• 关于

    访问者数据库有什么用

    的搜索结果

回答

对于一个简单的数据库应用,由于对于数据库的访问不是很频繁。这时可以简单地在需要访问数据库时,就新创建一个连接,用完后就关闭它,这样做也不会带来什么明显的性能上的开销。但是对于一个复杂的数据库应用,情况就完全不同了。频繁的建立、关闭连接,会极大的减低系统的性能,因为对于连接的使用成了系统性能的瓶颈。连接复用。通过建立一个数据库连接池以及一套连接使用管理策略,使得一个数据库连接可以得到高效、安全的复用,避免了数据库连接频繁建立、关闭的开销。对于共享资源,有一个很著名的设计模式:资源池。该模式正是为了解决资源频繁分配、释放所造成的问题的。把该模式应用到数据库连接管理领域,就是建立一个数据库连接池,提供一套高效的连接分配、使用策略,最终目标是实现连接的高效、安全的复用。数据库连接池的基本原理是在内部对象池中维护一定数量的数据库连接,并对外暴露数据库连接获取和返回方法。如:外部使用者可通过getConnection 方法获取连接,使用完毕后再通过releaseConnection 方法将连接返回,注意此时连接并没有关闭,而是由连接池管理器回收,并为下一次使用做好准备。

huanhuanming 2019-12-02 01:50:31 0 浏览量 回答数 0

问题

mac下mysql的默认是哪里?另外mysql的端口是如何工作的?

a123456678 2019-12-01 20:10:28 1022 浏览量 回答数 1

问题

让数据库变快的10个建议

mqc 2019-12-01 21:00:09 2313 浏览量 回答数 0

Quick BI 数据可视化分析平台

2020年入选全球Gartner ABI魔力象限,为中国首个且唯一入选BI产品

回答

Re两台ECS之间如何同步共享数据? 请明确您的数据是指什么? 字面理解您指的是 数据库数据。 以MYSQL数据库数据为例,可以自己手动配置MYSQL数据库的多节点,节点之间是有同步机制的,各个节点的数据都是一样; 也可使用阿里云的RDS服务,将自己的数据库数据托管云端,就是阿里已经绑你做了多节点了,数据是存了多份的。 如果是网站或应用程序文件数据,一般来说没有功能新增,版本升级,很长时间都是没有变化的,2台ECS间做个拷贝就好了。 至于SLB (负载均衡)技术,它是为了对访问的流量进行分发,对访问压力分担到不同的ECS服务器上。它的前提是你ECS服务器的应用程序 都是一样的。不然的话可能出现前后2个时间访问得到的服务(页面展现等)是不一样的。 看我头像,欢迎加我交流 ------------------------- 回 3楼罗纳尔多的帖子 是指网站程序吧 最简单的,一份网站程序 分别上传(就本地上传)到 2台ECS上就可以了啊。 或者,以Linux为例(windows的不说啦),已经在一台上有,你登上另一台新的服务器,用SFTP获取一下:参考如下 root@iZ238xapd2lZ:~# sftp 121.41.76.83(这台上面已有网站程序) root@121.41.77.85's password: (这里输入密码) Connected to 121.41.76.83. sftp> ls HELP.docx            auto_fdisk.sh        readme.log           sh-1.3.0-centos      sh-1.3.0-centos.zip   sftp> cd /alidata/www/ sftp> ls 20151125001001.tar.gz (这个网站程序包)   sftp> get 20151125001001.tar.gz  (get 命令获取下,就到新的服务器上了) ------------------------- 回 5楼罗纳尔多的帖子 是的,对RDS使用者来说 就是一份数据。 至于说多个RDS的多个冗余备份及他们之间的同步,阿里在云端已经做好了,不需要我们操心。 多台ECS应用程序配置相同的数据库连接。 看我头像,欢迎交流。

南京爸爸 2019-12-02 01:05:26 0 浏览量 回答数 0

回答

本人乃一个数据痴迷者,在计算机的道路上,也是一个数据结构的痴迷者,现在大学里面和同学搞开发也痴迷于数据库,我就我个人的理解给你谈一谈: 首先,数据结构是一门计算机语言学的基础学科,它不属于任何一门语言,其体现的是几乎所有标准语言的算法的思想。 上面的概念有一些模糊,我们现在来具体说一说,相信你门的数据结构使用的是一门具体的语言比如C/C++语言来说明,那是为了辅助的学习数据结构,而数据结构本身不属于任何语言(相信你把书上的程序敲到电脑里面是不能通过的吧,其只是描述了过程,要调试程序,还需要修改和增加一些东西)。你们的书上开始应该在讲究数据的物理存储结构/逻辑存储结构等概念,说明数据结构首先就是“数据的结构”,在内存上的存储方式,就是物理的存储结构,在程序使用人员的思想上它是逻辑的,比如: 你们在C/C++中学习到链表,那么链表是什么一个概念,你们使用指针制向下一个结点的首地址,让他们串联起来,形成一个接一个的结点,就像显示生活中的火车一样。而这只是对于程序员的概念,但是在内存中存储的方式是怎样的那。对于你程序员来说这是“透明”的,其内部分配空间在那里,都是随机的,而内存中也没有一个又一根的线将他们串联起来,所以,这是一个物理与逻辑的概念,对于我们程序员只需要知道这些就可以了,而我们主要要研究的是“逻辑结构”。 我可以给你一个我自己总结的一个概念:所有的算法必须基于数据结构生存。也就是说,我们对于任何算法的编写,必须依赖一个已经存在的数据结构来对它进行操作,数据结构成为算法的操作对象,这也是为什么算法和数据结构两门分类不分家的概念,算法在没有数据结构的情况下,没有任何存在的意义;而数据结构没有算法就等于是一个尸体而没有灵魂。估计这个对于算法的初学者可能有点晕,我们在具体的说一些东西吧: 我们在数据结构中最简单的是什么:我个人把书籍中线性表更加细化一层(这里是为了便于理解在这样说的):单个元素,比如:int i;这个i就是一个数据结构,它是一个什么样的数据结构,就是一个类型为int的变量,我们可以对它进行加法/减法/乘法/除法/自加等等一系列操作,当然对于单个元素我们对它的数据结构和算法的研究没有什么意义,因为它本来就是原子的,某些具体运算上可能算法存在比较小的差异;而提升一个层次:就是我们的线性表(一般包含有:顺序表/链表)那么我们研究这样两种数据结构主要就是要研究它的什么东西那。一般我们主要研究他们以结构为单位(就是结点)的增加/删除/修改/检索(查询)四个操作(为什么有这样的操作,我在下面说到),我们一般把“增加/删除/修改”都把它称为更新,对于一个结点,若要进行更新一类的操作比如:删除,对于顺序表来说是使用下标访问方式,那么我们在删除了一个元素后需要将这个元素后的所有元素后的所有元素全部向前移动,这个时间是对于越长的顺序表,时间越长的,而对于链表,没有顺序的概念,其删除元素只需要将前一个结点的指针指向被删除点的下一个结点,将空间使用free()函数进行释放,还原给操作系统。当执行检索操作的时候,由于顺序表直接使用下标进行随机访问,而链表需要从头开始访问一一匹配才可以得到使用的元素,这个时间也是和链表的结点个数成正比的。所以我们每一种数据结构对于不同的算法会产生不同的效果,各自没有绝对的好,也没有绝对的不好,他们都有自己的应用价值和方式;这样我们就可以在实际的项目开发中,对于内部的算法时间和空间以及项目所能提供的硬件能力进行综合评估,以让自己的算法能够更加好。 (在这里只提到了基于数据结构的一个方面就是:速度,其实算法的要素还应该包括:稳定性、健壮性、正确性、有穷性、可理解性、有输入和输出等等) 为什么要以结点方式进行这些乱七八糟的操作那。首先明确一个概念就是:对于过程化程序设计语言所提供的都是一些基础第一信息,比如一些关键字/保留字/运算符/分界符。而我们需要用程序解决现实生活中的问题,比如我们要程序记录某公司人员的情况变化,那么人员这个数据类型,在程序设计语言中是没有的,那么我们需要对人员的内部信息定义(不可能完全,只是我们需要那些就定义那些),比如:年龄/性别/姓名/出生日期/民族/工作单位/职称/职务/工资状态等,那么就可以用一些C/C++语言描述了,如年龄我们就可以进行如下定义: int age;/*age变量,表示人员公司人员的年龄*/ 同理进行其他的定义,我们用结构体或类把他们封装成自定义数据类型或类的形式,这样用他们定义的就是一个人的对象的了,它内部包含了很多的模板数据了。 我就我个人的经历估计的代码量应该10000以内的(我个人的经理:只是建议,从你的第一行代码开始算,不论程序正确与否,不论那一门语言,作为一个标准程序员需要十万行的代码的功底(这个是我在大学二年级感觉有一定时候的大致数据,不一定适合其他人),而十万行代码功底一般需要四门基础远支撑,若老师没有教,可以自学一些语言)。

