• 关于 SQL基本操作-更新数据库 的搜索结果

回答

详细解答可以参考官方帮助文档 使用 mysqldump 工具的优点是简单易用、容易上手,缺点是停机时间较长,因此它适用于数据量不大,或者允许停机的时间较长的情况。 背景信息 由于 RDS 提供的关系型数据库服务与原生的数据库服务完全兼容,所以对用户来说,将原有数据库迁移到 RDS 实例的过程,与从一个 MySQL 服务器迁移到另外一台 MySQL 服务器的过程基本类似。 前提条件 已对RDS 实例设置白名单,申请外网地址,以及创建数据库和账号。具体可参见快速入门。 已购买云服务器 ECS。 操作步骤 在正式迁移之前,需要先在本地数据库中创建迁移账号,并将要迁移的数据库的读写权限授权给迁移账号。 在本地数据库中创建迁移账号。CREATE USER'username'@'host' IDENTIFIED BY 'password';参数说明: username:要创建的账号 host:指定该账号登录数据库的主机。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % password:该账号的登录密码 例:要创建账号为 William,密码为 Changme123 的账号从任意主机登录本地数据库,命令如下: CREATE USER'William'@'%' IDENTIFIED BY 'Changme123'; 在本地数据库中给迁移账号授权。GRANT SELECT ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION; GRANT REPLICATION SLAVE ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION;参数说明: privileges:该账号的操作权限,如 SELECT、INSERT、UPDATE 等。如果要授权该账号所有权限,则使用 ALL databasename:数据库名。如果要授权该账号所有的数据库权限,则使用通配符 * tablename:表名。如果要授权该账号所有的表权限,则使用通配符 * username:要授权的账号名 host:授权登录数据库的主机名。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % WITH GRANT OPTION:授权该账号能使用GRANT命令,该参数为可选 例:授权账号 William 对所有数据库和表的所有权限,并可以从任意主机登录本地数据库,命令如下。 GRANT ALL ON*.* TO 'William'@'%'; 使用 mysqldump 的数据导出工具,将本地数据库数据导出为数据文件。 说明 导出期间请勿进行数据更新。本步骤仅仅导出数据,不包括存储过程、触发器及函数。 mysqldump -h localIp -u userName -p --opt --default-character-set=utf8 --hex-blob dbName --skip-triggers > /tmp/dbName.sql参数说明: localIp:本地数据库服务器 IP 地址 userName:本地数据库的迁移账号 dbName:需要迁移的数据库名 /tmp/dbName.sql:备份生成的文件名 使用 mysqldump 导出存储过程、触发器和函数。 说明 若数据库中没有使用存储过程、触发器和函数,可跳过此步骤。在导出存储过程、触发器和函数时,需要将 definer 去掉,以兼容 RDS。 mysqldump -h localIp -u userName -p --opt --default-character-set=utf8 --hex-blob dbName -R | sed -e 's/DEFINER[ ]*=[ ]*[^*]*\*/\*/' > /tmp/triggerProcedure.sql参数说明: localIp:本地数据库服务器 IP 地址 userName:本地数据库的迁移账号 dbName:需要迁移的数据库名 /tmp/triggerProcedure.sql:备份生成的文件名 将数据文件和存储过程文件上传到 ECS 上。 本例以文件上传到如下路径为例。/tmp/dbName.sql /tmp/triggerProcedure.sql 登录 ECS,将数据文件和存储过程文件导入到目标 RDS 中。mysql -h intranet4example.mysql.rds.aliyuncs.com –u userName -p dbName < /tmp/dbName.sql mysql -h intranet4example.mysql.rds.aliyuncs.com -u userName -p dbName < /tmp/triggerProcedure.sql参数说明: intranet4example.mysql.rds.aliyuncs.com:RDS 实例连接地址,本例以内网地址为例 userName:RDS 数据库的迁移账号 dbName:需要导入的数据库名 /tmp/dbName.sql:要导入的数据文件名 /tmp/triggerProcedure.sql:要导入的存储过程文件名

2019-12-01 22:57:10 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 使用 mysqldump 工具的优点是简单易用、容易上手,缺点是停机时间较长,因此它适用于数据量不大,或者允许停机的时间较长的情况。 背景信息 由于 RDS 提供的关系型数据库服务与原生的数据库服务完全兼容,所以对用户来说,将原有数据库迁移到 RDS 实例的过程,与从一个 MySQL 服务器迁移到另外一台 MySQL 服务器的过程基本类似。 前提条件 已对RDS 实例设置白名单,申请外网地址,以及创建数据库和账号。具体可参见快速入门。 已购买云服务器 ECS。 操作步骤 在正式迁移之前,需要先在本地数据库中创建迁移账号,并将要迁移的数据库的读写权限授权给迁移账号。 在本地数据库中创建迁移账号。CREATE USER'username'@'host' IDENTIFIED BY 'password';参数说明: username:要创建的账号 host:指定该账号登录数据库的主机。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % password:该账号的登录密码 例:要创建账号为 William,密码为 Changme123 的账号从任意主机登录本地数据库,命令如下: CREATE USER'William'@'%' IDENTIFIED BY 'Changme123'; 在本地数据库中给迁移账号授权。GRANT SELECT ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION; GRANT REPLICATION SLAVE ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION;参数说明: privileges:该账号的操作权限,如 SELECT、INSERT、UPDATE 等。如果要授权该账号所有权限,则使用 ALL databasename:数据库名。如果要授权该账号所有的数据库权限,则使用通配符 * tablename:表名。如果要授权该账号所有的表权限,则使用通配符 * username:要授权的账号名 host:授权登录数据库的主机名。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % WITH GRANT OPTION:授权该账号能使用GRANT命令,该参数为可选 例:授权账号 William 对所有数据库和表的所有权限,并可以从任意主机登录本地数据库,命令如下。 GRANT ALL ON*.* TO 'William'@'%'; 使用 mysqldump 的数据导出工具,将本地数据库数据导出为数据文件。 说明 导出期间请勿进行数据更新。本步骤仅仅导出数据,不包括存储过程、触发器及函数。 mysqldump -h localIp -u userName -p --opt --default-character-set=utf8 --hex-blob dbName --skip-triggers > /tmp/dbName.sql参数说明: localIp:本地数据库服务器 IP 地址 userName:本地数据库的迁移账号 dbName:需要迁移的数据库名 /tmp/dbName.sql:备份生成的文件名 使用 mysqldump 导出存储过程、触发器和函数。 说明 若数据库中没有使用存储过程、触发器和函数,可跳过此步骤。在导出存储过程、触发器和函数时,需要将 definer 去掉,以兼容 RDS。 mysqldump -h localIp -u userName -p --opt --default-character-set=utf8 --hex-blob dbName -R | sed -e 's/DEFINER[ ]*=[ ]*[^*]*\*/\*/' > /tmp/triggerProcedure.sql参数说明: localIp:本地数据库服务器 IP 地址 userName:本地数据库的迁移账号 dbName:需要迁移的数据库名 /tmp/triggerProcedure.sql:备份生成的文件名 将数据文件和存储过程文件上传到 ECS 上。 本例以文件上传到如下路径为例。/tmp/dbName.sql /tmp/triggerProcedure.sql 登录 ECS,将数据文件和存储过程文件导入到目标 RDS 中。mysql -h intranet4example.mysql.rds.aliyuncs.com –u userName -p dbName < /tmp/dbName.sql mysql -h intranet4example.mysql.rds.aliyuncs.com -u userName -p dbName < /tmp/triggerProcedure.sql参数说明: intranet4example.mysql.rds.aliyuncs.com:RDS 实例连接地址,本例以内网地址为例 userName:RDS 数据库的迁移账号 dbName:需要导入的数据库名 /tmp/dbName.sql:要导入的数据文件名 /tmp/triggerProcedure.sql:要导入的存储过程文件名

2019-12-01 22:57:10 0 浏览量 回答数 0

问题

魔乐MLDN李兴华主讲Oracle视频教程

webssss 2019-12-01 20:58:21 13867 浏览量 回答数 5

海外云虚拟主机包年25元/月起

海外独享虚拟主机全面上线,助力构建海外网站,提升公司国际形象;全球有效覆盖,超高性价比;建站入门首选,助力出口,适合跨境贸易企业。

回答

使用mysqldump工具的优点是简单易用、容易上手,缺点是停机时间较长,因此它适用于数据量不大,或者允许停机的时间较长的情况。 背景信息 由于RDS提供的关系型数据库服务与原生的数据库服务完全兼容,所以对用户来说,将原有数据库迁移到RDS实例的过程,与从一台MySQL服务器迁移到另外一台MySQL服务器的过程基本类似。 注意事项 迁移后的表不区分大小写,统一变为小写。 前提条件 已对RDS实例设置白名单,申请外网地址,以及创建数据库和账号。具体可参见快速入门。 已购买云服务器 ECS。 操作步骤 在正式迁移之前,需要先在本地数据库中创建迁移账号,并将要迁移的数据库的读写权限授权给迁移账号。 在本地数据库中创建迁移账号。 CREATE USER'username'@'host' IDENTIFIED BY 'password'; 参数说明: username:要创建的账号 host:指定该账号登录数据库的主机。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % password:该账号的登录密码 例:要创建账号为 William,密码为 Changme123 的账号从任意主机登录本地数据库,命令如下: CREATE USER'William'@'%' IDENTIFIED BY 'Changme123'; 在本地数据库中给迁移账号授权。 GRANT SELECT ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION; GRANT REPLICATION SLAVE ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION; 参数说明: privileges:该账号的操作权限,如 SELECT、INSERT、UPDATE 等。如果要授权该账号所有权限,则使用 ALL databasename:数据库名。如果要授权该账号所有的数据库权限,则使用通配符 * tablename:表名。如果要授权该账号所有的表权限,则使用通配符 * username:要授权的账号名 host:授权登录数据库的主机名。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % WITH GRANT OPTION:授权该账号能使用GRANT命令,该参数为可选 例:授权账号William对所有数据库和表的所有权限,并可以从任意主机登录本地数据库,命令如下。 GRANT ALL ON*.* TO 'William'@'%'; 使用 mysqldump 的数据导出工具,将本地数据库数据导出为数据文件。 说明 导出期间请勿进行数据更新。本步骤仅仅导出数据,不包括存储过程、触发器及函数。 mysqldump -h localIp -u userName -p --opt --default-character-set=utf8 --hex-blob dbName --skip-triggers --skip-lock-tables > /tmp/dbName.sql 参数说明: localIp:本地数据库服务器 IP 地址 userName:本地数据库的迁移账号 dbName:需要迁移的数据库名 /tmp/dbName.sql:备份生成的文件名 使用 mysqldump 导出存储过程、触发器和函数。 说明 若数据库中没有使用存储过程、触发器和函数,可跳过此步骤。在导出存储过程、触发器和函数时,需要将 definer 去掉,以兼容 RDS。 mysqldump -h localIp -u userName -p --opt --default-character-set=utf8 --hex-blob dbName -R | sed -e 's/DEFINER[ ]=[ ][^*]**/*/' > /tmp/triggerProcedure.sql 参数说明: localIp:本地数据库服务器 IP 地址 userName:本地数据库的迁移账号 dbName:需要迁移的数据库名 /tmp/triggerProcedure.sql:备份生成的文件名 将数据文件和存储过程文件上传到 ECS 上。 本例以文件上传到如下路径为例。 /tmp/dbName.sql /tmp/triggerProcedure.sql 登录 ECS,将数据文件和存储过程文件导入到目标 RDS 中。 mysql -h intranet4example.mysql.rds.aliyuncs.com –u userName -p dbName < /tmp/dbName.sql mysql -h intranet4example.mysql.rds.aliyuncs.com -u userName -p dbName < /tmp/triggerProcedure.sql 参数说明: intranet4example.mysql.rds.aliyuncs.com:RDS实例连接地址,本例以内网地址为例 userName:RDS数据库的迁移账号 dbName:需要导入的数据库名 /tmp/dbName.sql:要导入的数据文件名 /tmp/triggerProcedure.sql:要导入的存储过程文件名 常见问题 Q:mysqldump迁移复杂,有简单的方法吗? A:您可以使用DTS从自建MySQL迁移至RDS for MySQL。

