 过程中,所有 Consumer 实例都会停止消费,等待 Rebalance 的完成。因为要停止消费等待重平衡完成,因此 Rebalance 会严重影响消费端的 TPS,是应当尽量避免的。 5.2 Rebalance 发生条件 关于何时会发生 Rebalance,总结起来有三种情况: 消费组的消费者成员数量发生变化 消费主题的数量发生变化 消费主题的分区数量发生变化 其中后两种情况一般是计划内的,比如为了提高消息吞吐量增加 topic 分区数,这些情况一般是不可避免的,后面我们会重点讨论如何避免因为组内消费者成员数发生变化导致的 Rebalance。 5.3 Kafka 协调器 在介绍如何避免 Rebalance 问题之前,先来认识下 Kafka 的协调器 Coordinator,和之前 Kafka 控制器类似,Coordinator 也是 Kafka 的核心组件。 主要有两类 Kafka 协调器: 组协调器(Group Coordinator) 消费者协调器(Consumer Coordinator) Kafka 为了更好的实现消费组成员管理、位移管理,以及 Rebalance 等,broker 服务端引入了组协调器(Group Coordinator),消费端引入了消费者协调器(Consumer Coordinator)。每个 broker 启动的时候,都会创建一个 GroupCoordinator 实例,负责消费组注册、消费者成员记录、offset 等元数据操作,这里也可以看出每个 broker 都有自己的 Coordinator 组件。另外,每个 Consumer 实例化时,同时会创建一个 ConsumerCoordinator 实例,负责消费组下各个消费者和服务端组协调器之前的通信。可以用下图表示协调器原理: 客户端的消费者协调器 Consumer Coordinator 和服务端的组协调器 Group Coordinator 会通过心跳不断保持通信。 5.4 如何避免消费组 Rebalance 接下来我们讨论下如何避免组内消费者成员发生变化导致的 Rebalance。组内成员发生变化无非就两种情况,一种是有新的消费者加入,通常是我们为了提高消费速度增加了消费者数量,比如增加了消费线程或者多部署了一份消费程序,这种情况可以认为是正常的;另一种是有消费者退出,这种情况多是和我们消费端代码有关,是我们要重点避免的。 正常情况下,每个消费者都会定期向组协调器 Group Coordinator 发送心跳,表明自己还在存活,如果消费者不能及时的发送心跳,组协调器会认为该消费者已经“死”了,就会导致消费者离组引发 Rebalance 问题。这里涉及两个消费端参数:session.timeout.ms 和 heartbeat.interval.ms,含义分别是组协调器认为消费组存活的期限,和消费者发送心跳的时间间隔,其中 heartbeat.interval.ms 默认值是3s,session.timeout.ms 在 0.10.1 版本之前默认 30s,之后默认 10s。另外,0.10.1 版本还有两个值得注意的地方: 从该版本开始,Kafka 维护了单独的心跳线程,之前版本中 Kafka 是使用业务主线程发送的心跳。 增加了一个重要的参数 max.poll.interval.ms,表示 Consumer 两次调用 poll 方法拉取数据的最大时间间隔,默认值 5min,对于那些忙于业务逻辑处理导致超过 max.poll.interval.ms 时间的消费者将会离开消费组,此时将发生一次 Rebalance。 此外,如果 Consumer 端频繁 FullGC 也可能会导致消费端长时间停顿,从而引发 Rebalance。因此,我们总结如何避免消费组 Rebalance 问题,主要从以下几方面入手: 合理配置 session.timeout.ms 和 heartbeat.interval.ms,建议 0.10.1 之前适当调大 session 超时时间尽量规避 Rebalance。 根据实际业务调整 max.poll.interval.ms,通常建议调大避免 Rebalance,但注意 0.10.1 版本之前没有该参数。 监控消费端的 GC 情况,避免由于频繁 FullGC 导致线程长时间停顿引发 Rebalance。 合理调整以上参数,可以减少生产环境中 Rebalance 发生的几率,提升 Consumer 端的 TPS 和稳定性。 6.总结 本文总结了 Kafka 体系架构、Kafka 消息发送机制、副本机制,Kafka 控制器、消费端 Rebalance 机制等各方面核心原理,通过本文的介绍,相信你已经对 Kafka 的内核知识有了一定的掌握,更多的 Kafka 原理实践后面有时间再介绍。