马铭芳 2019-12-02 01:22:06 0 浏览量 回答数 0

回答

1、端口扫描 第一步就是尽可能多地了解你的“敌人”,并且尽量不要惊动它们。 这时候,我开始启动计时器计时。 这次扫描花了大概两分钟。 扫描发现了很多开放的端口!通过 FTP(port 21) 和 SMB(ports 139/445),我们可以猜出这个服务器是用于保存文件和共享文件的。 与此同时,它还是一个 Web 服务器 (port 80/443 和相应的代理 8080/8081) 。 如果上面的信息不够,我可能还会做一个 UDP 端口的扫描。现在唯一允许我们与之交互的端口 (不需要登录服务器) 是 80/443。 没有浪费一点儿时间,我启动了 gobuster 来探索这个 Web 服务器上让我“感兴趣”的文件。与此同时,我也通过手工的方式开始挖掘。 $gobuster -u http://example.com -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt -t 100 /admin /login 我发现/admin这个路径对应这“管理工具”,通过认证的用户可以修改这个 web 服务器上的东西,由于我没有用户名和密码,在这里走不下去了。(剧透:gobuster 也没有发现什么有价值的东西) 已经过去三分钟了,还没有发现有用的东西。 2、获取 Webshell 浏览这个网站的时候,它需要我登录,没问题,用一个假的 e-mail 创建一个账户,点击确认邮件,几秒钟后就登录了。 这个网站对我的登录表示欢迎,提示我到个人主页去修改头像,很贴心嘛! 网站看起来像是自己开发的,要不要“试试不受限的文件上传”漏洞? 我迅速在本机生成了一个文件: 然后试着把它当作图像文件上传, 成功了! 为了避免这个漏洞,上传者一定要对上传的文件做处理,检查文件扩展名,把它替换成.jpeg、.jpg,这样可以避免远程代码执行。 当然,我上传的文件没有缩略图: 通过“复制图片地址”的功能,我得到了这个 URL ,在浏览器中运行一下: 看起来我们已经有一个可以工作的 webshell 了。 这个 web 服务器居然运行着 Perl 脚本,我从我最喜欢的备忘录中找了一个 reverse shell 脚本,设置好了 IP 和端口,这样我就获得了一个低权限的 shell ——抱歉,没有屏幕截图。 大约 5 分钟以后,我获得了一个低权限的 shell。 3、拿下数据库 让我十分惊奇的是,这个服务器不仅 host 一个 web 站点,而是 40 个! $ ls /var/www access.log site1/ site2/ site3/ {… 更多的 sites} 你也许猜到了,我具备这些 web 站点目录读的权限,可以读任意的后端代码。 我把注意力集中到example.com的代码中,很明显,在cgi-admin/pages目录中,所有的 perl 脚本都是用 root 来连接 MySQL 数据库的,密码也是明文存放的, 我们假设它们是 root:pwned42 执行这条命令: mysql -u root -p -h localhost victimdbname Password: pwned42 我就以 root 权限登录了数据库。 仅仅 7 分钟, 我具备了对 35 个数据库完全的读写权限! 在这里,我有道德义务停下来,潜在的损害非常巨大。一个攻击者可以做这些事情: dump 这些数据库,这将导致 35 家公司的数据泄露。 删除所有数据库。 使用 cronjob 在 apache 里留个后门 该休息一下了,停止计时器。 4、还会有什么问题呢? 我告诉朋友这些发现,获得进一步挖掘的许可。 在将权限升级到威力巨大的 root 之前,我先看看我这个有限权力的用户能访问哪些有趣的文件。 此时我想起来那个开放的 SMB 端口,这意味着系统中应该有个文件夹在用户之间共享,经过一番探索,我找到了这个目录/home/samba/secured,里边的内容如下(请原谅为了隐私,我隐去了大量信息) 在这些目录中发现了大量的属于公司用户的敏感数据,包括: .psd/.ai files (设计师应该知道这些文件多重要,这是它们的工作成果) Cookie sqlite files 发票 盗版的电子书 (我看到这些的时候不由得笑了,谁说老外不看盗版?) Wifi 密码 攻击者就可以做这些事情: 到这些公司办公室的外边“露营”, 登录公司的内网,然后做各种各样有趣的、能在内网实施的攻击。 把这些敏感数据泄露出去。 这些目录花费了我不少时间,这个漏洞后果非常严重。 最后一击 用 apache 这个账户在四周看了很久以后,我决定是时候去钓个大鱼了:获取 root 权限。 通常,操作系统是打过补丁的,只有那些配置错误的服务才有可能给你想要的 root 权限, 但是在现实的世界中,人们很少给操作系统打补丁! 这个服务器运行的是什么操作系统呢? 内核是什么版本? 看起来这是一个老版本!这个版本有个漏洞,叫 Dirty Cow,可以提升用户的访问权限。 网上有篇博客讲述了如何测试内核是否有这个漏洞,并且提供了一个脚本。 执行这个脚本,root 最终到手! 游戏结束了 我立刻给朋友写了一封邮件,全面地告诉他这些渗透测试的细节和每一步的可能影响,然后结束了当晚的活动。 一个攻击者可以做的事情: 读 / 写服务器上所有的文件 植入一个持久的后门 安装恶意软件,并且传播到内网 安装勒索软件(劫持 35 家公司的数据库和相关数据可不是一件小事) 把这个服务器当作矿机 把服务器当作僵尸网络的一部分 把服务器当作 C2C 服务器 … (发挥你的想象力) 第二天,朋友联系了我,说他联系了负责那个服务器的公司,那个文件上传的漏洞已经 fix 了。 总结 有文件上传漏洞的 Web 应用可能导致黑客获得一个低权限的 shell 要仔细设计文件上传组件 明文的密码,让我们可以读写 35 个 Mysql 数据库 所有的数据库都用同一种密码可不是什么好事情 有很多的敏感数据可以阅读 要小心地给用户分配文件访问权限,遵循最小权限原则 内核的漏洞让我们获得了 root 权限, 记住给操作系统打补丁

游客pklijor6gytpx 2019-12-27 10:06:49 0 浏览量 回答数 0

问题

使Codeigniter网站成为多语言的最佳方法。从lang数组调用取决于lang会话?

