• 关于 单处理器结构有什么用 的搜索结果

问题

【Java问答学堂】13期 redis 和 memcached 有什么区别?

剑曼红尘 2020-05-06 14:37:41 0 浏览量 回答数 1

回答

【Java问答学堂】13期 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试官心理分析 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理和特点,就是 redis 实际上是个单线程工作模型,你要是这个都不知道,那后面玩儿 redis 的时候,出了问题岂不是什么都不知道? 还有可能面试官会问问你 redis 和 memcached 的区别,但是 memcached 是早些年各大互联网公司常用的缓存方案,但是现在近几年基本都是 redis,没什么公司用 memcached 了。 面试题剖析 redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作。如果需要缓存能够支持更复杂的结构和操作, redis 会是不错的选择。 redis 原生支持集群模式 在 redis3.x 版本中,便能支持 cluster 模式,而 memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据。 性能对比 由于 redis 只使用单核,而 memcached 可以使用多核,所以平均每一个核上 redis 在存储小数据时比 memcached 性能更高。而在 100k 以上的数据中,memcached 性能要高于 redis。虽然 redis 最近也在存储大数据的性能上进行优化,但是比起 memcached,还是稍有逊色。 redis 的线程模型 redis 内部使用文件事件处理器 file event handler,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,将产生事件的 socket 压入内存队列中,事件分派器根据 socket 上的事件类型来选择对应的事件处理器进行处理。 文件事件处理器的结构包含 4 个部分: 多个 socketIO 多路复用程序文件事件分派器事件处理器(连接应答处理器、命令请求处理器、命令回复处理器) 多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将产生事件的 socket 放入队列中排队,事件分派器每次从队列中取出一个 socket,根据 socket 的事件类型交给对应的事件处理器进行处理。 来看客户端与 redis 的一次通信过程: 要明白,通信是通过 socket 来完成的,不懂的同学可以先去看一看 socket 网络编程。 首先,redis 服务端进程初始化的时候,会将 server socket 的 AE_READABLE 事件与连接应答处理器关联。 客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。文件事件分派器从队列中获取 socket,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE 事件与命令请求处理器关联。 假设此时客户端发送了一个 set key value 请求,此时 redis 中的 socket01 会产生 AE_READABLE 事件,IO 多路复用程序将 socket01 压入队列,此时事件分派器从队列中获取到 socket01 产生的 AE_READABLE 事件,由于前面 socket01 的 AE_READABLE 事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value 并在自己内存中完成 key value 的设置。操作完成后,它会将 socket01 的 AE_WRITABLE 事件与命令回复处理器关联。 如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE 事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok,之后解除 socket01 的 AE_WRITABLE 事件与命令回复处理器的关联。 这样便完成了一次通信。关于 Redis 的一次通信过程,推荐读者阅读《Redis 设计与实现——黄健宏》进行系统学习。 为啥 redis 单线程模型也能效率这么高? 纯内存操作。核心是基于非阻塞的 IO 多路复用机制。C 语言实现,一般来说,C 语言实现的程序“距离”操作系统更近,执行速度相对会更快。单线程反而避免了多线程的频繁上下文切换问题,预防了多线程可能产生的竞争问题。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊? 【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊? 【Java问答学堂】11期 es 生产集群的部署架构是什么?每个索引的数据量大概有多少? 【Java问答学堂】12期 项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?

剑曼红尘 2020-05-06 14:37:53 0 浏览量 回答数 0

问题

Redis 和 Memcached 的区别?Redis 的线程模型是什么?【Java问答学堂】31期

剑曼红尘 2020-06-03 20:28:14 28 浏览量 回答数 1

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

问题

【精品问答】Python数据爬取面试题库100问

珍宝珠 2019-12-01 21:55:53 6502 浏览量 回答数 3

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

没有简易算法,只有坐着慢慢算,算不死你。。。。。。哈哈哈1.除锈工程定额适用于什么工程。定额适用于金属表面的手工、动力工具、干喷射除锈及化学除锈工程。 手工除锈指操作人员利用钢丝刷、铁砂布、破布等对锈蚀的构件进行除锈处理。动力工具除锈指操作人员利用电动工具、钢丝刷、砂轮片、破布进行除锈处理。喷射除锈指操作人员利用鼓风机、除锈喷砂机、空气压缩机、轴流风机对锈蚀器具进行除锈处理。化学除锈指操作人员利用化学反应原理对锈蚀构件进行除锈处理。 2.哪些除锈已综合考虑在定额内?各种管件、阀件及设备上人孔、管口凸凹部分的除锈已综合考虑在定额内。 3.喷射除锈按Sa2.5级标准确定,当变更级别标准时,其人工、材料和机械应如何计算?喷射除锈按Sa2.5级标准确定。若变更级别标准,如按Sa3级则人工、材料、机械乘以系数1.1,按Sa2级或Sal级则人工、材料、机械乘以系数0.9。 4.手工、动力工具除锈可分为哪几种?区分标准是什么?手工、动力工具除锈分轻、中、重三种,区分标准为: 轻锈:部分氧化皮开始破裂脱落,红锈开始发生。 中锈:部分氧化皮破裂脱落,呈堆粉状,除锈后用肉眼能见到腐蚀小凹点。 重锈:大部分氧化皮脱落,呈片状锈层或凸起的锈斑,除锈后出现麻点或麻坑。 5.喷射除锈标准有哪几级?喷射除锈标准: Sa3级:除净金属表面上油脂、氧化皮、锈蚀产物等一切杂物,呈现均一的金属本色,并有一定的粗糙度。 Sa2.5级:完全除去金属表面的油脂、氧化皮、锈蚀产物等一切杂物,可见阴影条纹、斑痕等残留物不得超过单位面积的5%。 Sa2级:除去金属表面上的油脂、锈皮、松疏氧化皮、浮锈等杂物,允许有紧附的氧化皮。 6.什么是微锈?发生微锈时执行什么定额?定额不包括除微锈(标准:氧化皮完全紧附,仅有少量锈点),发生时执行轻锈定额乘以系数0.2。 7.因施工需要发生的二次除锈,应如何处理?因施工需要发生的二次除锈,应另行计算。 8.各种除锈有何优缺点?各种除锈的优缺点分别为: (1)手工除锈施工方法简单,可以在小构件和复杂外形构件上处理,比较经济,但工作效率低,大面积施工困难,除锈不彻底,氧化皮不易去除。 (2)风动工具除锈工作效率和质量均高于手工除锈,而且施工费用不太高,但劳动条件差,不适用于大面积除锈。 (3)干法喷砂除锈工作效率高,除锈效果好,比较彻底,但劳动条件差,粉尘量大,施工费用较高。 (4)湿法喷涂除锈粉尘少,工作条件比干法喷砂好,但工作效率比干喷砂低,处理后表面容易出现红锈,施工费用较高。 9.如何计算设备、管道除锈、刷油工程量?(1)设备简体、管道表面积计算公式:。 S=πDL (1—1) 式中 π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、人孔、管口凹凸部分,不再另外计算。 10.如何计算设备、管道防腐蚀工程量?(I)设备筒体、管道表面积计算公式为: S=πDL (1—2) 式中 π——圆周率,取3.14; D——设备简体、管道直径(m); L——设备筒体、管道高或延长米(m)。 (2)设备上的人孔、管口所占面积不另计算,同时在计算设备表面积时也不扣除。其工程量计算方法见下例。 11.什么是阀们、弯头和法兰。如何计算其防腐蚀工程量。 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°, 180°弯头也称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积: S=πD×2.5DKN (1-3) 式中 D——直径; K一一系数,取1.05; N——阀门个数。 (2)弯头表面积: S=πD×1.5DK×2π/B×N (1-4) 式中 D——直径; K——系数,取1.05 N——弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积: S=πD×1.5DKN (1-5) 式中 D——直径; K——系数,取1.05; N——法兰个数。 (4)设备和管道法兰翻边防腐蚀工程量计算式。 S=π(D+A)A (1-6) 式中D——直径; A——法兰翻边宽。 12.如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式: V=π(D+1.033δ)X1.033δL (1-7) S=π(D+2.18δ+0.0082)L (1-8) 式中 V——绝热层体积; S——绝热层面积; D——直径; 1.033、2.1——调整系数; d——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: 1)单管伴热或双管伴热(管径相同,夹角小于900时): D`=D1+D2+(10~20mm) 式中 D`——伴热管道综合值; D1——主管道直径; D2——伴热管道直径; (10~20mm)——主管道与伴热管道之间的间隙。 2) 双管伴热(管径相同,夹角大于90°时): D`=D1+1.5D2+(10~20mm) (1-10) 3) 双管伴热(管径不同,夹角小于90°时): D`=D1+1.5D2+(10~20mm) (1—1) 式中 D`——伴热管道综合值; D1——主管道直径。 将上述D`计算结果分别代人公式(1—7)、(1—8)计算出伴热管道的绝热层、防潮层和保护层工程量。 (3)设备封头绝热、防潮和保护层工程量计算式: V=[(D+1.033δ)/2]2π×1.033δ×1.6N (1-12) S=[(D+2.1δ)/2] 2π×1.6N (1-13) 13.什么是绝热工程?绝热工程是将绝热材料用人工或机械方法捆绑、缠绕或浇注、喷镀在设备、管道、金属结构或其他物体表面上以达到绝热效果的施工全过程。 14.刷油工程和防腐蚀工程中设备、管道,一般金属结构、管廊钢和H型钢分别以什么为计量单位?刷油工程和防腐蚀工程中设备、管道以“m2”为计量单位。一般金属结构和管廊钢结构以“kg”为计量单位;H型钢制结构(包括大于400mm以上的型钢)以“10 m2”为计量单位。 15.如何计算设备、管道内壁防腐蚀工程量?计算设备、管道内壁防腐蚀工程量时,当壁厚大于等于10mm时,按其内径计算;当壁厚小于10mm时,按其外径计算。 16.为什么喷射除锈在变更级别标准时,其人工、材料和机械应乘以相关系数?一般除锈的下一步就是涂层,涂层的基层处理要求与涂料的品种、建筑构件的材料和重要性有关。例如,富锌类涂料对金属基层除锈的要求比较高,带锈底漆可以在不彻底除锈的基层上涂装,湿固化型涂料对基层或环境要求一定的湿度,重要的、高耸的钢结构或处于严重腐蚀条件下的钢结构的基层除锈要求较高等。在确定涂料方案时,应包括对基层处理的要求。实际问题实际分析,尽量减少不必要的浪费,当除锈级别较高时,人工、材料、机械费用为了定量处理乘以一个系数1.1,反之,当除锈级别不够高时,可乘以系数0.9。 17.如何计算人工除锈工程量? 人工除锈时,管道和金属结构应区分锈蚀不同等级;设备区分锈蚀不同等级和直径大小;管道和设备均以“10 m2”为单位计算;金属结构以质量“100kg”为单位计算。 18.如何计算砂轮机除锈工程量?砂轮机除锈,即半机械化除锈。金属面区分锈蚀等级以“10 m2”计算。 19.如何计算喷砂除锈工程量?工程量计算: (1)设备区分直径大小,按内壁,外壁划分子项目,以“10 m2”为单位计算。 (2)管道按内、外壁划分子项目,以“10 m2”为单位计算。 (3)金属结构按其质量,以“100kg”为单位计算。 (4)气柜有分喷石英砂和喷河砂之分,分别按水槽壁板、水槽底板、中罩板、金属结构划分子目,除金属结构按质量以“100kg”为单位计算外,其余均按面积以“10m2”为单位计算。 20.如何计算化学除锈工程量?化学除锈,又称酸洗除锈。金属表面分为一般和特殊两种,分别以10m2为单位计算。 21.钢筋除锈有哪些方法?什么情况下应降级使用或剔除不用?钢筋的表面应洁净。油渍、漆污和用锤敲击时能剥落的浮皮、铁锈等应在使用前清除干净。在焊接前,焊点处的水锈应清除干净。 钢筋的除锈,一般可通过以下两种方法:一是在钢筋冷拉或钢丝调直过程中除锈,对大量钢筋的除锈较为经济省力;二是用机械方法除锈,如采用电动除锈机除锈,对钢筋的局部除锈较为方便。此外,还可采用手工除锈(用钢丝刷、砂盘)、喷砂和酸洗除锈等。 电动除锈机,如图1—3所示。该机的圆盘钢丝刷有成品供应,也可用废钢丝蝇头拆开编成,其直径为20~30cm、厚度为5~ 15cm、转速为1000r/min左右,电动机功率为1.0~1.5kw。为了减少除锈时灰尘飞扬,应装设排尘罩和排尘管道。