剑曼红尘 2020-04-16 18:15:45 0 浏览量 回答数 0

回答

本文简单介绍RDS MySQL及相关概念。 概述 阿里云关系型数据库(Relational Database Service,简称 RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,RDS支持MySQL、SQL Server、PostgreSQL、PPAS(高度兼容 Oracle)和MariaDB引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。关于RDS的优势与价值,请参见产品优势。 如果您需要获取人工帮助,可以在RDS管理控制台的右上角选择工单 > 提交工单。如果业务复杂,您也可以购买支持计划,获取由IM企业群、技术服务经理(TAM)、服务经理等提供的专属支持。 有关阿里云关系型数据库RDS更多介绍信息,请查看产品详情 。 RDS MySQL RDS MySQL基于阿里巴巴的MySQL源码分支,经过双十一高并发、大数据量的考验,拥有优良的性能。RDS MySQL支持实例管理、账号管理、数据库管理、备份恢复、白名单、透明数据加密以及数据迁移等基本功能。除此之外还提供如下高级功能: 只读实例:在对数据库有少量写请求,但有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压力,您可以创建一个或多个只读实例,利用只读实例满足大量的数据库读取需求,增加应用的吞吐量。 读写分离:读写分离功能是在只读实例的基础上,额外提供了一个读写分离地址,联动主实例及其所有只读实例,创建自动的读写分离链路。应用程序只需连接读写分离地址进行数据读取及写入操作,读写分离程序会自动将写入请求发往主实例,而将读取请求按照权重发往各个只读实例。用户只需通过添加只读实例的个数,即可不断扩展系统的处理能力,应用程序上无需做任何修改。 数据库独享代理:数据库独享代理服务是使用独立代理计算资源为当前实例提供代理服务,提供更多高级功能,例如读写分离、短连接优化、事务拆分等。 主机组:主机组功能是以集群形式批量管理实例,一个地域创建多个主机组,一个主机组包含多个主机,一个主机包含多个实例。 CloudDBA数据库性能优化:针对SQL语句性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,会提供问题详情及相应的解决方案,为您维护实例带来极大的便利。 RDS MySQL支持的功能请参见MySQL功能概览。 声明 本文档中描述的部分产品特性或者服务可能不在您的购买或使用范围之内,请以实际商业合同和条款为准。本文档内容仅作为指导使用,文档中的所有内容不构成任何明示或暗示的担保。 基本概念 实例:一个独立占用物理内存的数据库服务进程,用户可以设置不同的内存大小、磁盘空间和数据库类型。其中内存的规格会决定该实例的性能。实例创建后可以变更配置和删除实例。 数据库:在一个实例下创建的逻辑单元,一个实例可以创建多个数据库,数据库在实例内的命名唯一。 地域和可用区:地域是指物理的数据中心。可用区是指在同一地域内,电力和网络互相独立的物理区域。更多信息请参考阿里云全球基础设施。 通用描述约定 描述 说明 本地数据库 指代部署在本地机房或者非阿里云RDS上的数据库。 RDS XX(XX 为 MySQL、SQL Server、PostgreSQL、PPAS或MariaDB) 指代某一数据库类型的RDS,如RDS MySQL是指在RDS上开通的数据库引擎为MySQL的实例。

游客yl2rjx5yxwcam 2020-03-09 10:46:39 0 浏览量 回答数 0

回答

本文简单介绍RDS MySQL及相关概念。 概述 阿里云关系型数据库(Relational Database Service,简称 RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,RDS支持MySQL、SQL Server、PostgreSQL、PPAS(高度兼容 Oracle)和MariaDB引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。关于RDS的优势与价值,请参见产品优势。 如果您需要获取人工帮助,可以在RDS管理控制台的右上角选择工单 > 提交工单。如果业务复杂,您也可以购买支持计划,获取由IM企业群、技术服务经理(TAM)、服务经理等提供的专属支持。 有关阿里云关系型数据库RDS更多介绍信息,请查看产品详情 。 RDS MySQL RDS MySQL基于阿里巴巴的MySQL源码分支,经过双十一高并发、大数据量的考验,拥有优良的性能。RDS MySQL支持实例管理、账号管理、数据库管理、备份恢复、白名单、透明数据加密以及数据迁移等基本功能。除此之外还提供如下高级功能: 只读实例:在对数据库有少量写请求,但有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压力,您可以创建一个或多个只读实例,利用只读实例满足大量的数据库读取需求,增加应用的吞吐量。 读写分离:读写分离功能是在只读实例的基础上,额外提供了一个读写分离地址,联动主实例及其所有只读实例,创建自动的读写分离链路。应用程序只需连接读写分离地址进行数据读取及写入操作,读写分离程序会自动将写入请求发往主实例,而将读取请求按照权重发往各个只读实例。用户只需通过添加只读实例的个数,即可不断扩展系统的处理能力,应用程序上无需做任何修改。 数据库独享代理:数据库独享代理服务是使用独立代理计算资源为当前实例提供代理服务,提供更多高级功能,例如读写分离、短连接优化、事务拆分等。 主机组:主机组功能是以集群形式批量管理实例,一个地域创建多个主机组,一个主机组包含多个主机,一个主机包含多个实例。 CloudDBA数据库性能优化:针对SQL语句性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,会提供问题详情及相应的解决方案,为您维护实例带来极大的便利。 RDS MySQL支持的功能请参见MySQL功能概览。 声明 本文档中描述的部分产品特性或者服务可能不在您的购买或使用范围之内,请以实际商业合同和条款为准。本文档内容仅作为指导使用,文档中的所有内容不构成任何明示或暗示的担保。 基本概念 实例:一个独立占用物理内存的数据库服务进程,用户可以设置不同的内存大小、磁盘空间和数据库类型。其中内存的规格会决定该实例的性能。实例创建后可以变更配置和删除实例。 数据库:在一个实例下创建的逻辑单元,一个实例可以创建多个数据库,数据库在实例内的命名唯一。 地域和可用区:地域是指物理的数据中心。可用区是指在同一地域内,电力和网络互相独立的物理区域。更多信息请参考阿里云全球基础设施。 通用描述约定 描述 说明 本地数据库 指代部署在本地机房或者非阿里云RDS上的数据库。 RDS XX(XX 为 MySQL、SQL Server、PostgreSQL、PPAS或MariaDB) 指代某一数据库类型的RDS,如RDS MySQL是指在RDS上开通的数据库引擎为MySQL的实例。