游客yl2rjx5yxwcam 2020-03-08 16:35:05 0 浏览量 回答数 0

回答

回 2楼(zc_0101) 的帖子 您好,       您的问题非常好,SQL SERVER提供了很多关于I/O压力的性能计数器,请选择性能计算器PhysicalDisk(LogicalDisk),根据我们的经验,如下指标的阈值可以帮助你判断IO是否存在压力: 1.  % Disk Time :这个是磁盘时间百分比,这个平均值应该在85%以下 2.  Current Disk Queue Length:未完成磁盘请求数量,这个每个磁盘平均值应该小于2. 3.  Avg. Disk Queue Length:磁盘请求队列的平均长度,这个每个磁盘平均值也应该小于2 4.  Disk Transfers/sec:每次磁盘传输数量,这个每个磁盘的最大值应该小于100 5.  Disk Bytes/sec:每次磁盘传入字节数,这个在普通的磁盘上应该在10M左右 6.  Avg. Disk Sec/Read:从磁盘读取的平均时间,这个平均值应该小于10ms(毫秒) 7.  Avg. Disk Sec/Write:磁盘写入的平均时间,这个平均值也应该小于10ms(毫秒) 以上,请根据自己的磁盘系统判断,比如传统的机械臂磁盘和SSD有所不同。 一般磁盘的优化方向是: 1. 硬件优化:比如使用更合理的RAID阵列,使用更快的磁盘驱动器,添加更多的内存 2. 数据库设置优化:比如创建多个文件和文件组,表的INDEX和数据放到不同的DISK上,将数据库的日志放到单独的物理驱动器,使用分区表 3. 数据库应用优化:包括应用程序的设计,SQL语句的调整,表的设计的合理性,INDEX创建的合理性,涉及的范围很广 希望对您有所帮助,谢谢! ------------------------- 回 3楼(鹰舞) 的帖子 您好,      根据您的描述,由于查询产生了副本REDO LOG延迟,出现了架构锁。我们知道SQL SERVER 2012 AlwaysOn在某些数据库行为上有较多变化。我们先看看架构锁: 架构锁分成两类: 1. SCH-M:架构更改锁,主要发生在数据库SCHEMA的修改上,从你的描述看,没有更改SCHEMA,那么可以排除这个因素 2. SCH-S:架构稳定锁,主要发生在数据库的查询编译等活动 根据你的情况,应该属于SCH-S导致的。查询编译活动主要发生有新增加了INDEX, 更新了统计信息,未参数化的SQL语句等等 对于INDEX和SQL语句方面应,我想应该不会有太多问题。 我们重点关注一下统计信息:SQL SERVER 2012 AG副本的统计信息维护有两种: 1. 主体下发到副本 2. 临时统计信息存储在TEMPDB 对于主体下发的,我们可以设置统计信息的更新行为,自动更新时,可以设置为异步的(自动更新统计信息必须首先打开): USE [master] GO ALTER DATABASE [Test_01]     SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT GO 这样的话查询优化器不等待统计信息更新完成即编译查询。可以优化一下你的BLOCK。 对于临时统计信息存储在TEMPDB里面也是很重要的,再加上ALWAYSON的副本数据库默认是快照隔离,优化TEMPDB也是必要的,关于优化TEPDB这个我想大部分都知道,这里只是提醒一下。 除了从统计信息本身来解决,在查询过程中,可以降低查询的时间,以尽量减少LOCK的时间和范围,这需要优化你的SQL语句或者应用程序。 以上,希望对您有所帮助。谢谢! ------------------------- 回 4楼(leamonjxl) 的帖子 这是一个关于死锁的问题,为了能够提供帮助一些。请根据下列建议进行: 1.    跟踪死锁 2.    分析死锁链和原因 3.    一些解决办法 关于跟踪死锁,我们首先需要打开1222标记,例如DBCC TRACEON(1222,-1), 他将收集的信息写入到死锁事件发生的服务器上的日志文件中。同时建议打开Profiler的跟踪信息: 如果发生了死锁,需要分析死锁发生的根源在哪里?我们不是很清楚你的具体发生死锁的形态是怎么样的。 关于死锁的实例也多,这里不再举例。 这里只是提出一些可以解决的思路: 1.    减少锁的争用 2.    减少资源的访问数 3.    按照相同的时间顺序访问资源 减少锁的争用,可以从几个方面入手 1.    使用锁提示,比如为查询语句添加WITH (NOLOCK), 但这还取决于你的应用是否允许,大部分分布式的系统都是可以加WITH (NOLOCK), 金融行业可能需要慎重。 2.    调整隔离级别,使用MVCC,我们的数据库默认级别是READ COMMITED. 建议修改为读提交快照隔离级别,这样的话可以尽量读写不阻塞,只不过MVCC的ROW VERSION保存到TEMPDB下面,需要维护好TEMPDB。当然如果你的整个数据库隔离级别可以设置为READUNCOMMINTED,这些就不必了。 减少资源的访问数,可以从如下几个方面入手: 1.    使用聚集索引,非聚集INDEX的叶子页面与堆或者聚集INDEX的数据页面分离。因此,如果对非聚集INDEX 操作的话,会产生两个锁,一个是基本表,一个是非聚集INDEX。而聚集INDEX就不一样,聚集INDEX的叶子页面和表的数据页面相同,他只需要一个LOCK。 2.    查询语句尽量使用覆盖INDEX, 使用全覆盖INDEX,就不需要访问基本表。如果没有全覆盖,还会通过RID或者CLUSTER INDEX访问基本表,这样产生的LOCK可能会与其他SESSION争用。 按照相同的时间顺序访问资源: 确保每个事务按照相同的物理顺序访问资源。两个事务按照相同的物理顺序访问,第一个事务会获得资源上的锁而不会被第二个事务阻塞。第二个事务想获得第一个事务上的LOCK,但被第一个事务阻塞。这样的话就不会导致循环阻塞的情况。 ------------------------- 回 4楼(leamonjxl) 的帖子 两种方式看你的业务怎么应用。这里不仅是分表的问题,还可能存在分库,分服务器的问题。取决与你的架构方案。 物理分表+视图,这是一种典型的冷热数据分离的方案,大致的做法如下: 1.    保留最近3个月的数据为当前表,也即就是我们说的热数据 2.    将其他数据按照某种规则分表,比如按照年或者季度或者月,这部分是相对冷的数据 分表后,涉及到几个问题: 第一问题是,转移数据的过程,一般是晚上业务比较闲来转移,转移按照一定的规则来做,始终保持3个月,这个定时任务本身也很消耗时间 再者,关于查询部分,我想你们的数据库服务器应该通过REPLICATION做了读写分离的吧,主库我觉得压力不会太大,主要是插入或者更新,只读需要做视图来包含全部的数据,但通过UNION ALL所有分表的数据,最后可能还是非常大,在某些情况下,性能不一定好。这个是不是业务上可以解决。比如,对于1年前的历史数据,放在单独的只读上,相对热的数据放在一起,这样压力也会减少。 分区表的话,因为涉及到10亿数据,要有好的分区方案,相对比较简单一点。但对于10亿的大表,始终是个棘手的问题,无论分多少个分区,单个服务器的资源也是有限的。可扩展性方面也存在问题,比如在只读上你没有办法做服务器级别的拆分了。这可能也会造成瓶颈。 现在很多企业都在做分库分表,这些的要解决一些高并发,数据量大的问题。不知是否考虑过类似于中间件的方案,比如阿里巴巴的TDDL类似的方案,如果你有兴趣,可以查询相关资料。 ------------------------- 回 9楼(jiangnii) 的帖子 阿里云数据库不仅提供一个数据库,还提供数据库一种服务。阿里云数据库不仅简化了基础架构的部署,还提供了数据库高可用性架构,备份服务,性能诊断服务,监控服务,专家服务等等,保证用户放心、方便、省心地使用数据库,就像水电一样。以前的运维繁琐的事,全部由阿里云接管,用户只需要关注数据库的使用和具体的业务就好。 关于优化和在云数据库上处理大数据量或复杂的数据操作方面,在云数据库上是一样的,没有什么特别的地方,不过我们的云数据库是使用SSD磁盘,这个比普通的磁盘要快很多,IO上有很大的优势。目前单个实例支持1T的数据量大小。陆续我们会推出更多的服务,比如索引诊断,连接诊断,容量分析,空间诊断等等,这些工作可能是专业的DBA才能完成的,以后我们会提供自动化的服务来为客户创造价值,希望能帮助到客户。 谢谢! ------------------------- 回 12楼(daniellin17) 的帖子 这个问题我不知道是否是两个问题,一个是并行度,另一个是并发,我更多理解是吞吐量,单就并行度而言。 提高并行度需要考虑的因素有: 1.    可用于SQL SERVER的CPU数量 2.    SQL SERVER的版本(32位/64位) 3.    可用内存 4.    执行的查询类型 5.    给定的流中处理的行数 6.    活动的并发连接数量 7.    sys.configurations参数:affinity mask/max server memory (MB)/ max degree of parallelism/ cost threshold for parallelism 以DOP的参数控制并行度为例,设置如下: SELECT * FROM sys.configurations WITH (NOLOCK) WHERE name = 'max degree of parallelism' EXEC sp_configure 'max degree of parallelism',2 RECONFIGURE WITH OVERRIDE 经过测试,DOP设置为2是一个比较适中的状态,特别是OLTP应用。如果设置高了,会产生较多的SUSPEND进程。我们可以观察到资源等待资源类型是:CXPACKET 你可以用下列语句去测试: DBCC SQLPERF('sys.dm_os_wait_stats',CLEAR) SELECT * FROM sys.dm_os_wait_stats WITH (NOLOCK) ORDER BY 2 DESC ,3 DESC 如果是吞吐量的话。优化的范围就很广了。优化是系统性的。硬件配置我们选择的话,大多根据业务量来预估,然后考虑以下: 1.    RAID的划分,RAID1适合存放事务日志文件(顺序写),RAID10/RAID5适合做数据盘,RAID10是条带化并镜像,RAID5条带化并奇偶校验 2.    数据库设置,比如并行度,连接数,BUFFER POOL 3.    数据库文件和日志文件的存放规则,数据库文件的多文件设置规则 4.    TEMPDB的优化原则,这个很重要的 5.    表的设计方面根据业务类型而定 6.    CLUSTERED INDEX和NONCLUSTERED INDEX的设计 7.    阻塞分析 8.    锁和死锁分析 9.    执行计划缓冲分析 10.    存储过程重编译 11.    碎片分析 12.    查询性能分析,这个有很多可以优化的方式,比如OR/UNION/类型转换/列上使用函数等等 我这里列举一个高并发的场景: 比如,我们的订单,比如搞活动的时候,订单刷刷刷地增长,单个实例可能每秒达到很高很高,我们分析到最后最常见的问题是HOT PAGE问题,其等待类型是PAGE LATCH竞争。这个过程可以这么来处理,简单列几点,可以参考很多涉及高并发的案例: 1.    数据库文件和日志文件分开,存放在不同的物理驱动器磁盘上 2.    数据库文件需要与CPU个数形成一定的比例 3.    表设计可以使用HASH来作为表分区 4.    表可以设置无序的KEY/INDEX,比如使用GUID/HASH VALUE来定义PRIMARY KEY CLUSTER INDEX 5.    我们不能将自增列设计为聚集INDEX 这个场景只是针对高并发的插入。对于查询而言,是不适合的。但这些也可能导致大量的页拆分。只是在不同的场景有不同的设计思路。这里抛砖引玉。 ------------------------- 回 13楼(zuijh) 的帖子 ECS上现在有两种磁盘,一种是传统的机械臂磁盘,另一种是SSD,请先诊断你的IO是否出现了问题,本帖中有提到如何判断磁盘出现问题的相关话题,请参考。如果确定IO出现问题,可以尝试使用ECS LOCAL SSD。当然,我们欢迎你使用云数据库的产品,云数据库提供了很多有用的功能,比如高可用性,灵活的备份方案,灵活的弹性方案,实用的监控报警等等。 ------------------------- 回 17楼(豪杰本疯子) 的帖子 我们单个主机或者单个实例的资源总是有限的,因为涉及到很大的数据量,对于存储而言是个瓶颈,我曾使用过SAN和SAS存储,SAN存储的优势确实可以解决数据的灵活扩展,但是SAN也分IPSAN和FIBER SAN,如果IPSAN的话,性能会差一些。即使是FIBER SAN,也不是很好解决性能问题,这不是它的优势,同时,我们所有DB SERVER都连接到SAN上,如果SAN有问题,问题涉及的面就很广。但是SAS毕竟空间也是有限的。最终也会到瓶颈。数据量大,是造成性能问题的直接原因,因为我们不管怎么优化,一旦数据量太大,优化的能力总是有限的,所以这个时候更多从架构上考虑。单个主机单个实例肯定是抗不过来的。 所以现在很多企业在向分布式系统发展,对于数据库而言,其实有很多形式。我们最常见的是读写分离,比如SQL SERVER而言,我们可以通过复制来完成读写分离,SQL SERVER 2012及以后的版本,我们可以使用ALWAYSON来实现读写分离,但这只能解决性能问题,那空间问题怎么解决。我们就涉及到分库分表,这个分库分表跟应用结合得紧密,现在很多公司通过中间件来实现,比如TDDL。但是中间件不是每个公司都可以玩得转的。因此可以将业务垂直拆分,那么DB也可以由此拆分开来。举个简单例子,我们一个典型的电子商务系统,有订单,有促销,有仓库,有配送,有财务,有秒杀,有商品等等,很多公司在初期,都是将这些放在一个主机一个实例上。但是这些到了一定规模或者一定数据量后,就会出现性能和硬件资源问题,这时我们可以将它们独立一部分获完全独立出来。这些都是一些好的方向。希望对你有所帮助。 ------------------------- 回 21楼(dt) 的帖子 问: 求大数据量下mysql存储,优化方案 分区好还是分表好,分的过程中需要考虑事项 mysql高并发读写的一些解决办法 答: 分区:对于应用来说比较简单,改造较少 分表: 应用需较多改造,优点是数据量太大的情况下,分表可以拆分到多个实例上,而分区不可以。 高并发优化,有两个建议: 1.    优化事务逻辑 2.    解决mysql高并发热点,这个可以看看阿里的一个热点补丁: http://www.open-open.com/doc/view/d58cadb4fb68429587634a77f93aa13f ------------------------- 回 23楼(aelven) 的帖子 对于第一个问题.需要看看你的数据库架构是什么样的?比如你的架构具有高可用行?具有读写分离的架构?具有群集的架构.数据库应用是否有较冷门的功能。高并发应该不是什么问题。可扩展性方面需要考虑。阿里云数据库提供了很多优势,比如磁盘是性能超好的SSD,自动转移的高可用性,没有任何单点,自动灵活的备份方案,实用的监控报警,性能监控服务等等,省去DBA很多基础性工作。 你第二个问题,看起来是一个高并发的场景,这种高并发的场景容易出现大量的LOCK甚至死锁,我不是很清楚你的业务,但可以建议一下,首先可以考虑快照隔离级别,实现行多版本控制,让读写不要阻塞。至于写写过程,需要加锁的粒度降低最低,同时这种高并发也容易出现死锁,关于死锁的分析,本帖有提到,请关注。 第三个问题,你用ECS搭建自己的应用也是可以的,RDS数据库提供了很多功能,上面已经讲到了。安全问题一直是我们最看重的问题,肯定有超好的防护的。 ------------------------- 回 26楼(板砖大叔) 的帖子 我曾经整理的关于索引的设计与规范,可以供你参考: ----------------------------------------------------------------------- 索引设计与规范 1.1    使用索引 SQL SERVER没有索引也可以检索数据,只不过检索数据时扫描这个表而异。存储数据的目的,绝大多数都是为了再次使用,而一般数据检索都是带条件的检索,数据查询在数据库操作中会占用较大的比例,提高查询的效率往往意味着整个数据库性能的提升。索引是特定列的有序集合。索引使用B-树结构,最小优化了定位所需要的键值的访问页面量,包含聚集索引和非聚集索引两大类。聚集索引与数据存放在一起,它决定表中数据存储的物理顺序,其叶子节点为数据行。 1.2    聚集索引 1.2.1    关于聚集索引 没聚集索引的表叫堆。堆是一种没有加工的数据,以行标示符作为指向数据存储位置的指针,数据没有顺序。聚集索引的叶子页面和表的数据页面相同,因此表行物理上按照聚集索引列排序,表数据的物理顺序只有一种,所以一个表只有一个聚集索引。 1.2.2    与非聚集索引关系 非聚集索引的一个索引行包含指向表对应行的指针,这个指针称为行定位器,行定位器的值取决于数据页保存为堆还是被聚集。若是堆,行定位器指向的堆中数据行的行号指针,若是聚集索引表,行定位器是聚集索引键值。 1.2.3    设计聚集索引注意事项     首先创建聚集索引     聚集索引上的列需要足够短     一步重建索引,不要使用先DROP再CREATE,可使用DROP_EXISTING     检索一定范围和预先排序数据时使用,因为聚集索引的叶子与数据页面相同,索引顺序也是数据物理顺序,读取数据时,磁头是按照顺序读取,而不是随机定位读取数据。     在频繁更新的列上不要设计聚集索引,他将导致所有的非聚集所有的更新,阻塞非聚集索引的查询     不要使用太长的关键字,因为非聚集索引实际包含了聚集索引值     不要在太多并发度高的顺序插入,这将导致页面分割,设置合理的填充因子是个不错的选择 1.3    非聚集索引 1.3.1    关于非聚集索引 非聚集索引不影响表页面中数据的顺序,其叶子页面和表的数据页面时分离的,需要一个行定位器来导航数据,在将聚集索引时已经有说明,非聚集索引在读取少量数据行时特别有效。非聚集索引所有可以有多个。同时非聚集有很多其他衍生出来的索引类型,比如覆盖索引,过滤索引等。 1.3.2    设计非聚集索引     频繁更新的列,不适合做聚集索引,但可以做非聚集索引     宽关键字,例如很宽的一列或者一组列,不适合做聚集索引的列可作非聚集索引列     检索大量的行不宜做非聚集索引,但是可以使用覆盖索引来消除这种影响 1.3.3    优化书签查找 书签会访问索引之外的数据,在堆表,书签查找会根据RID号去访问数据,若是聚集索引表,一般根据聚集索引去查找。在查询数据时,要分两个部分来完成,增加了读取数据的开销,增加了CPU的压力。在大表中,索引页面和数据页面一般不会临近,若数据只存在磁盘,产生直接随机从磁盘读取,这导致更多的消耗。因此,根据实际需要优化书签查找。解决书签查找有如下方法:     使用聚集索引避免书签查找     使用覆盖索引避免书签查找     使用索引连接避免数据查找 1.4    聚集与非聚集之比较 1.4.1    检索的数据行 一般地,检索数据量大的一般使用聚集索引,因为聚集索引的叶子页面与数据页面在相同。相反,检索少量的数据可能非聚集索引更有利,但注意书签查找消耗资源的力度,不过可考虑覆盖索引解决这个问题。 1.4.2    数据是否排序 如果数据需要预先排序,需要使用聚集索引,若不需要预先排序就那就选择聚集索引。 1.4.3    索引键的宽度 索引键如果太宽,不仅会影响数据查询性能,还影响非聚集索引,因此,若索引键比较小,可以作为聚集索引,如果索引键够大,考虑非聚集索引,如果很大的话,可以用INCLUDE创建覆盖索引。 1.4.4    列更新的频度 列更新频率高的话,应该避免考虑所用非聚集索引,否则可考虑聚集索引。 1.4.5    书签查找开销 如果书签查找开销较大,应该考虑聚集索引,否则可使用非聚集索引,更佳是使用覆盖索引,不过得根据具体的查询语句而看。 1.5    覆盖索引 覆盖索引可显著减少查询的逻辑读次数,使用INCLUDE语句添加列的方式更容易实现,他不仅减小索引中索引列的数据,还可以减少索引键的大小,原因是包含列只保存在索引的叶子级别上,而不是索引的叶子页面。覆盖索引充当一个伪的聚集索引。覆盖索引还能够有效的减少阻塞和死锁的发生,与聚集索引类似,因为聚集索引值发生一次锁,非覆盖索引可能发生两次,一次锁数据,一次锁索引,以确保数据的一致性。覆盖索引相当于数据的一个拷贝,与数据页面隔离,因此也只发生一次锁。 1.6    索引交叉 如果一个表有多个索引,那么可以拥有多个索引来执行一个查询,根据每个索引检索小的结果集,然后就将子结果集做一个交叉,得到满足条件的那些数据行。这种技术可以解决覆盖索引中没有包含的数据。 1.7    索引连接 几乎是跟索引交叉类似,是一个衍生品种。他将覆盖索引应用到交叉索引。如果没有单个覆盖索引查询的索引而多个索引一起覆盖查询,SQL SERVER可以使用索引连接来完全满足查询而不需要查询基础表。 1.8    过滤索引 用来在可能没有好的选择性的一个或者多个列上创建一个高选择性的关键字组。例如在处理NULL问题比较有效,创建索引时,可以像写T-SQL语句一样加个WHERE条件,以排除某部分数据而检索。 1.9    索引视图 索引视图在OLAP系统上可能有胜算,在OLTP会产生过大的开销和不可操作性,比如索引视图要求引用当前数据库的表。索引视图需要绑定基础表的架构,索引视图要求企业版,这些限制导致不可操作性。 1.10    索引设计建议 1.10.1    检查WHERE字句和连接条件列 检查WHERE条件列的可选择性和数据密度,根据条件创建索引。一般地,连接条件上应当考虑创建索引,这个涉及到连接技术,暂时不说明。 1.10.2    使用窄的索引 窄的索引有可减少IO开销,读取更少量的数据页。并且缓存更少的索引页面,减少内存中索引页面的逻辑读取大小。当然,磁盘空间也会相应地减少。 1.10.3    检查列的唯一性 数据分布比较集中的列,种类比较少的列上创建索引的有效性比较差,如果性别只有男女之分,最多还有个UNKNOWN,单独在上面创建索引可能效果不好,但是他们可以为覆盖索引做出贡献。 1.10.4    检查列的数据类型 索引的数据类型是很重要的,在整数类型上创建的索引比在字符类型上创建索引更有效。同一类型,在数据长度较小的类型上创建又比在长度较长的类型上更有效。 1.10.5    考虑列的顺序 对于包含多个列的索引,列顺序很重要。索引键值在索引上的第一上排序,然后在前一列的每个值的下一列做子排序,符合索引的第一列通常为该索引的前沿。同时要考虑列的唯一性,列宽度,列的数据类型来做权衡。 1.10.6    考虑索引的类型 使用索引类型前面已经有较多的介绍,怎么选择已经给出。不再累述。 ------------------------- 回 27楼(板砖大叔) 的帖子 这两种都可以吧。看个人的喜好,不过微软现在的统一风格是下划线,比如表sys.all_columns/sys.tables,然后你再看他的列全是下划线连接,name     /object_id    /principal_id    /schema_id    /parent_object_id      /type    /type_desc    /create_date    /modify_date 我个人的喜好也是喜欢下划线。    