游客886 2019-12-02 01:21:41 0 浏览量 回答数 0

回答

我们先通过一个简单的代码来了解该问题。同步问题我们使用一个简单的结构体 Counter,该结构体包含一个值以及一个方法用来改变这个值: 1 struct Counter { 2 int value; 3 4 void increment(){ 5 ++value; 6 } 7}; 然后启动多个线程来修改结构体的值: 1 int main(){ 2 Counter counter; 3 4 std::vector<std::thread> threads; 5 for(int i = 0; i < 5; ++i){ 6 threads.push_back(std::thread([&counter](){ 7 for(int i = 0; i < 100; ++i){ 8 counter.increment(); 9 } 10 })); 11 } 12 13 for(auto& thread : threads){ 14 thread.join(); 15 } 16 17 std::cout << counter.value << std::endl; 18 19 return 0; 20} 我们启动了5个线程来增加计数器的值,每个线程增加了100次,然后在线程结束时打印计数器的值。但我们运行这个程序的时候,我们是希望它会答应500,但事实不是如此,没人能确切知道程序将打印什么结果,下面是在我机器上运行后打印的数据,而且每次都不同: 442 500 477 400 422 487 问题的原因在于改变计数器值并不是一个原子操作,需要经过下面三个操作才能完成一次计数器的增加:首先读取 value 的值然后将 value 值加1将新的值赋值给 value但你使用单线程来运行这个程序的时候当然没有任何问题,因此程序是顺序执行的,但在多线程环境中就有麻烦了,想象下下面这个执行顺序:Thread 1 : 读取 value, 得到 0, 加 1, 因此 value = 1Thread 2 : 读取 value, 得到 0, 加 1, 因此 value = 1Thread 1 : 将 1 赋值给 value,然后返回 1Thread 2 : 将 1 赋值给 value,然后返回 1这种情况我们称之为多线程的交错执行,也就是说多线程可能在同一个时间点执行相同的语句,尽管只有两个线程,交错的现象也很明显。如果你有更多的线程、更多的操作需要执行,那么这个交错是必然发生的。有很多方法来解决线程交错的问题:信号量 Semaphores原子引用 Atomic referencesMonitorsCondition codesCompare and swap在这篇文章中我们将学习如何使用信号量来解决这个问题。信号量也有很多人称之为互斥量(Mutex),同一个时间只允许一个线程获取一个互斥对象的锁,通过 Mutex 的简单属性就可以用来解决交错的问题。使用 Mutex 让计数器程序是线程安全的 在 C++11 线程库中,互斥量包含在 mutex 头文件中,对应的类是 std::mutex,有两个重要的方法 mutex:lock() 和 unlock() ,从名字上可得知是用来锁对象以及释放锁对象。一旦某个互斥量被锁,那么再次调用 lock() 返回堵塞值得该对象被释放。为了让我们刚才的计数器结构体是线程安全的,我们添加一个 set:mutext 成员,并在每个方法中通过 lock()/unlock() 方法来进行保护: struct Counter { std::mutex mutex; int value; Counter() : value(0) {} void increment(){ mutex.lock(); ++value; mutex.unlock(); } }; 然后我们再次测试这个程序,打印的结果就是 500 了,而且每次都一样。异常和锁 现在让我们来看另外一种情况,想象我们的的计数器有一个减操作,并在值为0的时候抛出异常: struct Counter { int value; Counter() : value(0) {} void increment(){ ++value; } void decrement(){ if(value == 0){ throw "Value cannot be less than 0"; } --value; } }; 然后我们不需要修改类来访问这个结构体,我们创建一个封装器: struct ConcurrentCounter { std::mutex mutex; Counter counter; void increment(){ mutex.lock(); counter.increment(); mutex.unlock(); } void decrement(){ mutex.lock(); counter.decrement(); mutex.unlock(); } }; 大部分时候该封装器运行挺好,但是使用 decrement 方法的时候就会有异常发生。这是一个大问题,一旦异常发生后,unlock 方法就没被调用,导致互斥量一直被占用,然后整个程序就一直处于堵塞状态(死锁),为了解决这个问题我们需要用 try/catch 结构来处理异常情况: void decrement(){ mutex.lock(); try { counter.decrement(); } catch (std::string e){ mutex.unlock(); throw e; } mutex.unlock(); } 这个代码并不难,但看起来很丑,如果你一个函数有 10 个退出点,你就必须为每个退出点调用一次 unlock 方法,或许你可能在某个地方忘掉了 unlock ,那么各种悲剧即将发生,悲剧发生将直接导致程序死锁。接下来我们看如何解决这个问题。自动锁管理 当你需要包含整段的代码(在我们这里是一个方法,也可能是一个循环体或者其他的控制结构),有这么一种好的解决方法可以避免忘记释放锁,那就是 std::lock_guard.这个类是一个简单的智能锁管理器,但创建 std::lock_guard 时,会自动调用互斥量对象的 lock() 方法,当 lock_guard 析构时会自动释放锁,请看下面代码: struct ConcurrentSafeCounter { std::mutex mutex; Counter counter; void increment(){ std::lock_guard<std::mutex> guard(mutex); counter.increment(); } void decrement(){ std::lock_guard<std::mutex> guar(mutex); mutex.unlock(); } };

a123456678 2019-12-02 01:56:44 0 浏览量 回答数 0

回答

楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 ###### 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 ######相互嵌套耦合,牵一发动全身######楼主的代码有很浓重的其他语言的味道######楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。###### 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 ###### 引用来自“中山野鬼”的答案 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 我认为你说的是“责任单一原则”,让每个函数、每个模块责任都尽可能地单一,然后通过类似搭积木一样的灵活组合,完成不同的任务。就像UNIX下的命令,每个单独命令都只完成一件事情,通过管道等把这些功能单一的命令组织在一起,协作完成一个复杂的任务! 我个人认为这是一种设计思想,和源自Lambda演算的函数式风格并没有太大关系。 ###### 引用来自“杨同学”的答案 楼主的代码有很浓重的其他语言的味道 因为其他语言也能写“面向对象风格”和“函数式风格”的代码,并且看起来比C更“专业”。 ###### 引用来自“优游幻世”的答案 楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。 嗯,将数据和操作数据的方法集中在一起会让代码更容易维护。 就像我在六楼回复里提到的,很多C模块往往还会更进一步,把容器和对象也分离开来。这样容器能容纳各种不同的对象,对象则只保留数据本身,不关心和其他对象是以什么形式组织在一起的。 ###### 引用来自“redraiment”的答案 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 第二个问题其实是不同设计思想的核心问题。你举的例子只能说是些简单的系统中的模块。如果是个大系统中的底层模块特别是引擎方面(会产生数据加工的),这种方法最终组合出来的系统,会比面向对象出来的类套类更复杂。说实话,还不如用面相对象实现。 面向对象,是将数据和操作,进行耦合,并且封装在类里面。这种做法是有它的好处的。这样不会导致数据和操作之间出现问题。而c如果这么写,说实话还不如用c++的类进行实现,因为类描述这些逻辑更为清晰,而且语法和编译器可以帮你做大量的事情。 而相反面向数据,是一批数据(不是一个具体数据单元),存在一批不同操作。如何分析数据之间的无关性和前后操作的无关性是重点,这两个分析清楚,那么并发计算,和分步骤计算就得以实现。并发计算不谈,分步骤计算的思想就是原子操作,或者微指令集管道设计思想。这样设计,可以令复杂的数据处理,根据流程细分到步骤,每个步骤细分到子步骤单元,而每个子步骤单元只负责处理,不负责数据的格式问题。 上面这段的设计思想和面向对象是反过来的,数据和操作松耦合。数据的特殊性导致的操作,是通过各种操作模块组合调用实现(这些操作模块可以看作上面独立的子步骤单元和外部特定数据结构无关的)。 这样做的好处是,模块的设计,可以独立进行,让外部数据格式依赖自身,而不是操作对应数据格式(面向对象是后者,成员变量类型决定了成员函数的实际操作),模块复用率高,同时是整批数据处理,只要数据流程(调用不同模块的系统设计良好),运行效率会很高。而且便于并发操作。 并发操作并不单单是一批数据,分层几组让同一个操作的多个进程处理。流水线技术的使用,一样可以实现。 这里顺带喷下hadoop。貌似hadoop的map reduce并没有在流水线方面有什么突破的思路,这块需要考虑到不同计算单元之间数据流动的费用, hadoop整天扯分布计算,根本不考虑数据整体计算周期内的相关性的问题,基本上都是推给用户自己处理,而用户应该无法控制具体计算硬件设备,最后能有好效果就扯淡了。

kun坤 2020-06-10 09:29:21 0 浏览量 回答数 0

回答

楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 ###### 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 ######相互嵌套耦合,牵一发动全身######楼主的代码有很浓重的其他语言的味道######楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。###### 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 ###### 引用来自“中山野鬼”的答案 另外,补充说一下,楼主的函数式风格,和我的函数式风格理解相差颇大。我的理解如下,所谓函数式风格,是将一批数据的若干处理,分解为正交串接的多个子步骤,每个步骤都是对整体数据的某个操作的实现。楼主的方案实质是对一个处理,可以挂接不同的操作方法。 我的理解函数式的风格在于每个独立模块处理极少的有逻辑关联的操作,可以看作针对一个数据池的原子操作。依次将数据池的数据灌入不同的独立模块,实现数据处理。当然差异的模块调用顺序和不同处理模块的组合,可以有不同的效果。 但无论如何,都是函数与数据松耦合的设计。这个和面向对象是反过来的。 我认为你说的是“责任单一原则”,让每个函数、每个模块责任都尽可能地单一,然后通过类似搭积木一样的灵活组合,完成不同的任务。就像UNIX下的命令,每个单独命令都只完成一件事情,通过管道等把这些功能单一的命令组织在一起,协作完成一个复杂的任务! 我个人认为这是一种设计思想,和源自Lambda演算的函数式风格并没有太大关系。 ###### 引用来自“杨同学”的答案 楼主的代码有很浓重的其他语言的味道 因为其他语言也能写“面向对象风格”和“函数式风格”的代码,并且看起来比C更“专业”。 ###### 引用来自“优游幻世”的答案 楼主文章不错,我看现在的C模块基本就是你所说的面向对象风格,其实就是用数据结构组织起来。 嗯,将数据和操作数据的方法集中在一起会让代码更容易维护。 就像我在六楼回复里提到的,很多C模块往往还会更进一步,把容器和对象也分离开来。这样容器能容纳各种不同的对象,对象则只保留数据本身,不关心和其他对象是以什么形式组织在一起的。 ###### 引用来自“redraiment”的答案 引用来自“中山野鬼”的答案 楼主这是节点遍历时,通过函数指针动态加载节点处理函数的设计方法。这个几年前写过,后来不这么写了。主要有以下几个问题。 1、每个节点被访问时,操作可能不一样,通用的函数指针的入口参数,要么可变参,要么多套,入口指针,都是很繁琐的事情,把代码逻辑结构搞的会更复杂。 2、操作函数和操作对象没有绑定,这个在规模开发时,很容易引起混乱。这样设计的代码,我自己到后面都觉得混乱,更别说基于我的架子让别人开发,楼主你的例子不够复杂可能感觉不到。 3、上面两个问题,也导致,代码复用率不高。 现在我的设计思想,如果是基础的数据结构,如同你这个例子中就是个线形表,我都全部独立成模版,在头文件中。 特定数据的处理不会和处理方法绑定,而是调用不同通用模块来处理,这样是尽可能的让数据和处理松耦合。而关联数据再怎么关联,处理时,也是一类整体处理的,同时一批数据再怎么复合,总可以拆成不同大部分串联处理(例如,读取、处理、写出,通过增加cache的方式可以分批分步骤完成,而不是读、处理、写 、一个完整操作周期,仅针对一个单元)。所以这类数据的整体处理落在通用模块里,通过数据和处理的紧耦合的提升效率。 你说的问题#1和文章中函数式风格一节抱怨employee_read无法和Callback兼容的问题是类似的,说到底就是因为C语言静态类型等语法特性导致了对函数式风格支持不好;同时也反向说明了为什么大多数支持函数式风格的语言会选择“动态类型”,并且支持灵活的可变个数参数等特性,都是为了辅助函数式风格的编码。 #2这一点我不太同意。C语言里虽然没有类的概念把数据和函数在语法层次上绑定在一起,但通过规范地命令提供隐喻,比如代码中,所有操作Employee对象的函数都以employee_前缀开头。而且,这些接口之间也有层级关系,符合下表描述的抽象屏障。如果你把Employee相关的声明、操作独立出来放在一个文件里,然后头文件里只放置公开的接口信息,这样就变得简洁多了。 最高层:使用API的程序 main 基于Employee的接口实现的高级操作 employee_print, employee_adjust_salary 基于最底层的C,对象Employee的最基础的操作,包括读入、释放、遍历等 employee_read, employee_free, foreach, with_open_file C语言本身提供的最底层的工具 struct Empoloyee, for, free, calloc... 例如C语言自带的操作文件的接口同样符合这样的抽象屏障:我们只需要使用fopen、fclose、fread、fwrite等一系列操作FILE对象的接口,无需关心FILE结构体里有些什么内容,表示什么意思,以及各个接口是怎么实现的。 #3的确是一个问题,而且我在文章里也可以没有提及,因为这不是这篇文章要表达的重点。它最本质的问题在于将集合的数据结构和单个对象的信息保存在同一个地方。其他语言,例如Java的java.util.*容器、C++的STL容器,都符合你的设计,将容器这个单一职责抽象出来。当然,我自己实际的工作也是这样做的。 第二个问题其实是不同设计思想的核心问题。你举的例子只能说是些简单的系统中的模块。如果是个大系统中的底层模块特别是引擎方面(会产生数据加工的),这种方法最终组合出来的系统,会比面向对象出来的类套类更复杂。说实话,还不如用面相对象实现。 面向对象,是将数据和操作,进行耦合,并且封装在类里面。这种做法是有它的好处的。这样不会导致数据和操作之间出现问题。而c如果这么写,说实话还不如用c++的类进行实现,因为类描述这些逻辑更为清晰,而且语法和编译器可以帮你做大量的事情。 而相反面向数据,是一批数据(不是一个具体数据单元),存在一批不同操作。如何分析数据之间的无关性和前后操作的无关性是重点,这两个分析清楚,那么并发计算,和分步骤计算就得以实现。并发计算不谈,分步骤计算的思想就是原子操作,或者微指令集管道设计思想。这样设计,可以令复杂的数据处理,根据流程细分到步骤,每个步骤细分到子步骤单元,而每个子步骤单元只负责处理,不负责数据的格式问题。 上面这段的设计思想和面向对象是反过来的,数据和操作松耦合。数据的特殊性导致的操作,是通过各种操作模块组合调用实现(这些操作模块可以看作上面独立的子步骤单元和外部特定数据结构无关的)。 这样做的好处是,模块的设计,可以独立进行,让外部数据格式依赖自身,而不是操作对应数据格式(面向对象是后者,成员变量类型决定了成员函数的实际操作),模块复用率高,同时是整批数据处理,只要数据流程(调用不同模块的系统设计良好),运行效率会很高。而且便于并发操作。 并发操作并不单单是一批数据,分层几组让同一个操作的多个进程处理。流水线技术的使用,一样可以实现。 这里顺带喷下hadoop。貌似hadoop的map reduce并没有在流水线方面有什么突破的思路,这块需要考虑到不同计算单元之间数据流动的费用, hadoop整天扯分布计算,根本不考虑数据整体计算周期内的相关性的问题,基本上都是推给用户自己处理,而用户应该无法控制具体计算硬件设备,最后能有好效果就扯淡了。

