• 关于 实时执行系统常见问题及解决方法 的搜索结果

回答

在工程实践上,为了保障系统的可用性,互联网系统大多将强一致性需求转换成最终一致性的需求,并通过系统执行幂等性的保证,保证数据的最终一致性。但在电商等场景中,对于数据一致性的解决方法和常见的互联网系统(如 MySQL 主从同步)又有一定区别,分成以下 6 种解决方案。(一)规避分布式事务——业务整合业务整合方案主要采用将接口整合到本地执行的方法。拿问题场景来说,则可以将服务 A、B、C 整合为一个服务 D 给业务,这个服务 D 再通过转换为本地事务的方式,比如服务 D 包含本地服务和服务 E,而服务 E 是本地服务 A ~ C 的整合。优点:解决(规避)了分布式事务。缺点:显而易见,把本来规划拆分好的业务,又耦合到了一起,业务职责不清晰,不利于维护。由于这个方法存在明显缺点,通常不建议使用。(二)经典方案 - eBay 模式此方案的核心是将需要分布式处理的任务通过消息日志的方式来异步执行。消息日志可以存储到本地文本、数据库或消息队列,再通过业务规则自动或人工发起重试。人工重试更多的是应用于支付场景,通过对账系统对事后问题的处理。消息日志方案的核心是保证服务接口的幂等性。考虑到网络通讯失败、数据丢包等原因,如果接口不能保证幂等性,数据的唯一性将很难保证。eBay 方式的主要思路如下。Base:一种 Acid 的替代方案此方案是 eBay 的架构师 Dan Pritchett 在 2008 年发表给 ACM 的文章,是一篇解释 BASE 原则,或者说最终一致性的经典文章。文中讨论了 BASE 与 ACID 原则在保证数据一致性的基本差异。如果 ACID 为分区的数据库提供一致性的选择,那么如何实现可用性呢?答案是BASE (basically available, soft state, eventually consistent)BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。文章中描述了一个最常见的场景,如果产生了一笔交易,需要在交易表增加记录,同时还要修改用户表的金额。这两个表属于不同的远程服务,所以就涉及到分布式事务一致性的问题。文中提出了一个经典的解决方法,将主要修改操作以及更新用户表的消息放在一个本地事务来完成。同时为了避免重复消费用户表消息带来的问题,达到多次重试的幂等性,增加一个更新记录表 updates_applied 来记录已经处理过的消息。基于以上方法,在第一阶段,通过本地的数据库的事务保障,增加了 transaction 表及消息队列 。在第二阶段,分别读出消息队列(但不删除),通过判断更新记录表 updates_applied 来检测相关记录是否被执行,未被执行的记录会修改 user 表,然后增加一条操作记录到 updates_applied,事务执行成功之后再删除队列。通过以上方法,达到了分布式系统的最终一致性。进一步了解 eBay 的方案可以参考文末链接。(三)去哪儿网分布式事务方案随着业务规模不断地扩大,电商网站一般都要面临拆分之路。就是将原来一个单体应用拆分成多个不同职责的子系统。比如以前可能将面向用户、客户和运营的功能都放在一个系统里,现在拆分为订单中心、代理商管理、运营系统、报价中心、库存管理等多个子系统。拆分首先要面临的是什么呢?最开始的单体应用所有功能都在一起,存储也在一起。比如运营要取消某个订单,那直接去更新订单表状态,然后更新库存表就 ok 了。因为是单体应用,库在一起,这些都可以在一个事务里,由关系数据库来保证一致性。但拆分之后就不同了,不同的子系统都有自己的存储。比如订单中心就只管理自己的订单库,而库存管理也有自己的库。那么运营系统取消订单的时候就是通过接口调用等方式来调用订单中心和库存管理的服务了,而不是直接去操作库。这就涉及一个『分布式事务』的问题。分布式事务有两种解决方式优先使用异步消息。上文已经说过,使用异步消息 Consumer 端需要实现幂等。幂等有两种方式,一种方式是业务逻辑保证幂等。比如接到支付成功的消息订单状态变成支付完成,如果当前状态是支付完成,则再收到一个支付成功的消息则说明消息重复了,直接作为消息成功处理。另外一种方式如果业务逻辑无法保证幂等,则要增加一个去重表或者类似的实现。对于 producer 端在业务数据库的同实例上放一个消息库,发消息和业务操作在同一个本地事务里。发消息的时候消息并不立即发出,而是向消息库插入一条消息记录,然后在事务提交的时候再异步将消息发出,发送消息如果成功则将消息库里的消息删除,如果遇到消息队列服务异常或网络问题,消息没有成功发出那么消息就留在这里了,会有另外一个服务不断地将这些消息扫出重新发送。有的业务不适合异步消息的方式,事务的各个参与方都需要同步的得到结果。这种情况的实现方式其实和上面类似,每个参与方的本地业务库的同实例上面放一个事务记录库。比如 A 同步调用 B,C。A 本地事务成功的时候更新本地事务记录状态,B 和 C 同样。如果有一次 A 调用 B 失败了,这个失败可能是 B 真的失败了,也可能是调用超时,实际 B 成功。则由一个中心服务对比三方的事务记录表,做一个最终决定。假设现在三方的事务记录是 A 成功,B 失败,C 成功。那么最终决定有两种方式,根据具体场景:重试 B,直到 B 成功,事务记录表里记录了各项调用参数等信息;执行 A 和 B 的补偿操作(一种可行的补偿方式是回滚)。对 b 场景做一个特殊说明:比如 B 是扣库存服务,在第一次调用的时候因为某种原因失败了,但是重试的时候库存已经变为 0,无法重试成功,这个时候只有回滚 A 和 C 了。那么可能有人觉得在业务库的同实例里放消息库或事务记录库,会对业务侵入,业务还要关心这个库,是否一个合理的设计?实际上可以依靠运维的手段来简化开发的侵入,我们的方法是让 DBA 在公司所有 MySQL 实例上预初始化这个库,通过框架层(消息的客户端或事务 RPC 框架)透明的在背后操作这个库,业务开发人员只需要关心自己的业务逻辑,不需要直接访问这个库。总结起来,其实两种方式的根本原理是类似的,也就是将分布式事务转换为多个本地事务,然后依靠重试等方式达到最终一致性。(四)蘑菇街交易创建过程中的分布式一致性方案交易创建的一般性流程我们把交易创建流程抽象出一系列可扩展的功能点,每个功能点都可以有多个实现(具体的实现之间有组合/互斥关系)。把各个功能点按照一定流程串起来,就完成了交易创建的过程。面临的问题每个功能点的实现都可能会依赖外部服务。那么如何保证各个服务之间的数据是一致的呢?比如锁定优惠券服务调用超时了,不能确定到底有没有锁券成功,该如何处理?再比如锁券成功了,但是扣减库存失败了,该如何处理?方案选型服务依赖过多,会带来管理复杂性增加和稳定性风险增大的问题。试想如果我们强依赖 10 个服务,9 个都执行成功了,最后一个执行失败了,那么是不是前面 9 个都要回滚掉?这个成本还是非常高的。所以在拆分大的流程为多个小的本地事务的前提下,对于非实时、非强一致性的关联业务写入,在本地事务执行成功后,我们选择发消息通知、关联事务异步化执行的方案。消息通知往往不能保证 100% 成功;且消息通知后,接收方业务是否能执行成功还是未知数。前者问题可以通过重试解决;后者可以选用事务消息来保证。但是事务消息框架本身会给业务代码带来侵入性和复杂性,所以我们选择基于 DB 事件变化通知到 MQ 的方式做系统间解耦,通过订阅方消费 MQ 消息时的 ACK 机制,保证消息一定消费成功,达到最终一致性。由于消息可能会被重发,消息订阅方业务逻辑处理要做好幂等保证。所以目前只剩下需要实时同步做、有强一致性要求的业务场景了。在交易创建过程中,锁券和扣减库存是这样的两个典型场景。要保证多个系统间数据一致,乍一看,必须要引入分布式事务框架才能解决。但引入非常重的类似二阶段提交分布式事务框架会带来复杂性的急剧上升;在电商领域,绝对的强一致是过于理想化的,我们可以选择准实时的最终一致性。我们在交易创建流程中,首先创建一个不可见订单,然后在同步调用锁券和扣减库存时,针对调用异常(失败或者超时),发出废单消息到MQ。如果消息发送失败,本地会做时间阶梯式的异步重试;优惠券系统和库存系统收到消息后,会进行判断是否需要做业务回滚,这样就准实时地保证了多个本地事务的最终一致性。(五)支付宝及蚂蚁金融云的分布式服务 DTS 方案业界常用的还有支付宝的一种 xts 方案,由支付宝在 2PC 的基础上改进而来。主要思路如下,大部分信息引用自官方网站。分布式事务服务简介分布式事务服务 (Distributed Transaction Service, DTS) 是一个分布式事务框架,用来保障在大规模分布式环境下事务的最终一致性。DTS 从架构上分为 xts-client 和 xts-server 两部分,前者是一个嵌入客户端应用的 JAR 包,主要负责事务数据的写入和处理;后者是一个独立的系统,主要负责异常事务的恢复。核心特性传统关系型数据库的事务模型必须遵守 ACID 原则。在单数据库模式下,ACID 模型能有效保障数据的完整性,但是在大规模分布式环境下,一个业务往往会跨越多个数据库,如何保证这多个数据库之间的数据一致性,需要其他行之有效的策略。在 JavaEE 规范中使用 2PC (2 Phase Commit, 两阶段提交) 来处理跨 DB 环境下的事务问题,但是 2PC 是反可伸缩模式,也就是说,在事务处理过程中,参与者需要一直持有资源直到整个分布式事务结束。这样,当业务规模达到千万级以上时,2PC 的局限性就越来越明显,系统可伸缩性会变得很差。基于此,我们采用 BASE 的思想实现了一套类似 2PC 的分布式事务方案,这就是 DTS。DTS在充分保障分布式环境下高可用性、高可靠性的同时兼顾数据一致性的要求,其最大的特点是保证数据最终一致 (Eventually consistent)。简单的说,DTS 框架有如下特性:最终一致:事务处理过程中,会有短暂不一致的情况,但通过恢复系统,可以让事务的数据达到最终一致的目标。协议简单:DTS 定义了类似 2PC 的标准两阶段接口,业务系统只需要实现对应的接口就可以使用 DTS 的事务功能。与 RPC 服务协议无关:在 SOA 架构下,一个或多个 DB 操作往往被包装成一个一个的 Service,Service 与 Service 之间通过 RPC 协议通信。DTS 框架构建在 SOA 架构上,与底层协议无关。与底层事务实现无关: DTS 是一个抽象的基于 Service 层的概念,与底层事务实现无关,也就是说在 DTS 的范围内,无论是关系型数据库 MySQL,Oracle,还是 KV 存储 MemCache,或者列存数据库 HBase,只要将对其的操作包装成 DTS 的参与者,就可以接入到 DTS 事务范围内。一个完整的业务活动由一个主业务服务与若干从业务服务组成。主业务服务负责发起并完成整个业务活动。从业务服务提供 TCC 型业务操作。业务活动管理器控制业务活动的一致性,它登记业务活动中的操作,并在活动提交时确认所有的两阶段事务的 confirm 操作,在业务活动取消时调用所有两阶段事务的 cancel 操作。”与 2PC 协议比较,没有单独的 Prepare 阶段,降低协议成本。系统故障容忍度高,恢复简单(六)农信网数据一致性方案电商业务公司的支付部门,通过接入其它第三方支付系统来提供支付服务给业务部门,支付服务是一个基于 Dubbo 的 RPC 服务。对于业务部门来说,电商部门的订单支付,需要调用支付平台的支付接口来处理订单;同时需要调用积分中心的接口,按照业务规则,给用户增加积分。从业务规则上需要同时保证业务数据的实时性和一致性,也就是支付成功必须加积分。我们采用的方式是同步调用,首先处理本地事务业务。考虑到积分业务比较单一且业务影响低于支付,由积分平台提供增加与回撤接口。具体的流程是先调用积分平台增加用户积分,再调用支付平台进行支付处理,如果处理失败,catch 方法调用积分平台的回撤方法,将本次处理的积分订单回撤。用户信息变更公司的用户信息,统一由用户中心维护,而用户信息的变更需要同步给各业务子系统,业务子系统再根据变更内容,处理各自业务。用户中心作为 MQ 的 producer,添加通知给 MQ。APP Server 订阅该消息,同步本地数据信息,再处理相关业务比如 APP 退出下线等。我们采用异步消息通知机制,目前主要使用 ActiveMQ,基于 Virtual Topic 的订阅方式,保证单个业务集群订阅的单次消费。总结分布式服务对衍生的配套系统要求比较多,特别是我们基于消息、日志的最终一致性方案,需要考虑消息的积压、消费情况、监控、报警等。

小川游鱼 2019-12-02 01:46:40 0 浏览量 回答数 0

问题

立足GitHub学编程:13个不容错过的Java项目

技术小菜鸟 2019-12-01 21:48:13 2674 浏览量 回答数 1

问题

Apache Flink常见问题汇总【精品问答】

黄一刀 2020-05-19 17:51:47 8154 浏览量 回答数 2

试用中心

为您提供0门槛上云实践机会,企业用户最高免费12个月

问题

投递日志到MaxCompute有什么意义?