石沫 2019-12-02 01:34:30 0 浏览量 回答数 0

回答

Performance Insight是专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 前提条件 实例版本如下: MySQL 8.0 MySQL 5.7 内核小版本需要为20190915或以上。 说明 您可以在基本信息页面的配置信息区域查看是否有升级内核小版本按钮。如果有按钮,您可以单击按钮查看当前版本;如果没有按钮,表示已经是最新版。详情请参见升级内核小版本。 Performance Insight介绍 Performance Insight由如下两部分组成: Object statistics Object statistics查询表和索引的统计信息,包括如下两个表: TABLE_STATISTICS:记录读取和修改的行。 INDEX_STATISTICS:记录索引的读取行。 Performance point Performance point提供实例的详细性能信息,方便您更快更准确地量化SQL的开销。Performance point包括如下三个维度: CPU:包括执行任务的总时间(Elapsed time)、CPU执行任务的时间(CPU time)等。 LOCK:包括服务器MDL锁时间、存储事务锁时间、互斥冲突(仅调试模式)、读写锁冲突等。 IO:数据文件读写时间、日志文件写入时间、逻辑读取、物理读取、物理异步读取等。 Object statistics使用方法 确认参数OPT_TABLESTAT和OPT_INDEXSTAT的值为ON。示例如下: mysql> show variables like "opt_%_stat"; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | opt_indexstat | ON | | opt_tablestat | ON | +---------------+-------+ 说明 如果参数找不到或参数值不为ON,请确认您的实例版本是否为MySQL 5.7。 在information_schema数据库查询TABLE_STATISTICS表或INDEX_STATISTICS表,查看表和索引的统计信息。示例如下: mysql> select * from TABLE_STATISTICS limit 10; +--------------+--------------+-----------+--------------+------------------------+---------------+--------------+--------------+ | TABLE_SCHEMA | TABLE_NAME | ROWS_READ | ROWS_CHANGED | ROWS_CHANGED_X_INDEXES | ROWS_INSERTED | ROWS_DELETED | ROWS_UPDATED | +--------------+--------------+-----------+--------------+------------------------+---------------+--------------+--------------+ | mysql | db | 2 | 0 | 0 | 0 | 0 | 0 | | mysql | engine_cost | 2 | 0 | 0 | 0 | 0 | 0 | | mysql | proxies_priv | 1 | 0 | 0 | 0 | 0 | 0 | | mysql | server_cost | 6 | 0 | 0 | 0 | 0 | 0 | | mysql | tables_priv | 2 | 0 | 0 | 0 | 0 | 0 | | mysql | user | 7 | 0 | 0 | 0 | 0 | 0 | | test | sbtest1 | 1686 | 142 | 184 | 112 | 12 | 18 | | test | sbtest10 | 1806 | 125 | 150 | 105 | 5 | 15 | | test | sbtest100 | 1623 | 141 | 182 | 110 | 10 | 21 | | test | sbtest11 | 1254 | 136 | 172 | 110 | 10 | 16 | +--------------+--------------+-----------+--------------+------------------------+---------------+--------------+--------------+ mysql> select * from INDEX_STATISTICS limit 10; +--------------+--------------+------------+-----------+ | TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | ROWS_READ | +--------------+--------------+------------+-----------+ | mysql | db | PRIMARY | 2 | | mysql | engine_cost | PRIMARY | 2 | | mysql | proxies_priv | PRIMARY | 1 | | mysql | server_cost | PRIMARY | 6 | | mysql | tables_priv | PRIMARY | 2 | | mysql | user | PRIMARY | 7 | | test | sbtest1 | PRIMARY | 2500 | | test | sbtest10 | PRIMARY | 3007 | | test | sbtest100 | PRIMARY | 2642 | | test | sbtest11 | PRIMARY | 2091 | +--------------+--------------+------------+-----------+ 参数说明如下。 参数 说明 TABLE_SCHEMA 数据库名称。 TABLE_NAME 表名称。 ROWS_READ 读的行数。 ROWS_CHANGED 修改的行数。 ROWS_CHANGED_X_INDEXES 索引修改的行数。 ROWS_INSERTED 插入的行数。 ROWS_DELETED 删除的行数。 ROWS_UPDATED 更新的行数。 INDEX_NAME 索引名称。 Performance point使用方法 确认Performance point的相关参数。正常的示例如下: mysql> show variables like "%performance_point%"; +---------------------------------------+-------+ | Variable_name | Value | +---------------------------------------+-------+ | performance_point_dbug_enabled | OFF | | performance_point_enabled | ON | | performance_point_iostat_interval | 2 | | performance_point_iostat_volume_size | 10000 | | performance_point_lock_rwlock_enabled | ON | +---------------------------------------+-------+ 说明 如果参数找不到,请确认您的实例版本是否为MySQL 5.7。 在performance_schema数据库查询events_statements_summary_by_digest_supplement表,查看排名前10的SQL语句。示例如下: mysql> select * from events_statements_summary_by_digest_supplement limit 10; +--------------------+----------------------------------+-------------------------------------------+--------------+ | SCHEMA_NAME | DIGEST | DIGEST_TEXT | ELAPSED_TIME | ...... +--------------------+----------------------------------+-------------------------------------------+--------------+ | NULL | 6b787dd1f9c6f6c5033120760a1a82de | SELECT @@version_comment LIMIT ? | 932 | | NULL | 2fb4341654df6995113d998c52e5abc9 | SHOW SCHEMAS | 2363 | | NULL | 8a93e76a7846384621567fb4daa1bf95 | SHOW VARIABLES LIKE ? | 17933 | | NULL | dd148234ac7a20cb5aee7720fb44b7ea | SELECT SCHEMA ( ) | 1006 | | information_schema | 2fb4341654df6995113d998c52e5abc9 | SHOW SCHEMAS | 2156 | | information_schema | 74af182f3a2bd265678d3dadb53e08da | SHOW TABLES | 3161 | | information_schema | d3a66515192fcb100aaef6f8b6e45603 | SELECT * FROM TABLE_STATISTICS LIMIT ? | 2081 | | information_schema | b3726b7c4c4db4b309de2dbc45ff52af | SELECT * FROM INDEX_STATISTICS LIMIT ? | 2384 | | information_schema | dd148234ac7a20cb5aee7720fb44b7ea | SELECT SCHEMA ( ) | 129 | | test | 2fb4341654df6995113d998c52e5abc9 | SHOW SCHEMAS | 342 | +--------------------+----------------------------------+-------------------------------------------+--------------+ 参数说明如下。 参数 说明 SCHEMA_NAME 数据库名称。 DIGEST Digest_text进行hash计算得到的64字节的hash字符串。 DIGEST_TEXT SQL语句的特征。 ELAPSED_TIME 实际运行时间。单位:μs。 CPU_TIME CPU运行时间。单位:μs。 SERVER_LOCK_TIME 服务器锁定时间。单位:μs。 TRANSACTION_LOCK_TIME 存储事务锁定时间。单位:μs。 MUTEX_SPINS 互斥旋转次数。 MUTEX_WAITS 互斥等待次数。 RWLOCK_SPIN_WAITS 读写闩锁的自旋等待数。 RWLOCK_SPIN_ROUNDS 读写闩锁的旋转循环圈数。 RWLOCK_OS_WAITS 读写闩锁的操作系统等待数。 DATA_READS 数据文件读取次数。 DATA_READ_TIME 数据文件读取时间。单位:μs。 DATA_WRITES 数据文件写入次数。 DATA_WRITE_TIME 数据文件写入时间。单位:μs。 REDO_WRITES 日志文件写入次数。 REDO_WRITE_TIME 日志文件写入时间。单位:μs。 LOGICAL_READS 逻辑页读取次数。 PHYSICAL_READS 物理页读取次数。 PHYSICAL_ASYNC_READS 物理异步页读取次数。 在information_schema数据库查询IO_STATISTICS表,查看最近的数据读写情况。示例如下: mysql> select * from IO_STATISTICS limit 10; +---------------------+-----------+----------------+ | TIME | DATA_READ | DATA_READ_TIME | ...... +---------------------+-----------+----------------+ | 2019-08-08 09:56:53 | 73 | 983 | | 2019-08-08 09:56:57 | 0 | 0 | | 2019-08-08 09:59:17 | 0 | 0 | | 2019-08-08 10:00:55 | 4072 | 40628 | | 2019-08-08 10:00:59 | 0 | 0 | | 2019-08-08 10:01:09 | 562 | 5800 | | 2019-08-08 10:01:11 | 606 | 6910 | | 2019-08-08 10:01:13 | 609 | 6875 | | 2019-08-08 10:01:15 | 625 | 7077 | | 2019-08-08 10:01:17 | 616 | 5800 | +---------------------+-----------+----------------+ 参数说明如下。 参数 说明 TIME 日期。 DATA_READ 数据读取次数。 DATA_READ_TIME 数据读取总时间。单位:μs。 DATA_READ_MAX_TIME 数据读取最长时间。单位:μs。 DATA_READ_BYTES 数据读取总大小。单位:byte。 DATA_WRITE 数据写入次数。 DATA_WRITE_TIME 数据写入总时间。单位:μs。 DATA_WRITE_MAX_TIME 数据写入最长时间。单位:μs。 DATA_WRITE_BYTES 数据写入总大小。单位:byte。