kun坤 2020-06-09 22:08:58 0 浏览量 回答数 0

问题

Netty实现原理浅析 1、总体结构 2、网络模型 3、 buffer 4、Ch?400报错

爱吃鱼的程序员 2020-06-04 11:53:36 3 浏览量 回答数 1

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 448858 浏览量 回答数 12

问题

【教程免费下载】深入理解计算机系统(英文版第3版)

玄学酱 2019-12-01 22:08:27 3332 浏览量 回答数 1

回答

1 js 的基本数据类型? 2 JavaScript 有几种类型的值? 3 什么是堆?什么是栈?它们之间有什么区别和联系? 4 内部属性 [Class] 是什么? 5 介绍 js 有哪些内置对象? 6 undefined 与 undeclared 的区别? 7 null 和 undefined 的区别? 8 如何获取安全的 undefined 值? 9 说几条写 JavaScript 的基本规范? 10 JavaScript 原型,原型链? 有什么特点? 11 js 获取原型的方法? 12 在 js 中不同进制数字的表示方式? 13 js 中整数的安全范围是多少? 14 typeof NaN 的结果是什么? 15 isNaN 和 Number.isNaN 函数的区别? 16 Array 构造函数只有一个参数值时的表现? 17 其他值到字符串的转换规则? 18 其他值到数字值的转换规则? 19 其他值到布尔类型的值的转换规则? 20 {} 和 [] 的 valueOf 和 toString 的结果是什么? 21 什么是假值对象? 22 ~ 操作符的作用? 23 解析字符串中的数字和将字符串强制类型转换为数字的返回结果都是数字,它们之间的区别是什么? 24 + 操作符什么时候用于字符串的拼接? 25 什么情况下会发生布尔值的隐式强制类型转换? 26 || 和 && 操作符的返回值? 27 Symbol 值的强制类型转换? 28 == 操作符的强制类型转换规则? 29 如何将字符串转化为数字,例如 '12.3b'? 30 如何将浮点数点左边的数每三位添加一个逗号,如 12000000.11 转化为『12,000,000.11』? 31 常用正则表达式? 32 生成随机数的各种方法? 33 如何实现数组的随机排序? 34 javascript 创建对象的几种方式? 35 JavaScript 继承的几种实现方式? 36 寄生式组合继承的实现? 37 Javascript 的作用域链? 38 谈谈 This 对象的理解。 39 eval 是做什么的? 40 什么是 DOM 和 BOM? 41 写一个通用的事件侦听器函数。 42 事件是什么?IE 与火狐的事件机制有什么区别? 如何阻止冒泡? 43 三种事件模型是什么? 44 事件委托是什么? 45 ['1', '2', '3'].map(parseInt) 答案是多少? 46 什么是闭包,为什么要用它? 47 javascript 代码中的 'use strict'; 是什么意思 ? 使用它区别是什么? 48 如何判断一个对象是否属于某个类? 49 instanceof 的作用? 50 new 操作符具体干了什么呢?如何实现? 51 Javascript 中,有一个函数,执行时对象查找时,永远不会去查找原型,这个函数是? 52 对于 JSON 的了解? 53 [].forEach.call($$(''),function(a){a.style.outline='1px solid #'+(~~(Math.random()(1<<24))).toString(16)}) 能解释一下这段代码的意思吗? 54 js 延迟加载的方式有哪些? 55 Ajax 是什么? 如何创建一个 Ajax? 56 谈一谈浏览器的缓存机制? 57 Ajax 解决浏览器缓存问题? 58 同步和异步的区别? 59 什么是浏览器的同源政策? 60 如何解决跨域问题? 61 服务器代理转发时,该如何处理 cookie? 62 简单谈一下 cookie ? 63 模块化开发怎么做? 64 js 的几种模块规范? 65 AMD 和 CMD 规范的区别? 66 ES6 模块与 CommonJS 模块、AMD、CMD 的差异。 67 requireJS 的核心原理是什么?(如何动态加载的?如何避免多次加载的?如何 缓存的?) 68 JS 模块加载器的轮子怎么造,也就是如何实现一个模块加载器? 69 ECMAScript6 怎么写 class,为什么会出现 class 这种东西? 70 documen.write 和 innerHTML 的区别? 71 DOM 操作——怎样添加、移除、移动、复制、创建和查找节点? 72 innerHTML 与 outerHTML 的区别? 73 .call() 和 .apply() 的区别? 74 JavaScript 类数组对象的定义? 75 数组和对象有哪些原生方法,列举一下? 76 数组的 fill 方法? 77 [,,,] 的长度? 78 JavaScript 中的作用域与变量声明提升? 79 如何编写高性能的 Javascript ? 80 简单介绍一下 V8 引擎的垃圾回收机制 81 哪些操作会造成内存泄漏? 82 需求:实现一个页面操作不会整页刷新的网站,并且能在浏览器前进、后退时正确响应。给出你的技术实现方案? 83 如何判断当前脚本运行在浏览器还是 node 环境中?(阿里) 84 把 script 标签放在页面的最底部的 body 封闭之前和封闭之后有什么区别?浏览器会如何解析它们? 85 移动端的点击事件的有延迟,时间是多久,为什么会有? 怎么解决这个延时? 86 什么是“前端路由”?什么时候适合使用“前端路由”?“前端路由”有哪些优点和缺点? 87 如何测试前端代码么? 知道 BDD, TDD, Unit Test 么? 知道怎么测试你的前端工程么(mocha, sinon, jasmin, qUnit..)? 88 检测浏览器版本版本有哪些方式? 89 什么是 Polyfill ? 90 使用 JS 实现获取文件扩展名? 91 介绍一下 js 的节流与防抖? 92 Object.is() 与原来的比较操作符 '==='、'==' 的区别? 93 escape,encodeURI,encodeURIComponent 有什么区别? 94 Unicode 和 UTF-8 之间的关系? 95 js 的事件循环是什么? 96 js 中的深浅拷贝实现? 97 手写 call、apply 及 bind 函数 98 函数柯里化的实现 99 99. 为什么 0.1 + 0.2 != 0.3?如何解决这个问题? 100 原码、反码和补码的介绍 101 toPrecision 和 toFixed 和 Math.round 的区别? 102 什么是 XSS 攻击?如何防范 XSS 攻击? 103 什么是 CSP? 104 什么是 CSRF 攻击?如何防范 CSRF 攻击? 105 什么是 Samesite Cookie 属性? 106 什么是点击劫持?如何防范点击劫持? 107 SQL 注入攻击? 108 什么是 MVVM?比之 MVC 有什么区别?什么又是 MVP ? 109 vue 双向数据绑定原理? 110 Object.defineProperty 介绍? 111 使用 Object.defineProperty() 来进行数据劫持有什么缺点? 112 什么是 Virtual DOM?为什么 Virtual DOM 比原生 DOM 快? 113 如何比较两个 DOM 树的差异? 114 什么是 requestAnimationFrame ? 115 谈谈你对 webpack 的看法 116 offsetWidth/offsetHeight,clientWidth/clientHeight 与 scrollWidth/scrollHeight 的区别? 117 谈一谈你理解的函数式编程? 118 异步编程的实现方式? 119 Js 动画与 CSS 动画区别及相应实现 120 get 请求传参长度的误区 121 URL 和 URI 的区别? 122 get 和 post 请求在缓存方面的区别 123 图片的懒加载和预加载 124 mouseover 和 mouseenter 的区别? 125 js 拖拽功能的实现 126 为什么使用 setTimeout 实现 setInterval?怎么模拟? 127 let 和 const 的注意点? 128 什么是 rest 参数? 129 什么是尾调用,使用尾调用有什么好处? 130 Symbol 类型的注意点? 131 Set 和 WeakSet 结构? 132 Map 和 WeakMap 结构? 133 什么是 Proxy ? 134 Reflect 对象创建目的? 135 require 模块引入的查找方式? 136 什么是 Promise 对象,什么是 Promises/A+ 规范? 137 手写一个 Promise 138 如何检测浏览器所支持的最小字体大小? 139 怎么做 JS 代码 Error 统计? 140 单例模式模式是什么? 141 策略模式是什么? 142 代理模式是什么? 143 中介者模式是什么? 144 适配器模式是什么? 145 观察者模式和发布订阅模式有什么不同? 146 Vue 的生命周期是什么? 147 Vue 的各个生命阶段是什么? 148 Vue 组件间的参数传递方式? 149 computed 和 watch 的差异? 150 vue-router 中的导航钩子函数 151 两个router 的区别? 152 vue 常用的修饰符? 153 computed 和 watch 区别? 154 keep-alive 组件有什么作用? 155 vue 中 mixin 和 mixins 区别? 156 开发中常用的几种 Content-Type ? 157 如何封装一个 javascript 的类型判断函数? 158 如何判断一个对象是否为空对象? 159 使用闭包实现每隔一秒打印 1,2,3,4 160 手写一个 jsonp 161 手写一个观察者模式? 162 EventEmitter 实现 163 一道常被人轻视的前端 JS 面试题 164 如何确定页面的可用性时间,什么是 Performance API? 165 js 中的命名规则 166 js 语句末尾分号是否可以省略? 167 Object.assign() 168 Math.ceil 和 Math.floor 169 js for 循环注意点 170 一个列表,假设有 100000 个数据,这个该怎么办? 171 js 中倒计时的纠偏实现? 172 进程间通信的方式? 173 如何查找一篇英文文章中出现频率最高的单词? 174 174道 JavaScript 面试题,合集