保持可爱mmm 2020-02-08 14:37:44 0 浏览量 回答数 1

问题

分布式事务了解吗?你们是如何解决分布式事务问题的?【Java问答学堂】58期

剑曼红尘 2020-07-16 15:11:28 5 浏览量 回答数 1

问题

迁入阿里云2年有感,对我来说不仅仅是节省,更是为我带来了更多的客户

guochengzhe 2019-12-01 21:58:17 10122 浏览量 回答数 4

问题

HiTSDB高性能时间序列数据库产品解析

福利达人 2019-12-01 21:09:24 4058 浏览量 回答数 0

问题

谈谈如何选择一款合适自己的虚拟主机

绫纱 2019-12-01 21:17:04 8955 浏览量 回答数 2

问题

【精品问答】大数据计算技术1000问

问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

回答

基本上:您可以连接到MySQL(或您使用的任何服务器)服务器,但不应直接从Android应用程序执行此操作。 原因: 可以对Android应用程序进行反编译,并且客户端将具有访问数据库的凭据。如果使用正确的黑客工具(如Backtrack),则此恶意客户端可以访问,连接和利用数据库中的数据。 如果您的应用程序适用于世界各地的客户端,则客户端应按一个操作或一组操作打开并维护与数据库的连接。即使您的PC客户端位于数据库引擎服务器旁边的LAN中,打开物理数据库连接也要花费很多时间。现在,想象一下从世界另一端的一个国家(例如中国或日本)或从南美的一个国家(例如巴西或秘鲁)(我居住的国家)建立连接。 由于上述两个原因,即使尝试直接从您的电话设备连接到MySQL或任何其他数据库引擎,这也是一个坏主意。 如何解决这个问题呢?使用面向服务的体系结构,其中至少要有两个应用程序: 服务提供商应用程序。该应用程序将创建和发布Web服务(最好是RESTful),并可以建立使用Web服务的策略,例如用户身份验证和授权。该应用程序还将连接到数据库并对数据库执行CRUD操作。 服务使用者应用程序。这将是您的Android(或任何其他移动设备)应用程序。 从您的问题出发,您将重点放在第1点上。正如我在评论中所说,您可以使用Java创建一个Web应用程序,在其中创建一个RESTful服务,该服务可以归结为一个POJO(普通的旧Java对象),每个服务都有一个方法。在这种方法中,由于毕竟是纯Java,因此您可以添加其他功能,例如JDBC使用。 这是一个使用Jersey,Jackson(JSON库)和JDBC的启动示例: @Path("/product") public class ProductRestService { @GET @Path("/list") @Produces(MediaType.APPLICATION_JSON) public List<Product> getProducts() { List<Product> productList = new ArrayList<>(); Connection con = ...; //retrieve your database connection Statement stmt = con.createStatement(); ResultSet rs = stmt.executeQuery("SELECT id, name FROM product"); while (rs.next()) { Product product = new Product(); product.setId(rs.getInt("id")); product.setName(rs.getString("name")); productList.add(product); } //ALWAYS close the resources rs.close(); stmt.close(); conn.close(); return productList; } } 您可以在诸如mkyong或Vogella或其他类似的教程中检查Java Web应用程序的进一步配置(此答案中没有太多信息)。 请注意,然后此应用程序可以演变为分层应用程序,并且JDBC代码将进入DAO类,然后ProductRestService该类将通过此DAO类访问数据库。这是另一个启动示例: public class ProductDao { public List getProducts() { List productList = new ArrayList<>(); Connection con = ...; //retrieve your database connection //the rest of the code explained above... return productList; } } @Path("/product") public class ProductRestService { @GET @Path("/list") @Produces(MediaType.APPLICATION_JSON) public List getProducts() { ProductDao productDao = new ProductDao(); return productDao.getProducts(); } } 您可以将其他更改应用于此项目,也可以进行更改。 您能说一下PHP在这里做什么吗?(如果我使用PHP开发) 不用用Java编写服务提供程序应用程序(如上所示),而可以用PHP进行。或使用Python,Ruby,C#,Scala或向您提供此技术的任何其他编程语言。同样,我不确定您正在阅读哪种类型的教程,但这应该在某处进行解释,并说明出于该教程的目的,您将使用PHP创建服务。如果您觉得用Java而不是PHP或任何其他语言编写这些服务感到更舒服,那没有问题。您的android应用并不真正在乎使用哪种技术来生产Web服务,它只会在乎使用服务以及可以使用其中的数据。来源:stack overflow

保持可爱mmm 2020-05-11 16:01:14 0 浏览量 回答数 0

问题

全球级的分布式数据库 Google Spanner原理 热:报错

kun坤 2020-06-09 15:26:35 4 浏览量 回答数 1

回答

众所周知,Java是平台无关的语言,那么Java为什么要支持平台无关性,总结一下,有如下几点支持多变的网络环境。如今是一个互联网的时代,网络将各种各样的计算机和设备连接起来,比如网络连接了windows的PC机,UNIX工作站等等。为了保证程序能够不加任何修改运行于网络上的任何计算机,而不管计算机是什么种类,什么平台,这样就极大减轻了系统管理员的工作。尤其是程序是通过网络环境进行部署的。支持网络化嵌入式设备。目前工作场所中存在各种各样的嵌入式设备,比如打印机,扫描仪,传真机等。他们往往通过网络连接起来,甚至在家庭网络和汽车内部也存在这样那样的嵌入式设备 。Java的平台无关性可以简化这样的系统管理任务。无论是哪个网络的管理员,它只需关注程序本身即可。此外添加一台新设备,可以立即被其他设备访问到,也可以访问其他设备。这都是平台无关性带来的好处。减少开发者部署程序的成本和时间。对于开发者而言, Java平台无关的能力给予网络一个同构的运行环境,使得分布式系统可以围绕着“网络移动对象”开构建。比如对象序列化,RMI, Jini就是利用平台无关性。把面向对象编程从虚拟机带到了网络上。影响Java平台无关性的因素Java平台的部署。运行Java程序之前,必须要部署好Java平台。Java平台的版本。Sun公司提供了不同的API集合,有标准版,扩展版等等。此外API本身也面临着改动,一些API被认为是过期的,一些API甚至不向下兼容,因此我们需要选择合适的Java平台版本支持程序开发。本地方法。当编写一个平台独立的Java程序时候,最重要的原则是:不要直接或间接调用不属于Java API的本地方法。调用Java API以外的本地方法使得程序平台相关。一般而言,本地方法在三种情况适用:使用底层主机平台的特性,而Java API无法访问;为了访问老系统或者使用现有的库,但是这个系统或库不是Java编写的;为了加快程序性能,将时间敏感代码用本地方法实现。因此当必须使用本地方法,而且支持多种平台运行,必须将本地方法移植到所有需要的平台上。因此编写平台独立的Java程序做主要的目的就是完全禁止本地方法,通过Java API和主机交互。非标准运行时库。所谓平台无关性,一种解释是你调用的方法是否在任何地方都已经实现。本地方法顾名思义,就是只是在本地实现了,所以无法保证平台无关。而Java API在如windows, Solaris等操作系统上的实现上使用了本地方法访问主机,即保证了平台无关。对虚拟机的依赖。虚拟机可以由不同开发商开发,但是必须满足如下两条原则:不要依赖及时终结(finalization)保证程序的正确性,因为特定程序中对象可能在不同的时间被垃圾收集;不要依赖线程的优先级来保证程序的正确性。因为一些虚拟机可以实现优先级高线程优先运行,一些虚拟机不能保证这一点。对用户界面依赖,AWT库提供基本的用户界面,这些组件被映射成每个平台上的本地组件,而Swing库为用户提供更高级的组件,但并没有被映射为本地组件。实现平台无关的7大步骤选择程序运行的主机和设备集合(目标宿主机)在目标宿主机中选择Java平台版本。对于每个目标宿主机,选择程序将要运行的Java平台实现(目标运行时环境) 。编写程序,调用Java API标准运行库(不调用本地方法,或者专门开发商专门调用本地方法的库)编写程序,不依赖于垃圾收集器收集垃圾时间,不依赖线程的优先级努力设计用户界面,在所有的目标宿主机都能正常工作在所有目标运行时环境和所有目标宿主机进行测试 Java从四个方面支持了平台无关性最主要的是Java平台本身。Java平台扮演Java程序和所在的硬件与操作系统之间的缓冲角色。这样Java程序只需要与Java平台打交道,而不用管具体的操作系统。Java语言保证了基本数据类型的值域和行为都是由语言自己定义的。而C/C++中,基本数据类是由它的占位宽度决定的,占位宽度由所在平台决定的。不同平台编译同一个C++程序会出现不同的行为。通过保证基本数据类型在所有平台的一致性,Java语言为平台无关性提供强有力的支持。Java class文件。Java程序最终会被编译成二进制class文件。class文件可以在任何平台创建,也可以被任何平台的Java虚拟机装载运行。它的格式有着严格的定义,是平台无关的。可伸缩性。Sun通过改变API的方式得到三个基础API集合,表现为Java平台不同的伸缩性:J2EE,J2SE,J2ME。

缘灭山上 2019-12-02 01:39:36 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 37578 浏览量 回答数 11

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

问题

分布式系统 CAP 定理 P 代表什么含义【Java问答学堂】55期

剑曼红尘 2020-07-10 14:49:59 12 浏览量 回答数 1

回答

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。   大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。   在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。   大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。   在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。   大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。   导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。   大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。   统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。   大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。   整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。   大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。   当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。   目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。   在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。   在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。   在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。   在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。   在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。 答案来源于网络