轩墨 2019-12-01 21:57:02 1275 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:18 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:15 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:15 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:17 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:16 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 投递日志到 MaxCompute 是日志服务的一个功能,能够帮助您最大化数据价值。您可以自己决定对某个日志库是否启用该功能。一旦启用该功能,日志服务后台会定时把写入到该日志库内的日志投递到 MaxCompute 对应的表格中。 使用限制 数加控制台创建、修改投递配置必须由主账号完成,不支持子账号操作。 投递MaxCompute是批量任务,请谨慎设置分区列:保证一个同步任务内处理的数据分区数小于512个;用作分区列的字段值不能包括/等MaxCompute保留字段 。配置细节请参考下文投递配置说明。 不支持海外Region的MaxCompute投递,海外Region的MaxCompute请使用dataworks进行数据同步。国内Region投递支持如下: 日志服务Region MaxCompute Region 华北1 华东2 华北2 华北2、华东2 华北3 华东2 华北5 华东2 华东1 华东2 华东2 华东2 华南1 华南1、华东2 香港 华东2 功能优势 日志服务收集的日志除了可以被实时查询外,还可以把日志数据投递到大数据计算服务MaxCompute(原ODPS),进一步进行个性化BI分析及数据挖掘。通过日志服务投递日志数据到MaxCompute具有如下优势: 使用便捷 您只需要完成2步配置即可以把日志服务Logstore的日志数据迁移到MaxCompute中。 避免重复收集工作 由于日志服务的日志收集过程已经完成不同机器上的日志集中化,无需重复在不同机器上收集一遍日志数据后再导入到MaxCompute。 充分复用日志服务内的日志分类管理工作 用户可让日志服务中不同类型的日志(存在不同Logstore中)、不同Project的日志自动投递到不同的MaxCompute表格,方便管理及分析MaxCompute内的日志数据。 说明 一般情况下日志数据在写入Logstore后的1个小时导入到MaxCompute,您可以在控制台投递任务管理查看导入状态。导入成功后即可在MaxCompute内查看到相关日志数据。判断数据是否已完全投递请参考文档。 结合日志服务的实时消费,投递日志数据到MaxCompute的数据通道以及日志索引功能,可以让用户按照不同的场景和需求、以不同的方式复用数据,充分发挥日志数据的价值。 配置流程 举例日志服务的一条日志如下: 16年01月27日20时50分13秒 10.10.*.* ip:10.10.*.* status:200 thread:414579208 time:27/Jan/2016:20:50:13 +0800 url:POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1 user-agent:aliyun-sdk-java 日志左侧的ip、status、thread、time、url、user-agent等是日志服务数据的字段名称,需要在下方配置中应用到。 步骤1 初始化数加平台 在日志服务的控制台Logstore列表单击日志投递列的MaxCompute。 自动跳转到初始化数加平台的页面。MaxCompute默认为按量付费模式,具体参见MaxCompute文档说明。 查看服务协议和条款后单击确定,初始化数加平台。 初始化开通需10~20秒左右,请耐心等待。如果已经开通数加及大数据计算服务MaxCompute(原ODPS),将直接跳过该步骤。 步骤2 数据模型映射在日志服务和大数据计算服务MaxCompute(原ODPS)之间同步数据,涉及两个服务的数据模型映射问题。您可以参考日志服务日志数据结构了解数据结构。 将样例日志导入MaxCompute,分别定义MaxCompute数据列、分区列与日志服务字段的映射关系: MaxCompute 列类型 MaxCompute 列名(可自定义) MaxCompute 列类型(可自定义) 日志服务字段名(投递配置里填写) 日志服务字段类型 日志服务字段语义 数据列 log_source string __source__ 系统保留字段 日志来源的机器 IP。 log_time bigint __time__ 系统保留字段 日志的 Unix 时间戳(是从1970 年 1 月 1 日开始所经过的秒数),由用户日志的 time 字段计算得到。 log_topic string __topic__ 系统保留字段 日志主题。 time string time 日志内容字段 解析自日志。 ip string ip 日志内容字段 解析自日志。 thread string thread 日志内容字段 解析自日志。 log_extract_others string __extract_others__ 系统保留字段 未在配置中进行映射的其他日志内字段会通过 key-value 序列化到json,该 json 是一层结构,不支持字段内部 json 嵌套。 分区列 log_partition_time string __partition_time__ 系统保留字段 由日志的 time 字段对齐计算而得,分区粒度可配置,在配置项部分详述。 status string status 日志内容字段 解析自日志,该字段取值应该是可以枚举的,保证分区数目不会超出上限。 MaxCompute 表至少包含一个数据列、一个分区列。 系统保留字段中建议使用 __partition_time__,__source__,__topic__。 MaxCompute 单表有分区数目 6 万的限制,分区数超出后无法再写入数据,所以日志服务导入 MaxCompute表至多支持3个分区列。请谨慎选择自定义字段作为分区列,保证其值是可枚举的。 系统保留字段 __extract_others__ 历史上曾用名 _extract_others_,填写后者也是兼容的。 MaxCompute 分区列的值不支持”/“等特殊字符,这些是 MaxCompute 的保留字段。 MaxCompute 分区列取值不支持空,所以映射到分区列的字段必须要在日志里存在,空分区列的日志会在投递中被丢弃。 步骤3 配置投递规则 开启投递。 初始化数加平台之后,根据页面提示进入LogHub —— 数据投递页面,选择需要投递的Logstore,并单击开启投递。 您也可以在MaxCompute(原ODPS)投递管理页面选择需要投递的Logstore,并单击开启投递以进入LogHub —— 数据投递页面。 图 1. 开启投递 配置投递规则。 在 LogHub —— 数据投递页面配置 字段关联等相关内容。 图 2. 配置投递规则 配置项含义: 参数 语义 投递名称 自定义一个投递的名称,方便后续管理。 MaxCompute Project MaxCompute项目名称,该项默认为新创建的Project,如果已经是MaxCompute老客户,可以下拉选择已创建其他Project。 MaxCompute Table MaxCompute表名称,请输入自定义的新建的MaxCompute表名称或者选择已有的MaxCompute表。 MaxCompute 普通列 按序,左边填写与MaxCompute表数据列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 MaxCompute 分区列 按序,左边填写与MaxCompute表分区列相映射的日志服务字段名称,右边填写或选择MaxCompute表的普通字段名称及字段类型。 分区时间格式 __partition_time__输出的日期格式,参考 Java SimpleDateFormat。 导入MaxCompute间隔 MaxCompute数据投递间隔,默认1800,单位:秒。 该步会默认为客户创建好新的MaxCompute Project和Table,其中如果已经是MaxCompute老客户,可以下拉选择其他已创建Project。 日志服务投递MaxCompute功能按照字段与列的顺序进行映射,修改MaxCompute表列名不影响数据导入,如更改MaxCompute表schema,请重新配置字段与列映射关系。 日志服务数据的一个字段最多允许映射到一个MaxCompute表的列(数据列或分区列),不支持字段冗余。 参考信息 __partition_time__ 格式 将日志时间作为分区字段,通过日期来筛选数据是MaxCompute常见的过滤数据方法。 __partition_time__ 是根据日志time字段值计算得到(不是日志写入服务端时间,也不是日志投递时间),结合分区时间格式,向下取整(为避免触发MaxCompute单表分区数目的限制,日期分区列的值会按照导入MaxCompute间隔对齐)计算出日期作为分区列。 举例来说,日志提取的time字段是“27/Jan/2016:20:50:13 +0800”,日志服务据此计算出保留字段__time__为1453899013(Unix时间戳),不同配置下的时间分区列取值如下: 导入MaxCompute间隔 分区时间格式 __partition_time__ 1800 yyyy_MM_dd_HH_mm_00 2016_01_27_20_30_00 1800 yyyy-MM-dd HH:mm 2016-01-27 20:30 1800 yyyyMMdd 20160127 3600 yyyyMMddHHmm 201601272000 3600 yyyy_MM_dd_HH 2016_01_27_20 请勿使用精确到秒的日期格式:1. 很容易导致单表的分区数目超过限制(6万);2. 单次投递任务的数据分区数目必须在512以内。 以上分区时间格式是测试通过的样例,您也可以参考Java SimpleDateFormat自己定义日期格式,但是该格式不得包含斜线字符”/“(这是MaxCompute的保留字段)。 __partition_time__ 使用方法 使用MaxCompute的字符串比较筛选数据,可以避免全表扫描。比如查询2016年1月26日一天内日志数据: select * from {ODPS_TABLE_NAME} where log_partition_time >= "2015_01_26" and log_partition_time < "2016_01_27"; __extract_others__使用方法 log_extract_others为一个json字符串,如果想获取该字段的user-agent内容,可以进行如下查询: select get_json_object(sls_extract_others, "$.user-agent") from {ODPS_TABLE_NAME} limit 10; 说明 get_json_object是MaxCompute提供的标准UDF。请联系MaxCompute团队开通使用该标准UDF的权限。 示例供参考,请以MaxCompute产品建议为最终标准。 其他操作 编辑投递配置 在Logstore列表投递项,单击“修改”即可针对之前的配置信息进行编辑。其中如果想新增列,可以在大数据计算服务MaxCompute(原ODPS)修改投递的数据表列信息,则点击“修改”后会加载最新的数据表信息。 投递任务管理 在启动投递功能后,日志服务后台会定期启动离线投递任务。用户可以在控制台上看到这些投递任务的状态和错误信息。具体请参考管理日志投递任务。 如果投递任务出现错误,控制台上会显示相应的错误信息: 错误信息 建议方案 MaxCompute项目空间不存在 在MaxCompute控制台中确认配置的MaxCompute项目是否存在,如果不存在则需要重新创建或配置。 MaxCompute表不存在 在MaxCompute控制台中确认配置的MaxCompute表是否存在,如果不存在则需要重新创建或配置。 MaxCompute项目空间或表没有向日志服务授权 在MaxCompute控制台中确认授权给日志服务账号的权限是否还存在,如果不存在则需要重新添加上相应权限。 MaxCompute错误 显示投递任务收到的MaxCompute错误,请参考MaxCompute相关文档或联系MaxCompute团队解决。日志服务会自动重试最近两天时间的失败任务。 日志服务导入字段配置无法匹配MaxCompute表的列 重新配置MaxCompute表格的列与日志服务数据字段的映射配置。 当投递任务发生错误时,请查看错误信息,问题解决后可以通过云控制台中“日志投递任务管理”或SDK来重试失败任务。 MaxCompute中消费日志 MaxCompute用户表中示例数据如下: | log_source | log_time | log_topic | time | ip | thread | log_extract_others | log_partition_time | status | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ | 10.10.*.* | 1453899013 | | 27/Jan/2016:20:50:13 +0800 | 10.10.*.* | 414579208 | {"url":"POST /PutData?Category=YunOsAccountOpLog&AccessKeyId=****************&Date=Fri%2C%2028%20Jun%202013%2006%3A53%3A30%20GMT&Topic=raw&Signature=******************************** HTTP/1.1","user-agent":"aliyun-sdk-java"} | 2016_01_27_20_50 | 200 | +------------+------------+-----------+-----------+-----------+-----------+------------------+--------------------+-----------+ 同时,我们推荐您直接使用已经与MaxCompute绑定的大数据开发Data IDE来进行可视化的BI分析及数据挖掘,这将提高数据加工的效率。 授予MaxCompute数据投递权限 如果在数加平台执行表删除重建动作,会导致默认授权失效。请手动重新为日志服务投递数据授权。 在MaxCompute项目空间下添加用户: ADD USER aliyun$shennong_open@aliyun.com; shennong_open@aliyun.com 是日志服务系统账号(请不要用自己的账号),授权目的是为了能将数据写入到MaxCompute MaxCompute项目空间Read/List权限授予: GRANT Read, List ON PROJECT {ODPS_PROJECT_NAME} TO USER aliyun$shennong_open@aliyun.com; MaxCompute项目空间的表Describe/Alter/Update权限授予: GRANT Describe, Alter, Update ON TABLE {ODPS_TABLE_NAME} TO USER aliyun$shennong_open@aliyun.com; 确认MaxCompute授权是否成功: SHOW GRANTS FOR aliyun$shennong_open@aliyun.com; A projects/{ODPS_PROJECT_NAME}: List | Read A projects/{ODPS_PROJECT_NAME}/tables/{ODPS_TABLE_NAME}: Describe | Alter | Update

2019-12-01 23:11:15 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)