游客yl2rjx5yxwcam 2020-03-09 10:46:43 0 浏览量 回答数 0

问题

容器服务 基本概念

青蛙跳 2019-12-01 21:32:38 529 浏览量 回答数 0

回答

本人学习数据结构时看到的不错的总结,共享一下了 文件有一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字; 排序是将文件按关键字的递增(减)顺序排列; 排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序; 在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内部排序,反之称外部排序; 排序算法的基本操作:1)比较关键字的大小;2)改变指向记录的指针或移动记录本身。 评价排序方法的标准:1)执行时间;2)所需辅助空间,辅助空间为O(1)称就地排序;另要注意算法的复杂程度。 若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算。 8.2插入排序 8.2.1直接插入排序 实现过程: void insertsort(seqlist R) { int i, j; for(i=2;i<=n;i++) if(R[i].key< R[i-1].key{ R[0]=R[i];j=i-1; do{R[j+1]=R[j];j--;} while(R[0].key R[j+1]=R[0]; } } 复制代码 算法中引入监视哨R[0]的作用是:1)保存 R[i] 复制代码 的副本;2)简化边界条件,防止循环下标越界。 关键字比较次数最大为(n+2)(n-1)/2;记录移动次数最大为(n+4)(n-1)/2; 算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序; 8.2.2希尔排序 实现过程:是将直接插入排序的间隔变为d。d的取值要注意:1)最后一次必为1;2)避免d值互为倍数; 关键字比较次数最大为n^1.25;记录移动次数最大为1.6n^1.25; 算法的平均时间是O(n^1.25);是一种就地的不稳定的排序; 8.3交换排序 8.3.1冒泡排序 实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次。 关键字比较次数最小为n-1、最大为n(n-1)/2;记录移动次数最小为0,最大为3n(n-1)/2; 算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序; 8.3.2快速排序 实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i。i=j时确定基准,并以其为界限将序列分为两段。重复以上步骤。 关键字比较次数最好为nlog2n+nC(1)、最坏为n(n-1)/2; 算法的最好时间是O(nlog2n);最坏时间是O(n^2);平均时间是O(nlog2n);辅助空间为O(log2n);是一种不稳定排序; 8.4选择排序 8.4.1直接选择排序 实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次。 关键字比较次数为n(n-1)/2;记录移动次数最小为0,最大为3(n-1); 算法的最好时间是O(n^2);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的不稳定的排序; 8.4.2堆排序 实现过程:把序列按层次填入完全二叉树,调整位置使双亲大于或小于孩子,建立初始大根或小根堆,调整树根与最后一个叶子的位置,排除该叶子重新调整位置。 算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);是一种就地的不稳定排序; 8.5归并排序 实现过程:将初始序列分为2个一组,最后单数轮空,对每一组排序后作为一个单元,对2个单元排序,直到结束。 算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);辅助空间为O(n);是一种稳定排序; 8.6分配排序 8.6.1箱排序 实现过程:按关键字的取值范围确定箱子的个数,将序列按关键字放入箱中,输出非空箱的关键字。 在桶内分配和收集,及对各桶进行插入排序的时间为O(n),算法的期望时间是O(n),最坏时间是O(n^2)。 8.6.2基数排序 实现过程:按基数设置箱子,对关键字从低位到高位依次进行箱排序。 算法的最好时间是O(d*n+d*rd);最坏时间是O(d*n+d*rd);平均时间是O(d*n+d*rd);辅助空间O(n+rd);是一种稳定排序; 8.7各种内部排序方法的比较和选择 按平均时间复杂度分为: 1) 平方阶排序:直接插入、直接选择、冒泡排序; 2) 线性对数阶:快速排序、堆排序、归并排序; 3) 指数阶:希尔排序; 4) 线性阶:箱排序、基数排序。 选择合适排序方法的因素:1)待排序的记录数;2)记录的大小;3)关键字的结构和初始状态;4)对稳定性的要求;5)语言工具的条件;6)存储结构;7)时间和辅助空间复杂度。 结论: 1) 若规模较小可采用直接插入或直接选择排序; 2) 若文件初始状态基本有序可采用直接插入、冒泡或随机快速排序; 3) 若规模较大可采用快速排序、堆排序或归并排序; 4) 任何借助于比较的排序,至少需要O(nlog2n)的时间,箱排序和基数排序只适用于有明显结构特征的关键字; 5) 有的语言没有提供指针及递归,使归并、快速、基数排序算法复杂; 6) 记录规模较大时为避免大量移动记录可用链表作为存储结构,如插入、归并、基数排序,但快速、堆排序在链表上难以实现,可提取关键字建立索引表,然后对索引表排序。 附二: 第八章排序 ************************************************************************************* 记录中可用某一项来标识一个记录,则称为关键字项,该数据项的值称为关键字。 排序是使文件中的记录按关键字递增(或递减)次序排列起来。·基本操作:比较关键字大小;改变指向记录的指针或移动记录。 ·存储结构:顺序结构、链表结构、索引结构。 经过排序后这些具有相同关键字的记录之间的相对次序保持不变,则称这种排序方法是稳定的,否则排序算法是不稳定的。 