游客yl2rjx5yxwcam 2020-03-08 13:34:03 0 浏览量 回答数 0

问题

浅谈SQL语句相关概念及练习之基础

holdb 2019-12-01 20:57:18 7745 浏览量 回答数 3

问题

快速入门SQL Server版-各版本的功能差异

李沃晟 2019-12-01 21:37:43 560 浏览量 回答数 0

回答

Re我和iDBCloud登录数据库的故事 11到13年做DBA的时候,最早接触的是iDB,我的理解之所以叫iDB应该是表达我的数据库的含义吧,估计我还是上学的时候就已经有了,目前iDB已经迭代到3.0,明年初会发布4.0,从DBA视角上看iDB就是可以review业务SQL,自动执行线上DDL,业务数据提取的申请和审批,WEB上的数据查询,最近做产品经理后才有机会系统的审视iDB(一个包含研发支撑、安全管控的企业级数据库管理产品),支撑了淘宝、天猫、支付宝(现在叫蚂蚁金服)的研发流程,保障了每年的双十一,但iDB Cloud与iDB不是一个产品,iDB是企业版的数据库管理产品,iDB Cloud则定位于个人版数据管理,相比企业中的流程约束,iDB Cloud更期望给大家提供在约束下的易用性最大化的灵活数据管理服务! ------------------------- Re我和iDBCloud登录数据库的故事 这个月实例信息-实时性能UI改版发布,新版看起来还是比较舒服的!这个我在5元RDS大促时买的,没有跑业务,所以指标都是0,哈哈 实时性能的原型取自阿里DBA团队的传奇(朱旭)之手:orzdba,貌似很久之前已经开源,谷歌下便知! 翻出之前做DBA使用orzdba观察测试机器压测的截图,orzdba是用perl写的,检查项还是蛮多的,比如io吞吐量、rt、主机的load、swap、innodb row、innodb状态,这些是iDB Cloud没有的功能,iDB Cloud通过用户登录账号访问数据库,只能拿到MySQL进程内存中的状态信息,没有权限拿到主机指标,不过innodb相关信息是可以拿到的,但是考虑一般只有DBA才会关注这些细节,所以没开放,不知道大家还会关注什么指标?有没有办法拿到主机的指标? ------------------------- 回5楼ringtail的帖子 刷新页面,类似关闭并重新打开,啥都没了,这个应该是正常的行为,话说为什么要刷新呢,我记得首页性能指标每5分钟自动刷新,即使点击页面上提供的刷新是没啥事的,而实时性能是每4秒更新一行的,还有什么场景要刷洗整个页面是我没想到的吗? ------------------------- 回7楼ringtail的帖子 目前据我所知,真心还做不到刷新不丢iDB Cloud已经打开的选项卡、sql语句和执行结果什么的,现在只能在刷新时加一个“导航确认”,减少手痒式误刷新,哈哈 ------------------------- Re我和iDBCloud登录数据库的故事 翻工单时,发现有人关心使用iDB Cloud是否会收取流量费,我也没搞清楚,于是问了几个同事,终于把场景基本覆盖了,最终结论: 只要你不把你的RDS实例切换成外网(公网)模式的同时再导出或查询数据就不会收取流量费! 由于那几个工单已经关闭,我就在这里回复下大家,希望那几个朋友能看到 ------------------------- 回9楼yzsind的帖子 一定不会辜负领导的期望,努力工作,争取升职加薪,当上总经理,出任ceo,迎娶白富美,想想还有点小激动 ------------------------- 回10楼佩恩六道的帖子 可能文字不好理解整体的流量计费情况,中午用我那小学的美术细胞,完成了一副“巨作”! ------------------------- Re我和iDBCloud登录数据库的故事 刚才看到一个工单(iDB Cloud点击登录无效),这个工单已经处理完毕,但我觉得可以把售后同学的方法和大家分享下! 以后遇到点击登录无效、登录后菜单栏点击无效、页面展示不全,很可能是浏览器兼容设置的问题! 浏览器兼容设置的问题: 1.检查浏览器是否安装了AdBlockPlus(火狐浏览器的一个扩展),用火狐浏览器的用户遇到类似问题要注意这一点 2.IE浏览器的话就调整下兼容性模式(http://jingyan.baidu.com/article/fcb5aff791bb47edaa4a7115.html ),并进入开发者模式再测试下IDB Cloud 如果上述2招还是解决不了,记得留言给我! ------------------------- Re我和iDBCloud登录数据库的故事 今天看工单时发现有个朋友反馈,包含mediumblob类型字段的表在做导出后,导出文件中没有mediumblob类型字段! 其实导出时默认是不会导出BLOB类型字段,但是在导出-高级选项中是可以选择导出BLOB,但是BLOB字段只能以16进制格式导出,试想一个WORD文档或者一首歌曲,16进制导出后,没啥意义! BOLB字段支持WEB界面上传和下载,是原文件呀,哈哈! ------------------------- Re我和iDBCloud登录数据库的故事 未来几天休假,去考驾照 ------------------------- Re我和iDBCloud登录数据库的故事 看工单和论坛中,有用户会抱怨产品不好用,然后就消失了,真的好可惜! 作为产品经理是很想倾听这些抱怨背后的真实想法,期待可以直接对话,无论是功能缺失,还是操作不便,哪怕是使用上的一种感觉或产品散发的味道不对都可以,不求需求,只求对话! ------------------------- Re我和iDBCloud登录数据库的故事 感谢你的关注和支持! 产品说到底不是产品经理个人的,也不是哪个企业的,而是用户的产品,水能载舟亦能覆舟,产品经理和企业只不过在帮用户把需求实现而已,所以我们会一直坚持下去,坚持和用户一起把iDB Cloud做得更好 ------------------------- Re我和iDBCloud登录数据库的故事 最近几天公司感冒发烧的同学很多,我也是坚持了好几天才沦陷的,这是在我记忆中来杭州4年第一次发烧,看来20多年在东北积累的体质终于被消耗殆尽,不过意外收获是在高烧间隔清醒之际对最近自己的所作所为反倒有了一些悔悟,有些是工作上,有些是做人上 ------------------------- 回24楼zhouzhenxing的帖子 可以的,iDB Cloud对RDS公网和私网模式都是支持的! 你可以在RDS控制台-账号管理中 新建你的数据库账号,然后还是在RDS控制台的右上角,点击“登录数据库”就可以进入iDB Cloud了,建议你先自己试着玩玩,有困惑的话我们一同讨论 ------------------------- 回24楼zhouzhenxing的帖子 iDB Cloud在官网上有2个手册,写的比较官方,可能对你用处不大,我其实不太喜欢写什么手册,如果一个产品做的体验不好,只能靠手册来弥补还是有点low,不过我已经在想如何不low了,还是那句话 有困惑的话我们一同讨论 http://help.aliyun.com/doc/view/13526530.html?spm=0.0.0.0.6W7Qx1 http://help.aliyun.com/view/11108238_13861850.html?spm=5176.7224961.1997285473.4.Irtizv ------------------------- Re我和iDBCloud登录数据库的故事 都说在产品上做加法容易,做减法难,我理解无论产品功能还是工作上,给予总会得到别人的喜欢,而要求或收回时会得到对方的负面情绪,因此趋利避害,尽量不做减法,但有时候很难避免,这就要想想为什么要做减法? 多数都是之前错误选择,做了过多的加法,因为普通的加法很好做,人们往往会趋之如骛,但是真正、正确的加法是要在拒绝几十到上百种选择基础上的最终选择,将复杂解决方案以极简形式展现出来,而不是解决方案和功能的堆积,所以未经严格挑选的加法对产品是有害的,工作也一样,不要贸然接受新工作,保证核心精力投入到核心工作上,摊子铺得太大,一定会遇到心力瓶颈,而心力一旦枯竭,再强的脑力也无法施展,任何一项工作都是以大量心力付出为前提,脑力提升我找到了一些办法,心力提升却一筹莫展,所以只好专注,要不全心投入,要不置身事外,今后功能和工作都要适时做做减法了! ------------------------- Re我和iDBCloud登录数据库的故事 今天有个同事转给我一个工单,说从深圳云管理系统界面的iDB Cloud上看到库是utf8,而后端开发人员说库是gbk的,我查看了工单中截图附件(RDS控制台-参数设置),虽然从工单中无法完全断定用户遇到的问题,我还是大胆猜测下: 我看到截图上的character_set_server参数,首先character_set_server是RDS唯一开放的关于字符集的参数,但其实这个参数与用户在iDB Cloud上看到数据是否乱码没有关系,character_set_server其实就是默认的内部操作字符集,只有当字段->表->库都没有设置CHARACTER SET,才会使用character_set_server作为对应字段-表-库的默认字符集! 透露一个秘诀(传男也传女): (1)让你的字段-表-库的字符集都是utf8; (2)在iDB Cloud-命令窗口执行set names utf8;#会将character_set_client、character_set_connection和character_set_results都设置成utf8 只要让(1)和(2)字符集保持一致(utf8、gbk、latin1等),乱码就搞定了! 不清楚为什么截图会变成上面这样!把在iDB Cloud-命令窗口上执行的命令和结果也粘下 mysql>set names gbk; 执行成功,花费 7.59 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | gbk                              | | character_set_connection | gbk                              | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | gbk                              | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.51 ms. mysql>set names utf8; 执行成功,花费 7.32 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | utf8                             | | character_set_connection | utf8                             | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | utf8                             | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.32 ms. ------------------------- Re我和iDBCloud登录数据库的故事 你的专属BUG: 发现时间 资深用户 专属BUG 2015-02-03 23:06 啊啊啊啊8  实例信息-实时性能-参数说明-【delete】 表示InnoDB存储引擎表的写入(删除)记录行数 ------------------------- Re我和iDBCloud登录数据库的故事 用户“夫子然”反馈说iDB Cloud感觉没phpMyAdmin方便! 非常感谢这个用户的反馈,我先谈下我的理解,每个人使用产品都有一些固定的用例(use case),我无法承诺针对任何人的任何用例,都做到最短操作路径(方便),这个用户抛出的问题也是我一直在思考的,虽然无法100%,但是我们可以覆盖主流用例,只要绝大多数的常规操作室是方便的,少数非经常用的操作路径长点,应该能接受吧,我们已经在行动! 今天iDB Cloud发布了2.0.2,一个主要变化就是在左侧对象列表上增加了“列”和“索引”,正是我们分析数据看到在众多数据库对象中表的操作是最频繁的,而在表的操作中“列“和”索引“是最频繁的,这个版本将对“列”和“索引”的操作前置,缩短了主流用例路径,与用户“夫子然”的建议不谋而合,这只是开始,只要我们深挖,与功能和体验死磕,终有一天会让大家说iDB Cloud比phpMyAdmin方便! ------------------------- 回31楼sqlserverdba的帖子 非常感谢! 有你们作为后盾,有用户支持,才有iDB Cloud的现在和未来! ------------------------- 消失了几天,终于把科目三和科目四搞定了,昨天终于拿到驾照了之前在【17楼】总结了科目二的一些体会,今天也分享下科目三的一点点感受! 考试前几天,教练说是智能考(据说智能考比较简单,通过率很高),结果就留出考前2天练车时间,结果阴差阳错的换成了人工考(貌似是我们车是4个大老爷们,听教练说他一年最多抽到2次人工考就算多的啦,对此我只能呵呵),现在的问题就来了,4个人2天练车时间,一个人半天,那就从早到晚的练呗,我先简单描述下整个过程! 1.心态(1)从开始练车到考试通过,心情没有特别大的起伏,不过考前失眠还是有的,哈哈(2)另外三个人,有的信心满满,有的吊儿郎当,有的不言不语,我应该也属于不言不语那种 2.练习(1)4个人轮流练,虽然一天下来很累,但还能挺住,开的时好时坏,不过总体上在变好(2)开车的时候几乎意识不到什么的,关键是在后座自己去琢磨,回忆自己错在哪里,为什么会错 3.考试(1)考试单上说7:00考试,结果在寒风中等了1个小时,终于盼来了考官,一共5辆车考试,我们是第二辆车(2)第一辆车是2男2女,2女都挂,当时我们第二辆车是被要求跟在第一辆车后面的,所以看的一清二楚,比如连续3次手刹未放下导致起步失败、4档走转弯到对向车道等(3)接下来到我们了,4男0女,结果挂了2男(信心满满和吊儿郎当) 上面只是简单介绍了科目三过程,下面才是干货! 每年都有成千上万的人拿到驾照,我不认为自己牛,只是把我个人的应对方法和背后的原因拿出来分享下!练车其实就是教练的心智模型-翻译-语言-反译-我们的心智模型,让我们知道在什么情况做什么动作,预测路况,只要我们关于开车拥有了自己的心智模,开车就变成了一种本能,就像一旦学会了骑自行车,很难失去这种技能,在练车之前,我们是有自己关于开车的心智模型的,正所谓没吃过猪肉也见过猪跑,但是我们想想自己关于开车的心智模型是正确的吗?显然不是,不信你就试试去开车吧,抛开被交警抓之外,我想应该也能开起来,至于开的好不好,会不会一直开得好,我说不准,但是绝大多数人一定是开不好的,所以我们报驾校,除了硬性法律规定,驾校教练的确交会了很多东西,虽然很多是应试的技巧,这里就顺便说下这些技巧,技巧具体内容每家教练都会教的,而我想说的技巧其实就是“语言”,通过教练的“心智模型”-翻译出来的“语言”,接下来我们要做什么,“反译”将教练开车技巧的“语言”理解,首先你要虚心去接受,然后再去观察或运用,根据反馈把坏的放弃,把好的保留以便修正自己关于开车的“心智模型”,而“心智模型”最快速的形成方式就是亲身体验,所以一定要实战、要开车,还要经常开车,不断改进关于开车的“心智模型”,拿3个案例具体说下吧!【吊儿郎当】这两天都是下午才过来练车,开车时教练说一句话,他有十句等着,其中五句是解释自己为什么要这么做,另外五句是在问如果这种情况应该怎么做,如果那种情况怎么做,总是在关注自己想象中的场景,而不关注自己正在体验的场景,所以学来学去还是最初始的关于开车的“心智模型”,失败在“反译”这一步,认为只要听过就会了,结果被考官判直接挂掉并不予补考机会 【信心满满】与我们一直练车,对教练的话言听计从,而且也理解了,如果是上学时的考试或科目三智能考试一定没问题,但是面对人工考,评判是由交警而不是电脑,结果转向时没有观察后视镜,被考官迫停在路中间后开始补考,然后还是转向时没有观察后视镜,在路中间起步,之前学的技巧中没有应对的方法,结果还是挂了,教练也很惋惜,如果说他的失败,败于没有改进自己关于开车的“心智模型”,其实“反译”他做的很好,但是在运用、观察和反馈分析上做的不好,“心智模型”不是统一的标准,一定是个性化的,一定是自己认为是好的反馈、行为积累起来的,也只有“心智模型”才能在任何情况下帮助你做出判断,判断效果就取决于“心智模型”是否成熟,成熟的“心智模型”可以让在紧张、突发等情况下依然做出正确的判断,因为那是一种本能 【我】总说别人不好之处,也谈谈我自己,自然这些都是我事后分析总结的,练车过程中可没有感受到,我做的事情也很简单,就是“反译”和改进我的“心智模型”,“反译”,教练说什么,我就听什么,开车时来不及想,就在后座时在脑中模拟上演之前的场景并不断上演我不断修正的剧本,比如我的离合器总是抬的很快,经常熄火,特别是在路况复杂、指令突然时根本来不及思考如何应对,只能靠本能的时候,往往还是会快速抬离合器,因为我的“心智模型”中就是这么认为的,你可以说是离合器太低、座位太靠后,这些都是理由,如果是理由,那就去解决吧!我是这样做的,强制自己将抬离合器的动作拆成3步,即使不开车时也经常练习,慢慢的就变成了“心智模型”的一部分,自然在任何场景下都不会再出现离合器抬快熄火的情况了,这只是一个细节,其他细节也是类似,慢慢我的“心智模型”就建立起来了,开车技巧是很有用的,关键是你要理解这些技巧是要解决什么问题,你要解决相同问题时的做法是否相同,如果有不同之处是否正确,要去不断验证,如果是正确的,就改进到你的“心智模型”吧! PD不光光是要把产品做好,我认为一个好PD应该能让整个世界变得更好! ------------------------- Re我和iDBCloud登录数据库的故事 近期iDB Cloud将更名:DMS DMS (data management service) 数据管理服务 iDB Cloud从RDS起步,目前已经覆盖包括RDS、ADS、TAE,未来2个月还会覆盖万网和DRDS,同时ECS也开始兼容,“DMS”请各位新老用户,继续支持! ------------------------- Re我和iDBCloud登录数据库的故事 1.使用HTTPS iDB Cloud这个4月份中旬版本就会支持HTTPS,敬请期待! 2.设置账号是否允许登录iDB 3.31 会发布一个版本,这版本其中一个功能就是授权登录,允许实例owner设置该实例是否允许别人访问,允许谁可以访问 有如此心犀相通的用户,夫复何求!!! 还有什么建议? ------------------------- 回38楼pillowsky的帖子 好的,我先逐条对照分析下 ------------------------- Re我和iDBCloud登录数据库的故事 RDS数据库?RDS控制台-账号管理,检查下账号对不对,不行就重置密码 ------------------------- Re我和iDBCloud登录数据库的故事 3.31 DMS(原iDB Cloud) 在RDS上新版本发布! 【实例授权】 DMS for MySQL 2.1发布! 【会话统计】 DMS for SQL Server 2.0发布! 【E-R图】 【对象列表】 ------------------------- Re我和iDBCloud登录数据库的故事 你是想听客服回复?算了,我还是从DMS PD 看RDS的视角来分享下吧! RDS是一个数据库,在数据库之外包装了一些东西,帮用户做了备份恢复、HA、监控等,回到你提到的账号,root账号在MySQL里是权限最大的,也是风险最大的,为了保证RDS这些备份恢复、HA能7*24小时为你服务,所以就不能让你的账号去影响到这些组件,不然你一个误操作把实例关闭了怎么办,但是我承认目前RDS在控制台上提供的账号的确限制比较死,所以在RDS上你是无法获取root账号的,话说你要root权限做什么,你说的数据库创建在RDS控制台上提供功能了 ------------------------- 回46楼苗教授的帖子 客气了,也不知道能不能帮上你! 如果从外看RDS的使用的话,可以在RDS控制台上去管理RDS实例(用用就熟悉了),或者直接调用OPEN API来完成实例管理操作,然后针对RDS实例中数据管理,就可以登录DMS,有几个常用链接发你看看,有问题可以在这里继续探讨! DMS: http://idb.rds.aliyun.com/ DMS 功能介绍: http://docs.aliyun.com/#/rds/getting-started/database-manage&login-database OPEN API: http://docs.aliyun.com/?spm=5176.383715.9.5.1LioEO#/rds/open-api/abstract RDS控制台: https://rds.console.aliyun.com/console/index#/

佩恩六道 2019-12-02 01:21:37 0 浏览量 回答数 0

问题

discuz3.2 win2003系统切换到linux系统切换后还需要干嘛

天朝就这 2019-12-01 21:30:09 7258 浏览量 回答数 3

问题

使用 mysqldump 迁移 MySQL 数据

云栖大讲堂 2019-12-01 21:41:04 1044 浏览量 回答数 0

问题

PHP教程及代码示例

云栖大讲堂 2019-12-01 21:31:01 1392 浏览量 回答数 0

回答

首先,我们先来聊聊各类数据模型。下列相关信息参考自Emil Eifrem的博文及NoSQL数据库说明。文档类数据库传承:受Lotus Notes启发而来。数据模型:文档汇总,包括键-值汇总。实例: CouchDB, MongoDB优势: 数据建模自然、程序员易于上手、开发流程短、兼容网页模式、便于达成CRUD(即添加、查询、更新及删除的简称)。图形类数据库传承:来自 Euler 及图形理论。数据模型:节点及关系,二者结合能够保持键-值间的成对状态实例: AllegroGraph, InfoGrid, Neo4j优势:轻松玩转复杂的图形问题、处理速度快关系类数据库传承:源自 E. F. Codd在大型共享数据库中所提出的数据关系模型理论数据模型:以关系组为基础实例: VoltDB, Clustrix, MySQL优势:性能强大、联机事务处理系统扩展性好、支持SQL访问、视图直观、擅长处理交易关系、与程序员间的交互效果优异面向对象类数据库传承:源自图形数据库方面的研究成果数据模型: 对象实例: Objectivity, Gemstone优势:擅长处理复杂的对象模型、快速的键-值访问及键-功能访问并且兼具图形数据库的各类功能键-值存储传承: Amazon Dynamo中的paper概念及分布式hash表数据模型:对成对键-值的全局化汇总实例: Membase, Riak优势:尺寸掌控得当、擅长处理持续的小规模读写需求、速度快、程序员易于上手BigTable Clones传承自:谷歌BigTable中的paper概念数据模型:纵列群,即在某个表格模型中,每行在理论上至少可以有一套单独的纵列配置实例: HBase, Hypertable, Cassandra优势:尺寸掌控得当、擅长应对大规模写入负载、可用性高、支持多数据中心、支持映射简化数据结构类服务传承: 不明实例: Redis数据模型: 执行过程基于索引、列表、集合及字符串值优势:为数据库应用引入前所未有的新鲜血液网格类数据库传承:源自数据网格及元组空间研究数据模型:基于空间的构架实例: GigaSpaces, Coherence优势:优良的性能表现及上佳的交易处理扩展性我们该为自己的应用程序选择哪套方案?选择的关键在于重新思考我们的应用程序如何依据不同数据模型及不同产品进行有针对性的协同工作。即用正确的数据模型处理对应的现实任务、用正确的产品解决对应的现实问题。要探究哪类数据模型能够切实为我们的应用程序提供帮助,可以参考“到底NoSQL能在我们的工作中发挥什么作用?”一文。在这篇文章中,我试着将各种不同特性、不同功能的常用创建系统中的那些非常规的应用实例综合起来。将应用实例中的客观需求与我们的选择联系起来。这样大家就能够逆向分析出我们的基础架构中适合引入哪些产品。至于具体结论是NoSQL还是SQL,这已经不重要了。关注数据模型、产品特性以及自身需要。产品总是将各种不同的功能集中起来,因此我们很难单纯从某一类数据模型构成方式的角度直接找到最合用的那款。对功能及特性的需求存在优先级,只要对这种优先级具备较为清晰的了解,我们就能够做出最佳选择。如果我们的应用程序需要…复杂的交易:因为没人愿意承受数据丢失,或者大家更倾向于一套简单易用的交易编程模式,那么请考虑使用关系类或网格类数据库。例如:一套库存系统可能需要完整的ACID(即数据库事务执行四要素:原子性、一致性、隔离性及持久性)。顾客选中了一件产品却被告知没有库存了,这类情况显然容易引起麻烦。因为大多数时候,我们想要的并不是额外补偿、而只是选中的那件货品。若是以扩展性为优先,那么NoSQL或SQL都能应对自如。这种情况下我们需要关注那些支持向外扩展、分类处理、实时添加及移除设备、负载平衡、自动分类及整理并且容错率较高的系统。要求持续保有数据库写入功能,则需要较高的可用性。在这种情况下不妨关注BigTable类产品,其在一致性方面表现出众。如有大量的小规模持续读写要求,也就是说工作负载处于波动状态,可以关注文档类、键-值类或是那些提供快速内存访问功能的数据库。引入固态硬盘作为存储媒介也是不错的选择。以社交网络为实施重点的话,我们首先想到的就是图形类数据库;其次则是Riak这种关系类数据库。具备简单SQL功能的常驻内存式关系数据库基本上就可以满足小型数据集合的需求。Redis的集合及列表操作也能发挥作用。如果我们的应用程序需要…在访问模式及数据类型多种多样的情况下,文档类数据库比较值得考虑。这类数据库不仅灵活性好,性能表现也可圈可点。需要完备的脱机报告与大型数据集的话,首选产品是Hadoop,其次则是支持映射简化的其它产品。不过仅仅支持映射简化还不足以提供如Hadoop一样上佳的处理能力。如果业务跨越数个数据中心,Bigtable Clone及其它提供分布式选项的产品能够应对由地域距离引起的延迟现象,并具备较好的分区兼容性。要建立CRUD应用程序,首选文档类数据库。这类产品简化了从外部访问复杂数据的过程。需要内置搜索功能的话,推荐Riak。要对数据结构中的诸如列表、集合、队列及发布/订阅信息进行操作,Redis是不二之选。其具备的分布式锁定、覆盖式日志及其它各种功能都会在这类应用状态下大放异彩。将数据以便于处理的形式反馈给程序员(例如以JSON、HTTP、REST、Javascript这类形式),文档类数据库能够满足这类诉求,键-值类数据库效果次之。如果我们的应用程序需要…以直观视图的形式进行同步交易,并且具备实时数据反馈功能,VoltDB算得上一把好手。其数据汇总以及时间窗口化的表现都非常抢眼。若是需要企业级的支持及服务水平协议,我们需要着眼于特殊市场。Membase就是这样一个例子。要记录持续的数据流,却找不到必要的一致性保障?BigTable Clone交出了令人满意的答卷,因为其工作基于分布式文件系统,所以可以应对大量的写入操作。要让操作过程变得尽可能简单,答案一定在托管或平台即服务类方案之中。它们存在的目的正是处理这类要求。要向企业级客户做出推荐?不妨考虑关系类数据库,因为它们的长项就是具备解决繁杂关系问题的技术。如果需要利用动态方式建立对象之间的关系以使其具有动态特性,图形类数据库能帮上大忙。这类产品往往不需要特定的模式及模型,因此可以通过编程逐步建立。S3这类存储服务则是为支持大型媒体信息而生。相比之下NoSQL系统则往往无法处理大型二进制数据块,尽管MongoDB本身具备文件服务功能。如果我们的应用程序需要…有高效批量上传大量数据的需求?我们还是得找点有对应功能的产品。大多数产品都无法胜任,因为它们不支持批量操作。文档类数据库或是键-值类数据库能够利用流畅的模式化系统提供便捷的上传途径,因为这两类产品不仅支持可选区域、添加区域及删除区域,而且无需建立完整的模式迁移框架。要实现完整性限制,就得选择一款支持SQL DLL的产品,并在存储过程或是应用程序代码中加以运行。对于协同工作极为依赖的时候就要选择图形类数据库,因为这类产品支持在不同实体间的迅速切换。数据的移动距离较短且不必经过网络时,可以在预存程序中做出选择。预存程序在关系类、网格类、文档类甚至是键-值类数据库中都能找到。如果我们的应用程序需要…键-值存储体系擅长处理BLOB类数据的缓存及存储问题。缓存可以用于应对网页或复杂对象的存储,这种方案能够降低延迟、并且比起使用关系类数据库来说成本也较低。对于数据安全及工作状态要求较高的话可以尝试使用定制产品,并且在普遍的工作范畴(例如向上扩展、调整、分布式缓存、分区及反规范化等等)之外一定要为扩展性(或其它方面)准备解决方案。多样化的数据类型意味着我们的数据不能简单用表格来管理或是用纵列来划分,其复杂的结构及用户组成(也可能还有其它各种因素)只有文档类、键-值类以及Bigtable Clone这些数据库才能应付。上述各类数据库都具备极为灵活的数据类型处理能力。有时其它业务部门会需要进行快速关系查询,引入这种查询方式可以使我们不必为了偶尔的查看而重建一切信息。任何支持SQL的数据库都能实现这类查询。至于在云平台上运行并自动充分利用云平台的功能——这种美好的愿望目前还只能是愿望。如果我们的应用程序需要…支持辅助索引,以便通过不同的关键词查找数据,这要由关系类数据库及Cassandra推出的新辅助索引系统共同支持才能实现。创建一套处于不断增长中的数据集合(真正天文数量级的数据)然而访问量却并不大,那么Bigtable Clone是最佳选择,因为它会将数据妥善安排在分布式文件系统当中。需要整合其它类型的服务并确保数据库提供延后写入同步功能?那最好的实现方式是捕捉数据库的各种变化并将其反馈到其它系统中以保障运作的一致性。通过容错性检查了解系统对供电中断、隔离及其它故障情况的适应程度。若是当前的某项技术尚无人问津、自己却感觉大有潜力可挖,不妨在这条路上坚持走下去。这种情况有时会带来意料之外的美好前景。尝试在移动平台上工作并关注CouchDB及移动版couchbase。哪种方案更好?25%的状态改善尚不足以让我们下决心选择NoSQL。选择标准是否恰当取决于实际情况。这类标准对你的方案有指导意义吗?如果你的公司尚处于起步阶段,并且需要尽快推出自己的产品,这时不要再犹豫不决了。无论是SQL还是NoSQL都可以作为参考。