小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

回答

PHP面试干货 1、进程和线程 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 2、apache默认使用进程管理还是线程管理?如何判断并设置最大连接数? 一个进程可以开多个线程 默认是进程管理 默认有一个主进程 Linux: ps -aux | grep httpd | more 一个子进程代表一个用户的连接 Conf/extra/httpd-mpm.conf 多路功能模块 http -l 查询当前apache处于什么模式下 3、单例模式 单例模式需求:只能实例化产生一个对象 如何实现: 私有化构造函数 禁止克隆对象 提供一个访问这个实例的公共的静态方法(通常为getInstance方法),从而返回唯一对象 需要一个保存类的静态属性 class demo { private static $MyObject; //保存对象的静态属性 private function __construct(){ //私有化构造函数 } private function __clone(){ //禁止克隆 } public static function getInstance(){ if(! (self::$MyObject instanceof self)){ self::$MyObject = new self; } return self::$MyObject; } } 4、安装完Apache后,在http.conf中配置加载PHP文件以Apache模块的方式安装PHP,在文件http.conf中首先要用语句LoadModule php5_module "e:/php/php5apache2.dll"动态装载PHP模块,然后再用语句AddType application/x-httpd-php .php 使得Apache把所有扩展名为PHP的文件都作为PHP脚本处理 5、debug_backtrace()函数能返回脚本里的任意行中调用的函数的名称。该函数同时还经常被用在调试中,用来判断错误是如何发生的 function one($str1, $str2) { two("Glenn", "Quagmire"); } function two($str1, $str2) { three("Cleveland", "Brown"); } function three($str1, $str2) { print_r(debug_backtrace()); } one("Peter", "Griffin"); Array ( [0] => Array ( [file] => D:\www\test\result.php [line] => 9 [function] => three [args] => Array ( [0] => Cleveland [1] => Brown ) ) [1] => Array ( [file] => D:\www\test\result.php [line] => 5 [function] => two [args] => Array ( [0] => Glenn [1] => Quagmire ) ) [2] => Array ( [file] => D:\www\test\result.php [line] => 16 [function] => one [args] => Array ( [0] => Peter [1] => Griffin ) ) ) 6、输出用户的IP地址,并且判断用户的IP地址是否在192.168.1.100 — 192.168.1.150之间 echo $ip=getenv('REMOTE_ADDR'); $ip=str_replace('.','',$ip); if($ip<1921681150 && $ip>1921681100) { echo 'ip在192.168.1.100—–192.168.1.150之间'; } else { echo 'ip不在192.168.1.100—–192.168.1.150之间'; } 7、请将2维数组按照name的长度进行重新排序,按照顺序将id赋值 $tarray = array( array('id' => 0, 'name' => '123'), array('id' => 0, 'name' => '1234'), array('id' => 0, 'name' => '1235'), array('id' => 0, 'name' => '12356'), array('id' => 0, 'name' => '123abc') ); foreach($tarray as $key=>$val) { $c[]=$val['name']; } function aa($a,$b) { if(strlen($a)==strlen($b)) return 0; return strlen($a)>strlen($b)?-1:1; } usort($c,'aa'); $len=count($c); for($i=0;$i<$len;$i++) { $t[$i]['id']=$i+1; $t[$i]['name']=$c[$i]; } print_r($t); 8、表单数据提交方式POST和GET的区别,URL地址传递的数据最大长度是多少? POST方式提交数据用户不可见,是数据更安全,最大长度不受限制,而GET方式传值在URL地址可以看到,相对不安全,对大长度是2048字节。 9、SESSION和COOKIE的作用和区别,SESSION信息的存储方式,如何进行遍历 SESSION和COOKIE都能够使值在页面之间进行传递,SESSION存储在服务器端,数据更安全,COOKIE保存在客户端,用户使用手段可以进行修改,SESSION依赖于COOKIE进行传递的。Session遍历使用$_SESSION[]取值,cookie遍历使用$_COOKIE[]取值。 10、什么是数据库索引,主键索引,唯一索引的区别,索引的缺点是什么 索引用来快速地寻找那些具有特定值的记录。 主键索引和唯一索引的区别:主键是一种唯一性索引,但它必须指定为“PRIMARY KEY”,每个表只能有一个主键。唯一索引索引列的所有值都只能出现一次,即必须唯一。 索引的缺点: 1、创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。 2、索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,需要的空间就会更大。 3、当对表中的数据进行增加、删除、修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 11、数据库设计时,常遇到的性能瓶颈有哪些,常有的解决方案 瓶颈主要有: 1、磁盘搜索 优化方法是:将数据分布在多个磁盘上 2、磁盘读/写 优化方法是:从多个磁盘并行读写。 3、CPU周期 优化方法:扩充内存 4、内存带宽 12、include和require区别 include引入文件的时候,如果碰到错误,会给出提示,并继续运行下边的代码。 require引入文件的时候,如果碰到错误,会给出提示,并停止运行下边的代码。 13、文件上传时设计到点 和文件上传有关的php.ini配置选项(File Uploads): file_uploads=On/Off:文件是否允许上传 upload_max_filesize上传文件时,单个文件的最大大小 post_max_size:提交表单时,整个post表单的最大大小 max_file_uploads =20上传文件的个数 内存占用,脚本最大执行时间也间接影响到文件的上传 14、header常见状态 //200 正常状态 header('HTTP/1.1 200 OK'); // 301 永久重定向,记得在后面要加重定向地址 Location:$url header('HTTP/1.1 301 Moved Permanently'); // 重定向,其实就是302 暂时重定向 header('Location: http://www.maiyoule.com/'); // 设置页面304 没有修改 header('HTTP/1.1 304 Not Modified'); // 显示登录框, header('HTTP/1.1 401 Unauthorized'); header('WWW-Authenticate: Basic realm="登录信息"'); echo '显示的信息!'; // 403 禁止访问 header('HTTP/1.1 403 Forbidden'); // 404 错误 header('HTTP/1.1 404 Not Found'); // 500 服务器错误 header('HTTP/1.1 500 Internal Server Error'); // 3秒后重定向指定地址(也就是刷新到新页面与 <meta http-equiv="refresh" content="10;http://www.maiyoule.com/ /> 相同) header('Refresh: 3; url=http://www.maiyoule.com/'); echo '10后跳转到http://www.maiyoule.com'; // 重写 X-Powered-By 值 header('X-Powered-By: PHP/5.3.0'); header('X-Powered-By: Brain/0.6b'); //设置上下文语言 header('Content-language: en'); // 设置页面最后修改时间(多用于防缓存) $time = time() - 60; //建议使用filetime函数来设置页面缓存时间 header('Last-Modified: '.gmdate('D, d M Y H:i:s', $time).' GMT'); // 设置内容长度 header('Content-Length: 39344'); // 设置头文件类型,可以用于流文件或者文件下载 header('Content-Type: application/octet-stream'); header('Content-Disposition: attachment; filename="example.zip"'); header('Content-Transfer-Encoding: binary'); readfile('example.zip');//读取文件到客户端 //禁用页面缓存 header('Cache-Control: no-cache, no-store, max-age=0, must-revalidate'); header('Expires: Mon, 26 Jul 1997 05:00:00 GMT'); header('Pragma: no-cache'); //设置页面头信息 header('Content-Type: text/html; charset=iso-8859-1'); header('Content-Type: text/html; charset=utf-8'); header('Content-Type: text/plain'); header('Content-Type: image/jpeg'); header('Content-Type: application/zip'); header('Content-Type: application/pdf'); header('Content-Type: audio/mpeg'); header('Content-Type: application/x-shockwave-flash'); //.... 至于Content-Type 的值 可以去查查 w3c 的文档库,那里很丰富 15、ORM和ActiveRecord ORM:object relation mapping,即对象关系映射,简单的说就是对象模型和关系模型的一种映射。为什么要有这么一个映射?很简单,因为现在的开发语言基本都是oop的,但是传统的数据库却是关系型的。为了可以靠贴近面向对象开发,我们想要像操作对象一样操作数据库。还可以隔离底层数据库层,我们不需要关心我们使用的是mysql还是其他的关系型数据库 ActiveRecord也属于ORM层,由Rails最早提出,遵循标准的ORM模型:表映射到记录,记录映射到对象,字段映射到对象属性。配合遵循的命名和配置惯例,能够很大程度的快速实现模型的操作,而且简洁易懂。 ActiveRecord的主要思想是: 1. 每一个数据库表对应创建一个类,类的每一个对象实例对应于数据库中表的一行记录;通常表的每个字段在类中都有相应的Field; 2. ActiveRecord同时负责把自己持久化,在ActiveRecord中封装了对数据库的访问,即CURD;; 3. ActiveRecord是一种领域模型(Domain Model),封装了部分业务逻辑; ActiveRecord比较适用于: 1. 业务逻辑比较简单,当你的类基本上和数据库中的表一一对应时, ActiveRecord是非常方便的,即你的业务逻辑大多数是对单表操作; 2. 当发生跨表的操作时, 往往会配合使用事务脚本(Transaction Script),把跨表事务提升到事务脚本中; 3. ActiveRecord最大优点是简单, 直观。 一个类就包括了数据访问和业务逻辑. 如果配合代码生成器使用就更方便了; 这些优点使ActiveRecord特别适合WEB快速开发。 16、斐波那契方法,也就是1 1 2 3 5 8 ……,这里给出两种方法,大家可以对比下,看看哪种快,以及为什么 function fibonacci($n){ if($n == 0){ return 0; } if($n == 1){ return 1; } return fibonacci($n-1)+fibonacci($n-2); } function fibonacci($n){ for($i=0; $i<$n; $i++){ $r[] = $i<2 ? 1 : $r[$i-1]+$r[$i-2]; } return $r[--$i]; } 17、约瑟夫环,也就是常见的数猴子,n只猴子围成一圈,每只猴子下面标了编号,从1开始数起,数到m那么第m只猴子便退出,依次类推,每数到m,那么那个位置的猴子退出,那么最后剩下的猴子下的编号是啥。 function yuesefu($n,$m) { $r=0; for($i=2; $i<=$n; $i++) { $r=($r+$m)%$i; } return $r+1; } 18、冒泡排序,大致是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 function bubbleSort($arr){ for($i=0, $len=count($arr); $i<$len; $i++){ for($j=0; $j<$len; $j++){ if($arr[$i]<$arr[$j]){ $tmp = $arr[$j]; $arr[$j] = $arr[$i]; $arr[$i] = $tmp; } } } return $arr; } 19、快速排序,也就是找出一个元素(理论上可以随便找一个)作为基准,然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。 function quickSort($arr){ $len = count($arr); if($len <=1){ return $arr; } $key = $arr[0]; $leftArr = $rightArr= array(); for($i=1; $i<$len; $i++){ if($arr[$i] <= $key){ $leftArr[] = $arr[$i]; } else{ $rightArr[] = $arr[$i]; } } $leftArr = quickSort($leftArr); $rightArr = quickSort($rightArr); return array_merge($leftArr, array($key), $rightArr); } 20、(递归的)列出目录下所有文件及目录,这里也有两种方法 function listDir($path){ $res = dir($path); while($file = $res->read()){ if($file == '.' || $file == '..'){ continue; } if(is_dir($path . '/' .$file)){ echo $path . '/' .$file . "\r\n"; listDir($path . '/' .$file); } else{ echo $path . '/' .$file . "\r\n"; } } $res->close(); } function listDir($path){ if(is_dir($path)){ if(FALSE !== ($res = opendir($path))){ while(FALSE !== ($file = readdir($res))){ if($file == '.' || $file == '..'){ continue; } $subPath = $path . '/' . $file; if(is_dir($subPath)){ echo $subPath . "\r\n"; listDir($subPath); } else{ echo $subPath . "\r\n"; } } } } } 21、找出相对的目录,比如/a/b/c/d/e.php相对于/a/b/13/34/c.php是/c/d/ function ralativePath($a, $b){ $a = explode('/', dirname($a)); $b = explode('/', dirname($b)); $c = '/'; foreach ($a as $k=> $v){ if($v != $b[$k]){ $c .= $v . '/'; } } echo $c; } 22、快速找出url中php后缀 function get_ext($url){ $data = parse_url($url); return pathinfo($data['path'], PATHINFO_EXTENSION); } 23、正则题,使用正则抓取网页,以网页meta为utf8为准,若是抓取的网页编码为big5之类的,需要转化为utf8再收录 function preg_meta($meta){ $replacement = "\\1utf8\\6\\7"; $pattern = '#(<meta\s+http-equiv=(\'|"|)Content-Type(\'|"|)\s+content=(\'|"|)text/html; charset=)(\w+)(\'|"|)(>)#i'; return preg_replace($pattern, $replacement, $meta); } echo preg_meta("<meta http-equiv=Content-Type content='text/html; charset=big5'><META http-equiv=\"Content-Type\" content='text/html; charset=big5'>"); 24、不用php的反转函数倒序输出字符串,如abc,反序输出cba function revstring($str){ for($i=strlen($str)-1; $i>=0; $i--){ echo $str{$i}; } } revstring('abc'); 25、常见端口 TCP 21端口:FTP 文件传输服务 SSH 22端口:SSH连接linux服务器,通过SSH连接可以远程管理Linux等设备 TCP 23端口:TELNET 终端仿真服务 TCP 25端口:SMTP 简单邮件传输服务 UDP 53端口:DNS 域名解析服务 TCP 80端口:HTTP 超文本传输服务 TCP 110端口:POP3 “邮局协议版本3”使用的端口 TCP 443端口:HTTPS 加密的超文本传输服务 TCP 1521端口:Oracle数据库服务 TCP 1863端口:MSN Messenger的文件传输功能所使用的端口 TCP 3389端口:Microsoft RDP 微软远程桌面使用的端口 TCP 5631端口:Symantec pcAnywhere 远程控制数据传输时使用的端口 UDP 5632端口:Symantec pcAnywhere 主控端扫描被控端时使用的端口 TCP 5000端口:MS SQL Server使用的端口 UDP 8000端口:腾讯QQ 26、linux常用的命令 top linux进程实时监控 ps 在Linux中是查看进程的命令。ps查看正处于Running的进程 mv 为文件或目录改名或将文件由一个目录移入另一个目录中。 find 查找文件 df 可显示所有文件系统对i节点和磁盘块的使用情况。 cat 打印文件类容 chmod 变更文件或目录的权限 chgrp 文件或目录的权限的掌控以拥有者及所诉群组来管理。可以使用chgrp指令取变更文件与目录所属群组 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。 wc 为统计指定文件中的字节数、字数、行数,并将统计结果显示输出 27、对于大流量的网站,您采用什么样的方法来解决访问量问题 首先,确认服务器硬件是否足够支持当前的流量 其次,优化数据库访问。 第三,禁止外部的盗链。 第四,控制大文件的下载。 第五,使用不同主机分流主要流量 第六,使用流量分析统计软件 28、$_SERVER常用的字段 $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名 $_SERVER['SERVER_NAME'] #当前运行脚本所在服务器主机的名称 $_SERVER['REQUEST_METHOD'] #访问页面时的请求方法。例如:“GET”、“HEAD”,“POST”,“PUT” $_SERVER['QUERY_STRING'] #查询(query)的字符串 $_SERVER['HTTP_HOST'] #当前请求的 Host: 头部的内容 $_SERVER['HTTP_REFERER'] #链接到当前页面的前一页面的 URL 地址 $_SERVER['REMOTE_ADDR'] #正在浏览当前页面用户的 IP 地址 $_SERVER['REMOTE_HOST'] #正在浏览当前页面用户的主机名 $_SERVER['SCRIPT_FILENAME'] #当前执行脚本的绝对路径名 $_SERVER['SCRIPT_NAME'] #包含当前脚本的路径。这在页面需要指向自己时非常有用 $_SERVER['REQUEST_URI'] #访问此页面所需的 URI。例如,“/index.html” 29、安装php扩展 进入扩展的目录 phpize命令得到configure文件 ./configure --with-php-config=/usr/local/php/bin/php-config make & make install 在php.ini中加入扩展名称.so 重启web服务器(nginx/apache) 30、php-fpm与nginx PHP-FPM也是一个第三方的FastCGI进程管理器,它是作为PHP的一个补丁来开发的,在安装的时候也需要和PHP源码一起编译,也就是说PHP-FPM被编译到PHP内核中,因此在处理性能方面更加优秀;同时它在处理高并发方面也比spawn-fcgi引擎好很多,因此,推荐Nginx+PHP/PHP-FPM这个组合对PHP进行解析。 FastCGI 的主要优点是把动态语言和HTTP Server分离开来,所以Nginx与PHP/PHP-FPM经常被部署在不同的服务器上,以分担前端Nginx服务器的压力,使Nginx专一处理静态请求和转发动态请求,而PHP/PHP-FPM服务器专一解析PHP动态请求 #fastcgi FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有PHP。 FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。另外传统的CGI接口方式安全性也很差,现在已经很少被使用了。 FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。 Nginx+FastCGI运行原理 Nginx不支持对外部程序的直接调用或者解析,所有的外部程序(包括PHP)必须通过FastCGI接口来调用。FastCGI接口在Linux下是socket,(这个socket可以是文件socket,也可以是ip socket)。为了调用CGI程序,还需要一个FastCGI的wrapper(wrapper可以理解为用于启动另一个程序的程序),这个wrapper绑定在某个固定socket上,如端口或者文件socket。当Nginx将CGI请求发送给这个socket的时候,通过FastCGI接口,wrapper接纳到请求,然后派生出一个新的线程,这个线程调用解释器或者外部程序处理脚本并读取返回数据;接着,wrapper再将返回的数据通过FastCGI接口,沿着固定的socket传递给Nginx;最后,Nginx将返回的数据发送给客户端,这就是Nginx+FastCGI的整个运作过程。 31、ajax全称“Asynchronous Javascript And XML”(异步JavaScript和XML)