排序过程中不涉及数据的内、外存交换则称之为"内部排序"(内排序),反之,若存在数据的内外存交换,则称之为外排序。 内部排序方法可分五类:插入排序、选择排序、交换排序、归并排序和分配排序。 评价排序算法好坏的标准主要有两条:执行时间和所需的辅助空间,另外算法的复杂程序也是要考虑的一个因素。 ************************************************************************************* 插入排序:·直接插入排序: ·逐个向前插入到合适位置。 ·哨兵(监视哨)有两个作用: ·作为临变量存放 R[i] 复制代码 ·是在查找循环中用来监视下标变量j是否越界。 ·直接插入排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为(n+2)(n-1)/2;移动次数为(n+4)(n-1)/2; ·希尔排序: ·等间隔的数据比较并按要求顺序排列,最后间隔为1。 ·希尔排序是就地的不稳定排序。时间复杂度为O(n^1.25),比较次数为(n^1.25);移动次数为(1.6n^1.25); 交换排序:·冒泡排序:·自下向上确定最轻的一个。·自上向下确定最重的一个。·自下向上确定最轻的一个,后自上向下确定最重的一个。 ·冒泡排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为n(n-1)/2;移动次数为3n(n-1)/2; ·快速排序:·以第一个元素为参考基准,设定、动两个指针,发生交换后指针交换位置,直到指针重合。重复直到排序完成。 ·快速排序是非就地的不稳定排序。时间复杂度为O(nlog2n),比较次数为n(n-1)/2; 选择排序:·直接选择排序: ·选择最小的放在比较区前。 ·直接选择排序就地的不稳定排序。时间复杂度为O(n^2)。比较次数为n(n-1)/2; ·堆排序 ·建堆:按层次将数据填入完全二叉树,从int(n/2)处向前逐个调整位置。 ·然后将树根与最后一个叶子交换值并断开与树的连接并重建堆,直到全断开。 ·堆排序是就地不稳定的排序,时间复杂度为O(nlog2n),不适宜于记录数较少的文件。。 归并排序: ·先两个一组排序,形成(n+1)/2组,再将两组并一组,直到剩下一组为止。 ·归并排序是非就地稳定排序,时间复杂度是O(nlog2n), 分配排序:·箱排序: ·按关键字的取值范围确定箱子数,按关键字投入箱子,链接所有非空箱。 ·箱排序的平均时间复杂度是线性的O(n). ·基数排序:·从低位到高位依次对关键字进行箱排序。 ·基数排序是非就稳定的排序,时间复杂度是O(d*n+d*rd)。 各种排序方法的比较和选择: ·.待排序的记录数目n;n较大的要用时间复杂度为O(nlog2n)的排序方法; ·记录的大小(规模);记录大最好用链表作为存储结构,而快速排序和堆排序在链表上难于实现; ·关键字的结构及其初始状态; ·对稳定性的要求; ·语言工具的条件; ·存储结构; ·时间和辅助空间复杂度。 排序(sort)或分类 所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下: 输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。 输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。 1.被排序对象--文件 被排序的对象--文件由一组记录组成。 记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。 注意: 在不易产生混淆时,将关键字项简称为关键字。 2.排序运算的依据--关键字 用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。 关键字的选取应根据问题的要求而定。 【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。 排序的稳定性 当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。 在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。 注意: 排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。 排序方法的分类 1.按是否涉及数据的内、外存交换分 在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。 注意: ① 内排序适用于记录个数不很多的小文件 ② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。 2.按策略划分内部排序方法 可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。 排序算法分析 1.排序算法的基本操作 大多数排序算法都有两个基本的操作: (1) 比较两个关键字的大小; (2) 改变指向记录的指针或移动记录本身。 注意: 第(2)种基本操作的实现依赖于待排序记录的存储方式。 2.待排文件的常用存储方式 (1) 以顺序表(或直接用向量)作为存储结构 排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置) (2) 以链表作为存储结构 排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序; (3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表) 排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。 3.排序算法性能评价 (1) 评价排序算法好坏的标准 评价排序算法好坏的标准主要有两条: ① 执行时间和所需的辅助空间 ② 算法本身的复杂程度 (2) 排序算法的空间复杂度 若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。 非就地排序一般要求的辅助空间为O(n)。 (3) 排序算法的时间开销 大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