剑曼红尘 2020-04-02 14:05:35 0 浏览量 回答数 0

回答

更换服务器~100个是单服务器最大的负荷了你用的是镶嵌式的,要选择服务器机组的那种~刀片式服务器~然后oracl数据库支持分开安装。同步处理~ 你肯定买的是架式服务器~######装ORACLE服务器是刀片式的,6核至强 24G的内存 应该不是服务器瓶颈######oracl装在独立的一台服务器上的话,只支持小形企业和地、市级企业运行 你说的情况,可以理解你的数据量非常庞大,,有可能是省、国家级的数据量了~~ 让你单位给你单独开个服务器房间,更换服务器机柜然后购买刀片式服务器做服务器阵列机组~######数据量倒不会太大,一天1G不到,问题是很多存储过程的逻辑很复杂,一条线程调用存储过程,要等待很久才会返回,直接导致工作线程速度很慢,数据进入速度太快,工作异常状态频繁出现。######必须要实时的存入数据库吗?不能先缓存到服务器,然后让服务器慢慢去处理吗?或者直接将数据记入日志,然后sqlload?######回复 @xinzaibing : 我想到一个蛋疼的方式:数据写文件,文件内容定期入库,程序定期读取数据库计算的结果缓存到内存中。不知道你具体需求,瞎琢磨一个。######回复 @asdfsx : 公司领导一致认为内存不可靠,断电、程序异常什么的...存在内存的数据就没了...真是蛋疼啊######回复 @xinzaibing : 如果数据量不大的话,还有一个方案就是都保存在内存里,然后定时把内存里的结果同步到数据库里。数据库的逻辑挪到程序里..........这个方案比较累啊。另外就是缓存可以加个优先级高低的判断。######目前要求是必须要实时入库,采取写日志文件的方法也可以。 这些数据有一个特点,在某一个时刻会有一个突然出现的峰值,然后又慢慢变少,但是这个时间是不固定的,由于只实用了一条双缓冲队列,所有需要紧急处理的数据和非紧急处理的数据都在队列里,而如果遇到非紧急数据,处理了很长的时间,就直接导致后面的紧急数据失效了...或者导致嵌入式程序判断服务端未收到数据,进而采取重发,导致一条队列里有非常多重复的数据。######我可能会使用数据写入日志文件,然后定时将日志入库的办法操作######大概意思可能是多线程对数据库表的操作导致数据表锁定,性能损失在内耗上了。。那数据表采用行级锁呢?(这样会增大系统开销)我是菜鸟,求教  ######回复 @xinzaibing : 这个应该是属于最初的设计问题,hohoho######回复 @asdfsx : 目前我也在往这方面考虑,如果数据分类处理。那就得大改结构了...唉######回复 @xinzaibing : 建议根据上传的不同数据进行不同的处理,不要一股脑的都放在缓存中,如果是心跳的话,应该立即响应,如果是要处理的数据的话,才需要进行缓存等待处理######ORACLE默认就是行级锁的应该.. 主要是数据的写入速度远远小于数据上传的速度,导致了缓存溢出,紧急数据不能得到及时处理,大量数据出现超时失效,无法对嵌入式的采集器程序作出及时的心跳相应和其他回复(因为都在队列中,无法处理,无心跳的话嵌入式采集器会误认为服务器断线)。最终导致单台服务器接入数据的嵌入式设备的数量太少,不满足需求。######去年刚毕业,由于公司小,一个人搞后台,压力太大啊...大家指指招呗~ @中山野鬼######今天到图书馆看了一本书《让Orcale跑的更快点》,上面说可以从如下几个方面优化: 数据库方面:建适当的索引,固定长度;查询条件比较尽量简化;不同的表放在不同的磁盘里…… 服务层:增大缓存,(有没有数据库连接池不知道你能用上不) 软件层:对Java使用PaperStatement 囫囵吞枣就记得这么多了。。。哭~~######非常感谢...我去看看这本书 :)######我不清楚你的数据采集的内容是什么。不过看的出,对实时性要求高。换我,基本上就一个思路。 1、做个前段服务器,什么事情都不干,只进行数据的压缩。然后所有数据库和计算操作,放到后端。 至于并发,你这种 1W=100台服务器的方式治标不治本。######@中山野鬼 是说对数据进行预处理,提取有效内容?还是就是zip?######回复 @asdfsx : 不一样的。而是数据压缩。采样数据中间,信息密度不会太大的。######老鬼的思路有点像我说的那个数据写日志文件,或者内存缓存定时入库...........都被否定了啊######@xinzaibing 还有一个建议,上传的数据加一个验证,如果上传的数据已经插入缓存,就不要再次插入了。无脑插入插到崩也不是什么好主意啊######回复 @asdfsx : 要回复的,要处理成功后才回复,存库失败或者某些异常导致服务端崩溃重启,就不进行回复,客户端会持续地进行重发,重发到一定次数后,存本地,等恢复正常后发送存本地的数据

kun坤 2020-06-09 11:56:38 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 34170 浏览量 回答数 10

问题

【精品问答】前端开发必懂之JS技术二百问

茶什i 2019-12-01 22:05:04 146 浏览量 回答数 0

回答

X-Engine是阿里云数据库产品事业部自研的联机事务处理OLTP(On-Line Transaction Processing)数据库存储引擎。作为自研数据库POLARDB的存储引擎之一,已经广泛应用在阿里集团内部诸多业务系统中,包括交易历史库、钉钉历史库等核心应用,大幅缩减了业务成本,同时也作为双十一大促的关键数据库技术,挺过了数百倍平时流量的冲击。 为什么设计一个新的存储引擎 X-Engine的诞生是为了应对阿里内部业务的挑战,早在2010年,阿里内部就大规模部署了MySQL数据库,但是业务量的逐年爆炸式增长,数据库面临着极大的挑战: 极高的并发事务处理能力(尤其是双十一的流量突发式暴增)。 超大规模的数据存储。 这两个问题虽然可以通过扩展数据库节点的分布式方案解决,但是堆机器不是一个高效的手段,我们更想用技术的手段将数据库性价比提升到极致,实现以少量资源换取性能大幅提高的目的。 传统数据库架构的性能已经被仔细的研究过,数据库领域的泰斗,图灵奖得主Michael Stonebreaker就此写过一篇论文 《OLTP Through the Looking Glass, and What We Found There》 ,指出传统关系型数据库,仅有不到10%的时间是在做真正有效的数据处理工作,剩下的时间都浪费在其它工作上,例如加锁等待、缓冲管理、日志同步等。 造成这种现象的原因是因为近年来我们所依赖的硬件体系发生了巨大的变化,例如多核(众核)CPU、新的处理器架构(Cache/NUMA)、各种异构计算设备(GPU/FPGA)等,而架构在这些硬件之上的数据库软件却没有太大的改变,例如使用B-Tree索引的固定大小的数据页(Page)、使用ARIES算法的事务处理与数据恢复机制、基于独立锁管理器的并发控制等,这些都是为了慢速磁盘而设计,很难发挥出现有硬件体系应有的性能。 基于以上原因,阿里开发了适合当前硬件体系的存储引擎,即X-Engine。 X-Engine架构 全新架构的X-Engine存储引擎不仅可以无缝对接兼容MySQL(得益于MySQL Pluginable Storage Engine特性),同时X-Engine使用分层存储架构。 因为目标是面向大规模的海量数据存储,提供高并发事务处理能力和降低存储成本,在大部分大数据量场景下,数据被访问的机会是不均等的,访问频繁的热数据实际上占比很少,X-Engine根据数据访问频度的不同将数据划分为多个层次,针对每个层次数据的访问特点,设计对应的存储结构,写入合适的存储设备。 X-Engine使用了LSM-Tree作为分层存储的架构基础,并进行了重新设计: 热数据层和数据更新使用内存存储,通过内存数据库技术(Lock-Free index structure/append only)提高事务处理的性能。 流水线事务处理机制,把事务处理的几个阶段并行起来,极大提升了吞吐。 访问频度低的数据逐渐淘汰或是合并到持久化的存储层次中,并结合多层次的存储设备(NVM/SSD/HDD)进行存储。 对性能影响比较大的Compaction过程做了大量优化: 拆分数据存储粒度,利用数据更新热点较为集中的特征,尽可能的在合并过程中复用数据。 精细化控制LSM的形状,减少I/O和计算代价,有效缓解了合并过程中的空间增大。 同时使用更细粒度的访问控制和缓存机制,优化读的性能。 技术特点 利用FPGA硬件加速Compaction过程,使得系统上限进一步提升。这个技术属首次将硬件加速技术应用到在线事务处理数据库存储引擎中,相关论文 《FPGA-Accelerated Compactions for LSM-based Key Value Store》 已经被2020年的顶级会议FAST'20接收。 通过数据复用技术减少数据合并代价,同时减少缓存淘汰带来的性能抖动。 使用多事务处理队列和流水线处理技术,减少线程上下文切换代价,并计算每个阶段任务量配比,使整个流水线充分流转,极大提升事务处理性能。相对于其他类似架构的存储引擎(例如RocksDB),X-Engine的事务处理性能有10倍以上提升。 X-Engine使用的Copy-on-write技术,避免原地更新数据页,从而对只读数据页面进行编码压缩,相对于传统存储引擎(例如InnoDB),使用X-Engine可以将存储空间降低至10%~50%。 Bloom Filter快速判定数据是否存在,Surf Filter判断范围数据是否存在,Row Cache缓存热点行,加速读取性能。 LSM基本逻辑 LSM的本质是所有写入操作直接以追加的方式写入内存。每次写到一定程度,即冻结为一层(Level),并写入持久化存储。所有写入的行,都以主键(Key)排序好后存放,无论是在内存中,还是持久化存储中。在内存中即为一个排序的内存数据结构(Skiplist、B-Tree、etc),在持久化存储也作为一个只读的全排序持久化存储结构。 普通的存储系统若要支持事务处理,需要加入一个时间维度,为每个事务构造出一个不受并发干扰的独立视域。例如存储引擎会对每个事务定序并赋予一个全局单调递增的事务版本号(SN),每个事务中的记录会存储这个SN以判断独立事务之间的可见性,从而实现事务的隔离机制。 如果LSM存储结构持续写入,不做其他的动作,那么最终会成为如下结构。 这种结构对于写入是非常友好的,只要追加到最新的内存表中即完成,为实现故障恢复,只需记录Redo Log,因为新数据不会覆盖旧版本,追加记录会形成天然的多版本结构。 但是如此累积,冻结的持久化层次越来越多,会对查询会产生不利的影响。例如对同一个key,不同事务提交产生的多版本记录会散落在各个层次中;不同的key也会散落在不同层次中。读操作需要查找各个层并合并才能得到最终结果。 因此LSM引入了Compaction操作解决这个问题,Compaction操作有2种作用: 控制LSM层次形状 一般的LSM形状都是层次越低,数据量越大(倍数关系),目的是为了提升读性能。 通常存储系统的数据访问都有局部性,大量的访问都集中在少部分数据上,这也是缓存系统能有效工作的基本前提。在LSM存储结构中,如果把访问频率高的数据尽可能放在较高的层次上,存放在快速存储设备中(例如NVM、DRAM),而把访问频率低的数据放在较低层次中,存放在廉价慢速存储设备中。这就是X-Engine的冷热分层概念。 合并数据 Compaction操作不断的把相邻层次的数据合并,并写入更低层次。合并的过程实际上是把要合并的相邻两层或多层的数据读出来,按key排序,相同的key如果有多个版本,只保留新的版本(比当前正在执行的活跃事务中最小版本号新),丢掉旧版本数据,然后写入新的层,这个操作非常耗费资源。 合并数据除了考虑冷热分层以外,还需要考虑其他维度,例如数据的更新频率,大量的多版本数据在查询的时候会浪费更多的I/O和CPU,因此需要优先进行合并以减少记录的版本数量。X-Engine综合考虑了各种策略形成自己的Compaction调度机制。 高度优化的LSM X-Engine的memory tables使用了无锁跳表(Locked-free SkipList),并发读写的性能较高。在持久化层如何实现高效,就需要讨论每层的细微结构。 数据组织 X-Engine的每层都划分成固定大小的Extent,存放每个层次中的数据的一个连续片段(Key Range)。为了快速定位Extent,为每层Extents建立了一套索引(Meta Index),所有这些索引,加上所有的memory tables(active/immutable)一起组成了一个元数据树(Metadata Tree),root节点为Metadata Snapshot,这个树结构类似于B-Tree。 X-Engine中除了当前的正在写入的active memory tables以外,其他结构都是只读的,不会被修改。给定某个时间点,例如LSN=1000,上图中的Metadata Snapshot 1引用到的结构即包含了LSN=1000时的所有的数据的快照,因此这个结构被称为Snapshot。 即便是Metadata结构本身,也是一旦生成就不会被修改。所有的读请求都是以Snapshot为入口,这是X-Engine实现Snapshot级别隔离的基础。前文说过随着数据写入,累积数据越多,会执行Compaction操作、冻结memory tables等,这些操作都是用Copy-on-write实现,即每次都将修改产生的结果写入新的Extent,然后生成新的Meta Index结构,最终生成新的Metadata Snapshot。 例如执行一次Compaction操作会生成新的Metadata Snapshot,如下图所示。 可以看到Metadata Snapshot 2相对于Metadata Snapshot 1并没有太多的变化,仅仅修改了发生变更的一些叶子节点和索引节点。 事务处理 得益于LSM的轻量化写机制,写入操作固然是其明显的优势,但是事务处理不只是把更新的数据写入系统那么简单,还要保证ACID(原子性、一致性、隔离性、持久性),涉及到一整套复杂的流程。X-Engine将整个事务处理过程分为两个阶段: 读写阶段 校验事务的冲突(写写冲突、读写冲突),判断事务是否可以执行、回滚重试或者等锁。如果事务冲突校验通过,则把修改的所有数据写入Transaction Buffer。 提交阶段 写WAL、写内存表,以及提交并返回用户结果,这里面既有I/O操作(写日志、返回消息),也有CPU操作(拷贝日志、写内存表)。 为了提高事务处理吞吐,系统内会有大量事务并发执行,单个I/O操作比较昂贵,大部分存储引擎会倾向于聚集一批事务一起提交,称为Group Commit,能够合并I/O操作。但是一组事务提交的过程中,还是有大量等待过程的,例如写入日志到磁盘过程中,除了等待落盘无所事事。 X-Engine为了进一步提升事务处理的吞吐,使用流水线技术,把提交阶段分为4个独立的更精细的阶段: 拷贝日志到缓冲区(Log Buffer) 日志落盘(Log Flush) 写内存表(Write memory table) 提交返回(Commit) 事务到了提交阶段,可以自由选择执行流水线中任意一个阶段,只要流水线任务的大小划分得当,就能充分并行起来,流水线处于接近满载状态。另外这里利用的是事务处理的线程,而非后台线程,每个线程在执行的时候,选择流水线中的一个阶段执行任务,或者空闲后处理其他请求,没有等待,也无需切换,充分利用了每个线程的能力。 读操作 LSM处理多版本数据的方式是新版本数据记录会追加在老版本数据后面,从物理上看,一条记录不同的版本可能存放在不同的层,在查询的时候需要找到合适的版本(根据事务隔离级别定义的可见性规则),一般查询都是查找最新的数据,总是由最高的层次往低层次找。 对于单条记录的查找而言,一旦找到便可以终止,如果记录在比较高的层次,例如memory tables,很快便可以返回;如果记录已经落入了很低的层次,那就得逐层查找,也许Bloom Filter可以跳过某些层次加快这个旅程,但毕竟还是有很多的I/O操作。X-Engine针对单记录查询引入了Row Cache,在所有持久化的层次的数据之上做了一个缓存,在memory tables中没有命中的单行查询,在Row Cache之中也会被捕获。Row Cache需要保证缓存了所有持久化层次中最新版本的记录,而这个记录是可能发生变化的,例如每次flush将只读的memory tables写入持久化层次时,就需要恰当的更新Row Cache中的缓存记录,这个操作比较微妙,需要精心的设计。 对于范围扫描而言,因为没法确定一个范围的key在哪个层次中有数据,只能扫描所有的层次做合并之后才能返回最终的结果。X-Engine采用了一系列的手段,例如SuRF(SIGMOD'18 best paper)提供range scan filter减少扫描层数、异步I/O与预取。 读操作中最核心的是缓存设计,Row Cache负责单行查询,Block Cache负责Row Cache的漏网之鱼,也用来进行范围扫描。由于LSM的Compaction操作会一次更新大量的Data Block,导致Block Cache中大量数据短时间内失效,导致性能的急剧抖动,因此X-Engine做了很多的优化: 减少Compaction的粒度。 减少Compaction过程中改动的数据。 Compaction过程中针对已有的缓存数据做定点更新。 Compaction Compaction操作是比较重要的,需要把相邻层次交叉的Key Range数据读取合并,然后写到新的位置。这是为前面简单的写入操作付出的代价。X-Engine为优化这个操作重新设计了存储结构。 如前文所述,X-Engine将每一层的数据划分为固定大小的Extent,一个Extent相当于一个小而完整的排序字符串表(SSTable),存储了一个层次中的一个连续片段,连续片段又进一步划分为一个个连续的更小的片段Data Block,相当于传统数据库中的Page,只不过Data Block是只读而且不定长的。 回看并对比Metadata Snapshot 1和Metadata Snapshot 2,可以发现Extent的设计意图。每次修改只需要修改少部分有交叠的数据,以及涉及到的Meta Index节点。两个Metadata Snapshot结构实际上共用了大量的数据结构,这被称为数据复用技术(Data Reuse),而Extent大小正是影响数据复用率的关键,Extent作为一个完整的被复用的物理结构,需要尽可能的小,这样与其他Extent数据交叉点会变少,但又不能非常小,否则需要索引过多,管理成本太大。 X-Engine中Compaction的数据复用是非常彻底的,假设选取两个相邻层次(Level1, Level2)中的交叉的Key Range所涵盖的Extents进行合并,合并算法会逐行进行扫描,只要发现任意的物理结构(包括Data Block和Extent)与其他层中的数据没有交叠,则可以进行复用。只不过Extent的复用可以修改Meta Index,而Data Block的复用只能拷贝,即便如此也可以节省大量的CPU。 一个典型的数据复用在Compaction中的过程可以参考下图。 可以看出数据复用的过程是在逐行迭代的过程中完成的,不过这种精细的数据复用带来另一个副作用,即数据的碎片化,所以在实际操作的过程中也需要根据实际情况进行分析。 数据复用不仅给Compaction操作本身带来好处,降低操作过程中的I/O与CPU消耗,更对系统的综合性能产生一系列的影响。例如c、Compaction过程中数据不用完全重写,大大降低了写入时空间的增大;大部分数据保持原样,数据缓存不会因为数据更新而失效,减少合并过程中因缓存失效带来的读性能抖动。 实际上,优化Compaction的过程只是X-Engine工作的一部分,更重要的是优化Compaction调度的策略,选什么样的Extent、定义compaction任务的粒度、执行的优先级等,都会对整个系统性能产生影响,可惜并不存在什么完美的策略,X-Engine积累了一些经验,定义了很多规则,而探索更合理的调度策略是未来一个重要方向。 适用场景 请参见X-Engine最佳实践。 如何使用X-Engine 请参见使用X-Engine引擎。 后续发展 作为MySQL的存储引擎,持续地提升MySQL系统的兼容能力是一个重要目标,后续会根据需求的迫切程度逐步加强原本取消的一些功能,例如外键,以及对一些数据结构、索引类型的支持。 X-Engine作为存储引擎,核心的价值还在于性价比,持续提升性能降低成本,是一个长期的根本目标,X-Engine还在Compaction调度、缓存管理与优化、数据压缩、事务处理等方向上进行深层次的探索。 X-Engine不仅仅局限为一个单机的数据库存储引擎,未来还将作为自研分布式数据库POLARDB分布式版本的核心,提供企业级数据库服务。