小川游鱼 2019-12-02 01:41:29 0 浏览量 回答数 0

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

回答

详细解答可以参考官方帮助文档 阿里云任何版本的企业邮箱服务禁止发送营销邮件,营销邮件标准及相关规范,参见中国互联网协会反垃圾信息中心的管理规范。中国互联网协会电子邮件营销规范(V1.2)来源:反垃圾信息中心一、总则1.1 为规范电子邮件形式的市场营销行为,统一电子邮件营销[注1]的基本要求,为接收和发送营销内容的电子邮件提供依据,保护电子邮件用户的合法权益,根据我国相关法律法规的规定,制定本规范。1.2 本规范适用于电子邮件营销活动的开展和评价。1.3 本规范基于《互联网电子邮件服务管理办法》(中华人民共和国信息产业部令第38号)制定,从事电子邮件营销除应执行本规范外,还应符合《互联网电子邮件服务管理办法》及其他国家现行的有关标准的规定。二、基本规定2.1 中国互联网协会对电子邮件营销服务提供者[注2]实行登记备案管理。电子邮件营销服务提供者应当在开展电子邮件营销活动前将电子邮件发送服务器所使用的IP地址[注11]及相关信息向中国互联网协会反垃圾信息中心登记备案,并遵守以下规定:2.1.1需报备的 IP 地址及相关信息(1)备案单位基本情况,包括备案单位名称、备案单位地址、备案单位性质、备案单位组织机构代码、备案单位营业执照注册号、备案单位经营范围、备案单位注册资金、备案单位网站域名、备案单位法人代表姓名、备案单位联系人姓名、联系人电话、 联系人电子邮件、联系人即时通信方式等。(2)备案单位电子邮件发送服务器IP地址分配使用信息,包括备案单位用于发送电子邮件的IP地址数量、IP地址、IP地址段、IP地址所属单位名称、IP地址对应域名、IP地址对应发送营销电子邮件[注3]性质/类型(事务性邮件和商业性邮件等);(3)备案单位可自愿报备每次电子邮件营销活动的信息,包括本次营销活动使用IP地址、域名、发件人邮箱地址、电子邮件HELO[注19]信息、收件人数量、发送周期、平均发送速率[注10]、单IP最大发送速率、发送营销电子邮件性质/类型(事务性邮件和商业性邮件等)、营销电子邮件的原信/样信等。(4)其他需要备案的信息。2.1.2 电子邮件营销服务提供者拟变更电子邮件营销服务信息的,应当提前办理变更登记手续。2.1.3 电子邮件营销服务提供者提交的备案信息必须完整、真实、有效且符合我国相关法律法规规定。2.1.4 中国互联网协会反垃圾信息中心负责审核电子邮件营销服务提供者提交的备案资料,对符合要求的备案单位发放电子邮件营销备案资质证书。2.2 电子邮件营销服务提供者应当确保所有与电子邮件服务有关的域名和IP地址注册信息正确、完整和及时更新,并遵守以下规定:2.2.1 发送电子邮件的服务器IP地址必须使用静态IP[注12]地址,并已采取IP反向解析[注13]措施。2.2.2 发送电子邮件的邮箱域名建议与发送电子邮件的服务器IP反向解析的域名信息一致,并已采取SPF解析[注14]。2.2.3 建议使用DKIM[注15]、DMARC[注16]等反垃圾邮件技术,提高与电子邮件发送相关的域名和IP的信誉。2.2.4 关注知名的RBL[注17]组织列表,如果发现与电子邮件发送相关的域名、IP或邮箱地址出现在知名的RBL[注17]组织列表上,应及时采取措施进行申诉和解封。2.2.5 建议发送事务性邮件和商业性邮件的服务器分配不同的IP地址和发送邮箱地址。2.2.6 具有特殊功能的账户,如postmaster@账户(邮件管理员账户)或abuse@账户(投诉账户),必须保证其有效,并由专人负责管理维护。2.3 电子邮件营销服务提供者应当建立可靠有效的订阅[注5]及退订[注9]机制,并遵守以下规定:2.3.1未经电子邮件接收者明确许可,不得向其发送营销电子邮件。获取接收者许可的过程和内容应清楚、明确,且不违背我国的相关法律规定。电子邮件营销服务提供者应公布获取接收者许可的策略,保存接收者同意接收营销邮件的许可记录,以便在需要时向接收者提供相关信息。2.3.2营销电子邮件必须提供给接收者至少包含一种退订的途径和具体操作方法,退订信息应醒目、清晰,退订操作方法应简单,有效。2.3.3确保退订请求可以正常发送并能够被及时自动响应处理。不得强制要求用户提交退订原因或设置退订条件,退订请求发出后应在3个工作日内生效。2.4 电子邮件营销服务提供者应规范的使用和维护其营销用户[注4]的电子邮件地址列表[注6],并遵守以下规定:2.4.1 电子邮件营销服务提供者对营销用户的个人信息和电子邮件地址负有保密的义务。未经用户同意,不得泄露用户的个人信息和电子邮件地址,法律、行政法规另有规定的除外。2.4.2 电子邮件营销服务提供者应制定安全合理的隐私策略[注8]。营销用户的个人信息资料和电子邮件地址的使用应与收集目的一致,未经用户同意,不得用于收集目的以外的其它用途。2.4.3 必须保证每个电子邮件地址的取得都经过了用户的许可。尽量确保每个电子邮件地址都是真实有效的。2.4.4 应合理处理邮件投递过程中接收电子邮件的服务器返回的错误代码[注7]。对于返回代码表示不存在的电子邮件地址,应及时从发送列表中删除;对于连续出现投递错误的电子邮件地址,建议及时调整投递策略,减少可能导致错误发生的情况。2.5 电子邮件营销服务提供者应使用规范的电子邮件格式与内容,并遵守以下规定:2.5.1 营销电子邮件的内容不得违反我国相关法律法规规定。2.5.2 营销电子邮件格式应符合国际通用规范标准(参见RFC 2822)。邮件中如果包含HTML格式,应遵循由万维网联盟(W3C)公布的w3.org[注18]设计规范。2.5.3 营销电子邮件应标明邮件发送方的身份和真实的可返回的邮件发送地址。邮件的标题和信体要能准确的反映出邮件的内容、真实来源和通信目的。邮件正文应包含发送方的名称、地址、联系电话和电子邮件地址等详细信息。2.5.4 营销电子邮件的主题与内容必须相匹配。邮件内容应与营销用户的订阅内容一致。2.5.5 应采取有效的措施保护未成年人,尽可能的识别未成年的邮件订阅者。营销电子邮件含有不适合未成年人阅读的内容时,应提前核实接收者的年龄,确保接收者达到合法接收和阅读的年龄。发送给未成年人的营销邮件应征得其监护人的许可,内容符合此年龄段人群的知识水准、阅历和心里成熟程度。2.6 电子邮件营销服务提供者应与邮件接收方建立良好的沟通渠道,并参考以下规定:2.6.1 中国互联网协会反垃圾信息中心负责协助电子邮件营销服务提供者与邮件接收组织之间的沟通协调,在邮件传送过程中出现问题时,及时有效的进行沟通,确保尽快使问题得到解决。2.6.2 中国互联网协会反垃圾信息中心应协助电子邮件营销服务提供者与邮件接收组织之间建立信息反馈机制,改进电子邮件营销服务提供者的服务水平。2.6.3 中国互联网协会反垃圾信息中心应对电子邮件营销活动进行监督,对电子邮件营销服务提供者的信誉进行评价。2.6.4 电子邮件营销服务提供者应建立公平、高效、安全、易于使用的邮件投诉系统,在营销电子邮件中为营销用户提供便捷的投诉方式,受理营销用户对营销电子邮件的投诉。对被投诉的营销电子邮件,应立即开展调查,采取合理有效的防范或处理措施,并将有关情况和调查结果及时向各省通信管理局等国家有关机关或者12321网络不良和垃圾信息举报受理中心报告。2.6.5 电子邮件营销服务提供者应按照邮件接收方的要求限制营销电子邮件的发送速率。邮件接收方应将未投递成功的电子邮件服务器错误信息反馈邮件发送方。对信誉良好,行为规范的电子邮件营销服务提供者,邮件接收方可适当放宽营销电子邮件的发送速率。2.7 电子邮件营销服务提供者应积极配合各省通信管理局等国家有关机关和12321网络不良和垃圾信息举报受理中心开展调查工作。2.8 中国互联网协会拥有本规范的解释权和修改权。2.9 本规范自发布之日起施行。 附注:1. 电子邮件营销:指通过电子邮件开展的营销活动。2. 电子邮件营销服务提供者:也是营销电子邮件的发送方,指提供电子邮件营销服务的单位或个人,包括直接开展电子邮件营销活动的单位或个人以及接受委托开展电子邮件营销活动的单位或个人。3. 营销电子邮件:指具有营销功能的电子邮件。根据电子邮件的发送目的,分为事务性邮件和商业性邮件两种类型。3.1 事务性邮件,是指由收件人触发并已允许发件人发送的,以推动、完成或确认相关联流程为主要目的而发送的电子邮件。常见分类包括:(1)账号相关:账号激活、信息验证、账号绑定、密码修改、密码取回等。(2)交易信息:订单通知、付款通知、退款通知、物流通知、交易投诉等。(3)账单信息:对帐单、流水账单、催款通知、账户变更等。(4)其他类型。3.2 商业性邮件,是指任何以推销或者推广某种商品或服务(包括商业性网站的内容)为主要目的而发送的电子邮件。常见分类包括:(1)期刊资讯:更新通知、各类期刊、各类报表等。(2)产品促销:新品推广、季末促销、优惠套餐、折扣优惠、积分优惠等。(3)成员营销:好友邀请、成员关怀、主题活动、用户调研等。(4)其他类型。3.3 事务性邮件如果附带商业性内容,则视为商业性邮件。4. 营销用户:指电子邮件营销活动的对象,即接收营销电子邮件的电子邮箱使用者。5. 订阅:指营销用户预先订制,同意接收订制的营销电子邮件的行为。6. 邮件列表:指已经订阅了某一类营销电子邮件的用户电子邮箱地址列表,该列表是此类营销电子邮件的发送对象。7. 错误代码/硬退回/软退回:指在邮件的SMTP发送过程中,收信方服务器每处理完一条SMTP命令,都会向发信方服务器回传一个返回信息,用于表明对这条SMTP命令的执行结果。如返回信息以4XX(如450等)开头,指接收方临时性拒收该邮件,称软退回;如返回信息以5XX(如550等)开头,指接收方永久性拒收该邮件,称硬退回。以上列举的两类代码,习惯称为错误代码。8. 隐私策略:指电子邮件营销活动所收集的营销用户信息类型,收集方式和收集技术,以及信息的提供对象和使用用途。隐私策略中还应包括用户信息保护的安全措施、责任和实施过程。9. 退订:指营销用户取消订阅营销电子邮件的行为。10. 发送速率:指单位时间内的发送电子邮件的总数量。 常见的时间间隔单位包括:分钟、15分钟、小时、天、周、月等。11. IP地址/IP段IP地址是被用于定位互联网上的电脑一个唯一编号,地址的格式如159.226.1.1。多个IP地址的组合,即称为IP段。邮件发送过程中会?谰軮P地址,来确定邮件发送者和邮件接收者的位置。12. 静态IP地址指长期固定分配给一台计算机使用的IP地址,一般是由网络运营商分配。13. IP反向解析IP反向解析是一项常用的反垃圾邮件技术。常用的DNS服务器里面有两个区域,即“正向查找区域”和“反向查找区域”。正向查找区域是指域名解析,反向查找区域即是IP反向解析,简称PTR记录,其作用是通过查询IP地址的PTR记录来得到该IP地址指向的域名。PTR记录需要由提供IP地址的网络运营商(ISP)进行配置。14. SPFSPF(Sender Policy Framework)是一种通过IP地址来认证电子邮件发件人身份的技术,是一项非常高效的反垃圾邮件技术。它通过在DNS中发布一条TXT类型的记录,用于登记某个域名所有拥有的合法的发送邮件的所有IP地址。15. DKIMDKIM(DomainKeys Identified Mail)是一种防诈骗邮件的反垃圾邮件技术。DKIM要求邮件发送方在电子邮件的信头插入DKIM-Signature及电子签名信息,而邮件接收方则通过DNS查询得到其公钥然后进行合法性验证。16. DMARCDMARC(Domain-based Message Authentication, Reporting and Conformance)是一种防诈骗邮件的反垃圾邮件技术。DMARC结合SPF和DKIM两项技术,通过检查电子邮件信头的发件人的合法性,将诈骗邮件识别出来。17. RBLRBL(Real-time Blackhole List),即实时黑名单列表,是一些由国际知名的反垃圾邮件组织所提供的恶意发送垃圾邮件的发件人邮箱地址,IP地址,URL地址等黑名单列表的服务。若已被RBL收录,需到相应RBL官方网站上去核实并申请移除。常见的知名RBL组织,如中国互联网协会反垃圾信息中心、spamhaus,Maps,sorbs,uribl,surbl等。18. w3.org规范由万维网联盟(W3C)共同开发与公布的各种web设计规范。当邮件正文以网页的形式组织时,应当参考这些规范。19.HELO电子邮件头中邮件发送者用来标识自己的身份的命令字段。 附录:电子邮件营销常用指标1. 发送量发送的营销电子邮件数量2. 到达量发送的营销电子邮件数量-退回的营销电子邮件数量3. 到达率到达接收方邮箱的营销电子邮件数量/发送的营销电子邮件数量×100%4. 退信率退回的营销电子邮件数量/发送的营销电子邮件数量×100%5. 硬退信率硬退回的营销电子邮件数量/发送的营销电子邮件数量×100%6. 软退信率软退回的营销电子邮件数量/发送的营销电子邮件数量×100%7. 打开率打开营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复打开邮件的情况。8. 点击率点击了营销电子邮件内容中链接的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复点击的情况。9. 点击打开率点击了营销电子邮件内容中链接的接收方数量/打开营销电子邮件的接收方数量×100%,不计算重复点击和重复打开的情况。10. 退订率退订营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%11. 投诉率被投诉的营销电子邮件数量/到达接收方邮箱的营销电子邮件数量×100%12. 信誉度邮件接收方或者第三方机构对营销电子邮件服务信誉和质量的评定结果 参考中华人民共和国信息产业部令第38号 互联网电子邮件服务管理办法中国互联网协会 电子邮件服务指南(V1.1)中国互联网协会 中国互联网协会互联网公共电子邮件服务规范YD-T 1310-2004 互联网广告电子邮件格式要求YD-T 1311-2004 防范互联网垃圾电子邮件技术要求