马铭芳 2019-12-02 01:19:07 0 浏览量 回答数 0

问题

计算机、数学、运筹学等领域的32个重要算法 6月29日 【今日算法】

游客ih62co2qqq5ww 2020-06-29 13:46:10 13 浏览量 回答数 1

问题

产品迭代发布如何更快速?阿里持续集成与持续交付实践之路全解析

云效平台 2019-12-01 22:00:32 4289 浏览量 回答数 1

回答

Layout Go工程项目的整体组织 首先我们看一下整个 Go 工程是怎么组织起来的。 很多同事都在用 GitLab 的,GitLab 的一个 group 里面可以创建很多 project。如果我们进行微服务化改造,以前很多巨石架构的应用可能就拆成了很多个独立的小应用。那么这么多小应用,你是要建 N 个 project 去维护,还是说按照部门或者组来组织这些项目呢?在 B 站的话,我们之前因为是 Monorepo,现在是按照部门去组织管理代码,就是说在单个 GitLab 的 project 里面是有多个 app 的,每一个 app 就表示一个独立的微服务,它可以独立去交付部署。所以说我们看到下面这张图里面,app 的目录里面是有好多个子目录的,比方说我们的评论服务,会员服务。跟 app 同级的目录有一个叫 pkg,可以存放业务有关的公共库。这是我们的一个组织方式。当然,还有一种方式,你可以按照 GitLab 的 project 去组织,但我觉得这样的话可能相对要创建的 project 会非常多。 如果你按部门组织的话,部门里面有很多 app,app 目录怎么去组织?我们实际上会给每一个 app 取一个全局唯一名称,可以理解为有点像 DNS 那个名称。我们对业务的命名也是一样的,我们基本上是三段式的命名,比如账号业务,它是一个账号业务、服务、子服务的三段命名。三段命名以后,在这个 app 目录里面,你也可以按照这三层来组织。比如我们刚刚说的账号目录,我可能就是 account 目录,然后 VIP,在 VIP 目录下可能会放各种各样的不同角色的微服务,比方说可能有一些是做 job,做定时任务或者流式处理的一些任务,有可能是做对外暴露的 API 的一些服务,这个就是我们关于整个大的 app 的组织的一种形式。 微服务中的 app 服务分类 微服务中单个 app 的服务里又分为几类不同的角色。我们基本上会把 app 分为 interface(BFF)、service、job(补充:还有一个 task,偏向定时执行,job 偏向流式) 和 admin。 Interface 是对外的业务网关服务,因为我们最终是面向终端用户的 API,面向 app,面向 PC 场景的,我们把这个叫成业务网关。因为我们不是统一的网关,我们可能是按照大的业务线去独立分拆的一些子网关,这个的话可以作为一个对外暴露的 HTTP 接口的一个目录去组织它的代码,当然也可能是 gRPC 的(参考 B 站对外的 gRPC Moss 分享)。 Service 这个角色主要是面向对内通信的微服务,它不直接对外。也就是说,业务网关的请求会转发或者是会 call 我们的内部的 service,它们之间的通讯可能是使用自己的 RPC,在 b 站我们主要是使用 gRPC。使用 gRPC 通讯以后,service 它因为不直接对外,service 之间可能也可以相互去 call。 Admin 区别于 service,很多应用除了有面向用户的一些接口,实际上还有面向企业内部的一些运营侧的需求,通常数据权限更高,从安全设计角度需要代码物理层面隔离,避免意外。 第四个是 ecode。我们当时也在内部争论了很久,我们的错误码定义到底是放在哪里?我们目前的做法是,一个应用里面,假设你有多种角色,它们可能会复用一些错误码。所以说我们会把我们的 ecode 给单独抽出来,在这一个应用里面是可以复用的。注意,它只在这一个应用里面复用,它不会去跨服跨目录应用,它是针对业务场景的一个业务错误码的组织。 App 目录组织 我们除了一个应用里面多种角色的这种情况,现在展开讲一下具体到一个 service 里面,它到底是怎么组织的。我们的 app 目录下大概会有 api、cmd、configs、 internal 目录,目录里一般还会放置 README、CHANGELOG、OWNERS。 API 是放置 api 定义以及对应的生成的 client 代码,包含基于 pb 定义(我们使用 PB 作为 DSL 描述 API) 生成的 swagger.json。 而 cmd,就是放 main 函数的。Configs 目录主要是放一些服务所需的配置文件,比方说说我们可能会使用 TOML 或者是使用 YAML 文件。 Internal 的话,它里面有四个子目录,分别是 model、dao、service 和 server。Model 的定位职责就是对我们底层存储的持久化层或者存储层的数据的映射,它是具体的 Go 的一个 struct。我们再看 dao,你实际就是要操作 MySQL 或者 Redis,最终返回的就是这些 model(存储映射)。Service 组织起来比较简单,就是我们通过 dao 里面的各个方法来完成一个完整的业务逻辑。我们还看到有个 server,因为我一个微服务有可能企业内部不一定所有 RPC 都统一,那我们处于过渡阶段,所以 server 里面会有两个小目录,一个是 HTTP 目录,暴露的是 HTTP 接口,还有一个是 gRPC 目录,我们会暴露 gRPC 的协议。所以在 server 里面,两个不同的启动的 server,就是说一个服务和启动两个端口,然后去暴露不同的协议,HTTP 接 RPC,它实际上会先 call 到 service,service 再 call 到 dao,dao 实际上会使用 model 的一些数据定义 struct。但这里面有一个非常重要的就是,因为这个结构体不能够直接返回给我们的 api 做外对外暴露来使用,为什么?因为可能从数据库里面取的敏感字段,当我们实际要返回到 api 的时候,可能要隐藏掉一些字段,在 Java 里面,会抽象的一个叫 DTO 的对象,它只是用来传输用的,同理,在我们 Go 里面,实际也会把这些 model 的一些结构体映射成 api 里面的结构体(基于 PB Message 生成代码后的 struct)。 