a123456678 2019-12-02 03:00:14 0 浏览量 回答数 0

回答

通常,字符äåö没问题,因为浏览器和Web应用程序的tomcat / java使用的默认字符集为latin1即。“理解”这些字符的ISO-8859-1。 要使UTF-8在Java + Tomcat + Linux / Windows + Mysql下工作,需要满足以下条件: 配置Tomcat的server.xml 必须配置连接器使用UTF-8编码url(GET请求)参数: 在上面的示例中,关键部分是URIEncoding =“ UTF-8”。这可以保证Tomcat将所有传入的GET参数处理为UTF-8编码。结果,当用户将以下内容写入浏览器的地址栏时: https://localhost:8443/ID/Users?action=search&name=ж 字符ж被当作UTF-8处理,并被编码为%D0%B6(通常在到达服务器之前由浏览器访问)。 POST请求不受此影响。 CharsetFilter 然后是时候强制Java Web应用程序以UTF-8编码方式处理所有请求和响应了。这要求我们定义一个字符集过滤器,如下所示: package fi.foo.filters; import javax.servlet.*; import java.io.IOException; public class CharsetFilter implements Filter { private String encoding; public void init(FilterConfig config) throws ServletException { encoding = config.getInitParameter("requestEncoding"); if (encoding == null) encoding = "UTF-8"; } public void doFilter(ServletRequest request, ServletResponse response, FilterChain next) throws IOException, ServletException { // Respect the client-specified character encoding // (see HTTP specification section 3.4.1) if (null == request.getCharacterEncoding()) { request.setCharacterEncoding(encoding); } // Set the default response content type and encoding response.setContentType("text/html; charset=UTF-8"); response.setCharacterEncoding("UTF-8"); next.doFilter(request, response); } public void destroy() { } } 此过滤器可确保如果浏览器未设置请求中使用的编码,则将其设置为UTF-8。 该过滤器完成的另一件事是设置默认响应编码,即。返回的html /所使用的编码。另一种方法是在应用程序的每个控制器中设置响应编码等。 该过滤器必须添加到web.xml或webapp的部署描述符中: CharsetFilter fi.foo.filters.CharsetFilter requestEncoding UTF-8 CharsetFilter /* 可以在tomcat Wiki(http://wiki.apache.org/tomcat/Tomcat/UTF-8)中找到有关创建此过滤器的说明。 JSP页面编码 在您的web.xml中,添加以下内容: *.jsp UTF-8 另外,Web应用程序的所有JSP页面都需要在其顶部具有以下内容: <%@page pageEncoding="UTF-8" contentType="text/html; charset=UTF-8"%> 如果使用具有不同JSP片段的某种布局,则所有这些都需要。 HTML元标记 JSP页面编码告诉JVM以正确的编码处理JSP页面中的字符。然后是时候告诉浏览器html页面的编码方式了: 这是通过在webapp生成的每个xhtml页面顶部执行以下操作来完成的: ... JDBC连接 使用数据库时,必须定义该连接使用UTF-8编码。可以在context.xml或以下定义了JDBC连接的地方完成: MySQL数据库和表 使用的数据库必须使用UTF-8编码。这是通过使用以下内容创建数据库来实现的: CREATE DATABASE `ID_development` /*!40100 DEFAULT CHARACTER SET utf8 COLLATE utf8_swedish_ci */; 然后,所有表也都必须使用UTF-8: CREATE TABLE `Users` ( `id` int(10) unsigned NOT NULL auto_increment, `name` varchar(30) collate utf8_swedish_ci default NULL PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_swedish_ci ROW_FORMAT=DYNAMIC; 关键部分是CHARSET = utf8。 MySQL服务器配置 还必须配置MySQL serveri。通常,这是在Windows中通过修改my.ini -file和在Linux中通过配置my.cnf -file来完成的。在这些文件中,应该定义所有连接到服务器的客户端都使用utf8作为默认字符集,并且服务器使用的默认字符集也是utf8。 [client] port=3306 default-character-set=utf8 [mysql] default-character-set=utf8 MySQL的程序和功能 这些还需要定义字符集。例如: DELIMITER $$ DROP FUNCTION IF EXISTS `pathToNode` $$ CREATE FUNCTION `pathToNode` (ryhma_id INT) RETURNS TEXT CHARACTER SET utf8 READS SQL DATA BEGIN DECLARE path VARCHAR(255) CHARACTER SET utf8; SET path = NULL; ... RETURN path; END $$ DELIMITER ; GET请求:latin1和UTF-8 如果并且在tomcat的server.xml中定义了GET请求参数以UTF-8编码时,以下GET请求将得到正确处理: https://localhost:8443/ID/Users?action=search&name=Petteri https://localhost:8443/ID/Users?action=search&name=ж 由于latin1和UTF-8均以相同的方式编码ASCII字符,因此正确处理了字符串“ Petteri”。 拉丁语1完全不了解西里尔字母ж。由于指示Tomcat将请求参数处理为UTF-8,因此它将该字符正确编码为%D0%B6。 如果并且当指示浏览器读取UTF-8编码的页面(带有请求标头和html meta-tag)时,至少Firefox 2/3和此期间的其他浏览器都将字符本身编码为%D0%B6。 最终结果是,找到了所有名称为“ Petteri”的用户,还找到了所有名称为“ж”的用户。 但是äåö呢? HTTP规范定义默认情况下,URL编码为latin1。这导致firefox2,firefox3等对以下内容进行编码 https://localhost:8443/ID/Users?action=search&name=*Päivi* 进入编码版本 https://localhost:8443/ID/Users?action=search&name=*P%E4ivi* 在latin1中,字符ä编码为%E4。即使页面/请求/所有内容都定义为使用UTF-8。ä的UTF-8编码版本为%C3%A4 结果是,由于某些字符在latin1中编码,而另一些字符在UTF-8中编码,因此webapp完全不可能正确地处理GET请求中的请求参数。 注意:如果页面被定义为UTF-8,则POST请求确实可以工作,因为浏览器完全以UTF-8格式编码来自表单的所有请求参数。 读物 非常感谢以下作者为我的问题提供了答案: http://tagunov.tripod.com/i18n/i18n.html http://wiki.apache.org/tomcat/Tomcat/UTF-8 http://java.sun.com/developer/technicalArticles/Intl/HTTPCharset/ http://dev.mysql.com/doc/refman/5.0/en/charset-syntax.html http://cagan327.blogspot.com/2006/05/utf-8-encoding-fix-tomcat-jsp-etc.html http://cagan327.blogspot.com/2006/05/utf-8-encoding-fix-for-mysql-tomcat.html http://jeppesn.dk/utf-8.html http://www.nabble.com/request-parameters-mishandle-utf-8-encoding-td18720039.html http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html http://www.utf8-chartable.de/ 重要的提示 mysql支持使用3字节UTF-8字符的基本多语言平面。如果您需要超出此范围(某些字母需要超过3个字节的UTF-8字节),则需要使用一种VARBINARY列类型的样式或使用utf8mb4字符集(这需要MySQL 5.5.3或更高版本)。请注意,使用utf8MySQL中的字符集无法100%地工作。 Tomcat与Apache 还有一件事,如果您使用的是Apache + Tomcat + mod_JK连接器,则还需要进行以下更改: 将URIEncoding =“ UTF-8”添加到8009连接器的tomcat server.xml文件中,由mod_JK连接器使用。 转到你的apache文件夹即/etc/httpd/conf添加AddDefaultCharset utf-8在httpd.conf file。注意:首先检查它是否存在。如果存在,您可以使用此行对其进行更新。您也可以在底部添加此行。来源:stack overflow