养狐狸的猫 2019-12-02 02:15:59 0 浏览量 回答数 0

问题

基础语言百问-Python

薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

问题

【阿里云产品公测】利用PTS服务优化网站数据库读写性能

千鸟 2019-12-01 21:08:11 11556 浏览量 回答数 6

问题

JDBC 使用经验之谈 为什么选择JDBC JDBC使用经验:报错

kun坤 2020-06-09 22:12:13 0 浏览量 回答数 1

回答

Android平台进行数据存储的五大方式,分别如下: 1 使用SharedPreferences存储数据 2 文件存储数据 3 SQLite数据库存储数据 4 使用ContentProvider存储数据 5 网络存储数据 下面详细讲解这五种方式的特点 第一种: 使用SharedPreferences存储数据 适用范围:保存少量的数据,且这些数据的格式非常简单:字符串型、基本类型的值。比如应用程序的各种配置信息(如是否打开音效、是否使用震动效果、小游戏的玩家积分等),解锁口 令密码等 核心原理:保存基于XML文件存储的key-value键值对数据,通常用来存储一些简单的配置信息。通过DDMS的File Explorer面板,展开文件浏览树,很明显SharedPreferences数据总是存储在/data/data/<package name>/shared_prefs目录下。SharedPreferences对象本身只能获取数据而不支持存储和修改,存储修改是通过SharedPreferences.edit()获取的内部接口Editor对象实现。 SharedPreferences本身是一 个接口,程序无法直接创建SharedPreferences实例,只能通过Context提供的getSharedPreferences(String name, int mode)方法来获取SharedPreferences实例,该方法中name表示要操作的xml文件名,第二个参数具体如下: Context.MODE_PRIVATE: 指定该SharedPreferences数据只能被本应用程序读、写。 Context.MODE_WORLD_READABLE: 指定该SharedPreferences数据能被其他应用程序读,但不能写。 Context.MODE_WORLD_WRITEABLE: 指定该SharedPreferences数据能被其他应用程序读,写 Editor有如下主要重要方法: SharedPreferences.Editor clear():清空SharedPreferences里所有数据 SharedPreferences.Editor putXxx(String key , xxx value): 向SharedPreferences存入指定key对应的数据,其中xxx 可以是boolean,float,int等各种基本类型据 SharedPreferences.Editor remove(): 删除SharedPreferences中指定key对应的数据项 boolean commit(): 当Editor编辑完成后,使用该方法提交修改 实际案例:运行界面如下 这里只提供了两个按钮和一个输入文本框,布局简单,故在此不给出界面布局文件了,程序核心代码如下: 、class ViewOcl implements View.OnClickListener{ @Override public void onClick(View v) { switch(v.getId()){ case R.id.btnSet: //步骤1:获取输入值 String code = txtCode.getText().toString().trim(); //步骤2-1:创建一个SharedPreferences.Editor接口对象,lock表示要写入的XML文件名,MODE_WORLD_WRITEABLE写操作 SharedPreferences.Editor editor = getSharedPreferences("lock", MODE_WORLD_WRITEABLE).edit(); //步骤2-2:将获取过来的值放入文件 editor.putString("code", code); //步骤3:提交 editor.commit(); Toast.makeText(getApplicationContext(), "口令设置成功", Toast.LENGTH_LONG).show(); break; case R.id.btnGet: //步骤1:创建一个SharedPreferences接口对象 SharedPreferences read = getSharedPreferences("lock", MODE_WORLD_READABLE); //步骤2:获取文件中的值 String value = read.getString("code", ""); Toast.makeText(getApplicationContext(), "口令为:"+value, Toast.LENGTH_LONG).show(); break; } } } 、读写其他应用的SharedPreferences: 步骤如下 1、在创建SharedPreferences时,指定MODE_WORLD_READABLE模式,表明该SharedPreferences数据可以被其他程序读取 2、创建其他应用程序对应的Context: Context pvCount = createPackageContext("com.tony.app", Context.CONTEXT_IGNORE_SECURITY);这里的com.tony.app就是其他程序的包名 3、使用其他程序的Context获取对应的SharedPreferences SharedPreferences read = pvCount.getSharedPreferences("lock", Context.MODE_WORLD_READABLE); 4、如果是写入数据,使用Editor接口即可,所有其他操作均和前面一致。 SharedPreferences对象与SQLite数据库相比,免去了创建数据库,创建表,写SQL语句等诸多操作,相对而言更加方便,简洁。但是SharedPreferences也有其自身缺陷,比如其职能存储boolean,int,float,long和String五种简单的数据类型,比如其无法进行条件查询等。所以不论SharedPreferences的数据存储操作是如何简单,它也只能是存储方式的一种补充,而无法完全替代如SQLite数据库这样的其他数据存储方式。 第二种: 文件存储数据 核心原理: Context提供了两个方法来打开数据文件里的文件IO流 FileInputStream openFileInput(String name); FileOutputStream(String name , int mode),这两个方法第一个参数 用于指定文件名,第二个参数指定打开文件的模式。具体有以下值可选: MODE_PRIVATE:为默认操作模式,代表该文件是私有数据,只能被应用本身访问,在该模式下,写入的内容会覆盖原文件的内容,如果想把新写入的内容追加到原文件中。可 以使用Context.MODE_APPEND MODE_APPEND:模式会检查文件是否存在,存在就往文件追加内容,否则就创建新文件。 MODE_WORLD_READABLE:表示当前文件可以被其他应用读取; MODE_WORLD_WRITEABLE:表示当前文件可以被其他应用写入。 除此之外,Context还提供了如下几个重要的方法: getDir(String name , int mode):在应用程序的数据文件夹下获取或者创建name对应的子目录 File getFilesDir():获取该应用程序的数据文件夹得绝对路径 String[] fileList():返回该应用数据文件夹的全部文件 public String read() { try { FileInputStream inStream = this.openFileInput("message.txt"); byte[] buffer = new byte[1024]; int hasRead = 0; StringBuilder sb = new StringBuilder(); while ((hasRead = inStream.read(buffer)) != -1) { sb.append(new String(buffer, 0, hasRead)); } inStream.close(); return sb.toString(); } catch (Exception e) { e.printStackTrace(); } return null; } public void write(String msg){ // 步骤1:获取输入值 if(msg == null) return; try { // 步骤2:创建一个FileOutputStream对象,MODE_APPEND追加模式 FileOutputStream fos = openFileOutput("message.txt", MODE_APPEND); // 步骤3:将获取过来的值放入文件 fos.write(msg.getBytes()); // 步骤4:关闭数据流 fos.close(); } catch (Exception e) { e.printStackTrace(); } } openFileOutput()方法的第一参数用于指定文件名称,不能包含路径分隔符“/” ,如果文件不存在,Android 会自动创建它。创建的文件保存在/data/data//files目录,如: /data/data/cn.tony.app/files/message.txt, 下面讲解某些特殊文件读写需要注意的地方: 读写sdcard上的文件 其中读写步骤按如下进行: 1、调用Environment的getExternalStorageState()方法判断手机上是否插了sd卡,且应用程序具有读写SD卡的权限,如下代码将返回true Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED) 2、调用Environment.getExternalStorageDirectory()方法来获取外部存储器,也就是SD卡的目录,或者使用"/mnt/sdcard/"目录 3、使用IO流操作SD卡上的文件 注意点:手机应该已插入SD卡,对于模拟器而言,可通过mksdcard命令来创建虚拟存储卡 必须在AndroidManifest.xml上配置读写SD卡的权限 // 文件写操作函数 private void write(String content) { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } PrintStream out = null; // 打印流对象用于输出 try { out = new PrintStream(new FileOutputStream(file, true)); // 追加文件 out.println(content); } catch (Exception e) { e.printStackTrace(); } finally { if (out != null) { out.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "保存失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } } // 文件读操作函数 private String read() { if (Environment.getExternalStorageState().equals( Environment.MEDIA_MOUNTED)) { // 如果sdcard存在 File file = new File(Environment.getExternalStorageDirectory() .toString() + File.separator + DIR + File.separator + FILENAME); // 定义File类对象 if (!file.getParentFile().exists()) { // 父文件夹不存在 file.getParentFile().mkdirs(); // 创建文件夹 } Scanner scan = null; // 扫描输入 StringBuilder sb = new StringBuilder(); try { scan = new Scanner(new FileInputStream(file)); // 实例化Scanner while (scan.hasNext()) { // 循环读取 sb.append(scan.next() + "\n"); // 设置文本 } return sb.toString(); } catch (Exception e) { e.printStackTrace(); } finally { if (scan != null) { scan.close(); // 关闭打印流 } } } else { // SDCard不存在,使用Toast提示用户 Toast.makeText(this, "读取失败,SD卡不存在!", Toast.LENGTH_LONG).show(); } return null; } 复制代码 第三种:SQLite存储数据 SQLite是轻量级嵌入式数据库引擎,它支持 SQL 语言,并且只利用很少的内存就有很好的性能。现在的主流移动设备像Android、iPhone等都使用SQLite作为复杂数据的存储引擎,在我们为移动设备开发应用程序时,也许就要使用到SQLite来存储我们大量的数据,所以我们就需要掌握移动设备上的SQLite开发技巧 SQLiteDatabase类为我们提供了很多种方法,上面的代码中基本上囊括了大部分的数据库操作;对于添加、更新和删除来说,我们都可以使用 1 db.executeSQL(String sql); 2 db.executeSQL(String sql, Object[] bindArgs);//sql语句中使用占位符,然后第二个参数是实际的参数集 除了统一的形式之外,他们还有各自的操作方法: 1 db.insert(String table, String nullColumnHack, ContentValues values); 2 db.update(String table, Contentvalues values, String whereClause, String whereArgs); 3 db.delete(String table, String whereClause, String whereArgs);以上三个方法的第一个参数都是表示要操作的表名;insert中的第二个参数表示如果插入的数据每一列都为空的话,需要指定此行中某一列的名称,系统将此列设置为NULL,不至于出现错误;insert中的第三个参数是ContentValues类型的变量,是键值对组成的Map,key代表列名,value代表该列要插入的值;update的第二个参数也很类似,只不过它是更新该字段key为最新的value值,第三个参数whereClause表示WHERE表达式,比如“age > ? and age < ?”