Rob Pike 当时说过的一句话,a little copying is better than a little dependency,我们就遵循了这个理念。在我们这个目录结构里面,有 internal 目录,我们知道 Go 的目录只允许这个目录里面的人去 import 到它,跨目录的人实际是不能直接引用到它的。所以说,我们看到 service 有一个 model,那我的 job 代码,我做一些定时任务的代码或者是我的网关代码有可能会映射同一个 model,那是不是要把这个 model 放到上一级目录让大家共享?对于这个问题,其实我们当时内部也争论过很久。我们认为,每一个微服务应该只对自己的 model 负责,所以我们宁愿去做一小部分的代码 copy,也不会去为了几个服务之间要共享这一点点代码,去把这个 model 提到和 app 目录级别去共用,因为你一改全错,当然了,你如果是拷贝的话,就是每个地方都要去改,那我们觉得,依赖的问题可能会比拷贝代码相对来说还是要更复杂的。 这个是一个标准的 PB 文件,就是我们内部的一个 demo 的 service。最上面的 package 是 PB 的包名,demo.service.v1,这个包使用的是三段式命名,全局唯一的名称。那这个名称为什么不是用 ID?我见过有些公司对内部做的 CMDB 或者做服务树去管理企业内部微服务的时候,是用了一些名称加上 ID 来搞定唯一性,但是我们知道后面那一串 ID 数字是不容易被传播或者是不容易被记住的,这也是 DNS 出来的一个意义,所以我们用绝对唯一的一个名称来表示这个包的名字,在后面带上这一个 PB 文件的版本号 V1。 我们看第二段定义,它有个 Service Demo 代码,其实就表示了我们这个服务要启动的服务的一个名称,我们看到这个服务名称里面有很多个 RPC 的方法,表示最终这一个应用或者这个 service 要对外暴露这几个 RPC 的方法。这里面有个小细节,我们看一下 SayHello 这个方法,实际它有 option 的一个选项。通过这一个 PB 文件,你既可以描述出你要暴露的是 gRPC 协议,又暴露出 HTTP 的一个接口,这个好处是你只需要一个 PB 文件描述你暴露的所有 api。我们回想一下,我们刚刚目录里面有个 api 目录,实际这里面就是放这一个 PB 文件,描述这一个工程到底返回的接口是什么。不管是 gRPC 还是 HTTP 都是这一个文件。还有一个好处是什么?实际上我们可以在 PB 文件里面加上很多的注释。用 PB 文件的好处是你不需要额外地再去写文档,因为写文档和写服务的定义,它本质上是两个步骤,特别容易不一致,接口改了,文档不同步。我们如果基于这一个 PB 文件,它生成的 service 代码或者调用代码或者是文档都是唯一的。 依赖顺序与 api 维护 就像我刚刚讲到的,model 是一个存储层的结构体的一一映射,dao 处理一些数据读写包,比方说数据库缓存,server 的话就是启动了一些 gRPC 或者 HTTP Server,所以它整个依赖顺序如下:main 函数启动 server,server 会依赖 api 定义好的 PB 文件,定义好这些方法或者是服务名之后,实际上生成代码的时候,比方说 protocbuf 生成代码的时候,它会把抽象 interface 生成好。然后我们看一下 service,它实际上是弱依赖的 api,就是说我的 server 启动以后,要注册一个具体的业务代码的逻辑,映射方法,映射名字,实际上是弱依赖的 api 生成的 interface 的代码,你就可以很方便地启动你的 server,把你具体的 service 的业务逻辑给注入到这个 server,和方法进行一一绑定。最后,dao 和 service 实际上都会依赖这个 model。 因为我们在 PB 里面定义了一些 message,这些 message 生成的 Go 的 struct 和刚刚 model 的 struct 是两个不同的对象,所以说你要去手动 copy 它,把它最终返回。但是为了快捷,你不可能每次手动去写这些代码,因为它要做 mapping,所以我们又把 K8s 里类似 DeepCopy 的两个结构体相互拷贝的工具给抠出来了,方便我们内部 model 和 api 的 message 两个代码相互拷贝的时候,可以少写一些代码,减少一些工作量。 上面讲的就是我们关于工程的一些 layout 实践。简单回溯一下,大概分为几块,第一就是 app 是怎么组织的,app 里面有多种角色的服务是怎么组织的,第三就是一个 app 里面的目录是怎么组织的,最后我重点讲了一下 api 是怎么维护的。 Unittest 测试方法论 现在回顾一下单元测试。我们先看这张图,这张图是我从《Google 软件测试之道》这本书里面抠出来的,它想表达的意思就是最小型的测试不能给我们的最终项目的质量带来最大的信心,它比较容易带来一些优秀的代码质量,良好的异常处理等等。但是对于一个面向用户场景的服务,你只有做大型测试,比方做接口测试,在 App 上验收功能的这种测试,你应用交付的信心可能会更足。这个其实要表达的就是一个“721 原则”。我们就是 70% 写小型测试,可以理解为单元测试,因为它相对来说好写,针对方法级别。20% 是做一些中型测试,可能你要连调几个项目去完成你的 api。剩下 10% 是大型测试,因为它是最终面向用户场景的,你要去使用我们的 App,或者用一些测试 App 去测试它。这个就是测试的一些简单的方法论。 单元测试原则 我们怎么去对待 Go 里面的单元测试?在《Google 软件测试之道》这本书里面,它强调的是对于一个小型测试,一个单元测试,它要有几个特质。它不能依赖外部的一些环境,比如我们公司有测试环境,有持续集成环境,有功能测试环境,你不能依赖这些环境构建自己的单元测试,因为测试环境容易被破坏,它容易有数据的变更,数据容易不一致,你之前构建的案例重跑的话可能就会失败。 我觉得单元测试主要有四点要求。