2019-12-01 23:24:47 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 阿里云任何版本的企业邮箱服务禁止发送营销邮件,营销邮件标准及相关规范,参见中国互联网协会反垃圾信息中心的管理规范。中国互联网协会电子邮件营销规范(V1.2)来源:反垃圾信息中心一、总则1.1 为规范电子邮件形式的市场营销行为,统一电子邮件营销[注1]的基本要求,为接收和发送营销内容的电子邮件提供依据,保护电子邮件用户的合法权益,根据我国相关法律法规的规定,制定本规范。1.2 本规范适用于电子邮件营销活动的开展和评价。1.3 本规范基于《互联网电子邮件服务管理办法》(中华人民共和国信息产业部令第38号)制定,从事电子邮件营销除应执行本规范外,还应符合《互联网电子邮件服务管理办法》及其他国家现行的有关标准的规定。二、基本规定2.1 中国互联网协会对电子邮件营销服务提供者[注2]实行登记备案管理。电子邮件营销服务提供者应当在开展电子邮件营销活动前将电子邮件发送服务器所使用的IP地址[注11]及相关信息向中国互联网协会反垃圾信息中心登记备案,并遵守以下规定:2.1.1需报备的 IP 地址及相关信息(1)备案单位基本情况,包括备案单位名称、备案单位地址、备案单位性质、备案单位组织机构代码、备案单位营业执照注册号、备案单位经营范围、备案单位注册资金、备案单位网站域名、备案单位法人代表姓名、备案单位联系人姓名、联系人电话、 联系人电子邮件、联系人即时通信方式等。(2)备案单位电子邮件发送服务器IP地址分配使用信息,包括备案单位用于发送电子邮件的IP地址数量、IP地址、IP地址段、IP地址所属单位名称、IP地址对应域名、IP地址对应发送营销电子邮件[注3]性质/类型(事务性邮件和商业性邮件等);(3)备案单位可自愿报备每次电子邮件营销活动的信息,包括本次营销活动使用IP地址、域名、发件人邮箱地址、电子邮件HELO[注19]信息、收件人数量、发送周期、平均发送速率[注10]、单IP最大发送速率、发送营销电子邮件性质/类型(事务性邮件和商业性邮件等)、营销电子邮件的原信/样信等。(4)其他需要备案的信息。2.1.2 电子邮件营销服务提供者拟变更电子邮件营销服务信息的,应当提前办理变更登记手续。2.1.3 电子邮件营销服务提供者提交的备案信息必须完整、真实、有效且符合我国相关法律法规规定。2.1.4 中国互联网协会反垃圾信息中心负责审核电子邮件营销服务提供者提交的备案资料,对符合要求的备案单位发放电子邮件营销备案资质证书。2.2 电子邮件营销服务提供者应当确保所有与电子邮件服务有关的域名和IP地址注册信息正确、完整和及时更新,并遵守以下规定:2.2.1 发送电子邮件的服务器IP地址必须使用静态IP[注12]地址,并已采取IP反向解析[注13]措施。2.2.2 发送电子邮件的邮箱域名建议与发送电子邮件的服务器IP反向解析的域名信息一致,并已采取SPF解析[注14]。2.2.3 建议使用DKIM[注15]、DMARC[注16]等反垃圾邮件技术,提高与电子邮件发送相关的域名和IP的信誉。2.2.4 关注知名的RBL[注17]组织列表,如果发现与电子邮件发送相关的域名、IP或邮箱地址出现在知名的RBL[注17]组织列表上,应及时采取措施进行申诉和解封。2.2.5 建议发送事务性邮件和商业性邮件的服务器分配不同的IP地址和发送邮箱地址。2.2.6 具有特殊功能的账户,如postmaster@账户(邮件管理员账户)或abuse@账户(投诉账户),必须保证其有效,并由专人负责管理维护。2.3 电子邮件营销服务提供者应当建立可靠有效的订阅[注5]及退订[注9]机制,并遵守以下规定:2.3.1未经电子邮件接收者明确许可,不得向其发送营销电子邮件。获取接收者许可的过程和内容应清楚、明确,且不违背我国的相关法律规定。电子邮件营销服务提供者应公布获取接收者许可的策略,保存接收者同意接收营销邮件的许可记录,以便在需要时向接收者提供相关信息。2.3.2营销电子邮件必须提供给接收者至少包含一种退订的途径和具体操作方法,退订信息应醒目、清晰,退订操作方法应简单,有效。2.3.3确保退订请求可以正常发送并能够被及时自动响应处理。不得强制要求用户提交退订原因或设置退订条件,退订请求发出后应在3个工作日内生效。2.4 电子邮件营销服务提供者应规范的使用和维护其营销用户[注4]的电子邮件地址列表[注6],并遵守以下规定:2.4.1 电子邮件营销服务提供者对营销用户的个人信息和电子邮件地址负有保密的义务。未经用户同意,不得泄露用户的个人信息和电子邮件地址,法律、行政法规另有规定的除外。2.4.2 电子邮件营销服务提供者应制定安全合理的隐私策略[注8]。营销用户的个人信息资料和电子邮件地址的使用应与收集目的一致,未经用户同意,不得用于收集目的以外的其它用途。2.4.3 必须保证每个电子邮件地址的取得都经过了用户的许可。尽量确保每个电子邮件地址都是真实有效的。2.4.4 应合理处理邮件投递过程中接收电子邮件的服务器返回的错误代码[注7]。对于返回代码表示不存在的电子邮件地址,应及时从发送列表中删除;对于连续出现投递错误的电子邮件地址,建议及时调整投递策略,减少可能导致错误发生的情况。2.5 电子邮件营销服务提供者应使用规范的电子邮件格式与内容,并遵守以下规定:2.5.1 营销电子邮件的内容不得违反我国相关法律法规规定。2.5.2 营销电子邮件格式应符合国际通用规范标准(参见RFC 2822)。邮件中如果包含HTML格式,应遵循由万维网联盟(W3C)公布的w3.org[注18]设计规范。2.5.3 营销电子邮件应标明邮件发送方的身份和真实的可返回的邮件发送地址。邮件的标题和信体要能准确的反映出邮件的内容、真实来源和通信目的。邮件正文应包含发送方的名称、地址、联系电话和电子邮件地址等详细信息。2.5.4 营销电子邮件的主题与内容必须相匹配。邮件内容应与营销用户的订阅内容一致。2.5.5 应采取有效的措施保护未成年人,尽可能的识别未成年的邮件订阅者。营销电子邮件含有不适合未成年人阅读的内容时,应提前核实接收者的年龄,确保接收者达到合法接收和阅读的年龄。发送给未成年人的营销邮件应征得其监护人的许可,内容符合此年龄段人群的知识水准、阅历和心里成熟程度。2.6 电子邮件营销服务提供者应与邮件接收方建立良好的沟通渠道,并参考以下规定:2.6.1 中国互联网协会反垃圾信息中心负责协助电子邮件营销服务提供者与邮件接收组织之间的沟通协调,在邮件传送过程中出现问题时,及时有效的进行沟通,确保尽快使问题得到解决。2.6.2 中国互联网协会反垃圾信息中心应协助电子邮件营销服务提供者与邮件接收组织之间建立信息反馈机制,改进电子邮件营销服务提供者的服务水平。2.6.3 中国互联网协会反垃圾信息中心应对电子邮件营销活动进行监督,对电子邮件营销服务提供者的信誉进行评价。2.6.4 电子邮件营销服务提供者应建立公平、高效、安全、易于使用的邮件投诉系统,在营销电子邮件中为营销用户提供便捷的投诉方式,受理营销用户对营销电子邮件的投诉。对被投诉的营销电子邮件,应立即开展调查,采取合理有效的防范或处理措施,并将有关情况和调查结果及时向各省通信管理局等国家有关机关或者12321网络不良和垃圾信息举报受理中心报告。2.6.5 电子邮件营销服务提供者应按照邮件接收方的要求限制营销电子邮件的发送速率。邮件接收方应将未投递成功的电子邮件服务器错误信息反馈邮件发送方。对信誉良好,行为规范的电子邮件营销服务提供者,邮件接收方可适当放宽营销电子邮件的发送速率。2.7 电子邮件营销服务提供者应积极配合各省通信管理局等国家有关机关和12321网络不良和垃圾信息举报受理中心开展调查工作。2.8 中国互联网协会拥有本规范的解释权和修改权。2.9 本规范自发布之日起施行。 附注:1. 电子邮件营销:指通过电子邮件开展的营销活动。2. 电子邮件营销服务提供者:也是营销电子邮件的发送方,指提供电子邮件营销服务的单位或个人,包括直接开展电子邮件营销活动的单位或个人以及接受委托开展电子邮件营销活动的单位或个人。3. 营销电子邮件:指具有营销功能的电子邮件。根据电子邮件的发送目的,分为事务性邮件和商业性邮件两种类型。3.1 事务性邮件,是指由收件人触发并已允许发件人发送的,以推动、完成或确认相关联流程为主要目的而发送的电子邮件。常见分类包括:(1)账号相关:账号激活、信息验证、账号绑定、密码修改、密码取回等。(2)交易信息:订单通知、付款通知、退款通知、物流通知、交易投诉等。(3)账单信息:对帐单、流水账单、催款通知、账户变更等。(4)其他类型。3.2 商业性邮件,是指任何以推销或者推广某种商品或服务(包括商业性网站的内容)为主要目的而发送的电子邮件。常见分类包括:(1)期刊资讯:更新通知、各类期刊、各类报表等。(2)产品促销:新品推广、季末促销、优惠套餐、折扣优惠、积分优惠等。(3)成员营销:好友邀请、成员关怀、主题活动、用户调研等。(4)其他类型。3.3 事务性邮件如果附带商业性内容,则视为商业性邮件。4. 营销用户:指电子邮件营销活动的对象,即接收营销电子邮件的电子邮箱使用者。5. 订阅:指营销用户预先订制,同意接收订制的营销电子邮件的行为。6. 邮件列表:指已经订阅了某一类营销电子邮件的用户电子邮箱地址列表,该列表是此类营销电子邮件的发送对象。7. 错误代码/硬退回/软退回:指在邮件的SMTP发送过程中,收信方服务器每处理完一条SMTP命令,都会向发信方服务器回传一个返回信息,用于表明对这条SMTP命令的执行结果。如返回信息以4XX(如450等)开头,指接收方临时性拒收该邮件,称软退回;如返回信息以5XX(如550等)开头,指接收方永久性拒收该邮件,称硬退回。以上列举的两类代码,习惯称为错误代码。8. 隐私策略:指电子邮件营销活动所收集的营销用户信息类型,收集方式和收集技术,以及信息的提供对象和使用用途。隐私策略中还应包括用户信息保护的安全措施、责任和实施过程。9. 退订:指营销用户取消订阅营销电子邮件的行为。10. 发送速率:指单位时间内的发送电子邮件的总数量。 常见的时间间隔单位包括:分钟、15分钟、小时、天、周、月等。11. IP地址/IP段IP地址是被用于定位互联网上的电脑一个唯一编号,地址的格式如159.226.1.1。多个IP地址的组合,即称为IP段。邮件发送过程中会?谰軮P地址,来确定邮件发送者和邮件接收者的位置。12. 静态IP地址指长期固定分配给一台计算机使用的IP地址,一般是由网络运营商分配。13. IP反向解析IP反向解析是一项常用的反垃圾邮件技术。常用的DNS服务器里面有两个区域,即“正向查找区域”和“反向查找区域”。正向查找区域是指域名解析,反向查找区域即是IP反向解析,简称PTR记录,其作用是通过查询IP地址的PTR记录来得到该IP地址指向的域名。PTR记录需要由提供IP地址的网络运营商(ISP)进行配置。14. SPFSPF(Sender Policy Framework)是一种通过IP地址来认证电子邮件发件人身份的技术,是一项非常高效的反垃圾邮件技术。它通过在DNS中发布一条TXT类型的记录,用于登记某个域名所有拥有的合法的发送邮件的所有IP地址。15. DKIMDKIM(DomainKeys Identified Mail)是一种防诈骗邮件的反垃圾邮件技术。DKIM要求邮件发送方在电子邮件的信头插入DKIM-Signature及电子签名信息,而邮件接收方则通过DNS查询得到其公钥然后进行合法性验证。16. DMARCDMARC(Domain-based Message Authentication, Reporting and Conformance)是一种防诈骗邮件的反垃圾邮件技术。DMARC结合SPF和DKIM两项技术,通过检查电子邮件信头的发件人的合法性,将诈骗邮件识别出来。17. RBLRBL(Real-time Blackhole List),即实时黑名单列表,是一些由国际知名的反垃圾邮件组织所提供的恶意发送垃圾邮件的发件人邮箱地址,IP地址,URL地址等黑名单列表的服务。若已被RBL收录,需到相应RBL官方网站上去核实并申请移除。常见的知名RBL组织,如中国互联网协会反垃圾信息中心、spamhaus,Maps,sorbs,uribl,surbl等。18. w3.org规范由万维网联盟(W3C)共同开发与公布的各种web设计规范。当邮件正文以网页的形式组织时,应当参考这些规范。19.HELO电子邮件头中邮件发送者用来标识自己的身份的命令字段。 附录:电子邮件营销常用指标1. 发送量发送的营销电子邮件数量2. 到达量发送的营销电子邮件数量-退回的营销电子邮件数量3. 到达率到达接收方邮箱的营销电子邮件数量/发送的营销电子邮件数量×100%4. 退信率退回的营销电子邮件数量/发送的营销电子邮件数量×100%5. 硬退信率硬退回的营销电子邮件数量/发送的营销电子邮件数量×100%6. 软退信率软退回的营销电子邮件数量/发送的营销电子邮件数量×100%7. 打开率打开营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复打开邮件的情况。8. 点击率点击了营销电子邮件内容中链接的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复点击的情况。9. 点击打开率点击了营销电子邮件内容中链接的接收方数量/打开营销电子邮件的接收方数量×100%,不计算重复点击和重复打开的情况。10. 退订率退订营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%11. 投诉率被投诉的营销电子邮件数量/到达接收方邮箱的营销电子邮件数量×100%12. 信誉度邮件接收方或者第三方机构对营销电子邮件服务信誉和质量的评定结果 参考中华人民共和国信息产业部令第38号 互联网电子邮件服务管理办法中国互联网协会 电子邮件服务指南(V1.1)中国互联网协会 中国互联网协会互联网公共电子邮件服务规范YD-T 1310-2004 互联网广告电子邮件格式要求YD-T 1311-2004 防范互联网垃圾电子邮件技术要求