等,最后的whereArgs参数是占位符的实际参数值;delete方法的参数也是一样 下面给出demo 数据的添加 1.使用insert方法 复制代码1 ContentValues cv = new ContentValues();//实例化一个ContentValues用来装载待插入的数据2 cv.put("title","you are beautiful");//添加title3 cv.put("weather","sun"); //添加weather4 cv.put("context","xxxx"); //添加context5 String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")6 .format(new Date());7 cv.put("publish ",publish); //添加publish8 db.insert("diary",null,cv);//执行插入操作复制代码2.使用execSQL方式来实现 String sql = "insert into user(username,password) values ('Jack Johnson','iLovePopMuisc');//插入操作的SQL语句db.execSQL(sql);//执行SQL语句数据的删除 同样有2种方式可以实现 String whereClause = "username=?";//删除的条件String[] whereArgs = {"Jack Johnson"};//删除的条件参数db.delete("user",whereClause,whereArgs);//执行删除使用execSQL方式的实现 String sql = "delete from user where username='Jack Johnson'";//删除操作的SQL语句db.execSQL(sql);//执行删除操作数据修改 同上,仍是2种方式 ContentValues cv = new ContentValues();//实例化ContentValuescv.put("password","iHatePopMusic");//添加要更改的字段及内容String whereClause = "username=?";//修改条件String[] whereArgs = {"Jack Johnson"};//修改条件的参数db.update("user",cv,whereClause,whereArgs);//执行修改使用execSQL方式的实现 String sql = "update user set password = 'iHatePopMusic' where username='Jack Johnson'";//修改的SQL语句db.execSQL(sql);//执行修改数据查询 下面来说说查询操作。查询操作相对于上面的几种操作要复杂些,因为我们经常要面对着各种各样的查询条件,所以系统也考虑到这种复杂性,为我们提供了较为丰富的查询形式: 1 db.rawQuery(String sql, String[] selectionArgs); 2 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy); 3 db.query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 4 db.query(String distinct, String table, String[] columns, String selection, String[] selectionArgs, String groupBy, String having, String orderBy, String limit); 上面几种都是常用的查询方法,第一种最为简单,将所有的SQL语句都组织到一个字符串中,使用占位符代替实际参数,selectionArgs就是占位符实际参数集; 各参数说明: table:表名称colums:表示要查询的列所有名称集selection:表示WHERE之后的条件语句,可以使用占位符selectionArgs:条件语句的参数数组groupBy:指定分组的列名having:指定分组条件,配合groupBy使用orderBy:y指定排序的列名limit:指定分页参数distinct:指定“true”或“false”表示要不要过滤重复值Cursor:返回值,相当于结果集ResultSet最后,他们同时返回一个Cursor对象,代表数据集的游标,有点类似于JavaSE中的ResultSet。下面是Cursor对象的常用方法: 复制代码 1 c.move(int offset); //以当前位置为参考,移动到指定行 2 c.moveToFirst(); //移动到第一行 3 c.moveToLast(); //移动到最后一行 4 c.moveToPosition(int position); //移动到指定行 5 c.moveToPrevious(); //移动到前一行 6 c.moveToNext(); //移动到下一行 7 c.isFirst(); //是否指向第一条 8 c.isLast(); //是否指向最后一条 9 c.isBeforeFirst(); //是否指向第一条之前 10 c.isAfterLast(); //是否指向最后一条之后 11 c.isNull(int columnIndex); //指定列是否为空(列基数为0) 12 c.isClosed(); //游标是否已关闭 13 c.getCount(); //总数据项数 14 c.getPosition(); //返回当前游标所指向的行数 15 c.getColumnIndex(String columnName);//返回某列名对应的列索引值 16 c.getString(int columnIndex); //返回当前行指定列的值 复制代码实现代码 复制代码String[] params = {12345,123456};Cursor cursor = db.query("user",columns,"ID=?",params,null,null,null);//查询并获得游标if(cursor.moveToFirst()){//判断游标是否为空 for(int i=0;i<cursor.getCount();i++){ cursor.move(i);//移动到指定记录 String username = cursor.getString(cursor.getColumnIndex("username"); String password = cursor.getString(cursor.getColumnIndex("password")); } }复制代码通过rawQuery实现的带参数查询 复制代码Cursor result=db.rawQuery("SELECT ID, name, inventory FROM mytable");//Cursor c = db.rawQuery("s name, inventory FROM mytable where ID=?",new Stirng[]{"123456"}); result.moveToFirst(); while (!result.isAfterLast()) { int id=result.getInt(0); String name=result.getString(1); int inventory=result.getInt(2); // do something useful with these result.moveToNext(); } result.close();复制代码 在上面的代码示例中,已经用到了这几个常用方法中的一些,关于更多的信息,大家可以参考官方文档中的说明。 最后当我们完成了对数据库的操作后,记得调用SQLiteDatabase的close()方法释放数据库连接,否则容易出现SQLiteException。 上面就是SQLite的基本应用,但在实际开发中,为了能够更好的管理和维护数据库,我们会封装一个继承自SQLiteOpenHelper类的数据库操作类,然后以这个类为基础,再封装我们的业务逻辑方法。 这里直接使用案例讲解:下面是案例demo的界面 SQLiteOpenHelper类介绍 SQLiteOpenHelper是SQLiteDatabase的一个帮助类,用来管理数据库的创建和版本的更新。一般是建立一个类继承它,并实现它的onCreate和onUpgrade方法。 方法名 方法描述SQLiteOpenHelper(Context context,String name,SQLiteDatabase.CursorFactory factory,int version) 构造方法,其中 context 程序上下文环境 即:XXXActivity.this; name :数据库名字; factory:游标工厂,默认为null,即为使用默认工厂; version 数据库版本号 onCreate(SQLiteDatabase db) 创建数据库时调用onUpgrade(SQLiteDatabase db,int oldVersion , int newVersion) 版本更新时调用getReadableDatabase() 创建或打开一个只读数据库getWritableDatabase() 创建或打开一个读写数据库首先创建数据库类 复制代码 1 import android.content.Context; 2 import android.database.sqlite.SQLiteDatabase; 3 import android.database.sqlite.SQLiteDatabase.CursorFactory; 4 import android.database.sqlite.SQLiteOpenHelper; 5 6 public class SqliteDBHelper extends SQLiteOpenHelper { 7 8 // 步骤1:设置常数参量 9 private static final String DATABASE_NAME = "diary_db";10 private static final int VERSION = 1;11 private static final String TABLE_NAME = "diary";12 13 // 步骤2:重载构造方法14 public SqliteDBHelper(Context context) {15 super(context, DATABASE_NAME, null, VERSION);16 }17 18 /*19 * 参数介绍:context 程序上下文环境 即:XXXActivity.this 20 * name 数据库名字 21 * factory 接收数据,一般情况为null22 * version 数据库版本号23 */24 public SqliteDBHelper(Context context, String name, CursorFactory factory,25 int version) {26 super(context, name, factory, version);27 }28 //数据库第一次被创建时,onCreate()会被调用29 @Override30 public void onCreate(SQLiteDatabase db) {31 // 步骤3:数据库表的创建32 String strSQL = "create table "33 + TABLE_NAME34 + "(tid integer primary key autoincrement,title varchar(20),weather varchar(10),context text,publish date)";35 //步骤4:使用参数db,创建对象36 db.execSQL(strSQL);37 }38 //数据库版本变化时,会调用onUpgrade()39 @Override40 public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {41 42 }43 }复制代码正如上面所述,数据库第一次创建时onCreate方法会被调用,我们可以执行创建表的语句,当系统发现版本变化之后,会调用onUpgrade方法,我们可以执行修改表结构等语句。 我们需要一个Dao,来封装我们所有的业务方法,代码如下: 复制代码 1 import android.content.Context; 2 import android.database.Cursor; 3 import android.database.sqlite.SQLiteDatabase; 4 5 import com.chinasoft.dbhelper.SqliteDBHelper; 6 7 public class DiaryDao { 8 9 private SqliteDBHelper sqliteDBHelper;10 private SQLiteDatabase db;11 12 // 重写构造方法13 public DiaryDao(Context context) {14 this.sqliteDBHelper = new SqliteDBHelper(context);15 db = sqliteDBHelper.getWritableDatabase();16 }17 18 // 读操作19 public String execQuery(final String strSQL) {20 try {21 System.out.println("strSQL>" + strSQL);22 // Cursor相当于JDBC中的ResultSet23 Cursor cursor = db.rawQuery(strSQL, null);24 // 始终让cursor指向数据库表的第1行记录25 cursor.moveToFirst();26 // 定义一个StringBuffer的对象,用于动态拼接字符串27 StringBuffer sb = new StringBuffer();28 // 循环游标,如果不是最后一项记录29 while (!cursor.isAfterLast()) {30 sb.append(cursor.getInt(0) + "/" + cursor.getString(1) + "/"31 + cursor.getString(2) + "/" + cursor.getString(3) + "/"32 + cursor.getString(4)+"#");33 //cursor游标移动34 cursor.moveToNext();35 }36 db.close();37 return sb.deleteCharAt(sb.length()-1).toString();38 } catch (RuntimeException e) {39 e.printStackTrace();40 return null;41 }42 43 }44 45 // 写操作46 public boolean execOther(final String strSQL) {47 db.beginTransaction(); //开始事务48 try {49 System.out.println("strSQL" + strSQL);50 db.execSQL(strSQL);51 db.setTransactionSuccessful(); //设置事务成功完成 52 db.close();53 return true;54 } catch (RuntimeException e) {55 e.printStackTrace();56 return false;57 }finally { 58 db.endTransaction(); //结束事务 59 } 60 61 }62 }复制代码我们在Dao构造方法中实例化sqliteDBHelper并获取一个SQLiteDatabase对象,作为整个应用的数据库实例;在增删改信息时,我们采用了事务处理,确保数据完整性;最后要注意释放数据库资源db.close(),这一个步骤在我们整个应用关闭时执行,这个环节容易被忘记,所以朋友们要注意。 