第一,快速,你不能说你跑个单元测试要几分钟。第二,要环境一致,也就是说你跑测试前和跑测试后,它的环境是一致的。第三,你写的所有单元测试的方法可以以任意顺序执行,不应该有先后的依赖,如果有依赖,也是在你测试的这个方法里面,自己去 setup 和 teardown,不应该有 Test Stub 函数存在顺序依赖。第四,基于第三点,你可以做并行的单元测试,假设我写了一百个单元测试,一个个跑肯定特别慢。 doker-compose 最近一段时间,我们演进到基于 docker-compose 实现跨平台跨语言环境的容器依赖管理方案,以解决运行 unittest 场景下的容器依赖问题。 首先,你要跑单元测试,你不应该用 VPN 连到公司的环境,好比我在星巴克点杯咖啡也可以写单元测试,也可以跑成功。基于这一点,Docker 实际上是非常好的解决方式。我们也有同学说,其他语言有一些 in-process 的 mock,是不是可以启动 MySQL 的 mock ,然后在 in-process 上跑?可以,但是有一个问题,你每一个语言都要写一个这样的 mock ,而且要写非常多种,因为我们中间件越来越多,MySQL,HBase,Kafka,什么都有,你很难覆盖所有的组件 Mock。这种 mock 或者 in-process 的实现不能完整地代表线上的情况,比方说,你可能 mock 了一个 MySQL,检测到 query 或者 insert ,没问题,但是你实际要跑一个 transaction,要验证一些功能就未必能做得非常完善了。所以基于这个原因,我们当时选择了 docker-compose,可以很好地解决这个问题。 我们对开发人员的要求就是,你本地需要装 Docker,我们开发人员大部分都是用 Mac,相对来说也比较简单,Windows 也能搞定,如果是 Linux 的话就更简单了。本地安装 Docker,本质上的理解就是无侵入式的环境初始化,因为你在容器里面,你拉起一个 MySQL,你自己来初始化数据。在这个容器被销毁以后,它的环境实际上就满足了我们刚刚提的环境一致的问题,因为它相当于被重置了,也可以很方便地快速重置环境,也可以随时随地运行,你不需要依赖任何外部服务,这个外部服务指的是像 MySQL 这种外部服务。当然,如果你的单元测试依赖另外一个 RPC 的 service 的话,PB 的定义会生成一个 interface,你可以把那个 interface 代码给 mock 掉,所以这个也是能做掉的。对于小型测试来说,你不依赖任何外部环境,你也能够快速完成。 另外,docker-compose 是声明式的 API,你可以声明你要用 MySQL,Redis,这个其实就是一个配置文件,非常简单。这个就是我们在单元测试上的一些实践。 我们现在看一下,service 目录里面多了一个 test 目录,我们会在这个里面放 docker-compose 的 YAML 文件来表示这次单元化测试需要初始化哪些资源,你要构建自己的一些测试的数据集。因为是这样的,你是写 dao 层的单元测试的话,可能就需要 database.sql 做一些数据的初始化,如果你是做 service 的单元测试的话,实际你可以把整个 dao 给 mock 掉,我觉得反而还相对简单,所以我们主要针对场景就是在 dao 里面偏持久层的,利用 docker-compose 来解决。 容器的拉起,容器的销毁,这些工作到底谁来做?是开发同学自己去拉起和销毁,还是说你能够把它做成一个 Library,让我们的同学写单元测试的时候比较方便?我倾向的是后者。所以在我们最终写单元测试的时候,你可以很方便地 setup 一个依赖文件,去 setup 你的容器的一些信息,或者把它销毁掉。所以说,你把环境准备好以后,最终可以跑测试代码也非常方便。当然我们也提供了一些命令函,就是 binary 的一些工具,它可以针对各个语言方便地拉起容器和销毁容器,然后再去执行代码,所以我们也提供了一些快捷的方式。 刚刚我也提到了,就是我们对于 service 也好,API 也好,因为依赖下层的 dao 或者依赖下层的 service,你都很方便 mock 掉,这个写单元测试相对简单,这个我不展开讲,你可以使用 GoMock 或者 GoMonkey 实现这个功能。 Toolchain 我们利用多个 docker-compose 来解决 dao 层的单元测试,那对于我刚刚提到的项目的一些规范,单元测试的一些模板,甚至是我写了一些 dao 的一些占位符,或者写了一些 service 代码的一些占位符,你有没有考虑过这种约束有没有人会去遵循?所以我这里要强调一点,工具一定要大于约束和文档,你写了约束,写了文档,那么你最终要通过工具把它落实。所以在我们内部会有一个类似 go tool 的脚手架,叫 Kratos Tool,把我们刚刚说的约定规范都通过这个工具一键初始化。 对于我们内部的工具集,我们大概会分为几块。第一块就是 API 的,就是你写一个 PB 文件,你可以基于这个 PB 文件生成 gRPC,HTTP 的框架代码,你也可以基于这个 PB 文件生成 swagger 的一些 JSON 文件或者是 Markdown 文件。当然了,我们还会生成一些 API,用于 debug 的 client 方便去调试,因为我们知道,gRPC 调试起来相对麻烦一些,你要去写代码。 还有一些工具是针对 project 的,一键生成整个应用的 layout,非常方便。我们还提了 model,就是方便 model 和 DTO,DTO 就是 API 里面定义的 message 的 struct 做 DeepCopy,这个也是一个工具。 对于 cache 的话,我们操作 memcache,操作 Redis 经常会要做什么逻辑?假如我们有一个 cache aside 场景,你读了一个 cache,cache miss 要回原 DB,你要把这个缓存回塞回去,甚至你可能这个回塞缓存想异步化,甚至是你要去读这个 DB 的时候要做归并回源(singleflight),我们把这些东西做成一些工具,让它整个回源到 DB 的逻辑更加简单,就是把这些场景描述出来,然后你通过工具可以一键生成这些代码,所以也是会比较方便。 