保持可爱mmm 2020-05-10 17:04:59 0 浏览量 回答数 0

回答

Android平台进行数据存储的五大方式,分别如下: 1 使用SharedPreferences存储数据 2 文件存储数据 3 SQLite数据库存储数据 4 使用ContentProvider存储数据 5 网络存储数据 下面详细讲解这五种方式的特点 第一种: 使用SharedPreferences存储数据 适用范围:保存少量的数据,且这些数据的格式非常简单:字符串型、基本类型的值。比如应用程序的各种配置信息(如是否打开音效、是否使用震动效果、小游戏的玩家积分等),解锁口 令密码等 核心原理:保存基于XML文件存储的key-value键值对数据,通常用来存储一些简单的配置信息。通过DDMS的File Explorer面板,展开文件浏览树,很明显SharedPreferences数据总是存储在/data/data/<package name>/shared_prefs目录下。SharedPreferences对象本身只能获取数据而不支持存储和修改,存储修改是通过SharedPreferences.edit()获取的内部接口Editor对象实现。 SharedPreferences本身是一 个接口,程序无法直接创建SharedPreferences实例,只能通过Context提供的getSharedPreferences(String name, int mode)方法来获取SharedPreferences实例,该方法中name表示要操作的xml文件名,第二个参数具体如下: Context.MODE_PRIVATE: 指定该SharedPreferences数据只能被本应用程序读、写。 Context.MODE_WORLD_READABLE: 指定该SharedPreferences数据能被其他应用程序读,但不能写。 Context.MODE_WORLD_WRITEABLE: 指定该SharedPreferences数据能被其他应用程序读,写 Editor有如下主要重要方法: SharedPreferences.Editor clear():清空SharedPreferences里所有数据 SharedPreferences.Editor putXxx(String key , xxx value): 向SharedPreferences存入指定key对应的数据,其中xxx 可以是boolean,float,int等各种基本类型据 SharedPreferences.Editor remove(): 删除SharedPreferences中指定key对应的数据项 boolean commit(): 当Editor编辑完成后,使用该方法提交修改 实际案例:运行界面如下 这里只提供了两个按钮和一个输入文本框,布局简单,故在此不给出界面布局文件了,程序核心代码如下: 、class ViewOcl implements View.OnClickListener{ @Override public void onClick(View v) { switch(v.getId()){ case R.id.btnSet: //步骤1:获取输入值 String code = txtCode.getText().toString().trim(); //步骤2-1:创建一个SharedPreferences.Editor接口对象,lock表示要写入的XML文件名,MODE_WORLD_WRITEABLE写操作 SharedPreferences.Editor editor = getSharedPreferences("lock", MODE_WORLD_WRITEABLE).edit(); //步骤2-2:将获取过来的值放入文件 editor.putString("code", code); //步骤3:提交 editor.commit(); Toast.makeText(getApplicationContext(), "口令设置成功", Toast.LENGTH_LONG).show(); break; case R.id.btnGet: //步骤1:创建一个SharedPreferences接口对象 SharedPreferences read = getSharedPreferences("lock", MODE_WORLD_READABLE); //步骤2:获取文件中的值 String value = read.getString("code", ""); Toast.makeText(getApplicationContext(), "口令为:"+value, Toast.LENGTH_LONG).show(); break; } } } 、读写其他应用的SharedPreferences: 步骤如下 1、在创建SharedPreferences时,指定MODE_WORLD_READABLE模式,表明该SharedPreferences数据可以被其他程序读取 2、创建其他应用程序对应的Context: Context pvCount = createPackageContext("com.tony.app", Context.CONTEXT_IGNORE_SECURITY);这里的com.tony.app就是其他程序的包名 3、使用其他程序的Context获取对应的SharedPreferences SharedPreferences read = pvCount.getSharedPreferences("lock", Context.MODE_WORLD_READABLE); 4、如果是写入数据,使用Editor接口即可,所有其他操作均和前面一致。 SharedPreferences对象与SQLite数据库相比,免去了创建数据库,创建表,写SQL语句等诸多操作,相对而言更加方便,简洁。但是SharedPreferences也有其自身缺陷,比如其职能存储boolean,int,float,long和String五种简单的数据类型,比如其无法进行条件查询等。所以不论SharedPreferences的数据存储操作是如何简单,它也只能是存储方式的一种补充,而无法完全替代如SQLite数据库这样的其他数据存储方式。 第二种: 文件存储数据 核心原理: Context提供了两个方法来打开数据文件里的文件IO流 FileInputStream openFileInput(String name); FileOutputStream(String name , int mode),这两个方法第一个参数 用于指定文件名,第二个参数指定打开文件的模式。具体有以下值可选: MODE_PRIVATE:为默认操作模式,代表该文件是私有数据,只能被应用本身访问,在该模式下,写入的内容会覆盖原文件的内容,如果想把新写入的内容追加到原文件中。可 以使用Context.MODE_APPEND MODE_APPEND:模式会检查文件是否存在,存在就往文件追加内容,否则就创建新文件。 MODE_WORLD_READABLE:表示当前文件可以被其他应用读取; MODE_WORLD_WRITEABLE:表示当前文件可以被其他应用写入。 除此之外,Context还提供了如下几个重要的方法: getDir(String name , int mode):在应用程序的数据文件夹下获取或者创建name对应的子目录 File getFilesDir():获取该应用程序的数据文件夹得绝对路径 String[] fileList():返回该应用数据文件夹的全部文件 public String read() { try { FileInputStream inStream = this.openFileInput("message.txt"); byte[] buffer = new byte[1024]; int hasRead = 0; StringBuilder sb = new StringBuilder(); while ((hasRead = inStream.read(buffer)) != -1) { sb.append(new String(buffer, 0, hasRead)); } inStream.close(); return sb.toString(); } catch (Exception e) { e.printStackTrace(); } return null; } public void write(String msg){ // 步骤1:获取输入值 if(msg == null) return; try { // 步骤2:创建一个FileOutputStream对象,MODE_APPEND追加模式 FileOutputStream fos = openFileOutput("message.txt", MODE_APPEND); // 步骤3:将获取过来的值放入文件 fos.write(msg.getBytes()); // 步骤4:关闭数据流 fos.close(); } catch (Exception e) { e.printStackTrace(); } } openFileOutput()方法的第一参数用于指定文件名称,不能包含路径分隔符“/” ,如果文件不存在,Android 会自动创建它。创建的文件保存在/data/data//files目录,如: /data/data/cn.tony.app/files/message.txt, 下面讲解某些特殊文件读写需要注意的地方: 读写sdcard上的文件 其中读写步骤按如下进行: 1、调用Environment的getExternalStorageState()方法判断手机上是否插了sd卡,且应用程序具有读写SD卡的权限,如下代码将返回true Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED) 2、调用Environment.getExternalStorageDirectory()方法来获取外部存储器,也就是SD卡的目录,或者使用"/mnt/sdcard/"目录 3、使用IO流操作SD卡上的文件 注意点:手机应该已插入SD卡,对于模拟器而言,可通过mksdcard命令来创建虚拟存储卡 必须在AndroidManifest.xml上配置读写SD卡的权限 // 文件写操作函数 private void write(String content) { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } PrintStream out = null; // 打印流对象用于输出 try { out = new PrintStream(new FileOutputStream(file, true)); // 追加文件 out.println(content); } catch (Exception e) { e.printStackTrace(); } finally { if (out != null) { out.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "保存失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } } // 文件读操作函数 private String read() { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } Scanner scan = null; // 扫描输入 StringBuilder sb = new StringBuilder(); try { scan = new Scanner(new FileInputStream(file)); // 实例化Scanner while (scan.hasNext()) { // 循环读取 sb.append(scan.next() + "\n"); // 设置文本 } return sb.toString(); } catch (Exception e) { e.printStackTrace(); } finally { if (scan != null) { scan.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "读取失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } return null; } 复制代码 第三种:SQLite存储数据 SQLite是轻量级嵌入式数据库引擎,它支持 SQL 语言,并且只利用很少的内存就有很好的性能。现在的主流移动设备像Android、iPhone等都使用SQLite作为复杂数据的存储引擎,在我们为移动设备开发应用程序时,也许就要使用到SQLite来存储我们大量的数据,所以我们就需要掌握移动设备上的SQLite开发技巧 SQLiteDatabase类为我们提供了很多种方法,上面的代码中基本上囊括了大部分的数据库操作;对于添加、更新和删除来说,我们都可以使用 1 db.executeSQL(String sql); 2 db.executeSQL(String sql, Object[] bindArgs);//sql语句中使用占位符,然后第二个参数是实际的参数集 除了统一的形式之外,他们还有各自的操作方法: 1 db.insert(String table, String nullColumnHack, ContentValues values); 2 db.update(String table, Contentvalues values, String whereClause, String whereArgs); 3 db.delete(String table, String whereClause, String whereArgs);以上三个方法的第一个参数都是表示要操作的表名;insert中的第二个参数表示如果插入的数据每一列都为空的话,需要指定此行中某一列的名称,系统将此列设置为NULL,不至于出现错误;insert中的第三个参数是ContentValues类型的变量,是键值对组成的Map,key代表列名,value代表该列要插入的值;update的第二个参数也很类似,只不过它是更新该字段key为最新的value值,第三个参数whereClause表示WHERE表达式,比如“age > ? and age < ?”等,最后的whereArgs参数是占位符的实际参数值;delete方法的参数也是一样 下面给出demo 数据的添加 1.使用insert方法 复制代码1 ContentValues cv = new ContentValues();//实例化一个ContentValues用来装载待插入的数据2 cv.put("title","you are beautiful");//添加title3 cv.put("weather","sun"); //添加weather4 cv.put("context","xxxx"); //添加context5 String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")6 .format(new Date());7 cv.put("publish ",publish); //添加publish8 db.insert("diary",null,cv);//执行插入操作复制代码2.使用execSQL方式来实现 String sql = "insert into user(username,password) values ('Jack Johnson','iLovePopMuisc');//插入操作的SQL语句db.execSQL(sql);//执行SQL语句数据的删除 同样有2种方式可以实现 String whereClause = "username=?";//删除的条件String[] whereArgs = {"Jack Johnson"};//删除的条件参数db.delete("user",whereClause,whereArgs);//执行删除使用execSQL方式的实现 String sql = "delete from user where username='Jack Johnson'";//删除操作的SQL语句db.execSQL(sql);//执行删除操作数据修改 同上,仍是2种方式 ContentValues cv = new ContentValues();//实例化ContentValuescv.put("password","iHatePopMusic");//添加要更改的字段及内容String whereClause = "username=?";//修改条件String[] whereArgs = {"Jack Johnson"};//修改条件的参数db.update("user",cv,whereClause,whereArgs);//执行修改使用execSQL方式的实现 String sql = "update user set password = 'iHatePopMusic' where username='Jack Johnson'";//修改的SQL语句db.execSQL(sql);//执行修改数据查询 下面来说说查询操作。查询操作相对于上面的几种操作要复杂些,因为我们经常要面对着各种各样的查询条件,所以系统也考虑到这种复杂性,为我们提供了较为丰富的查询形式: 1 db.rawQuery(String sql, String[] selectionArgs); 2 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy); 3 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 4 db.query(String distinct, String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 上面几种都是常用的查询方法,第一种最为简单,将所有的SQL语句都组织到一个字符串中,使用占位符代替实际参数,selectionArgs就是占位符实际参数集; 各参数说明: table:表名称colums:表示要查询的列所有名称集selection:表示WHERE之后的条件语句,可以使用占位符selectionArgs:条件语句的参数数组groupBy:指定分组的列名having:指定分组条件,配合groupBy使用orderBy:y指定排序的列名limit:指定分页参数distinct:指定“true”或“false”表示要不要过滤重复值Cursor:返回值,相当于结果集ResultSet最后,他们同时返回一个Cursor对象,代表数据集的游标,有点类似于JavaSE中的ResultSet。下面是Cursor对象的常用方法: 复制代码 1 c.move(int offset); //以当前位置为参考,移动到指定行 2 c.moveToFirst(); //移动到第一行 3 c.moveToLast(); //移动到最后一行 4 c.moveToPosition(int position); //移动到指定行 5 c.moveToPrevious(); //移动到前一行 6 c.moveToNext(); //移动到下一行 7 c.isFirst(); //是否指向第一条 8 c.isLast(); //是否指向最后一条 9 c.isBeforeFirst(); //是否指向第一条之前 10 c.isAfterLast(); //是否指向最后一条之后 11 c.isNull(int columnIndex); //指定列是否为空(列基数为0) 12 c.isClosed(); //游标是否已关闭 13 c.getCount(); //总数据项数 14 c.getPosition(); //返回当前游标所指向的行数 15 c.getColumnIndex(String columnName);//返回某列名对应的列索引值 16 c.getString(int columnIndex); //返回当前行指定列的值 复制代码实现代码 复制代码String[] params = {12345,123456};Cursor cursor = db.query("user",columns,"ID=?",params,null,null,null);//查询并获得游标if(cursor.moveToFirst()){//判断游标是否为空 for(int i=0;i<cursor.getCount();i++){ cursor.move(i);//移动到指定记录 String username = cursor.getString(cursor.getColumnIndex("username"); String password = cursor.getString(cursor.getColumnIndex("password")); } }复制代码通过rawQuery实现的带参数查询 复制代码Cursor result=db.rawQuery("SELECT ID, name, inventory FROM mytable");//Cursor c = db.rawQuery("s name, inventory FROM mytable where ID=?",new Stirng[]{"123456"}); result.moveToFirst(); while (!result.isAfterLast()) { int id=result.getInt(0); String name=result.getString(1); int inventory=result.getInt(2); // do something useful with these result.moveToNext(); } result.close();复制代码 在上面的代码示例中,已经用到了这几个常用方法中的一些,关于更多的信息,大家可以参考官方文档中的说明。 最后当我们完成了对数据库的操作后,记得调用SQLiteDatabase的close()方法释放数据库连接,否则容易出现SQLiteException。 上面就是SQLite的基本应用,但在实际开发中,为了能够更好的管理和维护数据库,我们会封装一个继承自SQLiteOpenHelper类的数据库操作类,然后以这个类为基础,再封装我们的业务逻辑方法。 这里直接使用案例讲解:下面是案例demo的界面 SQLiteOpenHelper类介绍 SQLiteOpenHelper是SQLiteDatabase的一个帮助类,用来管理数据库的创建和版本的更新。一般是建立一个类继承它,并实现它的onCreate和onUpgrade方法。 方法名 方法描述SQLiteOpenHelper(Context context,String name,SQLiteDatabase.CursorFactory factory,int version) 构造方法,其中 context 程序上下文环境 即:XXXActivity.this; name :数据库名字; factory:游标工厂,默认为null,即为使用默认工厂; version 数据库版本号 onCreate(SQLiteDatabase db) 创建数据库时调用onUpgrade(SQLiteDatabase db,int oldVersion , int newVersion) 版本更新时调用getReadableDatabase() 创建或打开一个只读数据库getWritableDatabase() 创建或打开一个读写数据库首先创建数据库类 复制代码 1 import android.content.Context; 2 import android.database.sqlite.SQLiteDatabase; 3 import android.database.sqlite.SQLiteDatabase.CursorFactory; 4 import android.database.sqlite.SQLiteOpenHelper; 5 6 public class SqliteDBHelper extends SQLiteOpenHelper { 7 8 // 步骤1:设置常数参量 9 private static final String DATABASE_NAME = "diary_db";10 private static final int VERSION = 1;11 private static final String TABLE_NAME = "diary";12 13 // 步骤2:重载构造方法14 public SqliteDBHelper(Context context) {15 super(context, DATABASE_NAME, null, VERSION);16 }17 18 /*19 * 参数介绍:context 程序上下文环境 即:XXXActivity.this 20 * name 数据库名字 21 * factory 接收数据,一般情况为null22 * version 数据库版本号23 */24 public SqliteDBHelper(Context context, String name, CursorFactory factory,25 int version) {26 super(context, name, factory, version);27 }28 //数据库第一次被创建时,onCreate()会被调用29 @Override30 public void onCreate(SQLiteDatabase db) {31 // 步骤3:数据库表的创建32 String strSQL = "create table "33 + TABLE_NAME34 + "(tid integer primary key autoincrement,title varchar(20),weather varchar(10),context text,publish date)";35 //步骤4:使用参数db,创建对象36 db.execSQL(strSQL);37 }38 //数据库版本变化时,会调用onUpgrade()39 @Override40 public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {41 42 }43 }复制代码正如上面所述,数据库第一次创建时onCreate方法会被调用,我们可以执行创建表的语句,当系统发现版本变化之后,会调用onUpgrade方法,我们可以执行修改表结构等语句。 我们需要一个Dao,来封装我们所有的业务方法,代码如下: 复制代码 1 import android.content.Context; 2 import android.database.Cursor; 3 import android.database.sqlite.SQLiteDatabase; 4 5 import com.chinasoft.dbhelper.SqliteDBHelper; 6 7 public class DiaryDao { 8 9 private SqliteDBHelper sqliteDBHelper;10 private SQLiteDatabase db;11 12 // 重写构造方法13 public DiaryDao(Context context) {14 this.sqliteDBHelper = new SqliteDBHelper(context);15 db = sqliteDBHelper.getWritableDatabase();16 }17 18 // 读操作19 public String execQuery(final String strSQL) {20 try {21 System.out.println("strSQL>" + strSQL);22 // Cursor相当于JDBC中的ResultSet23 Cursor cursor = db.rawQuery(strSQL, null);24 // 始终让cursor指向数据库表的第1行记录25 cursor.moveToFirst();26 // 定义一个StringBuffer的对象,用于动态拼接字符串27 StringBuffer sb = new StringBuffer();28 // 循环游标,如果不是最后一项记录29 while (!cursor.isAfterLast()) {30 sb.append(cursor.getInt(0) + "/" + cursor.getString(1) + "/"31 + cursor.getString(2) + "/" + cursor.getString(3) + "/"32 + cursor.getString(4)+"#");33 //cursor游标移动34 cursor.moveToNext();35 }36 db.close();37 return sb.deleteCharAt(sb.length()-1).toString();38 } catch (RuntimeException e) {39 e.printStackTrace();40 return null;41 }42 43 }44 45 // 写操作46 public boolean execOther(final String strSQL) {47 db.beginTransaction(); //开始事务48 try {49 System.out.println("strSQL" + strSQL);50 db.execSQL(strSQL);51 db.setTransactionSuccessful(); //设置事务成功完成 52 db.close();53 return true;54 } catch (RuntimeException e) {55 e.printStackTrace();56 return false;57 }finally { 58 db.endTransaction(); //结束事务 59 } 60 61 }62 }复制代码我们在Dao构造方法中实例化sqliteDBHelper并获取一个SQLiteDatabase对象,作为整个应用的数据库实例;在增删改信息时,我们采用了事务处理,确保数据完整性;最后要注意释放数据库资源db.close(),这一个步骤在我们整个应用关闭时执行,这个环节容易被忘记,所以朋友们要注意。 我们获取数据库实例时使用了getWritableDatabase()方法,也许朋友们会有疑问,在getWritableDatabase()和getReadableDatabase()中,你为什么选择前者作为整个应用的数据库实例呢?在这里我想和大家着重分析一下这一点。 我们来看一下SQLiteOpenHelper中的getReadableDatabase()方法: 复制代码 1 public synchronized SQLiteDatabase getReadableDatabase() { 2 if (mDatabase != null && mDatabase.isOpen()) { 3 // 如果发现mDatabase不为空并且已经打开则直接返回 4 return mDatabase; 5 } 6 7 if (mIsInitializing) { 8 // 如果正在初始化则抛出异常 9 throw new IllegalStateException("getReadableDatabase called recursively"); 10 } 11 12 // 开始实例化数据库mDatabase 13 14 try { 15 // 注意这里是调用了getWritableDatabase()方法 16 return getWritableDatabase(); 17 } catch (SQLiteException e) { 18 if (mName == null) 19 throw e; // Can't open a temp database read-only! 20 Log.e(TAG, "Couldn't open " + mName + " for writing (will try read-only):", e); 21 } 22 23 // 如果无法以可读写模式打开数据库 则以只读方式打开 24 25 SQLiteDatabase db = null; 26 try { 27 mIsInitializing = true; 28 String path = mContext.getDatabasePath(mName).getPath();// 获取数据库路径 29 // 以只读方式打开数据库 30 db = SQLiteDatabase.openDatabase(path, mFactory, SQLiteDatabase.OPEN_READONLY); 31 if (db.getVersion() != mNewVersion) { 32 throw new SQLiteException("Can't upgrade read-only database from version " + db.getVersion() + " to " 33 + mNewVersion + ": " + path); 34 } 35 36 onOpen(db); 37 Log.w(TAG, "Opened " + mName + " in read-only mode"); 38 mDatabase = db;// 为mDatabase指定新打开的数据库 39 return mDatabase;// 返回打开的数据库 40 } finally { 41 mIsInitializing = false; 42 if (db != null && db != mDatabase) 43 db.close(); 44 } 45 }复制代码在getReadableDatabase()方法中,首先判断是否已存在数据库实例并且是打开状态,如果是,则直接返回该实例,否则试图获取一个可读写模式的数据库实例,如果遇到磁盘空间已满等情况获取失败的话,再以只读模式打开数据库,获取数据库实例并返回,然后为mDatabase赋值为最新打开的数据库实例。既然有可能调用到getWritableDatabase()方法,我们就要看一下了: 复制代码public synchronized SQLiteDatabase getWritableDatabase() { if (mDatabase != null && mDatabase.isOpen() && !mDatabase.isReadOnly()) { // 如果mDatabase不为空已打开并且不是只读模式 则返回该实例 return mDatabase; } if (mIsInitializing) { throw new IllegalStateException("getWritableDatabase called recursively"); } // If we have a read-only database open, someone could be using it // (though they shouldn't), which would cause a lock to be held on // the file, and our attempts to open the database read-write would // fail waiting for the file lock. To prevent that, we acquire the // lock on the read-only database, which shuts out other users. boolean success = false; SQLiteDatabase db = null; // 如果mDatabase不为空则加锁 阻止其他的操作 if (mDatabase != null) mDatabase.lock(); try { mIsInitializing = true; if (mName == null) { db = SQLiteDatabase.create(null); } else { // 打开或创建数据库 db = mContext.openOrCreateDatabase(mName, 0, mFactory); } // 获取数据库版本(如果刚创建的数据库,版本为0) int version = db.getVersion(); // 比较版本(我们代码中的版本mNewVersion为1) if (version != mNewVersion) { db.beginTransaction();// 开始事务 try { if (version == 0) { // 执行我们的onCreate方法 onCreate(db); } else { // 如果我们应用升级了mNewVersion为2,而原版本为1则执行onUpgrade方法 onUpgrade(db, version, mNewVersion); } db.setVersion(mNewVersion);// 设置最新版本 db.setTransactionSuccessful();// 设置事务成功 } finally { db.endTransaction();// 结束事务 } } onOpen(db); success = true; return db;// 返回可读写模式的数据库实例 } finally { mIsInitializing = false; if (success) { // 打开成功 if (mDatabase != null) { // 如果mDatabase有值则先关闭 try { mDatabase.close(); } catch (Exception e) { } mDatabase.unlock();// 解锁 } mDatabase = db;// 赋值给mDatabase } else { // 打开失败的情况:解锁、关闭 if (mDatabase != null) mDatabase.unlock(); if (db != null) db.close(); } } }复制代码大家可以看到,几个关键步骤是,首先判断mDatabase如果不为空已打开并不是只读模式则直接返回,否则如果mDatabase不为空则加锁,然后开始打开或创建数据库,比较版本,根据版本号来调用相应的方法,为数据库设置新版本号,最后释放旧的不为空的mDatabase并解锁,把新打开的数据库实例赋予mDatabase,并返回最新实例。 看完上面的过程之后,大家或许就清楚了许多,如果不是在遇到磁盘空间已满等情况,getReadableDatabase()一般都会返回和getWritableDatabase()一样的数据库实例,所以我们在DBManager构造方法中使用getWritableDatabase()获取整个应用所使用的数据库实例是可行的。当然如果你真的担心这种情况会发生,那么你可以先用getWritableDatabase()获取数据实例,如果遇到异常,再试图用getReadableDatabase()获取实例,当然这个时候你获取的实例只能读不能写了 最后,让我们看一下如何使用这些数据操作方法来显示数据,界面核心逻辑代码: 复制代码public class SQLiteActivity extends Activity { public DiaryDao diaryDao; //因为getWritableDatabase内部调用了mContext.openOrCreateDatabase(mName, 0, mFactory); //所以要确保context已初始化,我们可以把实例化Dao的步骤放在Activity的onCreate里 @Override protected void onCreate(Bundle savedInstanceState) { diaryDao = new DiaryDao(SQLiteActivity.this); initDatabase(); } class ViewOcl implements View.OnClickListener { @Override public void onClick(View v) { String strSQL; boolean flag; String message; switch (v.getId()) { case R.id.btnAdd: String title = txtTitle.getText().toString().trim(); String weather = txtWeather.getText().toString().trim();; String context = txtContext.getText().toString().trim();; String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") .format(new Date()); // 动态组件SQL语句 strSQL = "insert into diary values(null,'" + title + "','" + weather + "','" + context + "','" + publish + "')"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"添加成功":"添加失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnDelete: strSQL = "delete from diary where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"删除成功":"删除失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnQuery: strSQL = "select * from diary order by publish desc"; String data = diaryDao.execQuery(strSQL); Toast.makeText(getApplicationContext(), data, Toast.LENGTH_LONG).show(); break; case R.id.btnUpdate: strSQL = "update diary set title = '测试标题1-1' where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"更新成功":"更新失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; } } } private void initDatabase() { // 创建数据库对象 SqliteDBHelper sqliteDBHelper = new SqliteDBHelper(SQLiteActivity.this); sqliteDBHelper.getWritableDatabase(); System.out.println("数据库创建成功"); } }复制代码 Android sqlite3数据库管理工具 Android SDK的tools目录下提供了一个sqlite3.exe工具,这是一个简单的sqlite数据库管理工具。开发者可以方便的使用其对sqlite数据库进行命令行的操作。 程序运行生成的.db文件一般位于"/data/data/项目名(包括所处包名)/databases/.db",因此要对数据库文件进行操作需要先找到数据库文件: 1、进入shell 命令 adb shell2、找到数据库文件 cd data/data ls --列出所有项目 cd project_name --进入所需项目名 cd databases ls --列出现寸的数据库文件 3、进入数据库 sqlite3 test_db --进入所需数据库 会出现类似如下字样: SQLite version 3.6.22Enter ".help" for instructionsEnter SQL statements terminated with a ";"sqlite>至此,可对数据库进行sql操作。 4、sqlite常用命令 .databases --产看当前数据库.tables --查看当前数据库中的表.help --sqlite3帮助.schema --各个表的生成语句 原文地址https://www.cnblogs.com/ITtangtang/p/3920916.html

auto_answer 2019-12-02 01:50:21 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