我们获取数据库实例时使用了getWritableDatabase()方法,也许朋友们会有疑问,在getWritableDatabase()和getReadableDatabase()中,你为什么选择前者作为整个应用的数据库实例呢?在这里我想和大家着重分析一下这一点。 我们来看一下SQLiteOpenHelper中的getReadableDatabase()方法: 复制代码 1 public synchronized SQLiteDatabase getReadableDatabase() { 2 if (mDatabase != null && mDatabase.isOpen()) { 3 // 如果发现mDatabase不为空并且已经打开则直接返回 4 return mDatabase; 5 } 6 7 if (mIsInitializing) { 8 // 如果正在初始化则抛出异常 9 throw new IllegalStateException("getReadableDatabase called recursively"); 10 } 11 12 // 开始实例化数据库mDatabase 13 14 try { 15 // 注意这里是调用了getWritableDatabase()方法 16 return getWritableDatabase(); 17 } catch (SQLiteException e) { 18 if (mName == null) 19 throw e; // Can't open a temp database read-only! 20 Log.e(TAG, "Couldn't open " + mName + " for writing (will try read-only):", e); 21 } 22 23 // 如果无法以可读写模式打开数据库 则以只读方式打开 24 25 SQLiteDatabase db = null; 26 try { 27 mIsInitializing = true; 28 String path = mContext.getDatabasePath(mName).getPath();// 获取数据库路径 29 // 以只读方式打开数据库 30 db = SQLiteDatabase.openDatabase(path, mFactory, SQLiteDatabase.OPEN_READONLY); 31 if (db.getVersion() != mNewVersion) { 32 throw new SQLiteException("Can't upgrade read-only database from version " + db.getVersion() + " to " 33 + mNewVersion + ": " + path); 34 } 35 36 onOpen(db); 37 Log.w(TAG, "Opened " + mName + " in read-only mode"); 38 mDatabase = db;// 为mDatabase指定新打开的数据库 39 return mDatabase;// 返回打开的数据库 40 } finally { 41 mIsInitializing = false; 42 if (db != null && db != mDatabase) 43 db.close(); 44 } 45 }复制代码在getReadableDatabase()方法中,首先判断是否已存在数据库实例并且是打开状态,如果是,则直接返回该实例,否则试图获取一个可读写模式的数据库实例,如果遇到磁盘空间已满等情况获取失败的话,再以只读模式打开数据库,获取数据库实例并返回,然后为mDatabase赋值为最新打开的数据库实例。既然有可能调用到getWritableDatabase()方法,我们就要看一下了: 复制代码public synchronized SQLiteDatabase getWritableDatabase() { if (mDatabase != null && mDatabase.isOpen() && !mDatabase.isReadOnly()) { // 如果mDatabase不为空已打开并且不是只读模式 则返回该实例 return mDatabase; } if (mIsInitializing) { throw new IllegalStateException("getWritableDatabase called recursively"); } // If we have a read-only database open, someone could be using it // (though they shouldn't), which would cause a lock to be held on // the file, and our attempts to open the database read-write would // fail waiting for the file lock. To prevent that, we acquire the // lock on the read-only database, which shuts out other users. boolean success = false; SQLiteDatabase db = null; // 如果mDatabase不为空则加锁 阻止其他的操作 if (mDatabase != null) mDatabase.lock(); try { mIsInitializing = true; if (mName == null) { db = SQLiteDatabase.create(null); } else { // 打开或创建数据库 db = mContext.openOrCreateDatabase(mName, 0, mFactory); } // 获取数据库版本(如果刚创建的数据库,版本为0) int version = db.getVersion(); // 比较版本(我们代码中的版本mNewVersion为1) if (version != mNewVersion) { db.beginTransaction();// 开始事务 try { if (version == 0) { // 执行我们的onCreate方法 onCreate(db); } else { // 如果我们应用升级了mNewVersion为2,而原版本为1则执行onUpgrade方法 onUpgrade(db, version, mNewVersion); } db.setVersion(mNewVersion);// 设置最新版本 db.setTransactionSuccessful();// 设置事务成功 } finally { db.endTransaction();// 结束事务 } } onOpen(db); success = true; return db;// 返回可读写模式的数据库实例 } finally { mIsInitializing = false; if (success) { // 打开成功 if (mDatabase != null) { // 如果mDatabase有值则先关闭 try { mDatabase.close(); } catch (Exception e) { } mDatabase.unlock();// 解锁 } mDatabase = db;// 赋值给mDatabase } else { // 打开失败的情况:解锁、关闭 if (mDatabase != null) mDatabase.unlock(); if (db != null) db.close(); } } }复制代码大家可以看到,几个关键步骤是,首先判断mDatabase如果不为空已打开并不是只读模式则直接返回,否则如果mDatabase不为空则加锁,然后开始打开或创建数据库,比较版本,根据版本号来调用相应的方法,为数据库设置新版本号,最后释放旧的不为空的mDatabase并解锁,把新打开的数据库实例赋予mDatabase,并返回最新实例。 看完上面的过程之后,大家或许就清楚了许多,如果不是在遇到磁盘空间已满等情况,getReadableDatabase()一般都会返回和getWritableDatabase()一样的数据库实例,所以我们在DBManager构造方法中使用getWritableDatabase()获取整个应用所使用的数据库实例是可行的。当然如果你真的担心这种情况会发生,那么你可以先用getWritableDatabase()获取数据实例,如果遇到异常,再试图用getReadableDatabase()获取实例,当然这个时候你获取的实例只能读不能写了 最后,让我们看一下如何使用这些数据操作方法来显示数据,界面核心逻辑代码: 复制代码public class SQLiteActivity extends Activity { public DiaryDao diaryDao; //因为getWritableDatabase内部调用了mContext.openOrCreateDatabase(mName, 0, mFactory); //所以要确保context已初始化,我们可以把实例化Dao的步骤放在Activity的onCreate里 @Override protected void onCreate(Bundle savedInstanceState) { diaryDao = new DiaryDao(SQLiteActivity.this); initDatabase(); } class ViewOcl implements View.OnClickListener { @Override public void onClick(View v) { String strSQL; boolean flag; String message; switch (v.getId()) { case R.id.btnAdd: String title = txtTitle.getText().toString().trim(); String weather = txtWeather.getText().toString().trim();; String context = txtContext.getText().toString().trim();; String publish = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") .format(new Date()); // 动态组件SQL语句 strSQL = "insert into diary values(null,'" + title + "','" + weather + "','" + context + "','" + publish + "')"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"添加成功":"添加失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnDelete: strSQL = "delete from diary where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"删除成功":"删除失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; case R.id.btnQuery: strSQL = "select * from diary order by publish desc"; String data = diaryDao.execQuery(strSQL); Toast.makeText(getApplicationContext(), data, Toast.LENGTH_LONG).show(); break; case R.id.btnUpdate: strSQL = "update diary set title = '测试标题1-1' where tid = 1"; flag = diaryDao.execOther(strSQL); //返回信息 message = flag?"更新成功":"更新失败"; Toast.makeText(getApplicationContext(), message, Toast.LENGTH_LONG).show(); break; } } } private void initDatabase() { // 创建数据库对象 SqliteDBHelper sqliteDBHelper = new SqliteDBHelper(SQLiteActivity.this); sqliteDBHelper.getWritableDatabase(); System.out.println("数据库创建成功"); } }复制代码 Android sqlite3数据库管理工具 Android SDK的tools目录下提供了一个sqlite3.exe工具,这是一个简单的sqlite数据库管理工具。开发者可以方便的使用其对sqlite数据库进行命令行的操作。 程序运行生成的.db文件一般位于"/data/data/项目名(包括所处包名)/databases/.db",因此要对数据库文件进行操作需要先找到数据库文件: 1、进入shell 命令 adb shell2、找到数据库文件 cd data/data ls --列出所有项目 cd project_name --进入所需项目名 cd databases ls --列出现寸的数据库文件 3、进入数据库 sqlite3 test_db --进入所需数据库 会出现类似如下字样: SQLite version 3.6.22Enter ".help" for instructionsEnter SQL statements terminated with a ";"sqlite>至此,可对数据库进行sql操作。 4、sqlite常用命令 .databases --产看当前数据库.tables --查看当前数据库中的表.help --sqlite3帮助.schema --各个表的生成语句 原文地址https://www.cnblogs.com/ITtangtang/p/3920916.html