2019-12-01 23:24:47 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 阿里云任何版本的企业邮箱服务禁止发送营销邮件,营销邮件标准及相关规范,参见中国互联网协会反垃圾信息中心的管理规范。中国互联网协会电子邮件营销规范(V1.2)来源:反垃圾信息中心一、总则1.1 为规范电子邮件形式的市场营销行为,统一电子邮件营销[注1]的基本要求,为接收和发送营销内容的电子邮件提供依据,保护电子邮件用户的合法权益,根据我国相关法律法规的规定,制定本规范。1.2 本规范适用于电子邮件营销活动的开展和评价。1.3 本规范基于《互联网电子邮件服务管理办法》(中华人民共和国信息产业部令第38号)制定,从事电子邮件营销除应执行本规范外,还应符合《互联网电子邮件服务管理办法》及其他国家现行的有关标准的规定。二、基本规定2.1 中国互联网协会对电子邮件营销服务提供者[注2]实行登记备案管理。电子邮件营销服务提供者应当在开展电子邮件营销活动前将电子邮件发送服务器所使用的IP地址[注11]及相关信息向中国互联网协会反垃圾信息中心登记备案,并遵守以下规定:2.1.1需报备的 IP 地址及相关信息(1)备案单位基本情况,包括备案单位名称、备案单位地址、备案单位性质、备案单位组织机构代码、备案单位营业执照注册号、备案单位经营范围、备案单位注册资金、备案单位网站域名、备案单位法人代表姓名、备案单位联系人姓名、联系人电话、 联系人电子邮件、联系人即时通信方式等。(2)备案单位电子邮件发送服务器IP地址分配使用信息,包括备案单位用于发送电子邮件的IP地址数量、IP地址、IP地址段、IP地址所属单位名称、IP地址对应域名、IP地址对应发送营销电子邮件[注3]性质/类型(事务性邮件和商业性邮件等);(3)备案单位可自愿报备每次电子邮件营销活动的信息,包括本次营销活动使用IP地址、域名、发件人邮箱地址、电子邮件HELO[注19]信息、收件人数量、发送周期、平均发送速率[注10]、单IP最大发送速率、发送营销电子邮件性质/类型(事务性邮件和商业性邮件等)、营销电子邮件的原信/样信等。(4)其他需要备案的信息。2.1.2 电子邮件营销服务提供者拟变更电子邮件营销服务信息的,应当提前办理变更登记手续。2.1.3 电子邮件营销服务提供者提交的备案信息必须完整、真实、有效且符合我国相关法律法规规定。2.1.4 中国互联网协会反垃圾信息中心负责审核电子邮件营销服务提供者提交的备案资料,对符合要求的备案单位发放电子邮件营销备案资质证书。2.2 电子邮件营销服务提供者应当确保所有与电子邮件服务有关的域名和IP地址注册信息正确、完整和及时更新,并遵守以下规定:2.2.1 发送电子邮件的服务器IP地址必须使用静态IP[注12]地址,并已采取IP反向解析[注13]措施。2.2.2 发送电子邮件的邮箱域名建议与发送电子邮件的服务器IP反向解析的域名信息一致,并已采取SPF解析[注14]。2.2.3 建议使用DKIM[注15]、DMARC[注16]等反垃圾邮件技术,提高与电子邮件发送相关的域名和IP的信誉。2.2.4 关注知名的RBL[注17]组织列表,如果发现与电子邮件发送相关的域名、IP或邮箱地址出现在知名的RBL[注17]组织列表上,应及时采取措施进行申诉和解封。2.2.5 建议发送事务性邮件和商业性邮件的服务器分配不同的IP地址和发送邮箱地址。2.2.6 具有特殊功能的账户,如postmaster@账户(邮件管理员账户)或abuse@账户(投诉账户),必须保证其有效,并由专人负责管理维护。2.3 电子邮件营销服务提供者应当建立可靠有效的订阅[注5]及退订[注9]机制,并遵守以下规定:2.3.1未经电子邮件接收者明确许可,不得向其发送营销电子邮件。获取接收者许可的过程和内容应清楚、明确,且不违背我国的相关法律规定。电子邮件营销服务提供者应公布获取接收者许可的策略,保存接收者同意接收营销邮件的许可记录,以便在需要时向接收者提供相关信息。2.3.2营销电子邮件必须提供给接收者至少包含一种退订的途径和具体操作方法,退订信息应醒目、清晰,退订操作方法应简单,有效。2.3.3确保退订请求可以正常发送并能够被及时自动响应处理。不得强制要求用户提交退订原因或设置退订条件,退订请求发出后应在3个工作日内生效。2.4 电子邮件营销服务提供者应规范的使用和维护其营销用户[注4]的电子邮件地址列表[注6],并遵守以下规定:2.4.1 电子邮件营销服务提供者对营销用户的个人信息和电子邮件地址负有保密的义务。未经用户同意,不得泄露用户的个人信息和电子邮件地址,法律、行政法规另有规定的除外。2.4.2 电子邮件营销服务提供者应制定安全合理的隐私策略[注8]。营销用户的个人信息资料和电子邮件地址的使用应与收集目的一致,未经用户同意,不得用于收集目的以外的其它用途。2.4.3 必须保证每个电子邮件地址的取得都经过了用户的许可。尽量确保每个电子邮件地址都是真实有效的。2.4.4 应合理处理邮件投递过程中接收电子邮件的服务器返回的错误代码[注7]。对于返回代码表示不存在的电子邮件地址,应及时从发送列表中删除;对于连续出现投递错误的电子邮件地址,建议及时调整投递策略,减少可能导致错误发生的情况。2.5 电子邮件营销服务提供者应使用规范的电子邮件格式与内容,并遵守以下规定:2.5.1 营销电子邮件的内容不得违反我国相关法律法规规定。2.5.2 营销电子邮件格式应符合国际通用规范标准(参见RFC 2822)。邮件中如果包含HTML格式,应遵循由万维网联盟(W3C)公布的w3.org[注18]设计规范。2.5.3 营销电子邮件应标明邮件发送方的身份和真实的可返回的邮件发送地址。邮件的标题和信体要能准确的反映出邮件的内容、真实来源和通信目的。邮件正文应包含发送方的名称、地址、联系电话和电子邮件地址等详细信息。2.5.4 营销电子邮件的主题与内容必须相匹配。邮件内容应与营销用户的订阅内容一致。2.5.5 应采取有效的措施保护未成年人,尽可能的识别未成年的邮件订阅者。营销电子邮件含有不适合未成年人阅读的内容时,应提前核实接收者的年龄,确保接收者达到合法接收和阅读的年龄。发送给未成年人的营销邮件应征得其监护人的许可,内容符合此年龄段人群的知识水准、阅历和心里成熟程度。2.6 电子邮件营销服务提供者应与邮件接收方建立良好的沟通渠道,并参考以下规定:2.6.1 中国互联网协会反垃圾信息中心负责协助电子邮件营销服务提供者与邮件接收组织之间的沟通协调,在邮件传送过程中出现问题时,及时有效的进行沟通,确保尽快使问题得到解决。2.6.2 中国互联网协会反垃圾信息中心应协助电子邮件营销服务提供者与邮件接收组织之间建立信息反馈机制,改进电子邮件营销服务提供者的服务水平。2.6.3 中国互联网协会反垃圾信息中心应对电子邮件营销活动进行监督,对电子邮件营销服务提供者的信誉进行评价。2.6.4 电子邮件营销服务提供者应建立公平、高效、安全、易于使用的邮件投诉系统,在营销电子邮件中为营销用户提供便捷的投诉方式,受理营销用户对营销电子邮件的投诉。对被投诉的营销电子邮件,应立即开展调查,采取合理有效的防范或处理措施,并将有关情况和调查结果及时向各省通信管理局等国家有关机关或者12321网络不良和垃圾信息举报受理中心报告。2.6.5 电子邮件营销服务提供者应按照邮件接收方的要求限制营销电子邮件的发送速率。邮件接收方应将未投递成功的电子邮件服务器错误信息反馈邮件发送方。对信誉良好,行为规范的电子邮件营销服务提供者,邮件接收方可适当放宽营销电子邮件的发送速率。2.7 电子邮件营销服务提供者应积极配合各省通信管理局等国家有关机关和12321网络不良和垃圾信息举报受理中心开展调查工作。2.8 中国互联网协会拥有本规范的解释权和修改权。2.9 本规范自发布之日起施行。 附注:1. 电子邮件营销:指通过电子邮件开展的营销活动。2. 电子邮件营销服务提供者:也是营销电子邮件的发送方,指提供电子邮件营销服务的单位或个人,包括直接开展电子邮件营销活动的单位或个人以及接受委托开展电子邮件营销活动的单位或个人。3. 营销电子邮件:指具有营销功能的电子邮件。根据电子邮件的发送目的,分为事务性邮件和商业性邮件两种类型。3.1 事务性邮件,是指由收件人触发并已允许发件人发送的,以推动、完成或确认相关联流程为主要目的而发送的电子邮件。常见分类包括:(1)账号相关:账号激活、信息验证、账号绑定、密码修改、密码取回等。(2)交易信息:订单通知、付款通知、退款通知、物流通知、交易投诉等。(3)账单信息:对帐单、流水账单、催款通知、账户变更等。(4)其他类型。3.2 商业性邮件,是指任何以推销或者推广某种商品或服务(包括商业性网站的内容)为主要目的而发送的电子邮件。常见分类包括:(1)期刊资讯:更新通知、各类期刊、各类报表等。(2)产品促销:新品推广、季末促销、优惠套餐、折扣优惠、积分优惠等。(3)成员营销:好友邀请、成员关怀、主题活动、用户调研等。(4)其他类型。3.3 事务性邮件如果附带商业性内容,则视为商业性邮件。4. 营销用户:指电子邮件营销活动的对象,即接收营销电子邮件的电子邮箱使用者。5. 订阅:指营销用户预先订制,同意接收订制的营销电子邮件的行为。6. 邮件列表:指已经订阅了某一类营销电子邮件的用户电子邮箱地址列表,该列表是此类营销电子邮件的发送对象。7. 错误代码/硬退回/软退回:指在邮件的SMTP发送过程中,收信方服务器每处理完一条SMTP命令,都会向发信方服务器回传一个返回信息,用于表明对这条SMTP命令的执行结果。如返回信息以4XX(如450等)开头,指接收方临时性拒收该邮件,称软退回;如返回信息以5XX(如550等)开头,指接收方永久性拒收该邮件,称硬退回。以上列举的两类代码,习惯称为错误代码。8. 隐私策略:指电子邮件营销活动所收集的营销用户信息类型,收集方式和收集技术,以及信息的提供对象和使用用途。隐私策略中还应包括用户信息保护的安全措施、责任和实施过程。9. 退订:指营销用户取消订阅营销电子邮件的行为。10. 发送速率:指单位时间内的发送电子邮件的总数量。 常见的时间间隔单位包括:分钟、15分钟、小时、天、周、月等。11. IP地址/IP段IP地址是被用于定位互联网上的电脑一个唯一编号,地址的格式如159.226.1.1。多个IP地址的组合,即称为IP段。邮件发送过程中会?谰軮P地址,来确定邮件发送者和邮件接收者的位置。12. 静态IP地址指长期固定分配给一台计算机使用的IP地址,一般是由网络运营商分配。13. IP反向解析IP反向解析是一项常用的反垃圾邮件技术。常用的DNS服务器里面有两个区域,即“正向查找区域”和“反向查找区域”。正向查找区域是指域名解析,反向查找区域即是IP反向解析,简称PTR记录,其作用是通过查询IP地址的PTR记录来得到该IP地址指向的域名。PTR记录需要由提供IP地址的网络运营商(ISP)进行配置。14. SPFSPF(Sender Policy Framework)是一种通过IP地址来认证电子邮件发件人身份的技术,是一项非常高效的反垃圾邮件技术。它通过在DNS中发布一条TXT类型的记录,用于登记某个域名所有拥有的合法的发送邮件的所有IP地址。15. DKIMDKIM(DomainKeys Identified Mail)是一种防诈骗邮件的反垃圾邮件技术。DKIM要求邮件发送方在电子邮件的信头插入DKIM-Signature及电子签名信息,而邮件接收方则通过DNS查询得到其公钥然后进行合法性验证。16. DMARCDMARC(Domain-based Message Authentication, Reporting and Conformance)是一种防诈骗邮件的反垃圾邮件技术。DMARC结合SPF和DKIM两项技术,通过检查电子邮件信头的发件人的合法性,将诈骗邮件识别出来。17. RBLRBL(Real-time Blackhole List),即实时黑名单列表,是一些由国际知名的反垃圾邮件组织所提供的恶意发送垃圾邮件的发件人邮箱地址,IP地址,URL地址等黑名单列表的服务。若已被RBL收录,需到相应RBL官方网站上去核实并申请移除。常见的知名RBL组织,如中国互联网协会反垃圾信息中心、spamhaus,Maps,sorbs,uribl,surbl等。18. w3.org规范由万维网联盟(W3C)共同开发与公布的各种web设计规范。当邮件正文以网页的形式组织时,应当参考这些规范。19.HELO电子邮件头中邮件发送者用来标识自己的身份的命令字段。 附录:电子邮件营销常用指标1. 发送量发送的营销电子邮件数量2. 到达量发送的营销电子邮件数量-退回的营销电子邮件数量3. 到达率到达接收方邮箱的营销电子邮件数量/发送的营销电子邮件数量×100%4. 退信率退回的营销电子邮件数量/发送的营销电子邮件数量×100%5. 硬退信率硬退回的营销电子邮件数量/发送的营销电子邮件数量×100%6. 软退信率软退回的营销电子邮件数量/发送的营销电子邮件数量×100%7. 打开率打开营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复打开邮件的情况。8. 点击率点击了营销电子邮件内容中链接的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复点击的情况。9. 点击打开率点击了营销电子邮件内容中链接的接收方数量/打开营销电子邮件的接收方数量×100%,不计算重复点击和重复打开的情况。10. 退订率退订营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%11. 投诉率被投诉的营销电子邮件数量/到达接收方邮箱的营销电子邮件数量×100%12. 信誉度邮件接收方或者第三方机构对营销电子邮件服务信誉和质量的评定结果 参考中华人民共和国信息产业部令第38号 互联网电子邮件服务管理办法中国互联网协会 电子邮件服务指南(V1.1)中国互联网协会 中国互联网协会互联网公共电子邮件服务规范YD-T 1310-2004 互联网广告电子邮件格式要求YD-T 1311-2004 防范互联网垃圾电子邮件技术要求