游客yl2rjx5yxwcam 2020-03-08 13:24:40 0 浏览量 回答数 0

回答

一、基础篇 1.1、Java基础 面向对象的特征:继承、封装和多态 final, finally, finalize 的区别 Exception、Error、运行时异常与一般异常有何异同 请写出5种常见到的runtime exception int 和 Integer 有什么区别,Integer的值缓存范围 包装类,装箱和拆箱 String、StringBuilder、StringBuffer 重载和重写的区别 抽象类和接口有什么区别 说说反射的用途及实现 说说自定义注解的场景及实现 HTTP请求的GET与POST方式的区别 Session与Cookie区别 列出自己常用的JDK包 MVC设计思想 equals与==的区别 hashCode和equals方法的区别与联系 什么是Java序列化和反序列化,如何实现Java序列化?或者请解释Serializable 接口的作用 Object类中常见的方法,为什么wait notify会放在Object里边? Java的平台无关性如何体现出来的 JDK和JRE的区别 Java 8有哪些新特性 1.2、Java常见集合 List 和 Set 区别 Set和hashCode以及equals方法的联系 List 和 Map 区别 Arraylist 与 LinkedList 区别 ArrayList 与 Vector 区别 HashMap 和 Hashtable 的区别 HashSet 和 HashMap 区别 HashMap 和 ConcurrentHashMap 的区别 HashMap 的工作原理及代码实现,什么时候用到红黑树 多线程情况下HashMap死循环的问题 HashMap出现Hash DOS攻击的问题 ConcurrentHashMap 的工作原理及代码实现,如何统计所有的元素个数 手写简单的HashMap 看过那些Java集合类的源码 1.3、进程和线程 线程和进程的概念、并行和并发的概念 创建线程的方式及实现 进程间通信的方式 说说 CountDownLatch、CyclicBarrier 原理和区别 说说 Semaphore 原理 说说 Exchanger 原理 ThreadLocal 原理分析,ThreadLocal为什么会出现OOM,出现的深层次原理 讲讲线程池的实现原理 线程池的几种实现方式 线程的生命周期,状态是如何转移的 可参考:《Java多线程编程核心技术》 1.4、锁机制 说说线程安全问题,什么是线程安全,如何保证线程安全 重入锁的概念,重入锁为什么可以防止死锁 产生死锁的四个条件(互斥、请求与保持、不剥夺、循环等待) 如何检查死锁(通过jConsole检查死锁) volatile 实现原理(禁止指令重排、刷新内存) synchronized 实现原理(对象监视器) synchronized 与 lock 的区别 AQS同步队列 CAS无锁的概念、乐观锁和悲观锁 常见的原子操作类 什么是ABA问题,出现ABA问题JDK是如何解决的 乐观锁的业务场景及实现方式 Java 8并法包下常见的并发类 偏向锁、轻量级锁、重量级锁、自旋锁的概念 可参考:《Java多线程编程核心技术》 1.5、JVM JVM运行时内存区域划分 内存溢出OOM和堆栈溢出SOE的示例及原因、如何排查与解决 如何判断对象是否可以回收或存活 常见的GC回收算法及其含义 常见的JVM性能监控和故障处理工具类:jps、jstat、jmap、jinfo、jconsole等 JVM如何设置参数 JVM性能调优 类加载器、双亲委派模型、一个类的生命周期、类是如何加载到JVM中的 类加载的过程:加载、验证、准备、解析、初始化 强引用、软引用、弱引用、虚引用 Java内存模型JMM 1.6、设计模式 常见的设计模式 设计模式的的六大原则及其含义 常见的单例模式以及各种实现方式的优缺点,哪一种最好,手写常见的单利模式 设计模式在实际场景中的应用 Spring中用到了哪些设计模式 MyBatis中用到了哪些设计模式 你项目中有使用哪些设计模式 说说常用开源框架中设计模式使用分析 动态代理很重要!!! 1.7、数据结构 树(二叉查找树、平衡二叉树、红黑树、B树、B+树) 深度有限算法、广度优先算法 克鲁斯卡尔算法、普林母算法、迪克拉斯算法 什么是一致性Hash及其原理、Hash环问题 常见的排序算法和查找算法:快排、折半查找、堆排序等 1.8、网络/IO基础 BIO、NIO、AIO的概念 什么是长连接和短连接 Http1.0和2.0相比有什么区别,可参考《Http 2.0》 Https的基本概念 三次握手和四次挥手、为什么挥手需要四次 从游览器中输入URL到页面加载的发生了什么?可参考《从输入URL到页面加载发生了什么》 二、数据存储和消息队列 2.1、数据库 MySQL 索引使用的注意事项 DDL、DML、DCL分别指什么 explain命令 left join,right join,inner join 数据库事物ACID(原子性、一致性、隔离性、持久性) 事物的隔离级别(读未提交、读以提交、可重复读、可序列化读) 脏读、幻读、不可重复读 数据库的几大范式 数据库常见的命令 说说分库与分表设计 分库与分表带来的分布式困境与应对之策(如何解决分布式下的分库分表,全局表?) 说说 SQL 优化之道 MySQL遇到的死锁问题、如何排查与解决 存储引擎的 InnoDB与MyISAM区别,优缺点,使用场景 索引类别(B+树索引、全文索引、哈希索引)、索引的原理 什么是自适应哈希索引(AHI) 为什么要用 B+tree作为MySQL索引的数据结构 聚集索引与非聚集索引的区别 遇到过索引失效的情况没,什么时候可能会出现,如何解决 limit 20000 加载很慢怎么解决 如何选择合适的分布式主键方案 选择合适的数据存储方案 常见的几种分布式ID的设计方案 常见的数据库优化方案,在你的项目中数据库如何进行优化的 2.2、Redis Redis 有哪些数据类型,可参考《Redis常见的5种不同的数据类型详解》 Redis 内部结构 Redis 使用场景 Redis 持久化机制,可参考《使用快照和AOF将Redis数据持久化到硬盘中》 Redis 集群方案与实现 Redis 为什么是单线程的? 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级 使用缓存的合理性问题 Redis常见的回收策略 2.3、消息队列 消息队列的使用场景 消息的重发补偿解决思路 消息的幂等性解决思路 消息的堆积解决思路 自己如何实现消息队列 如何保证消息的有序性 三、开源框架和容器 3.1、SSM/Servlet Servlet的生命周期 转发与重定向的区别 BeanFactory 和 ApplicationContext 有什么区别 Spring Bean 的生命周期 Spring IOC 如何实现 Spring中Bean的作用域,默认的是哪一个 说说 Spring AOP、Spring AOP 实现原理 动态代理(CGLib 与 JDK)、优缺点、性能对比、如何选择 Spring 事务实现方式、事务的传播机制、默认的事务类别 Spring 事务底层原理 Spring事务失效(事务嵌套),JDK动态代理给Spring事务埋下的坑,可参考《JDK动态代理给Spring事务埋下的坑!》 如何自定义注解实现功能 Spring MVC 运行流程 Spring MVC 启动流程 Spring 的单例实现原理 Spring 框架中用到了哪些设计模式 Spring 其他产品(Srping Boot、Spring Cloud、Spring Secuirity、Spring Data、Spring AMQP 等) 有没有用到Spring Boot,Spring Boot的认识、原理 MyBatis的原理 可参考《为什么会有Spring》 可参考《为什么会有Spring AOP》 3.2、Netty 为什么选择 Netty 说说业务中,Netty 的使用场景 原生的 NIO 在 JDK 1.7 版本存在 epoll bug 什么是TCP 粘包/拆包 TCP粘包/拆包的解决办法 Netty 线程模型 说说 Netty 的零拷贝 Netty 内部执行流程 Netty 重连实现 3.3、Tomcat Tomcat的基础架构(Server、Service、Connector、Container) Tomcat如何加载Servlet的 Pipeline-Valve机制 可参考:《四张图带你了解Tomcat系统架构!》 四、分布式 4.1、Nginx 请解释什么是C10K问题或者知道什么是C10K问题吗? Nginx简介,可参考《Nginx简介》 正向代理和反向代理. Nginx几种常见的负载均衡策略 Nginx服务器上的Master和Worker进程分别是什么 使用“反向代理服务器”的优点是什么? 4.2、分布式其他 谈谈业务中使用分布式的场景 Session 分布式方案 Session 分布式处理 分布式锁的应用场景、分布式锁的产生原因、基本概念 分布是锁的常见解决方案 分布式事务的常见解决方案 集群与负载均衡的算法与实现 说说分库与分表设计,可参考《数据库分库分表策略的具体实现方案》 分库与分表带来的分布式困境与应对之策 4.3、Dubbo 什么是Dubbo,可参考《Dubbo入门》 什么是RPC、如何实现RPC、RPC 的实现原理,可参考《基于HTTP的RPC实现》 Dubbo中的SPI是什么概念 Dubbo的基本原理、执行流程 五、微服务 5.1、微服务 前后端分离是如何做的? 微服务哪些框架 Spring Could的常见组件有哪些?可参考《Spring Cloud概述》 领域驱动有了解吗?什么是领域驱动模型?充血模型、贫血模型 JWT有了解吗,什么是JWT,可参考《前后端分离利器之JWT》 你怎么理解 RESTful 说说如何设计一个良好的 API 如何理解 RESTful API 的幂等性 如何保证接口的幂等性 说说 CAP 定理、BASE 理论 怎么考虑数据一致性问题 说说最终一致性的实现方案 微服务的优缺点,可参考《微服务批判》 微服务与 SOA 的区别 如何拆分服务、水平分割、垂直分割 如何应对微服务的链式调用异常 如何快速追踪与定位问题 如何保证微服务的安全、认证 5.2、安全问题 如何防范常见的Web攻击、如何方式SQL注入 服务端通信安全攻防 HTTPS原理剖析、降级攻击、HTTP与HTTPS的对比 5.3、性能优化 性能指标有哪些 如何发现性能瓶颈 性能调优的常见手段 说说你在项目中如何进行性能调优 六、其他 6.1、设计能力 说说你在项目中使用过的UML图 你如何考虑组件化、服务化、系统拆分 秒杀场景如何设计 可参考:《秒杀系统的技术挑战、应对策略以及架构设计总结一二!》 6.2、业务工程 说说你的开发流程、如何进行自动化部署的 你和团队是如何沟通的 你如何进行代码评审 说说你对技术与业务的理解 说说你在项目中遇到感觉最难Bug,是如何解决的 介绍一下工作中的一个你认为最有价值的项目,以及在这个过程中的角色、解决的问题、你觉得你们项目还有哪些不足的地方 6.3、软实力 说说你的优缺点、亮点 说说你最近在看什么书、什么博客、在研究什么新技术、再看那些开源项目的源代码 说说你觉得最有意义的技术书籍 工作之余做什么事情、平时是如何学习的,怎样提升自己的能力 说说个人发展方向方面的思考 说说你认为的服务端开发工程师应该具备哪些能力 说说你认为的架构师是什么样的,架构师主要做什么 如何看待加班的问题