auto_answer 2019-12-02 01:50:21 0 浏览量 回答数 0

问题

SSH面试题

琴瑟 2019-12-01 21:46:22 3489 浏览量 回答数 0

问题

Hibernate的优点,为什么用Hibernate:报错

kun坤 2020-06-09 10:46:45 1 浏览量 回答数 1

问题

【精品问答】100+ Java和JavaSE常用技术点

游客pklijor6gytpx 2020-03-29 23:26:40 1148 浏览量 回答数 1

问题

别犹豫了,用阿里服务,不会错!做站的你遇到过下面的情况你会怎么办?

dieshang668 2019-12-01 21:24:39 8893 浏览量 回答数 4

问题

搞懂了这几点,你就学会了Web编程

技术小菜鸟 2019-12-01 21:20:38 2373 浏览量 回答数 1

回答

详细解答可以参考官方帮助文档          ASP 本身并不是一种脚本语言,它只是提供了一种使镶嵌在 HTML 页面中的脚本程序得以运行的环境,而在ASP中最常用的脚本语言就是VBScript了。虽然ASP的脚本语言很简单,但是要想让一个ASP程序能够最优化的运行也不是一件简单的事情。现在国内的网络带宽很有限,网络十分拥挤,如何使得自己的ASP应用程序能够快速的运行就成为了每一个ASP程序员的梦想了。一. 有关操作数据库的优化方法我们使用ASP最主要的用途就是对数据库进行操作了,如何更快速的完成这些动作呢?1. 不要任意使用“SELECT  *  ......”请尽量拾取您所需要的那些字段,比如,一个Table中有10个字段,但是您只会用到其中的一个字段(name),就要使用“select name from yourtable”,而不是用“select * from yourtable”。如果一个table中有50个字段,您需要用到其中的23个字段的时候,大多数程序员就不一定会用“select name,sex,age... from yourtable”测试证明,尽量拾取您所需要的那些字段来使用select语句将会是您的ASP程序至少加快5%左右。2. 尽可能使用系统存储过程(针对MS SQL Server)。有的时候完成一个读取操作,使用SQL语句和存储过程同样可以完成,但是使用存储过程将会大大加快完成读取操作的速度,也就提高了您的ASP程序运行的速度。3. 注意您的游标使用方法如果您仅仅是对一个table进行读取操作,那么建议您使用forward-only,read-only游标,因为这种游标读取数据库是最为快速的,尤其是在读取数据量很大的情况下。4. 不要打开无用的独立记录集。比如在生成一个树型记录集的时候,我们一般不得不打开父记录集以及对应的子记录集,甚至还有孙记录集,其实您可以使用ADO提供的Data Shaping技术来替代打开多个独立的记录集,那样会加快程序的运行速度。(关于Data Shaping的用法可以参考ADO帮助)5. 记着关闭打开的记录集对象以及连接(Connection)对象。有些程序员总是奇怪为何自己的ASP程序刚开始的时候运行速度很快,可是多运行几遍就越来越慢了呢?甚至出现服务器死机或者频繁宕机的情况。发生这种情况,就很可能是您打开了太多的记录集对象以及连接(Connection)对象而最后却没有关闭他们引起的。使用如下方法进行关闭:YourRecordSet.closeSet YourRecordSet=NothingSet YourConnection=Nothing6. 取得数据库数据的方法。比较您是如何得到记录集的数据的呢?大多数程序员使用YourRecordSet(字段编号),或者YourRecordSet("字段名称"),其实还有其他的使用方法,现在我们就比较一下吧(100条记录):Rs("字段名称")Rs("字段名").ValueRs("字段编号")Set方法数据库回应时间2.967秒2.936秒1.650秒0.586秒2.824秒2.914秒1.611秒0.602秒2.893秒2.943秒1.613秒0.594秒,平均回应时间2.895秒2.931秒1.625秒0.594秒,前三种方法大家都可以看的明白,第四种方法(Set方法)使用:Dim strSQLStrSQL="select name,sex,age from yourtable"Dim rsSet rs=server.createobject("ADODB.RECORDSET")Rs.open strSQL,conn,1,1Const fieldsOrder=2Dim objOrderSet objOrder=rs(fieldsOrder)Response.write objOrder  二. 有关ASP内置对象使用方面的优化方法1. 尽量减少Session对象和Application对象。使用虽然ASP中提供的这两个对象对我们的编程提供了很大的帮助,但是,对这两个对象要合理的使用,不要滥用。因为大量的使用这两个对象将会极大的增大服务器的负担,严重消耗系统资源。也将使您的ASP程序运行慢如老牛。2. 要及时的关闭不再使用的对象(尤其是Session和Application)不及时的关闭您所使用的对象会导致系统运行速度变得缓慢。大多数程序员认为Session和Application可以自动消失,但是系统默认30分钟内访问者如果没有任何操作就自动触发Session_OnEnd和Application_OnEnd事件,但是大量的访问者频繁的读取服务器,服务器将在很长的一段时间保持那些已经没有用的Session,Application对象,如果不及时关闭使用完的Session和Application后果将不堪想象了。关闭的方法是:Set 对象=Nothing三. 合理使用Include文件。我们这里说的是指用<!--#include file="xxx"--形式包含进来的文件,并且文件内容全是ASP程序,也就是说您将一些公共的函数放到一个文件中,并在其他有可能调用其中函数的页面包含进来。建议您不要将所有的函数放到一个包含文件中,因为您在其他页面包含这个文件的时候,服务器端是要进行预编译的,很可能在一个包含文件里面有上百个函数,而您只是想要使用其中的一个函数,这样就严重消耗系统资源。所以,尽可能的分割您的包含文件成为多个小的包含文件。这样也可以提高程序的运行速度。四. 有关VBScript语言方面的优化方法1.尽量使用系统函数代替自己编写的函数比如要想分割一个有规律的字符串("sss,ddd,fff,ggg"),就不必自己使用什么Mid(),Instr等等函数来分析了,其实VBScript就提供了一个函数 Split(),这样既省时间,又提高了速度。2.减少动态数组的使用3.尽可能提前声明变量,提前声明变量会加快程序的解释执行时间。相反,从不声明变量,不但程序难以阅读,整个程序在服务器的执行效率也会大打折扣的。五. 其他方面的优化方法1. 在ASP文件中尽量使用<%%嵌入到HTML标签中,而不要使用Response.write的方式,比如:<html<body<%If ok =1 then %Hello! World!<%End If%就远远比:<%Response.write "<html"Response.write "<body"         If ok =1 thenResponse.write "Hello! World!"         End IfResponse.write "Response.write "%的运行速度要快,尤其是您的ASP文件比较大的情况下。因为,第二种方式增加了服务器端的解释时间,因而也就降低了ASP程序的性能。2. 尽量用一个ASP文件完成一个动作很多人喜欢在一个ASP程序中同时完成诸如添加,删除,查找等等多个动作,不要认为这样是有效的利用了文件,相反,这样做的结果是使得应用程序的运行速度减慢很多。应当将添加,删除,查找等分割成单个的独立的ASP文件来完成。这样使得文件不会过于庞大,降低服务器端解释执行的负担,并且阅读程序也很快捷。如问题还未解决,请联系售后技术支持。