我们再看最后一个,就是 test 的一些工具。我们会基于项目里面,比方说 dao 或者是 service 定义的 interface 去帮你写好 mock 的代码,我直接在里面填,只要填代码逻辑就行了,所以也会加速我们的生产。 上图是 Kratos 的一个 demo,基本就是支持了一些 command。这里就是一个 kratos new kratos-demo 的一个工程,-d YourPath 把它导到某一个路径去,--proto 顺便把 API 里面的 proto 代码也生成了,所以非常简单,一行就可以很快速启动一个 HTTP 或者 gRPC 服务。 我们知道,一个微服务的框架实际非常重,有很多初始化的方式等等,非常麻烦。所以说,你通过脚手架的方式就会非常方便,工具大于约定和文档这个这个理念就是这么来的。 Configuration 讲完工具以后,最后讲一下配置文件。我为什么单独提一下配置文件?实际它也是工程化的一部分。我们一个线上的业务服务包含三大块,第一,应用程序,第二,配置文件,第三,数据集。配置文件最容易导致线上出 bug,因为你改一行配置,整个行为可能跟 App 想要的行为完全不一样。而且我们的代码的开发交付需要经过哪些流程?需要 commit 代码,需要 review,需要单元测试,需要 CD,需要交付到线上,需要灰度,它的整个流程是非常长的。在一步步的环境里面,你的 bug 需要前置解决,越前置解决,成本越低。因为你的代码的开发流程是这么一个 pipeline,所以 bug 最终流到线上的概率很低,但是配置文件没有经过这么复杂的流程,可能大家发现线上有个问题,决定要改个线上配置,就去配置中心或者配置文件改,然后 push 上线,接着就问题了,这个其实很常见。 从 SRE 的角度来说,导致线上故障的主因就是来自配置变更,所以 SRE 很大的工作是控制变更管理,如果能把变更管理做好,实际上很多问题都不会出现。配置既然在整个应用里面这么重要,那在我们整个框架或者在 Go 的工程化实践里面,我们应该对配置文件做一些什么事情? 我觉得是几个。第一,我们的目标是什么?配置文件不应该太复杂,我见过很多框架,或者是业务的一些框架,它实际功能非常强大,但是它的配置文件超级多。我就发现有个习惯,只要有一个同事写错了这个配置,当我新起一个项目的时候,一定会有人把这个错误的配置拷贝到另外一个系统里面去。然后当发现这个应用出问题的时候,我们一般都会内部说一下,你看看其他同事有没有也配错的,实际这个配错概率非常高。因为你的配置选项越多,复杂性越高,它越容易出错。所以第一个要素就是说,尽量避免复杂的配置文件。配得越多,越容易出错。 第二,实际我们的配置方式也非常多,有些用 JSON,有些用 YAML,有些用 Properties,有些用 INI。那能不能收敛成通用的一种方式呢?无论它是用 Python 的脚本也好,或者是用 JSON 也好,你只要有一种唯一的约定,不需要太多样的配置方式,对我们的运维,对我们的 SRE 同时来说,他跨项目的变更成本会变低。 第三,一定要往简单化去努力。这句话其实包含了几个方面的含义。首先,我们很多配置它到底是必须的还是可选的,如果是可选,配置文件是不是就可以把它踢掉,甚至不要出现?我曾经有一次看到我们 Java 同事的配置 retry 有一个重试默认是零,内部重试是 80 次,直接把 Redis cluster 打故障了,为什么?其实这种事故很低级,所以简单化努力的另外一层含义是指,我们在框架层面,尤其是提供 SDK 或者是提供 framework 的这些同事尽量要做一些防御编程,让这种错配漏配也处于一个可控的范围,比方重试 80 次,你觉得哪个 SDK 会这么做?所以这个是我们要考虑的。但是还有一点要强调的是,我们对于业务开发的同事,我们的配置应该足够的简单,这个简单还包含,如果你的日志基本上都是写在这个目录,你就不要提供这个配置给他,反而不容易出错。但是对于我们内部的一些 infrastructure,它可能需要非常复杂的配置来优化,根据我的场景去做优化,所以它是两种场景,一种是业务场景,足够简单,一种是我要针对我的通用的 infrastructure 去做场景的优化,需要很复杂的配置,所以它是两种场景,所以我们要想清楚你的业务到底是哪一种形态。 还有一个问题就是我们配置文件一定要做好权限的变更和跟踪,因为我们知道上线出问题的时候,我们的第一想法不是查 bug,是先止损,止损先找最近有没有变更。如果发现有变更,一般是先回滚,回滚的时候,我们通常只回滚了应用程序,而忘记回滚了配置。每个公司可能内部的配置中心,或者是配置场景,或者跟我们的二进制的交付上线都不一样,那么这里的理念就是你的应用程序和配置文件一定是同一个版本,或者是某种意义上让他们产生一个版本的映射,比方说你的应用程序 1.0,你的配置文件 2.0,它们之间存在一个强绑定关系,我们在回滚的时候应该是一起回滚的。我们曾经也因为类似的一些不兼容的配置的变更,二进制程序上线,但配置文件忘记回滚,出现过事故,所以这个是要强调的。 另外,配置的变更也要经过 review,如果没问题,应该也是按照 App 发布一样,先灰度,再放量,再全量等等类似的一种方式去推,演进式的这种发布,我们也叫滚动发布,我觉得配置文件也是一样的思路。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 原文链接

有只黑白猫 2020-01-09 17:29:54 0 浏览量 回答数 0

问题

【精品问答】Python二级考试题库

珍宝珠 2019-12-01 22:03:38 1146 浏览量 回答数 2

问题

Docker面临的安全隐患,我们该如何应对?

sunny夏筱 2019-12-01 21:43:14 5297 浏览量 回答数 3
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SSL证书 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 2020中国云原生 阿里云云栖号