2019-12-01 23:24:48 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 阿里云任何版本的企业邮箱服务禁止发送营销邮件,营销邮件标准及相关规范,参见中国互联网协会反垃圾信息中心的管理规范。中国互联网协会电子邮件营销规范(V1.2)来源:反垃圾信息中心一、总则1.1 为规范电子邮件形式的市场营销行为,统一电子邮件营销[注1]的基本要求,为接收和发送营销内容的电子邮件提供依据,保护电子邮件用户的合法权益,根据我国相关法律法规的规定,制定本规范。1.2 本规范适用于电子邮件营销活动的开展和评价。1.3 本规范基于《互联网电子邮件服务管理办法》(中华人民共和国信息产业部令第38号)制定,从事电子邮件营销除应执行本规范外,还应符合《互联网电子邮件服务管理办法》及其他国家现行的有关标准的规定。二、基本规定2.1 中国互联网协会对电子邮件营销服务提供者[注2]实行登记备案管理。电子邮件营销服务提供者应当在开展电子邮件营销活动前将电子邮件发送服务器所使用的IP地址[注11]及相关信息向中国互联网协会反垃圾信息中心登记备案,并遵守以下规定:2.1.1需报备的 IP 地址及相关信息(1)备案单位基本情况,包括备案单位名称、备案单位地址、备案单位性质、备案单位组织机构代码、备案单位营业执照注册号、备案单位经营范围、备案单位注册资金、备案单位网站域名、备案单位法人代表姓名、备案单位联系人姓名、联系人电话、 联系人电子邮件、联系人即时通信方式等。(2)备案单位电子邮件发送服务器IP地址分配使用信息,包括备案单位用于发送电子邮件的IP地址数量、IP地址、IP地址段、IP地址所属单位名称、IP地址对应域名、IP地址对应发送营销电子邮件[注3]性质/类型(事务性邮件和商业性邮件等);(3)备案单位可自愿报备每次电子邮件营销活动的信息,包括本次营销活动使用IP地址、域名、发件人邮箱地址、电子邮件HELO[注19]信息、收件人数量、发送周期、平均发送速率[注10]、单IP最大发送速率、发送营销电子邮件性质/类型(事务性邮件和商业性邮件等)、营销电子邮件的原信/样信等。(4)其他需要备案的信息。2.1.2 电子邮件营销服务提供者拟变更电子邮件营销服务信息的,应当提前办理变更登记手续。2.1.3 电子邮件营销服务提供者提交的备案信息必须完整、真实、有效且符合我国相关法律法规规定。2.1.4 中国互联网协会反垃圾信息中心负责审核电子邮件营销服务提供者提交的备案资料,对符合要求的备案单位发放电子邮件营销备案资质证书。2.2 电子邮件营销服务提供者应当确保所有与电子邮件服务有关的域名和IP地址注册信息正确、完整和及时更新,并遵守以下规定:2.2.1 发送电子邮件的服务器IP地址必须使用静态IP[注12]地址,并已采取IP反向解析[注13]措施。2.2.2 发送电子邮件的邮箱域名建议与发送电子邮件的服务器IP反向解析的域名信息一致,并已采取SPF解析[注14]。2.2.3 建议使用DKIM[注15]、DMARC[注16]等反垃圾邮件技术,提高与电子邮件发送相关的域名和IP的信誉。2.2.4 关注知名的RBL[注17]组织列表,如果发现与电子邮件发送相关的域名、IP或邮箱地址出现在知名的RBL[注17]组织列表上,应及时采取措施进行申诉和解封。2.2.5 建议发送事务性邮件和商业性邮件的服务器分配不同的IP地址和发送邮箱地址。2.2.6 具有特殊功能的账户,如postmaster@账户(邮件管理员账户)或abuse@账户(投诉账户),必须保证其有效,并由专人负责管理维护。2.3 电子邮件营销服务提供者应当建立可靠有效的订阅[注5]及退订[注9]机制,并遵守以下规定:2.3.1未经电子邮件接收者明确许可,不得向其发送营销电子邮件。获取接收者许可的过程和内容应清楚、明确,且不违背我国的相关法律规定。电子邮件营销服务提供者应公布获取接收者许可的策略,保存接收者同意接收营销邮件的许可记录,以便在需要时向接收者提供相关信息。2.3.2营销电子邮件必须提供给接收者至少包含一种退订的途径和具体操作方法,退订信息应醒目、清晰,退订操作方法应简单,有效。2.3.3确保退订请求可以正常发送并能够被及时自动响应处理。不得强制要求用户提交退订原因或设置退订条件,退订请求发出后应在3个工作日内生效。2.4 电子邮件营销服务提供者应规范的使用和维护其营销用户[注4]的电子邮件地址列表[注6],并遵守以下规定:2.4.1 电子邮件营销服务提供者对营销用户的个人信息和电子邮件地址负有保密的义务。未经用户同意,不得泄露用户的个人信息和电子邮件地址,法律、行政法规另有规定的除外。2.4.2 电子邮件营销服务提供者应制定安全合理的隐私策略[注8]。营销用户的个人信息资料和电子邮件地址的使用应与收集目的一致,未经用户同意,不得用于收集目的以外的其它用途。2.4.3 必须保证每个电子邮件地址的取得都经过了用户的许可。尽量确保每个电子邮件地址都是真实有效的。2.4.4 应合理处理邮件投递过程中接收电子邮件的服务器返回的错误代码[注7]。对于返回代码表示不存在的电子邮件地址,应及时从发送列表中删除;对于连续出现投递错误的电子邮件地址,建议及时调整投递策略,减少可能导致错误发生的情况。2.5 电子邮件营销服务提供者应使用规范的电子邮件格式与内容,并遵守以下规定:2.5.1 营销电子邮件的内容不得违反我国相关法律法规规定。2.5.2 营销电子邮件格式应符合国际通用规范标准(参见RFC 2822)。邮件中如果包含HTML格式,应遵循由万维网联盟(W3C)公布的w3.org[注18]设计规范。2.5.3 营销电子邮件应标明邮件发送方的身份和真实的可返回的邮件发送地址。邮件的标题和信体要能准确的反映出邮件的内容、真实来源和通信目的。邮件正文应包含发送方的名称、地址、联系电话和电子邮件地址等详细信息。2.5.4 营销电子邮件的主题与内容必须相匹配。邮件内容应与营销用户的订阅内容一致。2.5.5 应采取有效的措施保护未成年人,尽可能的识别未成年的邮件订阅者。营销电子邮件含有不适合未成年人阅读的内容时,应提前核实接收者的年龄,确保接收者达到合法接收和阅读的年龄。发送给未成年人的营销邮件应征得其监护人的许可,内容符合此年龄段人群的知识水准、阅历和心里成熟程度。2.6 电子邮件营销服务提供者应与邮件接收方建立良好的沟通渠道,并参考以下规定:2.6.1 中国互联网协会反垃圾信息中心负责协助电子邮件营销服务提供者与邮件接收组织之间的沟通协调,在邮件传送过程中出现问题时,及时有效的进行沟通,确保尽快使问题得到解决。2.6.2 中国互联网协会反垃圾信息中心应协助电子邮件营销服务提供者与邮件接收组织之间建立信息反馈机制,改进电子邮件营销服务提供者的服务水平。2.6.3 中国互联网协会反垃圾信息中心应对电子邮件营销活动进行监督,对电子邮件营销服务提供者的信誉进行评价。2.6.4 电子邮件营销服务提供者应建立公平、高效、安全、易于使用的邮件投诉系统,在营销电子邮件中为营销用户提供便捷的投诉方式,受理营销用户对营销电子邮件的投诉。对被投诉的营销电子邮件,应立即开展调查,采取合理有效的防范或处理措施,并将有关情况和调查结果及时向各省通信管理局等国家有关机关或者12321网络不良和垃圾信息举报受理中心报告。2.6.5 电子邮件营销服务提供者应按照邮件接收方的要求限制营销电子邮件的发送速率。邮件接收方应将未投递成功的电子邮件服务器错误信息反馈邮件发送方。对信誉良好,行为规范的电子邮件营销服务提供者,邮件接收方可适当放宽营销电子邮件的发送速率。2.7 电子邮件营销服务提供者应积极配合各省通信管理局等国家有关机关和12321网络不良和垃圾信息举报受理中心开展调查工作。2.8 中国互联网协会拥有本规范的解释权和修改权。2.9 本规范自发布之日起施行。 附注:1. 电子邮件营销:指通过电子邮件开展的营销活动。2. 电子邮件营销服务提供者:也是营销电子邮件的发送方,指提供电子邮件营销服务的单位或个人,包括直接开展电子邮件营销活动的单位或个人以及接受委托开展电子邮件营销活动的单位或个人。3. 营销电子邮件:指具有营销功能的电子邮件。根据电子邮件的发送目的,分为事务性邮件和商业性邮件两种类型。3.1 事务性邮件,是指由收件人触发并已允许发件人发送的,以推动、完成或确认相关联流程为主要目的而发送的电子邮件。常见分类包括:(1)账号相关:账号激活、信息验证、账号绑定、密码修改、密码取回等。(2)交易信息:订单通知、付款通知、退款通知、物流通知、交易投诉等。(3)账单信息:对帐单、流水账单、催款通知、账户变更等。(4)其他类型。3.2 商业性邮件,是指任何以推销或者推广某种商品或服务(包括商业性网站的内容)为主要目的而发送的电子邮件。常见分类包括:(1)期刊资讯:更新通知、各类期刊、各类报表等。(2)产品促销:新品推广、季末促销、优惠套餐、折扣优惠、积分优惠等。(3)成员营销:好友邀请、成员关怀、主题活动、用户调研等。(4)其他类型。3.3 事务性邮件如果附带商业性内容,则视为商业性邮件。4. 营销用户:指电子邮件营销活动的对象,即接收营销电子邮件的电子邮箱使用者。5. 订阅:指营销用户预先订制,同意接收订制的营销电子邮件的行为。6. 邮件列表:指已经订阅了某一类营销电子邮件的用户电子邮箱地址列表,该列表是此类营销电子邮件的发送对象。7. 错误代码/硬退回/软退回:指在邮件的SMTP发送过程中,收信方服务器每处理完一条SMTP命令,都会向发信方服务器回传一个返回信息,用于表明对这条SMTP命令的执行结果。如返回信息以4XX(如450等)开头,指接收方临时性拒收该邮件,称软退回;如返回信息以5XX(如550等)开头,指接收方永久性拒收该邮件,称硬退回。以上列举的两类代码,习惯称为错误代码。8. 隐私策略:指电子邮件营销活动所收集的营销用户信息类型,收集方式和收集技术,以及信息的提供对象和使用用途。隐私策略中还应包括用户信息保护的安全措施、责任和实施过程。9. 退订:指营销用户取消订阅营销电子邮件的行为。10. 发送速率:指单位时间内的发送电子邮件的总数量。 常见的时间间隔单位包括:分钟、15分钟、小时、天、周、月等。11. IP地址/IP段IP地址是被用于定位互联网上的电脑一个唯一编号,地址的格式如159.226.1.1。多个IP地址的组合,即称为IP段。邮件发送过程中会?谰軮P地址,来确定邮件发送者和邮件接收者的位置。12. 静态IP地址指长期固定分配给一台计算机使用的IP地址,一般是由网络运营商分配。13. IP反向解析IP反向解析是一项常用的反垃圾邮件技术。常用的DNS服务器里面有两个区域,即“正向查找区域”和“反向查找区域”。正向查找区域是指域名解析,反向查找区域即是IP反向解析,简称PTR记录,其作用是通过查询IP地址的PTR记录来得到该IP地址指向的域名。PTR记录需要由提供IP地址的网络运营商(ISP)进行配置。14. SPFSPF(Sender Policy Framework)是一种通过IP地址来认证电子邮件发件人身份的技术,是一项非常高效的反垃圾邮件技术。它通过在DNS中发布一条TXT类型的记录,用于登记某个域名所有拥有的合法的发送邮件的所有IP地址。15. DKIMDKIM(DomainKeys Identified Mail)是一种防诈骗邮件的反垃圾邮件技术。DKIM要求邮件发送方在电子邮件的信头插入DKIM-Signature及电子签名信息,而邮件接收方则通过DNS查询得到其公钥然后进行合法性验证。16. DMARCDMARC(Domain-based Message Authentication, Reporting and Conformance)是一种防诈骗邮件的反垃圾邮件技术。DMARC结合SPF和DKIM两项技术,通过检查电子邮件信头的发件人的合法性,将诈骗邮件识别出来。17. RBLRBL(Real-time Blackhole List),即实时黑名单列表,是一些由国际知名的反垃圾邮件组织所提供的恶意发送垃圾邮件的发件人邮箱地址,IP地址,URL地址等黑名单列表的服务。若已被RBL收录,需到相应RBL官方网站上去核实并申请移除。常见的知名RBL组织,如中国互联网协会反垃圾信息中心、spamhaus,Maps,sorbs,uribl,surbl等。18. w3.org规范由万维网联盟(W3C)共同开发与公布的各种web设计规范。当邮件正文以网页的形式组织时,应当参考这些规范。19.HELO电子邮件头中邮件发送者用来标识自己的身份的命令字段。 附录:电子邮件营销常用指标1. 发送量发送的营销电子邮件数量2. 到达量发送的营销电子邮件数量-退回的营销电子邮件数量3. 到达率到达接收方邮箱的营销电子邮件数量/发送的营销电子邮件数量×100%4. 退信率退回的营销电子邮件数量/发送的营销电子邮件数量×100%5. 硬退信率硬退回的营销电子邮件数量/发送的营销电子邮件数量×100%6. 软退信率软退回的营销电子邮件数量/发送的营销电子邮件数量×100%7. 打开率打开营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复打开邮件的情况。8. 点击率点击了营销电子邮件内容中链接的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复点击的情况。9. 点击打开率点击了营销电子邮件内容中链接的接收方数量/打开营销电子邮件的接收方数量×100%,不计算重复点击和重复打开的情况。10. 退订率退订营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%11. 投诉率被投诉的营销电子邮件数量/到达接收方邮箱的营销电子邮件数量×100%12. 信誉度邮件接收方或者第三方机构对营销电子邮件服务信誉和质量的评定结果 参考中华人民共和国信息产业部令第38号 互联网电子邮件服务管理办法中国互联网协会 电子邮件服务指南(V1.1)中国互联网协会 中国互联网协会互联网公共电子邮件服务规范YD-T 1310-2004 互联网广告电子邮件格式要求YD-T 1311-2004 防范互联网垃圾电子邮件技术要求