2019-12-01 23:22:04 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档          ASP 本身并不是一种脚本语言,它只是提供了一种使镶嵌在 HTML 页面中的脚本程序得以运行的环境,而在ASP中最常用的脚本语言就是VBScript了。虽然ASP的脚本语言很简单,但是要想让一个ASP程序能够最优化的运行也不是一件简单的事情。现在国内的网络带宽很有限,网络十分拥挤,如何使得自己的ASP应用程序能够快速的运行就成为了每一个ASP程序员的梦想了。一. 有关操作数据库的优化方法我们使用ASP最主要的用途就是对数据库进行操作了,如何更快速的完成这些动作呢?1. 不要任意使用“SELECT  *  ......”请尽量拾取您所需要的那些字段,比如,一个Table中有10个字段,但是您只会用到其中的一个字段(name),就要使用“select name from yourtable”,而不是用“select * from yourtable”。如果一个table中有50个字段,您需要用到其中的23个字段的时候,大多数程序员就不一定会用“select name,sex,age... from yourtable”测试证明,尽量拾取您所需要的那些字段来使用select语句将会是您的ASP程序至少加快5%左右。2. 尽可能使用系统存储过程(针对MS SQL Server)。有的时候完成一个读取操作,使用SQL语句和存储过程同样可以完成,但是使用存储过程将会大大加快完成读取操作的速度,也就提高了您的ASP程序运行的速度。3. 注意您的游标使用方法如果您仅仅是对一个table进行读取操作,那么建议您使用forward-only,read-only游标,因为这种游标读取数据库是最为快速的,尤其是在读取数据量很大的情况下。4. 不要打开无用的独立记录集。比如在生成一个树型记录集的时候,我们一般不得不打开父记录集以及对应的子记录集,甚至还有孙记录集,其实您可以使用ADO提供的Data Shaping技术来替代打开多个独立的记录集,那样会加快程序的运行速度。(关于Data Shaping的用法可以参考ADO帮助)5. 记着关闭打开的记录集对象以及连接(Connection)对象。有些程序员总是奇怪为何自己的ASP程序刚开始的时候运行速度很快,可是多运行几遍就越来越慢了呢?甚至出现服务器死机或者频繁宕机的情况。发生这种情况,就很可能是您打开了太多的记录集对象以及连接(Connection)对象而最后却没有关闭他们引起的。使用如下方法进行关闭:YourRecordSet.closeSet YourRecordSet=NothingSet YourConnection=Nothing6. 取得数据库数据的方法。比较您是如何得到记录集的数据的呢?大多数程序员使用YourRecordSet(字段编号),或者YourRecordSet("字段名称"),其实还有其他的使用方法,现在我们就比较一下吧(100条记录):Rs("字段名称")Rs("字段名").ValueRs("字段编号")Set方法数据库回应时间2.967秒2.936秒1.650秒0.586秒2.824秒2.914秒1.611秒0.602秒2.893秒2.943秒1.613秒0.594秒,平均回应时间2.895秒2.931秒1.625秒0.594秒,前三种方法大家都可以看的明白,第四种方法(Set方法)使用:Dim strSQLStrSQL="select name,sex,age from yourtable"Dim rsSet rs=server.createobject("ADODB.RECORDSET")Rs.open strSQL,conn,1,1Const fieldsOrder=2Dim objOrderSet objOrder=rs(fieldsOrder)Response.write objOrder  二. 有关ASP内置对象使用方面的优化方法1. 尽量减少Session对象和Application对象。使用虽然ASP中提供的这两个对象对我们的编程提供了很大的帮助,但是,对这两个对象要合理的使用,不要滥用。因为大量的使用这两个对象将会极大的增大服务器的负担,严重消耗系统资源。也将使您的ASP程序运行慢如老牛。2. 要及时的关闭不再使用的对象(尤其是Session和Application)不及时的关闭您所使用的对象会导致系统运行速度变得缓慢。大多数程序员认为Session和Application可以自动消失,但是系统默认30分钟内访问者如果没有任何操作就自动触发Session_OnEnd和Application_OnEnd事件,但是大量的访问者频繁的读取服务器,服务器将在很长的一段时间保持那些已经没有用的Session,Application对象,如果不及时关闭使用完的Session和Application后果将不堪想象了。关闭的方法是:Set 对象=Nothing三. 合理使用Include文件。我们这里说的是指用<!--#include file="xxx"--形式包含进来的文件,并且文件内容全是ASP程序,也就是说您将一些公共的函数放到一个文件中,并在其他有可能调用其中函数的页面包含进来。建议您不要将所有的函数放到一个包含文件中,因为您在其他页面包含这个文件的时候,服务器端是要进行预编译的,很可能在一个包含文件里面有上百个函数,而您只是想要使用其中的一个函数,这样就严重消耗系统资源。所以,尽可能的分割您的包含文件成为多个小的包含文件。这样也可以提高程序的运行速度。四. 有关VBScript语言方面的优化方法1.尽量使用系统函数代替自己编写的函数比如要想分割一个有规律的字符串("sss,ddd,fff,ggg"),就不必自己使用什么Mid(),Instr等等函数来分析了,其实VBScript就提供了一个函数 Split(),这样既省时间,又提高了速度。2.减少动态数组的使用3.尽可能提前声明变量,提前声明变量会加快程序的解释执行时间。相反,从不声明变量,不但程序难以阅读,整个程序在服务器的执行效率也会大打折扣的。五. 其他方面的优化方法1. 在ASP文件中尽量使用<%%嵌入到HTML标签中,而不要使用Response.write的方式,比如:<html<body<%If ok =1 then %Hello! World!<%End If%就远远比:<%Response.write "<html"Response.write "<body"         If ok =1 thenResponse.write "Hello! World!"         End IfResponse.write "Response.write "%的运行速度要快,尤其是您的ASP文件比较大的情况下。因为,第二种方式增加了服务器端的解释时间,因而也就降低了ASP程序的性能。2. 尽量用一个ASP文件完成一个动作很多人喜欢在一个ASP程序中同时完成诸如添加,删除,查找等等多个动作,不要认为这样是有效的利用了文件,相反,这样做的结果是使得应用程序的运行速度减慢很多。应当将添加,删除,查找等分割成单个的独立的ASP文件来完成。这样使得文件不会过于庞大,降低服务器端解释执行的负担,并且阅读程序也很快捷。如问题还未解决,请联系售后技术支持。

2019-12-01 23:22:02 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站