回答

Linux下如何进行FTP设置  ECSLinux服务器如何配置网站以及绑定域名  Ubuntu安装vncserver实现图形化访问  阿里云Docker镜像库  ECSlinux中添加ftp用户,并设置相应的权限  CentOS6.5安装vncserver实现图形化访问  LinuxSCP命令复制传输文件的用法  Mysql,phpmyadmin密码忘了怎么  Linux下l2tp客户端xl2tpd的安装配置  使用SFTP方式传输文件  ECSLinux系统盘网站数据更换至数据盘  WDCP的报错处理  Linux中PHP如何安装curl扩展方法  修改Linux服务器的ssh端口  ECSLinux配置vnc文档  运维分享--阿里云linux系统mysql密码修改脚本  20步打造最安全的NginxWeb服务器  SSH配置存在问题,导致登录和传输数据很慢  ECSLinux下如何查看定位当前正在运行的Nginx的配置文件  ECS服务器CentOS系统如何开放端口  查看Linux下默认的DNS  FTP主动被动模式配置混乱导致无法登录  linux环境配置phpmyadmin  ECSLinux系统下VSFTP配置的FTP上传文件报错“553Couldnotcreatefile”  ECSLinuxMysql启动提示Toomanyarguments(firstextrais'start')  运维分享--阿里云linux系统ssh远程连接检查脚本  ECSLinux系统授权mysql外网访问  ECSLinux服务器nginx禁止空主机头配置  ECSLinux服务器通过FTP无法查看到.htaccess文件  ECSLinux服务器下Mysql自动备份脚本的使用方法  ECS-linux授权mysql外网访问  用date命令修改Linux系统的时间为什么无效  运维分享--阿里云linux系统web日志分析脚本  ECSLinux服务器messagebus默认关闭导致安装桌面环境后无法正常使用  ECSNginx+php中php-fpm参数配置  运维分享--阿里云linux系统mysql连接检查脚本  iptables的conntrack表满了导致访问网站很慢  运维分享--阿里云linux系统带宽监测脚本  如何调整目录文件的拥有者和拥有组  yum操作报错处理  ECSLinux配置vsftpd限制FTP账户访问其它目录  vsftp报错:500OOPS:vsftpd:cannotlocateuserspecifiedin'ftp_username':ftp  Linux主机系统目录误操作权限修改为777修复方法  ECSNginx中https的配置说明  运维分享--阿里云linux系统负载状态检查脚本  ECSLinux服务器AMH云主机面板启动、关闭操作  ECSLinux服务器关闭磁盘自检  ECSLinux配置key认证登录后因为相关文件权限错误导致连接失败-Connectionclosedbyforeignhost  ECSLinux系统服务器解决ssh反向代理监听ip错误问题  ECSLinux设置定时任务crontab  ECSGentoo系统中mirrorselect获取内容失败提示Nameorservicenotknown  ECSLinux系统服务器ping域名返回Unknownhost报错  IIS、Nginx或Apache访问日志存在182.92.12.0/24段访问记录  Nginx日志的解释  ECSLinux系统wget下载文件  ECSLinux服务器内部无法解析域名  ECS路由表错误导致无法ping通  ECSLinux主机修改主机名  wordpress插件oss4wpurl无法访问  ECSLinux查看隐藏文件  Linux系统服务器解决vsftp服务使用root登录失败  ECSLinuxPPTP客户端登陆后获取地址错误  Linux系统服务器解决内外双网卡均显示内网IP地址问题  ECSLinux系统NetworkManager导致网络异常  外部PingECSLinux丢包严重  ECSLinux检查Nginx配置文件  ECSLinux系统判断当前运行的Apache所使用的配置文件  Apache访问日志的说明  ECSLinux.htacess文件上传无法显示  linux服务器内无法访问其他站点的检查处理方法  ECSmysql无法启动报错Can'tcreate/writetofile'/tmp/ibfguTtC  ECSLiunx系统服务器执行ls查询命令提示bash:ls:commandnotfound  Linux为何执行命令会执行历史命令  ECSLinux系统如何检查系统上一次重启的时间  ECSLinux下MySQL排查基本步骤  Linux系统如何查看mysql版本号  MySQL中查看慢SQL的日志文件方法  phpMyAdmin修改配置可以上传大文件  openSUSE下开机自动运行脚本命令的方法  给Linux系统添加一个回收站  ECSLinux分区异常无法挂载  ECSLinux上安装Cloudfs启动失败提示找不到库文件libunwind.so.8  ECSLinux清理/tmp目录下的文件原理  Liunx系统服务器通过prefork模块限制apache进程数量  ECSCentOS6.5系统下Apache配置https服务  Noinputfilespecified的解决方法  Apache、Nginx支持跨域访问  Apache环境下配置404错误页方法  ECSLinux通过修改Apache配置301重定向的方法  ECSLinux主机无法互访处理  ECSlinux服务器启用了TRACEMethod.怎么关闭  Apache运行参考的调整优化  ECSApache如何关闭目录访问  ECS服务器隐藏apache版本信息  ECSLinux判断HTTP端口监听状态的方法  ECSLinuxApache限制客户端访问网站的速度  负载均衡+ECS站点虚拟子目录的设置案例  ECS网站访问504错误分析  为何Ubuntu开启UFW后,VPC下的SNAT转发就失效了  ECSDebian自定义镜像启动无法SSH  ECSLinux云服务器如何确认文件系统只读?  ECSLinux创建文件报错Read-onlyfilesystem  恢复ext4文件系统中使用rm命令误删除的文件  ECSLinux删除乱码文件的方法  net.ipv4.tcp_fin_timeout修改导致的TCP链接异常排查  ECSLinux执行sh脚本提示Nosuchfileordirectory  /var/log/message日志报错  通过sshtunnel连接内网ECS和RDS  CentOS7中MySQL服务启动失败的解决思路  ECSLinux系统启动提示“Giverootpasswordformaintenance”  结束云盾客户端进程后如何启用  Ubuntu服务器中配置AWStats  CentOS6非root用户使用sftp服务  ssh避免客户端长久未操作导致连接中断  删除binglog导致mysql无法启动  ECSLinux服务器修改SSH端口号不生效的检查方法  ftp传输失败问题解决方法  ECSLinux下使用extundelete恢复被误删的文件  ECSLinux基于nginx环境通过.htaccess配置rewrite伪静态示例  ECSLinux系统利用openssl生成强密码  ECSCentOS6配置PPTPVPN  Last命令关于reboot记录的含义  Ubuntu修改运行级别的总结  ECSCentOS6系统PPTPVPN脚本  ECSLinux系统如何配置gentoo的源  ECSCentOS系统配置VPN客户端  多域名跳转——不同域名指向不同子目录  Centos配置PPTPVPN后无法打开网页  mysql不能远程连接  ECSLinux系统修改文件或目录权限方法  ECSWDCP破解mysql以及wdcp后台管理密码  ECSLinux系统如何设置SSH白名单  EcsLinux系统一键安装web环境下tomcat添加站点方法  Centos7安装vnc  Setuptools软件包版本太老导致ECSLinux安装AliyunCLI出错  Apache配置二级域名  ECSlinux重启丢失分区表  Linux系统服务器安装使用sar工具获取系统运行状态方式  ECSUbuntu开启sftp连接  linux系统mysql跳过密码登陆操作登陆设置  mysql报错LostconnectiontoMySQLserverat'readinginitialcommunicationpacket'  Ubuntuapt-get安装提errorprocessingpackageinstall-info(--configure)  Nodejs的版本升级和使用  Nodejs连接RDSMySQL数据库  ECS公共镜像Ubuntu,Centos的内核版本查看方法  ECSLinux服务器修改时区  Apache禁止未经许可的域名访问ECS上的网站  ECSLinux如何隐藏文件和文件夹  ECSmysql.sock丢失问题解决方法  ECSLinux云服务器centos将系统时区从UTC时间改为CST  ECSLinux云服务器权限问题说明  ECSLinux系统盘数据转移方法  Linux下忘记mysql的root密码  ECSMySQL编译安装支持innodb引擎  ECSLinuxNAT哈希表满导致服务器丢包  ECSLinux服务器重启后mount出错的解决方法  Centos6.5添加IPv6支持  ECSubuntu系统修改DNS/etc/resolv.conf无法保存  ECSLinux如何增加虚拟内存swap  ECSLinuxtraceroute使用方法  ECSLinux系统磁盘再次挂载报错没有有效的分区表  如何删除yum的缓存信息  ECSLinux服务器yum的查询功能  centos6怎么使用RPMForge软件源仓库  ECSLinux服务器Nginxrewrite示例  ECSLinuxCentOS6ssh连上就断掉并报错“fatal:mm_request_send:write:Brokenpipe”  mysql上传报错#1064-YouhaveanerrorinyourSQLsyntax  EcsLinux中rpm安装文件命令常用选项  ECSLinux系统kjournald进程占用io资源高的解决方法  ECSLinux如果通过i节点删除无法删除的文件  ECSLinux基于zabbix搭建企业级监控平台  ECSLinux系统yum卸载重装  ECSCentOS6.5OpenVPN配置  ECSLinux使用SFTP登陆时报错:Receivedunexpectedend-of-filefromSFTPserver  ECSLinux如何增加数据盘iNode数量  ECSLinux查看目录没有颜色  ECSLinux系统tmp目录的安全设置  ECSLinux下shm设备的安全设定  ECSCentOS多线程下载工具Axel使用说明  ECSLinuxcurl使用证书访问HTTPS站点  Linux系统中vsftp用户无法登陆的相关说明  Nginx配置文件中rewrite指令标志位的说明与使用  ECSLinux中ss命令显示连接状态的使用说明  ECSLinux系统没有程序运行通过top观察发现cpu很空闲  Linux下的文件权限检查和修改  ECSLinux云服务器利用chatter命令锁定系统重要文件  ECSCentos7安装OpenVPN  ECS上搭建反向代理通过内网访问OSS服务  ECSLinux下的script命令记录用户操作行为  Ubuntu下使用slay命令结束某个用户的所有进程  Nginx配置文件中root与alias指令的区别  Nginx配置文件中rewrite指令的使用  ECSLinux如何修改PATH变量  Centos安装桌面后在远程终端管理里面无法使用键盘和鼠标  ECSLinux下Apache忽略网站URL的大小写的方法  ECSLinux服务器利用Nethogs监控每个进程的网络使用情况  ECSapt-get安装软件或更新时提示apt-get的Segmentationfaultsts  ubuntu开机出现memtest86,重启也无法取消的原因  Linux下History命令显示操作时间,用户和登录IP  ECSLinux服务器使用htop监控负载 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:20 0 浏览量 回答数 0

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

程序员报错行为大赏-配置报错

问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

回答

该框架无法知道您是否开始了事务。您甚至可以使用$db->query('START TRANSACTION')框架不知道的内容,因为它不会解析您执行的SQL语句。 关键是,跟踪您是否已开始事务是应用程序的责任。这不是框架可以做的事情。 我知道有些框架会尝试执行此操作,并进行一些类似的事情,例如计算开始事务的次数,仅在完成提交或回退匹配次数后才解决它。但这完全是伪造的,因为您的任何函数都无法知道落实或回滚是否会真正做到这一点,或者它们是否在另一层嵌套中。 (你能告诉我我已经进行过几次讨论吗?:-) 更新1: Propel是一个PHP数据库访问库,它支持“内部事务”的概念,当您告诉它时,它不会提交。开始事务只会增加一个计数器,而提交/回滚会减少该计数器。下面是邮件列表线程的摘录,在此我描述了几种失败的情况。 更新2: Doctrine DBAL也具有此功能。他们称之为交易嵌套。 不管喜欢与否,事务是“全局的”,并且它们不遵循面向对象的封装。 问题场景1 我致电commit(),我的更改是否已落实?如果我在“内部事务”中运行,则不是。管理外部事务的代码可以选择回滚,而我的更改将在我不知情或无法控制的情况下被丢弃。 例如: 模式A:开始交易 模型A:执行一些更改 模式B:开始交易(静音无操作) 模式B:执行一些更改 模式B:提交(静音无操作) 模型A:回滚(同时丢弃模型A更改和模型B更改) 模型B:WTF !?我的变更怎么了? 问题场景2 内部事务回滚,它可以丢弃外部事务进行的合法更改。当控制权返回到外部代码时,它认为其事务仍然处于活动状态并且可以提交。使用您的补丁程序,他们可以调用commit(),并且由于transDepth现在为0,因此它将$transDepth在不提交任何内容后静默设置为-1并返回true。 问题场景3 如果我致电commit()或rollback()没有活动的交易,它将设置$transDepth为-1。下一个beginTransaction()将级别增加到0,这意味着事务既不能回滚也不能提交。随后的调用commit()只会将事务递减至-1或更大,直到执行另一次多余的操作beginTransaction()以再次增加级别,您将永远无法提交。 基本上,试图在应用程序逻辑中管理事务而不允许数据库进行簿记是一个注定的想法。如果要求两个模型在一个应用程序请求中使用显式事务控制,则必须打开两个数据库连接,每个模型一个。然后,每个模型都可以拥有自己的活动事务,可以相互独立地进行提交或回滚。来源:stack overflow

保持可爱mmm 2020-05-17 19:56:39 0 浏览量 回答数 0

问题

阿里云服务器 如何处理网站高并发流量问题?(含教程)

元芳啊 2019-12-01 21:54:35 1511 浏览量 回答数 1

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?【Java问答】41期

剑曼红尘 2020-06-19 13:47:21 0 浏览量 回答数 0

问题

如何在阿里云ECS上搭建Microsoft SharePoint 2016

boxti 2019-12-01 21:45:22 1162 浏览量 回答数 0

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

问题

用户指南-监控与报警-设置监控频率

李沃晟 2019-12-01 21:39:00 822 浏览量 回答数 0

问题

词汇表是什么样的?(S-V)