徐刘根 2020-03-31 11:22:08 0 浏览量 回答数 0

回答

原生XML扩展 我更喜欢使用其中一个原生XML扩展,因为它们与PHP捆绑在一起,通常比所有第三方库更快,并且在标记上给我所需的所有控制权。 DOM DOM扩展允许您使用PHP 5通过DOM API操作XML文档。它是W3C的文档对象模型核心级别3的实现,这是一个平台和语言中立的接口,允许程序和脚本动态访问和更新文件的内容,结构和风格。 DOM能够解析和修改现实世界(破碎)的HTML,并且可以执行XPath查询。它基于libxml。 使用DOM需要一些时间才能提高效率,但这个时间非常值得IMO。由于DOM是一个与语言无关的接口,因此您可以找到多种语言的实现,因此如果您需要更改编程语言,那么您很可能已经知道如何使用该语言的DOM API。 一个基本的用法示例可以在抓取A元素的href属性中找到,一般的概念概述可以在php的DOMDocument中找到 StackOverflow上已经广泛介绍了如何使用DOM扩展,因此如果您选择使用它,您可以确定您遇到的大多数问题都可以通过搜索/浏览Stack Overflow来解决。 XMLReader的 XMLReader扩展是一个XML pull解析器。读取器在文档流上作为光标前进,并在途中停在每个节点上。 与DOM一样,XMLReader基于libxml。我不知道如何触发HTML解析器模块,因此使用XMLReader解析损坏的HTML的可能性可能不如使用DOM,因为您可以明确告诉它使用libxml的HTML解析器模块。 使用php从h1标签获取所有值时,可以找到一个基本用法示例 XML解析器 此扩展允许您创建XML解析器,然后为不同的XML事件定义处理程序。每个XML解析器还有一些您可以调整的参数。 XML Parser库也基于libxml,并实现了SAX样式的XML推送解析器。它可能是比DOM或SimpleXML更好的内存管理选择,但是比XMLReader实现的pull解析器更难以使用。 SimpleXML的 SimpleXML扩展提供了一个非常简单且易于使用的工具集,用于将XML转换为可以使用普通属性选择器和数组迭代器处理的对象。 当您知道HTML是有效的XHTML时,SimpleXML是一个选项。如果你需要解析破碎的HTML,甚至不要考虑SimpleXml,因为它会窒息。 一个基本的用法示例可以在一个简单的CRUD节点程序和xml文件的节点值中找到,PHP手册中还有很多其他的例子。 第三方库(基于libxml) 如果您更喜欢使用第三方库,我建议使用实际上使用DOM / libxml而不是字符串解析的库。 FluentDom - 回购 FluentDOM为PHP中的DOMDocument提供了类似jQuery的流畅XML接口。选择器是用XPath或CSS编写的(使用CSS到XPath转换器)。当前版本扩展了DOM实现标准接口并添加了DOM Living Standard的功能。FluentDOM可以加载JSON,CSV,JsonML,RabbitFish等格式。可以通过Composer安装。 HtmlPageDom Wa72 \ HtmlPageDom`是一个用于轻松操作HTML文档的PHP库。它需要来自Symfony2组件的DomCrawler来遍历DOM树,并通过添加操作HTML文档的DOM树的方法来扩展它。 phpQuery(多年未更新) phpQuery是一个服务器端,可链接,CSS3选择器驱动的文档对象模型(DOM)API,基于用PHP5编写的jQuery JavaScript库,并提供额外的命令行界面(CLI)。 另见:https://github.com/electrolinux/phpquery Zend_Dom Zend_Dom提供了处理DOM文档和结构的工具。目前,我们提供Zend_Dom_Query,它提供了一个统一的界面,可以使用XPath和CSS选择器查询DOM文档。 的QueryPath QueryPath是一个用于操作XML和HTML的PHP​​库。它不仅适用于本地文件,还适用于Web服务和数据库资源。它实现了许多jQuery接口(包括CSS样式的选择器),但它在服务器端使用时经过了大量调整。可以通过Composer安装。 fDOMDocument fDOMDocument扩展了标准DOM,以便在所有错误情况下使用异常,而不是PHP警告或通知。为方便起见,他们还添加了各种自定义方法和快捷方式,并简化了DOM的使用。 军刀/ XML saber / xml是一个包装和扩展XMLReader和XMLWriter类的库,用于创建一个简单的“xml到对象/数组”映射系统和设计模式。编写和读取XML是单遍的,因此可以快速并且需要大型xml文件的低内存。 FluidXML FluidXML是一个用于使用简洁流畅的API来操作XML的PHP​​库。它利用XPath和流畅的编程模式,既有趣又有效。 第三方(不是基于libxml的) 构建DOM / libxml的好处是,您可以获得良好的开箱即用性能,因为您基于本机扩展。但是,并非所有第三方库都沿着这条路线行进。其中一些列在下面 PHP简单的HTML DOM解析器 用PHP5 +编写的HTML DOM解析器允许您以非常简单的方式操作HTML! 需要PHP 5+。 支持无效的HTML。 使用选择器在HTML页面上查找标签,就像jQuery一样。 从一行中提取HTML中的内容。 我一般不推荐这个解析器。代码库很糟糕,解析器本身很慢而且内存很耗。并非所有jQuery选择器(例如子选择器)都是可能的。任何基于libxml的库都应该比这更容易。 PHP Html解析器 PHPHtmlParser是一个简单,灵活的html解析器,允许您使用任何css选择器(如jQuery)选择标签。目标是帮助开发需要快速,简单的方法来废弃html的工具,无论它是否有效!这个项目最初是由sunra / php-simple-html-dom-parser支持的,但支持似乎已经停止,所以这个项目是我对他以前工作的改编。 同样,我不推荐这个解析器。CPU使用率很高,速度相当慢。还没有清除已创建DOM对象的内存的功能。这些问题尤其适用于嵌套循环。文档本身不准确且拼写错误,自4月14日以来没有回复修复。 加农 通用标记器和HTML / XML / RSS DOM解析器 能够操纵元素及其属性 支持无效的HTML和UTF8 可以对元素执行类似CSS3的高级查询(比如jQuery - 支持的命名空间) HTML美化器(如HTML Tidy) 缩小CSS和Javascript 排序属性,更改字符大小写,更正缩进等。 扩展 使用基于当前字符/标记的回调解析文档 操作以较小的功能分隔,以便轻松覆盖 快速而简单 从未使用过它。不知道它是否有用。 HTML 5 您可以使用上面的方法来解析HTML5,但由于HTML5允许的标记,可能会有怪癖。因此,对于HTML5,您要考虑使用专用解析器,例如 html5lib 基于WHATWG HTML5规范的HTML解析器的Python和PHP实现,可与主要桌面Web浏览器实现最大兼容性。 HTML5最终确定后,我们可能会看到更多专用解析器。还有一个W3的博客文章,名为How-To for html 5 parsing,值得一试。 网页服务 如果您不想编写PHP,您也可以使用Web服务。一般来说,我发现这些实用程序很少,但那只是我和我的用例。 ScraperWiki。 ScraperWiki的外部界面允许您以您希望在Web或您自己的应用程序中使用的形式提取数据。您还可以提取有关任何刮刀状态的信息。 常用表达 最后也是最不推荐的,您可以使用正则表达式从HTML中提取数据。通常,不鼓励在HTML上使用正则表达式。 您可以在网上找到与标记相匹配的大多数片段都很脆弱。在大多数情况下,它们只适用于非常特殊的HTML。微小的标记更改,例如在某处添加空格,或添加或更改标记中的属性,可以使RegEx在未正确编写时失败。在HTML上使用RegEx之前,您应该知道自己在做什么。 HTML解析器已经知道HTML的语法规则。必须为您编写的每个新RegEx讲授正则表达式。RegEx在某些情况下很好,但它实际上取决于您的用例。 您可以编写更可靠的解析器,但是使用正则表达式编写完整可靠的自定义解析器是浪费时间,因为上述库已经存在并且在此方面做得更好。