轩墨 2019-12-01 22:06:08 2089 浏览量 回答数 0

回答

一、 Afinal官方介绍:Afinal是一个Android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。详情请通过以下网址查看。Afinal 是一个android的sqlite orm 和 ioc 框架。同时封装了android中的http框架,使其更加简单易用;使用finalBitmap,无需考虑bitmap在android中加载的时候oom的问题和快速滑动的时候图片加载位置错位等问题。Afinal的宗旨是简洁,快速。约定大于配置的方式。尽量一行代码完成所有事情。项目地址:https://github.com/yangfuhai/afinal功能:一个android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。优点:功能比较全面,文档完善,代码效率比较高。缺点:没有项目demo,框架的时间比较久,代码冗余比较多(这也是无可避免的),文档比较老跟不上代码更新进度。(这个评价是其他高人评的,他自己也有写了框架。我个人觉得以前Afinal算是经典了 用的人多)。二、 xUtilsGit地址:https://github.com/wyouflf/xUtilsxUtils:可以说是Afinal的升级版。xUtils 包含了很多实用的android工具。xUtils 支持大文件上传,更全面的http请求协议支持(10种谓词),拥有更加灵活的ORM,更多的事件注解支持且不受混淆影响...xUitls 最低兼容android 2.2 (api level 8)三、 ThinkAndroid项目地址:https://github.com/white-cat/ThinkAndroid官方介绍:ThinkAndroid是一个免费的开源的、简易的、遵循Apache2开源协议发布的Android开发框架,其开发宗旨是简单、快速的进行Android应用程序的开发,包含Android mvc、简易sqlite orm、ioc模块、封装Android httpclitent的http模块,具有快速构建文件缓存功能,无需考虑缓存文件的格式,都可以非常轻松的实现缓存,它还基于文件缓存模块实现了图片缓存功能,在android中加载的图片的时候,对oom的问题,和对加载图片错位的问题都轻易解决。他还包括了一个手机开发中经常应用的实用工具类,如日志管理,配置文件管理,android下载器模块,网络切换检测等等工具优点:功能看起来比较完善。个人觉得名字起的好。缺点:从2013年就停止维护了,没有项目文档。四、 LoonAndroid官方介绍:如果你想看ui方面的东西,这里没有,想要看牛逼的效果这里也没有。这只是纯实现功能的框架,它的目标是节省代码量,降低耦合,让代码层次看起来更清晰。整个框架一部分是网上的,一部分是我改的,为了适应我的编码习惯,还有一部分像orm完全是网上的组件。在此感谢那些朋友们。 整个框架式的初衷是为了偷懒,之前都是一个功能一个jar,做项目的时候拉进去,这样对于我来说依然还是比较麻烦。最后就导致我把所有的jar做成了一个工具集合包。 有很多框架都含有这个工具集合里的功能,这些不一定都好用,因为这是根据我个人使用喜欢来实现的,如果你们有自己的想法,可以自己把架包解压了以后,源码拉出来改动下。 目前很多框架都用到了注解,除了androidannotations没有入侵我们应用的代码以外,其他的基本上都有,要么是必须继承框架里面的activity,要么是必须在activity的oncreat里面调用某个方法。 整个框架式不同于androidannotations,Roboguice等ioc框架,这是一个类似spring的实现方式。在整应用的生命周期中找到切入点,然后对activity的生命周期进行拦截,然后插入自己的功能。开源地址:https://github.com/gdpancheng/LoonAndroid功能:1自动注入框架(只需要继承框架内的application既可)2图片加载框架(多重缓存,自动回收,最大限度保证内存的安全性)3网络请求模块(继承了基本上现在所有的http请求)4 eventbus(集成一个开源的框架)5验证框架(集成开源框架)6 json解析(支持解析成集合或者对象)7 数据库(不知道是哪位写的 忘记了)8 多线程断点下载(自动判断是否支持多线程,判断是否是重定向)9 自动更新模块10 一系列工具类有点:功能多缺点:文档方面五、 KJFrameForAndroid项目地址:https://github.com/kymjs/KJFrameForAndroid官方介绍:KJFrameForAndroid 又叫KJLibrary,是一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用;KJFrameForAndroid的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。我们提倡用最少的代码,完成最多的操作,用最高的效率,完成最复杂的功能。功能:一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用; KJFrameForAndroid开发框架的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。总共分为五大模块:UILibrary,UtilsLibrary,HttpLibrary,BitmapLibrary,DBLibrary。优点:功能比较全面,代码效率很高,文档完善,有项目demo,出来的比较晚借鉴了很多大型框架经验。缺点:项目文档是html页面,查看起来很不方便,项目交流平台没多少人说话(难道大神都是不说话的?)(这两个评价是KJFrameForAndroid的作者对自己的评价,个人觉得作者是个天才。他的评价可能刚写完网上发布后写的。我在给他更新评价。因为现在已经过去了几个月一直在时不时更新。功能很全,项目文档也很全面,而且代码里注释最多 这方面这个很难得。交流平台人很多挺热闹,作者希望更热闹这样框架越来越完善。对于初学者希望看到Demo更完善)六、 dhroid官方介绍:dhroid 是基于android 平台, 极速开发框架,其核心设计目标是开发迅速、代码量少、学习简单、功能强大、轻量级、易扩展.使你更快,更好的开发商业级别应用开源地址: http://git.oschina.net/tengzhinei/dhroid功能:1.Ioc容器: (用过spring的都知道)视图注入,对象注入,接口注入,解决类依赖关系2.Eventbus: android平台事件总线框架,独创延时事件,事件管理轻松3.Dhnet: 网络http请求的解决方案,使用简单,减少代码,自带多种网络访问缓存策略4.adapter模块: 数据绑定轻松,不用写多余的adapter,天生网络支持(一行代码搞定加载,刷新问题)5.DhDb: android中sqlite的最轻量orm框架(增删改查轻松搞定)6.Perference: android自带Perference 升级版,让你的Perference更强大,更方便工具集合 JSONUtil(安全处理json),ViewUtil(数据绑定更快) ThreadWorker(异步任务工具)...优点:功能全面,有demo,作者也是为公司开发的框架。缺点:文档方面现在不是很好,就eoe上的那些。七、 SmartAndroid项目地址:http://www.aplesson.com/smartAndroid/demos官方介绍:SmartAndroid是一套给 Android开发者使用的应用程序开发框架和工具包。它提供一套丰富的标准库以及简单的接口和逻辑结构,其目的是使开发人员更快速地进行项目开发。使用 SmartAndroid可以减少代码的编写量,并将你的精力投入到项目的创造性开发上。功能:SmartAndroid 拥有全范围的类库,可以完成大多数通常需要的APP开发任务,包括: 异步网络操作相关所有功能、强大的图片处理操作、轻量级ORM数据库Sqlite库、zip操作 、动画特效、Html等解析采集、事件总线EventBus/Otto、Gson(Json)、AQuery、主流所有UI控件(例如:ActionbarSherlock,SlidingMenu,BottomView,Actionbar,DragListView等10多种UI库)等。优点:功能非常全,超出你索要、文档完善(作者很全面,官方网站是web响应式网站,框架里功能有UI各种特效应该最全了,一直更新中)缺点:jar包大点?(功能多不可避免,不是问题),在线文档(随响应式的手机访问也方便,但是网速慢就不好了,页面打开不是很流畅)八、 andBase官方介绍:andbase是为Android开发者量身打造的一款开源类库产品开源地址:https://code.jd.com/zhaoqp2010_m/andbase功能:1.andbase中包含了大量的开发常用手段。如网络下载,多线程与线程池的管理,数据库ORM,图片缓存管理,图片文件下载上传,Http请求工具,常用工具类(字符串,日期,文件处理,图片处理工具类等),能够使您的应用在团队开发中减少冗余代码,很大的提高了代码的维护性与开发高效性,能很好的规避由于开发疏忽而导致常犯的错误。2.andbase封装了大量的常用控件。如list分页,下拉刷新,图片轮播,表格,多线程下载器,侧边栏,图片上传,轮子选择,图表,Tab滑动,日历选择器等。3.强大的AbActivity,您没有理由不继承它。继承它你能够获得一个简单强大可设置的操作栏,以及一系列的简单调用,如弹出框,提示框,进度框,副操作栏等。4.提供效率较高图片缓存管理策略,使内存大幅度节省,利用率提高,效率提高。程序中要管理大量的图片资源,andbase提供简单的方法,几步完成下载与显示,并支持缩放,裁剪,缓存功能。5.封装了大量常见工具类。包括日期,字符,文件,图片等各种处理函数,多而全。6.用andbase大量减少handler的使用,而采用回调函数,代码更整洁。handler会产生大量代码,并且不好维护,andbase对handler进行了封装。7.简单轻量支持注解自动建表的ORM框架(支持一/多对多的关联操作)。写sql,建表,工作量大,andbase提供更傻瓜异步增删改查工具类。8.异步请求http框架,网络请求标准化,支持文件上传下载,get,post,进度显示。包含了异步与http请求的工具类,实用。9.热情的支持群体。优点:功能很全,demo做的好 、API文档完善、接近完美缺点:希望文档更详细些。九、 AndroidAnnotations项目地址:https://github.com/excilys/androidannotations功能:完全注解框架,一切皆为注解:声明控件,绑定控件,设置监听,setcontentview,长按事件,异步线程,全部通过注解实现。优点:完全的注解,使开发起来更加便利,程序员写的代码也更少。缺点:文档是全英文的加上功能比较少没有具体研究,由于一切都是注解,感觉效率不高,不过根据官方介绍说并不是使用的反射加载,所以效率比一般注解高很多。十、 volley项目地址: https://github.com/smanikandan14/Volley-demo功能:Volley是Android平台上的网络通信库,能使网络通信更快,更简单,更健壮异步加载网络图片、网络数据优点:Google官方推荐,请看去年的开发者大会介绍。缺点:功能比较少,只有网络数据加载和网络图片加载十一、 android-async-http项目地址:https://github.com/loopj/android-async-http文档介绍:http://loopj.com/android-async-http/ (1) 在匿名回调中处理请求结果 (2) 在UI线程外进行http请求 (3) 文件断点上传 (4) 智能重试 (5) 默认gzip压缩 (6) 支持解析成Json格式 (7) 可将Cookies持久化到SharedPreferences 有点:很简单很实用缺点:功能比较少, (只是针对的功能不是什么缺点)最后来个总结吧: 以上的开发框架网上都可以下载源码,也有demo实例的。当然我没分析和对比框架的效率性能,但是都非常实用,其作者大部分是个人,都是些牛人或天才。你可以直接使用,也可以把有用跳出来用,至少有很多使用工具。如果有发现Bug,作者希望把bug交给他。 Afinal 和 xUtils简单实用但是demo和更新的问题。 KJFrameForAndroid 算是新出的,功能也多,效率也应该好,代码也注释多 用起来也很方便。Dhroid 作者自己公司的框架,也可以直接请教。SmartAndroid 强劲的框架功能俱全。andBase 出来早各个方面算是完整的吧。转自:http://blog.csdn.net/buddyuu/article/details/40503471

元芳啊 2019-12-02 00:55:54 0 浏览量 回答数 0

回答

参考:https://www.iteblog.com/archives/2530.html分布式和去中心化(Distributed and Decentralized)Cassandra 是分布式的,这意味着它可以运行在多台机器上,并呈现给用户一个一致的整体。事实上,在一个节点上运行 Cassandra 是没啥用的,虽然我们可以这么做,并且这可以帮助我们了解它的工作机制,但是你很快就会意识到,需要多个节点才能真正了解 Cassandra 的强大之处。它的很多设计和实现让系统不仅可以在多个节点上运行,更为多机架部署进行了优化,甚至一个 Cassandra 集群可以运行在分散于世界各地的数据中心上。你可以放心地将数据写到集群的任意一台机器上,Cassandra 都会收到数据。对于很多存储系统(比如 MySQL, Bigtable),一旦你开始扩展它,就需要把某些节点设为主节点,其他则作为从节点。但 Cassandra 是无中心的,也就是说每个节点都是一样的。与主从结构相反,Cassandra 的协议是 P2P 的,并使用 gossip 来维护存活或死亡节点的列表。关于 gossip 可以参见《分布式原理:一文了解 Gossip 协议》。去中心化这一事实意味着 Cassandra 不会存在单点失效。Cassandra 集群中的所有节点的功能都完全一样, 所以不存在一个特殊的主机作为主节点来承担协调任务。有时这被叫做服务器对称(server symmetry)。综上所述,Cassandra 是分布式、无中心的,它不会有单点失效,所以支持高可用性。弹性可扩展(Elastic Scalability)可扩展性是指系统架构可以让系统提供更多的服务而不降低使用性能的特性。仅仅通过给现有的机器增加硬件的容量、内存进行垂直扩展,是最简单的达到可扩展性的手段。而水平扩展则需要增加更多机器,每台机器提供全部或部分数据,这样所有主机都不必负担全部业务请求。但软件自己需要有内部机制来保证集群中节点间的数据同步。弹性可扩展是指水平扩展的特性,意即你的集群可以不间断的情况下,方便扩展或缩减服务的规模。这样,你就不需要重新启动进程,不必修改应用的查询,也无需自己手工重新均衡数据分布。在 Cassandra 里,你只要加入新的计算机,Cassandra 就会自动地发现它并让它开始工作。高可用和容错(High Availability and Fault Tolerance)从一般架构的角度来看,系统的可用性是由满足请求的能力来量度的。但计算机可能会有各种各样的故障,从硬件器件故障到网络中断都有可能。如何计算机都可能发生这些情况,所以它们一般都有硬件冗余,并在发生故障事件的情况下会自动响应并进行热切换。对一个需要高可用的系统,它必须由多台联网的计算机构成,并且运行于其上的软件也必须能够在集群条件下工作,有设备能够识别节点故障,并将发生故障的中端的功能在剩余系统上进行恢复。Cassandra 就是高可用的。你可以在不中断系统的情况下替换故障节点,还可以把数据分布到多个数据中心里,从而提供更好的本地访问性能,并且在某一数据中心发生火灾、洪水等不可抗灾难的时候防止系统彻底瘫痪。可调节的一致性(Tuneable Consistency)2000年,加州大学伯克利分校的 Eric Brewer 在 ACM 分布式计算原理会议提出了著名的 CAP 定律。CAP 定律表明,对于任意给定的系统,只能在一致性(Consistency)、可用性(Availability)以及分区容错性(Partition Tolerance)之间选择两个。关于 CAP 定律的详细介绍可参见《分布式系统一致性问题、CAP定律以及 BASE 理论》以及《一篇文章搞清楚什么是分布式系统 CAP 定理》。所以 Cassandra 在设计的时候也不得不考虑这些问题,因为分区容错性这个是每个分布式系统必须考虑的,所以只能在一致性和可用性之间做选择,而 Cassandra 的应用场景更多的是为了满足可用性,所以我们只能牺牲一致性了。但是根据 BASE 理论,我们其实可以通过牺牲强一致性获得可用性。Cassandra 提供了可调节的一致性,允许我们选定需要的一致性水平与可用性水平,在二者间找到平衡点。因为客户端可以控制在更新到达多少个副本之前,必须阻塞系统。这是通过设置副本因子(replication factor)来调节与之相对的一致性级别。通过副本因子(replication factor),你可以决定准备牺牲多少性能来换取一致性。 副本因子是你要求更新在集群中传播到的节点数(注意,更新包括所有增加、删除和更新操作)。客户端每次操作还必须设置一个一致性级别(consistency level)参数,这个参数决定了多少个副本写入成功才可以认定写操作是成功的,或者读取过程中读到多少个副本正确就可以认定是读成功的。这里 Cassandra 把决定一致性程度的权利留给了客户自己。所以,如果需要的话,你可以设定一致性级别和副本因子相等,从而达到一个较高的一致性水平,不过这样就必须付出同步阻塞操作的代价,只有所有节点都被更新完成才能成功返回一次更新。而实际上,Cassandra 一般都不会这么来用,原因显而易见(这样就丧失了可用性目标,影响性能,而且这不是你选择 Cassandra 的初衷)。而如果一个客户端设置一致性级别低于副本因子的话,即使有节点宕机了,仍然可以写成功。总体来说,Cassandra 更倾向于 CP,虽然它也可以通过调节一致性水平达到 AP;但是不推荐你这么设置。面向行(Row-Oriented)Cassandra 经常被看做是一种面向列(Column-Oriented)的数据库,这也并不算错。它的数据结构不是关系型的,而是一个多维稀疏哈希表。稀疏(Sparse)意味着任何一行都可能会有一列或者几列,但每行都不一定(像关系模型那样)和其他行有一样的列。每行都有一个唯一的键值,用于进行数据访问。所以,更确切地说,应该把 Cassandra 看做是一个有索引的、面向行的存储系统。Cassandra 的数据存储结构基本可以看做是一个多维哈希表。这意味着你不必事先精确地决定你的具体数据结构或是你的记录应该包含哪些具体字段。这特别适合处于草创阶段,还在不断增加或修改服务特性的应用。而且也特别适合应用在敏捷开发项目中,不必进行长达数月的预先分析。对于使用 Cassandra 的应用,如果业务发生变化了,只需要在运行中增加或删除某些字段就行了,不会造成服务中断。当然, 这不是说你不需要考虑数据。相反,Cassandra 需要你换个角度看数据。在 RDBMS 里, 你得首先设计一个完整的数据模型, 然后考虑查询方式, 而在 Cassandra 里,你可以首先思考如何查询数据,然后提供这些数据就可以了。灵活的模式(Flexible Schema)Cassandra 的早期版本支持无模式(schema-free)数据模型,可以动态定义新的列。 无模式数据库(如 Bigtable 和 MongoDB)在访问大量数据时具有高度可扩展性和高性能的优势。 无模式数据库的主要缺点是难以确定数据的含义和格式,这限制了执行复杂查询的能力。为了解决这些问题,Cassandra 引入了 Cassandra Query Language(CQL),它提供了一种通过类似于结构化查询语言(SQL)的语法来定义模式。 最初,CQL 是作为 Cassandra 的另一个接口,并且基于 Apache Thrift 项目提供无模式的接口。 在这个过渡阶段,术语“模式可选”(Schema-optional)用于描述数据模型,我们可以使用 CQL 的模式来定义。并且可以通过 Thrift API 实现动态扩展以此添加新的列。 在此期间,基础数据存储模型是基于 Bigtable 的。从 3.0 版本开始,不推荐使用基于 Thrift API 的动态列创建的 API,并且 Cassandra 底层存储已经重新实现了,以更紧密地与 CQL 保持一致。 Cassandra 并没有完全限制动态扩展架构的能力,但它的工作方式却截然不同。 CQL 集合(比如 list、set、尤其是 map)提供了在无结构化的格式里面添加内容的能力,从而能扩展现有的模式。CQL 还提供了改变列的类型的能力,以支持 JSON 格式的文本的存储。因此,描述 Cassandra 当前状态的最佳方式可能是它支持灵活的模式。高性能(High Performance)Cassandra 在设计之初就特别考虑了要充分利用多处理器和多核计算机的性能,并考虑在分布于多个数据中心的大量这类服务器上运行。它可以一致而且无缝地扩展到数百台机器,存储数 TB 的数据。Cassandra 已经显示出了高负载下的良好表现,在一个非常普通的工作站上,Cassandra 也可以提供非常高的写吞吐量。而如果你增加更多的服务器,你还可以继续保持 Cassandra 所有的特性而无需牺牲性能。

封神 2019-12-02 02:00:50 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播