游客gsy3rkgcdl27k 2019-12-02 02:09:37 0 浏览量 回答数 0

问题

2018python技术问答集锦,希望能给喜欢python的同学一些帮助

技术小能手 2019-12-01 19:31:10 2040 浏览量 回答数 2

问题

Vue面试题汇总【精品问答】

问问小秘 2020-05-25 18:02:28 7911 浏览量 回答数 2

问题

MaxCompute产品简介:通告

行者武松 2019-12-01 22:01:10 1613 浏览量 回答数 0

回答

Java之JVM垃圾回收 内存结构以及垃圾回收算法前言:由于小组技术分享的需要,懂的不是很多所以我就找了这个我自己感兴趣的知识点给大家做个简单的介绍。由于是新人,算不了很懂,只是总结性的讲了些概念性的东西。给大家分享的同时,算是给自己做个笔记吧。作为Java语言的核心之一,JVM垃圾回收帮我们解决了让我们很头疼的垃圾回收问题。我们不需要像VC++一样,作为内存管理的统治者需要我们对我们分配的每一块内存进行回收,否则就会造成内存泄露问题。是不是只要有JVM存在我们就不会出现内存泄露问题,出现内存泄露问题我们又该怎么办,如果我们想提高我们程序的稳定性和其他性能我们能从什么地方下手!!!相信这些问题是我们程序过程中不可逾越的。了解JVM的内存分配及其相应的垃圾回收机制,不仅仅是可以了解底层的JVM运行机制,而且对于程序性能的优化和提升还是很有必要的。一、JVM内存分配区域结构图一从图一可以看出JVM中的内存分配包括PC Register(PC寄存器) JVM栈 堆(Heap) 方法区域(MethodArea)运行时常量池(RuntimeConstant Pool) 本地方法堆栈(NativeMethod Stacks),这几部分区域但是从程序员的角度来看我们只关注JVM Heap和JVM Stack,因为这两部分是直接关系程序运行期间的内存状态,所以我会主要介绍这两部分内存,其他的我只是给出了简单的一些概念性解释:PC Register(Program Counter 寄存器):主要作用是记录当前线程所执行的字节码的行号。方法区域(MethodArea):方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,法区域也是全局共享的,它在虚拟机启动时在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。运行时常量池(RuntimeConstant Pool):存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。本地方法堆栈(NativeMethod Stacks):JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。JVM栈:主要存放一些基本类型的变量和对象的引用变量。JVM堆:用来存放由 new 创建的对象和数组Java 虚拟机的自动垃圾回收器来管理(注意数组也是对象,所以说数组也是存放在JVM堆中)。由于栈中存放的是主要存放一些基本类型的变量和对象的引用变量,所以当过了变量的作用区域或者是当程序运行结束后它所占用的内存会自动的释放掉,所以不用来关心,下面我们主要来说的是堆内存的分配以及回收的算法。二、JVM堆内存介绍工欲善其事,必先利其器。所以了解堆内存的内部结构是很必要的。在Jvm中堆空间划分为三个代:年轻代(Young Generation)、年老代(Old Generation)和永久代(Permanent Generation)。年轻带主要是动态的存储,年轻带主要储存新产生的对象,年老代储存年龄大些的对象,永久带主要是存储的是java的类信息,包括解析得到的方法、属性、字段等。永久带基本不参与垃圾回收。所以说我们说的垃圾回收主要是针对年轻代和年老代。图二年轻代又分成3个部分,一个eden区和两个相同的survior区。刚开始创建的对象都是放置在eden区的。分成这样3个部分,主要是为了生命周期短的对象尽量留在年轻带。当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survior。年老代主要存放生命周期比较长的对象,比如缓存对象。(经过IBM的一个研究机构研究数据表明,基本上80%-98%的对象都会在年轻代的Eden区死掉从而本回收掉,所以说真正进入到老年代的对象很少,这也是为什么MinorGC比MajorGC更加频繁的原因)具体JVM内存垃圾回收过程描述如下 :1、对象在Eden区完成内存分配2、当Eden区满了,再创建对象,会因为申请不到空间,触发minorGC,进行young(eden+1survivor)区的垃圾回收3、minorGC时,Eden不能被回收的对象被放入到空的survivor(Eden肯定会被清空),另一个survivor里不能被GC回收的对象也会被放入这个survivor,始终保证一个survivor是空的4、当做第3步的时候,如果发现survivor满了,则这些对象被copy到old区,或者survivor并没有满,但是有些对象已经足够Old,也被放入Old区 XX:MaxTenuringThreshold5、当Old区被放满的之后,进行fullGC补充: MinorGC:年轻代所进行的垃圾回收,非常频繁,一般回收速度也比较快。 MajorGC:老年代进行的垃圾回收,发生一次MajorGC至少伴随一次MinorGC,一般比MinorGC速度慢十倍以上。 FullGC:整个堆内存进行的垃圾回收,很多时候是MajorGC 以后就是堆内存结构已经大致的垃圾回收过程。三、对象分配原则1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。四、垃圾收集器作为JVM中的核心之一垃圾收集器,主要完成的功能包括:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。所以说我们在实现垃圾收集器的同时就要实现两个算法一个是发现无用的对象第二就是回收该对象的内存。收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。发现无用对象只要的实现算法包括引用计数法和根搜索算法,引用计数法主要是JVM的早期实现方法,因为引用计数无法解决循环引用的问题,所以现在JVM实现的主要是根搜索算法,引用计数法:堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就不可用从而可以被回收。 根搜索算法:通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。目前的收集器主要有三种:串行收集器:使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高并行收集器:对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用并发收集器:可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用五、垃圾收集器的回收算法Copying算法:算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。 过程: 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。Mark-Sweep算法: 算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。 过程: 第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。它停止所有工作,收集器从根开始访问每一个活跃的节点,标记它所访问的每一个节点。走过所有引用后,收集就完成了,然后就对堆进行清除(即对堆中的每一个对象进行检查),所有没有标记的对象都作为垃圾回收并返回空闲列表。Mark-Compact算法: 算法:标记阶段与“Mark-Sweep”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。过程:此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。Sun JDK GC策略:新生代算法实现:Copying,Copying,Copying旧生代算发实现:Mark-Sweep-Compact,Mark –Compact,Mark –Sweep!!六、JvisuaVM 工具如果我们想优化自己的程序,那么我们就必须清楚的了解不同代码程序所消耗的性能多少,作为JDK的一部分,这个工具给我们提供了很大的帮助。这个工具可以在JDK的bin目录下找到,功能很强大,可以注意利用

auto_answer 2019-12-02 01:56:35 0 浏览量 回答数 0

问题

【精品问答】Java经典问答之SpringBoot 100问

问问小秘 2019-12-01 22:00:40 1176 浏览量 回答数 0

问题

集群部署时的分布式 Session 如何实现?【Java问答学堂】59期

剑曼红尘 2020-07-16 15:14:21 5 浏览量 回答数 1

问题

【精品问答】Java微服务架构之Spring Boot核心知识 100问(附源码)

游客pklijor6gytpx 2019-12-01 22:04:21 850 浏览量 回答数 0

回答

一。zval、引用计数、变量分离、写时拷贝我们一步步来理解1、php语言特性PHP是脚本语言,所谓脚本语言,就是说PHP并不是独立运行的,要运行PHP代码需要PHP解析器,用户编写的PHP代码最终都会被PHP解析器解析执行PHP的执行是通过Zend engine(ZE, Zend引擎),ZE是用C编写的用户编写的PHP代码最终都会被翻译成PHP的虚拟机ZE的虚拟指令(OPCODES)来执行也就说最终会被翻译成一条条的指令既然这样,有什么结果和你预想的不一样,查看php源码是最直接最有效的 2、php变量的存储结构在PHP中,所有的变量都是用一个结构zval结构来保存的,在Zend/zend.h中可以看到zval的定义:zval结构包括:① value —— 值,是真正保存数据的关键部分,定义为一个联合体(union)② type —— 用来储存变量的类型 ③ is_ref —— 下面介绍④ refcount —— 下面介绍 声明一个变量$addr="北京";PHP内部都是使用zval来表示变量的,那对于上面的脚本,ZE是如何把addr和内部的zval结构联系起来的呢?变量都是有名字的(本例中变量名为addr)而zval中并没有相应的字段来体现变量名。PHP内部肯定有一个机制,来实现变量名到zval的映射在PHP中,所有的变量都会存储在一个数组中(确切的说是hash table)当你创建一个变量的时候,PHP会为这个变量分配一个zval,填入相应的信息,然后将这个变量的名字和指向这个zval的指针填入一个数组中。当你获取这个变量的时候,PHP会通过查找这个数组,取得对应的zval 注意:数组和对象这类复合类型在生成zval时,会为每个单元生成一个zval3、我们经常说每个变量都有一个内存地址,那这个zval和变量的内存地址,这俩有什么关系吗?定义一个变量会开辟一块内存,这块内存好比一个盒子,盒子里放了zval,zval里保存了变量的相关信息,需要开辟多大的内存,是由zval所占空间大小决定的zval是内存对象,垃圾回收的时候会把zval和内存地址(盒子)分别释放掉 4、引用计数、变量分离、写时拷贝zval中的refcount和is_ref还没有介绍,我们知道PHP是一个长时间运行的服务器端脚本。那么对于它来说,效率和资源占用率是一个很重要的衡量标准,也就是说,PHP必须尽量减少内存占用率。考虑下面这段代码:第一行代码创建了一个字符串变量,申请了一个大小为9字节的内存,保存了字符串“laruence”和一个NULL(0)的结尾第二行定义了一个新的字符串变量,并将变量var的值“复制”给这个新的变量第三行unset了变量var 这样的代码是很常见的,如果PHP对于每一个变量赋值都重新分配内存,copy数据的话,那么上面的这段代码就要申请18个字节的内存空间,为了申请新的内存,还需要cpu执行某些计算,这当然会加重cpu的负载而我们也很容易看出来,上面的代码其实根本没有必要申请两份空间,当第三句执行后,$var被释放了,我们刚才的设想(申请18个字节内存空间)突然变的很滑稽,这次复制显得好多余。如果早知道$var不用了,直接让$var_dup用$var的内存不就行了,还复制干嘛?如果你觉得9个字节没什么,那设想下如果$var是个10M的文件内容,或者20M,是不是我们的计算机资源消耗的有点冤枉呢?呵呵,PHP的开发者也看出来了: 刚才说了,PHP中的变量是用一个存储在symbol_table中的符号名,对应一个zval来实现的,比如对于上面的第一行代码,会在symbol_table中存储一个值“var”,对应的有一个指针指向一个zval结构,变量值“laruence”保存在这个zval中,所以不难想象,对于上面的代码来说,我们完全可以让“var”和“var_dup”对应的指针都指向同一个zval就可以了(额,鸟哥一会说hash table,一会说symbol_table,暂且理解为symbol_table是hash table的子集) PHP也是这样做的,这个时候就需要介绍一下zval结构中的refcount字段了refcount,引用计数,记录了当前的zval被引用的次数(这里的引用并不是真正的 & ,而是有几个变量指向它)比如对于代码:第一行,创建了一个整形变量,变量值是1。 此时保存整形1的这个zval的refcount为1第二行,创建了一个新的整形变量(通过赋值的方式),变量也指向刚才创建的zval,并将这个zval的refcount加1,此时这个zval的refcount为2所以,这个时候(通过值传递的方式赋值给别的变量),并没有产生新的zval,两个变量指向同一zval,通过一个计数器来共用zval及内存地址,以达到节省内存空间的目的当一个变量被第一次创建的时候,它对应的zval结构的refcount的值会被初始化为1,因为只有这一个变量在用它。但是当你把这个变量赋值给别的变量时,refcount属性便会加1变成2,因为现在有两个变量在用这个zval结构了 PHP提供了一个函数可以帮助我们了解这个过程debug_zval_dump输出:long(1) refcount(2)long(1) refcount(3)如果你奇怪 ,var的refcount应该是1啊?我们知道,对于简单变量,PHP是以传值的形式传参数的。也就是说,当执行debug_zval_dump($var)的时候,$var会以传值的方式传递给debug_zval_dump,也就是会导致var的refcount加1,所以只要能看到,当变量赋值给一个变量以后,能导致zval的refcount加1这个结果即可现在我们回头看上面的代码, 当执行了最后一行unset($var)以后,会发生什么呢?unset($var)的时候,它删除符号表里的$var的信息,准备清理它对应的zval及内存空间,这时它发现$var对应的zval结构的refcount值是2,也就是说,还有另外一个变量在一起用着这个zval,所以unset只需把这个zval的refcount减去1就行了上代码:输出:string(8) "laruence" refcount(2) 但是,对于下面的代码呢?很明显在这段代码执行以后,$var_dup的值应该还是“laruence”,那么这又是怎么实现的呢?这就是PHP的copy on write机制(简称COW):PHP在修改一个变量以前,会首先查看这个变量的refcount,如果refcount大于1,PHP就会执行一个分离的过程(在Zend引擎中,分离是破坏一个引用对的过程)对于上面的代码,当执行到第三行的时候,PHP发现$var想要改变,并且它指向的zval的refcount大于1,那么PHP就会复制一个新的zval出来,改变其值,将改变的变量指向新的zval(哪个变量指向新复制的zval其实已经无所谓了),并将原zval的refcount减1,并修改symbol_table里该变量的指针,使得$var和$var_dup分离(Separation)。这个机制就是所谓的copy on write(写时复制,这里的写包括普通变量的修改及数组对象里的增加、删除单元操作)如果了解了is_ref之后,上面说的并不严谨 上代码测试:输出:long(1) refcount(2)string(8) "laruence" refcount(2) 现在我们知道,当使用变量复制的时候 ,PHP内部并不是真正的复制,而是采用指向相同的zval结构来节约开销。那么,对于PHP中的引用,又是如何实现呢?这段代码结束以后,$var也会被间接的修改为1,这个过程称作(change on write:写时改变)那么ZE是怎么知道,这次的复制不需要Separation呢?这个时候就要用到zval中的is_ref字段了:对于上面的代码,当第二行执行以后,$var所代表的zval的refcount变为2,并且设置is_ref为1到第三行的时候,PHP先检查var_ref对应的zval的is_ref字段(is_ref 表示该zval是否被&引用,仅表示真或假,就像开关的开与关一样,zval的初始化情况下为0,即非引用),如果为1,则不分离,直接更改(否则需要执行刚刚提到的zval分离),更改共享的zval实际上也间接更改了$var的值,因为引擎想所有的引用变量都看到这一改变php源码做了这样一个判断,大体逻辑示意如下:如果这个zval中的if_ref为1(即被引用),或者该zval引用计数小于2任何一种方式:都不会进行分离 尽管已经存在写时复制和写时改变,但仍然还存在一些不能通过is_ref和refcount来解决的问题对于如下的代码,又会怎样呢?这里$var、$var_dup、$var_ref三个变量将共用一个zval结构(其实这是不可能的,一个zval不可能既被&,又被指向),有两个属于change-on-write组合($var和$var_ref),有两个属于copy-on-write组合($var和$var_dup),那is_ref和refcount该怎样工作,才能正确的处理好这段复杂的关系呢?答案是不可能!在这种情况下,变量的值必须分离成两份完全独立的存在当执行第二行代码的时候,和前面讲过的一样,$var_dup 和 $var 指向相同的zval, refcount为2当执行第三行的时候,PHP发现要操作的zval的refcount大于1,则PHP会执行Separation(也就是说php将一个zval的is_ref从0设为1 之前,当然此时refcount还没有增加,会看该zval的refcount,如果refcount>1,则会分离), 将$var_dup分离出去,并将$var和$var_ref做change on write关联。也就是,refcount=2, is_ref=1;所以内存会给变量var_dup 分配出一个新的zval,类型与值同 $var和$var_ref指向的zval一样,是新分配出来的,尽管他们拥有同样的值,但是必须通过两个zval来实现。试想一下,如果三者指向同一个zval的话,改边 $var_dup 的值,那么 $var和$var_ref 也会受到影响,这样就乱套了图解:下面的这段代码在内核中同样会产生歧义,所以需要强制复制!也就是说一个zval不会既被引用,又被指向,必须分离 基于这样的分析,我们就可以让debug_zval_dump出refcount为1的结果来:输出:string(8) "laruence" refcount(1) 为什么结果是refcount(1)呢debug_zval_dump()中参数是引用的话,refcount永远为1这两段代码在执行的时候是这样的逻辑:PHP先看变量指向的zval是否被引用,如果是引用,则不再产生新的zval甭管哪个变量引用了它,比如有个变量$a被引用了,$b=&$a,就算自己引用自己$a=&$a,$a所指向的zval都不会被复制,改变其中一个变量的值,另一个值也被改变(写时改变)如果is_ref为0且refcount大于1,改变其中一个变量时,复制新的zval(写时复制) 还有一个知识点需要了解下,就是PHP数组复制的机制复制一个数组,就是把一个数组赋值给一个变量便可。会把数组指针位置一同复制。这里面有两种情况:① 指针位置合法,这时直接复制,无影响② 原数组指针位置非法时(移出界),“新”数组指针会初始化(这里的新为什么要加引号?请看下文),而老的数组指针位置不变,还是false先看例子: 结果:!结果:出现这种情况好像不对?$arr2 难道不是新数组?新数组的数组指针应该重置了啊这里注意了:$arr2 = $arr1 ,在俩变量都没发生写操作时,他们其实引用的是同一个内存地址。在其中一个变量发生写操作后,内存地址会复制一份,发生改变的变量会去引用它,并把数组指针初始化。所以 $arr1 会去引用复制的内存地址,并将指针初始化二。.foreach循环时调用current等函数!结果: 56按照之前说的,foreach先赋值,再移动指针,再执行循环体,第一次结果为2可以理解为什么三次都是2呢?咋就这么2呢?因为current函数是按引用传递的函数 在zval笔记中说了,一个zval不能既被引用,又被指向所以,变量分离,重新拷贝一份数组专门用于current函数 当然,如果数组zval的is_ref为1,则不会拷贝数组了或者:结果:current是引用传参

杨冬芳 2019-12-02 02:26:33 0 浏览量 回答数 0

问题

搜索引擎背后的经典数据结构和算法 6月10日 【今日算法】

游客ih62co2qqq5ww 2020-06-15 07:32:11 0 浏览量 回答数 0

回答

HTML5究竟是什么? (注:目前网上介绍HTML5的文章都是千篇一律,譬如某个时间段发布某个版本,这种对于初学者或者从实用性角度来看,没有太多甚至完全不具备学习价值,只能说了解到它的出现时间,但是具体作用是什么呢?基本都是没有详细阐述,不少读者看完估计还是一头雾水的,因此笔者会用更加通俗易懂的话语,让各位能够知道HTML5究竟是什么) 首先HTML是定义了网页的结构,那么HTML5则是其不断更新的一部分。它目前有两个版本, 第一个是万维网联盟的5.2推荐标准(w3c) ,是为网页内容开发者设计的;第二个是浏览器开发者的 HTML 生活标准(HTML Living Standard) ,由微软网页超文本技术工作小组公司(WHATWG)维护。 HTML5引入了一些新的元素和属性,同时也是一个 W3C推荐标准。Web 应用程序以这些 HTML 元素为基础运行,同时包含了 HTML4和 XHTML,但是向后兼容以前的版本。另外,它与 PHP 更加兼容,新的 api 包括拖放、网络消息和网络存储、协议处理程序注册、微数据、画布、文本轨道和定时媒体播放,还有一个标准化的服务器发送事件自动更新和更好的浏览器支持,这些新的 api 为网页设计者提供了更好的控制。对于生活标准版本,新的 API 还包括地理定位、web 音频(Javascript 音频应用程序)、web RTC 和 web 加密 API。 这些元素和属性反映了现代网站的典型用法,其中包括超文本标记语言和对文档对象模型(DOM)脚本的新兴趣。HTML5语法还允许在文档内部使用 MathML,而 indexeddb将存储扩展到本地存储之外。并且从 HTML 4.01中删除了一些不推荐的元素,包括像 font 和 center 这样的纯表示元素,这些元素的效果早已被更强大的层叠样式表所取代。此外,DOM 脚本在 Web 行为中的重要性也得到了重新强调。 HTML5知识点有哪些? 经过前面的一些讲解,相信各位对HTML5已经有初步的认识,那么接下来我们将会正式探讨下,究竟有哪些知识点需要我们学习掌握的呢?(注:由于HTML5涵盖知识点较多,且本文属于入门级别的知识指南,不适宜进行全面深入地讲解,因此笔者筛选出了必须掌握的知识点,希望能够让初学者迅速入门) 知识点一:HTML5主体结构 <!doctype> 声明必须位于 HTML5 文档中首行,声明此为HTML5文档 标签限定了文档的开始点和结束点,内部包含文档头部和主体 标签用于定义文档的头部,内部的元素可以引用脚本或者样式表、提供元信息等等,并且描述了文档的各种属性和信息,包括文档的标题、在 Web 中的位置以及和其他文档的关系等,绝大多数文档头部包含的数据都不会真正作为内容显示给读者。 标签声明使用utf-8编码 标签定义文档标题 定义文档的主体,内部包含文档的所有内容,比如文本、超链接、图像、表格和列表等等,均可展示给用户浏览器显示出来(注释除外) 以上就是HTML5主体结构的讲解,可能有细心地读者就会发现,有的标签是一个的,有的又是两个对称的,那么这是何解呢? 这里就引入一个知识点,通常情况下绝大多数标签都是双标签,也就是需要写成格式,但是也有的单标签也称为自闭合标签是不需要结束符的,如 等,那么这些标签具体用法又是如何呢?下面我们将会进行常用标签的讲解! 知识点二:HTML5常用标签 众所周知,HTML5简单点说就是由一个个标签组成的文档,既然如此我们就需要学习,每一个标签究竟代表着什么含义如何使用呢?(因为标签实在太多,倘若全部阐释一遍,怕初学者们嫌弃篇幅太长感到枯燥,或者是知识点太多很难吸收掌握,因此笔者精选出一些较为常用的标签进行讲解,对于标签可能有多个属性可以选择,笔者同样会挑选出较为常用属性进行讲解) 注:以下标签,笔者没有截效果图,建议初学者自主尝试 注释标签:在我们日常编写代码时候,为了日后方便自己查看或者是别人查阅,我们通常会在某些地方写上注释标签,里面内容不会展示给浏览器用户看到 阿里云开发者社区 链接标签:超链接跳转,把需要跳转的网址写到标签的href里面,然后在开始标签和结束标签之间可以写内容展示出去,当用户点击内容将会发生跳转 换行标签:换行作用,有的小伙伴可能看到这里会说,为什么我写也是有效果的呢?这种写法不能说错误只能说是老版本的规范,按照HTML4.0规范都需要按照XHTML的写法,也就是对于单标签都是采用加斜杠的写法(下同) 按钮 按钮标签:按钮上需要展示什么文字,可在开始标签和结束标签之间写入,现阶段若写静态网站用得较少,后期学JS制作动态网站或者做交互时候比较常用 内容 块级标签:标签本身没有特殊含义,那么在其里面可以写文本内容,或者是加入其它标签均可,凡是加入其内部所有东西都会被其所包裹,形成一个独立的块级区域并且独自占用一行(css可格式化) 标题 标题标签:用于定义标题,从h1至h6均可根据自身需求选择 分隔符标签:起到装饰分隔作用,默认显示为一条黑色的水平线 图片标签:展示图片,src里面放置图片的链接,然后有时候可能出现各种原因导致图片未能加载,那么系统会自动展示alt里面的文字内容 输入框标签:默认是输入框,当然其有多个属性可以选择,然后较为常用的是type属性,该属性又有多个值可供选择,如: password 用户输入任何文本内容均会显示为小圆点 checkbox 选择框 Button按钮 列表 列表标签:通常用于展示一列数据,而且数据所采用的css样式均相同,譬如导航栏、当然还有 有序列表不过较为少用 段落 段落标签:写在内部的一段文字将会被定义为一个段落 脚本标签:现阶段不会用到,等学习到js需要用到,初学者可在标签内部写js代码,随着学习深入可以采用外部写好js文件后导入 文字 脚本标签:通常需要搭配css样式进行使用,对部分内容进行样式修改 样式标签:现阶段不会用到,等学习到css需要用到,样式需要写在标签内部 HTML5入门知识指南 经过前面的一系列学习,相信各位已经初步掌握HTML5的使用,能够制作一些简单的界面了,当然对于学习能力较强或者有一定基础的同学,可以自主深入学习HTML5深层次的知识点,当能够熟练敲出你想要的界面时候,那建议开始学习CSS让界面变得更加美丽,笔者下期将会给各位带来CSS入门知识指南,欢迎大家踊跃参与学习,当然如果有童鞋看完本文,对于某些知识点还是不太明白,或者是对下一期学习有什么建议,欢迎各位在下方评论区留言哦,如果觉得笔者文章写得不错,那么也可以分享给朋友一起学习,咱们下期再见啦!

剑曼红尘 2020-03-03 17:56:06 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播