2019-12-01 23:24:48 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 阿里云任何版本的企业邮箱服务禁止发送营销邮件,营销邮件标准及相关规范,参见中国互联网协会反垃圾信息中心的管理规范。中国互联网协会电子邮件营销规范(V1.2)来源:反垃圾信息中心一、总则1.1 为规范电子邮件形式的市场营销行为,统一电子邮件营销[注1]的基本要求,为接收和发送营销内容的电子邮件提供依据,保护电子邮件用户的合法权益,根据我国相关法律法规的规定,制定本规范。1.2 本规范适用于电子邮件营销活动的开展和评价。1.3 本规范基于《互联网电子邮件服务管理办法》(中华人民共和国信息产业部令第38号)制定,从事电子邮件营销除应执行本规范外,还应符合《互联网电子邮件服务管理办法》及其他国家现行的有关标准的规定。二、基本规定2.1 中国互联网协会对电子邮件营销服务提供者[注2]实行登记备案管理。电子邮件营销服务提供者应当在开展电子邮件营销活动前将电子邮件发送服务器所使用的IP地址[注11]及相关信息向中国互联网协会反垃圾信息中心登记备案,并遵守以下规定:2.1.1需报备的 IP 地址及相关信息(1)备案单位基本情况,包括备案单位名称、备案单位地址、备案单位性质、备案单位组织机构代码、备案单位营业执照注册号、备案单位经营范围、备案单位注册资金、备案单位网站域名、备案单位法人代表姓名、备案单位联系人姓名、联系人电话、 联系人电子邮件、联系人即时通信方式等。(2)备案单位电子邮件发送服务器IP地址分配使用信息,包括备案单位用于发送电子邮件的IP地址数量、IP地址、IP地址段、IP地址所属单位名称、IP地址对应域名、IP地址对应发送营销电子邮件[注3]性质/类型(事务性邮件和商业性邮件等);(3)备案单位可自愿报备每次电子邮件营销活动的信息,包括本次营销活动使用IP地址、域名、发件人邮箱地址、电子邮件HELO[注19]信息、收件人数量、发送周期、平均发送速率[注10]、单IP最大发送速率、发送营销电子邮件性质/类型(事务性邮件和商业性邮件等)、营销电子邮件的原信/样信等。(4)其他需要备案的信息。2.1.2 电子邮件营销服务提供者拟变更电子邮件营销服务信息的,应当提前办理变更登记手续。2.1.3 电子邮件营销服务提供者提交的备案信息必须完整、真实、有效且符合我国相关法律法规规定。2.1.4 中国互联网协会反垃圾信息中心负责审核电子邮件营销服务提供者提交的备案资料,对符合要求的备案单位发放电子邮件营销备案资质证书。2.2 电子邮件营销服务提供者应当确保所有与电子邮件服务有关的域名和IP地址注册信息正确、完整和及时更新,并遵守以下规定:2.2.1 发送电子邮件的服务器IP地址必须使用静态IP[注12]地址,并已采取IP反向解析[注13]措施。2.2.2 发送电子邮件的邮箱域名建议与发送电子邮件的服务器IP反向解析的域名信息一致,并已采取SPF解析[注14]。2.2.3 建议使用DKIM[注15]、DMARC[注16]等反垃圾邮件技术,提高与电子邮件发送相关的域名和IP的信誉。2.2.4 关注知名的RBL[注17]组织列表,如果发现与电子邮件发送相关的域名、IP或邮箱地址出现在知名的RBL[注17]组织列表上,应及时采取措施进行申诉和解封。2.2.5 建议发送事务性邮件和商业性邮件的服务器分配不同的IP地址和发送邮箱地址。2.2.6 具有特殊功能的账户,如postmaster@账户(邮件管理员账户)或abuse@账户(投诉账户),必须保证其有效,并由专人负责管理维护。2.3 电子邮件营销服务提供者应当建立可靠有效的订阅[注5]及退订[注9]机制,并遵守以下规定:2.3.1未经电子邮件接收者明确许可,不得向其发送营销电子邮件。获取接收者许可的过程和内容应清楚、明确,且不违背我国的相关法律规定。电子邮件营销服务提供者应公布获取接收者许可的策略,保存接收者同意接收营销邮件的许可记录,以便在需要时向接收者提供相关信息。2.3.2营销电子邮件必须提供给接收者至少包含一种退订的途径和具体操作方法,退订信息应醒目、清晰,退订操作方法应简单,有效。2.3.3确保退订请求可以正常发送并能够被及时自动响应处理。不得强制要求用户提交退订原因或设置退订条件,退订请求发出后应在3个工作日内生效。2.4 电子邮件营销服务提供者应规范的使用和维护其营销用户[注4]的电子邮件地址列表[注6],并遵守以下规定:2.4.1 电子邮件营销服务提供者对营销用户的个人信息和电子邮件地址负有保密的义务。未经用户同意,不得泄露用户的个人信息和电子邮件地址,法律、行政法规另有规定的除外。2.4.2 电子邮件营销服务提供者应制定安全合理的隐私策略[注8]。营销用户的个人信息资料和电子邮件地址的使用应与收集目的一致,未经用户同意,不得用于收集目的以外的其它用途。2.4.3 必须保证每个电子邮件地址的取得都经过了用户的许可。尽量确保每个电子邮件地址都是真实有效的。2.4.4 应合理处理邮件投递过程中接收电子邮件的服务器返回的错误代码[注7]。对于返回代码表示不存在的电子邮件地址,应及时从发送列表中删除;对于连续出现投递错误的电子邮件地址,建议及时调整投递策略,减少可能导致错误发生的情况。2.5 电子邮件营销服务提供者应使用规范的电子邮件格式与内容,并遵守以下规定:2.5.1 营销电子邮件的内容不得违反我国相关法律法规规定。2.5.2 营销电子邮件格式应符合国际通用规范标准(参见RFC 2822)。邮件中如果包含HTML格式,应遵循由万维网联盟(W3C)公布的w3.org[注18]设计规范。2.5.3 营销电子邮件应标明邮件发送方的身份和真实的可返回的邮件发送地址。邮件的标题和信体要能准确的反映出邮件的内容、真实来源和通信目的。邮件正文应包含发送方的名称、地址、联系电话和电子邮件地址等详细信息。2.5.4 营销电子邮件的主题与内容必须相匹配。邮件内容应与营销用户的订阅内容一致。2.5.5 应采取有效的措施保护未成年人,尽可能的识别未成年的邮件订阅者。营销电子邮件含有不适合未成年人阅读的内容时,应提前核实接收者的年龄,确保接收者达到合法接收和阅读的年龄。发送给未成年人的营销邮件应征得其监护人的许可,内容符合此年龄段人群的知识水准、阅历和心里成熟程度。2.6 电子邮件营销服务提供者应与邮件接收方建立良好的沟通渠道,并参考以下规定:2.6.1 中国互联网协会反垃圾信息中心负责协助电子邮件营销服务提供者与邮件接收组织之间的沟通协调,在邮件传送过程中出现问题时,及时有效的进行沟通,确保尽快使问题得到解决。2.6.2 中国互联网协会反垃圾信息中心应协助电子邮件营销服务提供者与邮件接收组织之间建立信息反馈机制,改进电子邮件营销服务提供者的服务水平。2.6.3 中国互联网协会反垃圾信息中心应对电子邮件营销活动进行监督,对电子邮件营销服务提供者的信誉进行评价。2.6.4 电子邮件营销服务提供者应建立公平、高效、安全、易于使用的邮件投诉系统,在营销电子邮件中为营销用户提供便捷的投诉方式,受理营销用户对营销电子邮件的投诉。对被投诉的营销电子邮件,应立即开展调查,采取合理有效的防范或处理措施,并将有关情况和调查结果及时向各省通信管理局等国家有关机关或者12321网络不良和垃圾信息举报受理中心报告。2.6.5 电子邮件营销服务提供者应按照邮件接收方的要求限制营销电子邮件的发送速率。邮件接收方应将未投递成功的电子邮件服务器错误信息反馈邮件发送方。对信誉良好,行为规范的电子邮件营销服务提供者,邮件接收方可适当放宽营销电子邮件的发送速率。2.7 电子邮件营销服务提供者应积极配合各省通信管理局等国家有关机关和12321网络不良和垃圾信息举报受理中心开展调查工作。2.8 中国互联网协会拥有本规范的解释权和修改权。2.9 本规范自发布之日起施行。 附注:1. 电子邮件营销:指通过电子邮件开展的营销活动。2. 电子邮件营销服务提供者:也是营销电子邮件的发送方,指提供电子邮件营销服务的单位或个人,包括直接开展电子邮件营销活动的单位或个人以及接受委托开展电子邮件营销活动的单位或个人。3. 营销电子邮件:指具有营销功能的电子邮件。根据电子邮件的发送目的,分为事务性邮件和商业性邮件两种类型。3.1 事务性邮件,是指由收件人触发并已允许发件人发送的,以推动、完成或确认相关联流程为主要目的而发送的电子邮件。常见分类包括:(1)账号相关:账号激活、信息验证、账号绑定、密码修改、密码取回等。(2)交易信息:订单通知、付款通知、退款通知、物流通知、交易投诉等。(3)账单信息:对帐单、流水账单、催款通知、账户变更等。(4)其他类型。3.2 商业性邮件,是指任何以推销或者推广某种商品或服务(包括商业性网站的内容)为主要目的而发送的电子邮件。常见分类包括:(1)期刊资讯:更新通知、各类期刊、各类报表等。(2)产品促销:新品推广、季末促销、优惠套餐、折扣优惠、积分优惠等。(3)成员营销:好友邀请、成员关怀、主题活动、用户调研等。(4)其他类型。3.3 事务性邮件如果附带商业性内容,则视为商业性邮件。4. 营销用户:指电子邮件营销活动的对象,即接收营销电子邮件的电子邮箱使用者。5. 订阅:指营销用户预先订制,同意接收订制的营销电子邮件的行为。6. 邮件列表:指已经订阅了某一类营销电子邮件的用户电子邮箱地址列表,该列表是此类营销电子邮件的发送对象。7. 错误代码/硬退回/软退回:指在邮件的SMTP发送过程中,收信方服务器每处理完一条SMTP命令,都会向发信方服务器回传一个返回信息,用于表明对这条SMTP命令的执行结果。如返回信息以4XX(如450等)开头,指接收方临时性拒收该邮件,称软退回;如返回信息以5XX(如550等)开头,指接收方永久性拒收该邮件,称硬退回。以上列举的两类代码,习惯称为错误代码。8. 隐私策略:指电子邮件营销活动所收集的营销用户信息类型,收集方式和收集技术,以及信息的提供对象和使用用途。隐私策略中还应包括用户信息保护的安全措施、责任和实施过程。9. 退订:指营销用户取消订阅营销电子邮件的行为。10. 发送速率:指单位时间内的发送电子邮件的总数量。 常见的时间间隔单位包括:分钟、15分钟、小时、天、周、月等。11. IP地址/IP段IP地址是被用于定位互联网上的电脑一个唯一编号,地址的格式如159.226.1.1。多个IP地址的组合,即称为IP段。邮件发送过程中会?谰軮P地址,来确定邮件发送者和邮件接收者的位置。12. 静态IP地址指长期固定分配给一台计算机使用的IP地址,一般是由网络运营商分配。13. IP反向解析IP反向解析是一项常用的反垃圾邮件技术。常用的DNS服务器里面有两个区域,即“正向查找区域”和“反向查找区域”。正向查找区域是指域名解析,反向查找区域即是IP反向解析,简称PTR记录,其作用是通过查询IP地址的PTR记录来得到该IP地址指向的域名。PTR记录需要由提供IP地址的网络运营商(ISP)进行配置。14. SPFSPF(Sender Policy Framework)是一种通过IP地址来认证电子邮件发件人身份的技术,是一项非常高效的反垃圾邮件技术。它通过在DNS中发布一条TXT类型的记录,用于登记某个域名所有拥有的合法的发送邮件的所有IP地址。15. DKIMDKIM(DomainKeys Identified Mail)是一种防诈骗邮件的反垃圾邮件技术。DKIM要求邮件发送方在电子邮件的信头插入DKIM-Signature及电子签名信息,而邮件接收方则通过DNS查询得到其公钥然后进行合法性验证。16. DMARCDMARC(Domain-based Message Authentication, Reporting and Conformance)是一种防诈骗邮件的反垃圾邮件技术。DMARC结合SPF和DKIM两项技术,通过检查电子邮件信头的发件人的合法性,将诈骗邮件识别出来。17. RBLRBL(Real-time Blackhole List),即实时黑名单列表,是一些由国际知名的反垃圾邮件组织所提供的恶意发送垃圾邮件的发件人邮箱地址,IP地址,URL地址等黑名单列表的服务。若已被RBL收录,需到相应RBL官方网站上去核实并申请移除。常见的知名RBL组织,如中国互联网协会反垃圾信息中心、spamhaus,Maps,sorbs,uribl,surbl等。18. w3.org规范由万维网联盟(W3C)共同开发与公布的各种web设计规范。当邮件正文以网页的形式组织时,应当参考这些规范。19.HELO电子邮件头中邮件发送者用来标识自己的身份的命令字段。 附录:电子邮件营销常用指标1. 发送量发送的营销电子邮件数量2. 到达量发送的营销电子邮件数量-退回的营销电子邮件数量3. 到达率到达接收方邮箱的营销电子邮件数量/发送的营销电子邮件数量×100%4. 退信率退回的营销电子邮件数量/发送的营销电子邮件数量×100%5. 硬退信率硬退回的营销电子邮件数量/发送的营销电子邮件数量×100%6. 软退信率软退回的营销电子邮件数量/发送的营销电子邮件数量×100%7. 打开率打开营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复打开邮件的情况。8. 点击率点击了营销电子邮件内容中链接的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复点击的情况。9. 点击打开率点击了营销电子邮件内容中链接的接收方数量/打开营销电子邮件的接收方数量×100%,不计算重复点击和重复打开的情况。10. 退订率退订营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%11. 投诉率被投诉的营销电子邮件数量/到达接收方邮箱的营销电子邮件数量×100%12. 信誉度邮件接收方或者第三方机构对营销电子邮件服务信誉和质量的评定结果 参考中华人民共和国信息产业部令第38号 互联网电子邮件服务管理办法中国互联网协会 电子邮件服务指南(V1.1)中国互联网协会 中国互联网协会互联网公共电子邮件服务规范YD-T 1310-2004 互联网广告电子邮件格式要求YD-T 1311-2004 防范互联网垃圾电子邮件技术要求

2019-12-01 23:24:47 0 浏览量 回答数 0

回答

详细解答可以参考官方帮助文档 阿里云任何版本的企业邮箱服务禁止发送营销邮件,营销邮件标准及相关规范,参见中国互联网协会反垃圾信息中心的管理规范。中国互联网协会电子邮件营销规范(V1.2)来源:反垃圾信息中心一、总则1.1 为规范电子邮件形式的市场营销行为,统一电子邮件营销[注1]的基本要求,为接收和发送营销内容的电子邮件提供依据,保护电子邮件用户的合法权益,根据我国相关法律法规的规定,制定本规范。1.2 本规范适用于电子邮件营销活动的开展和评价。1.3 本规范基于《互联网电子邮件服务管理办法》(中华人民共和国信息产业部令第38号)制定,从事电子邮件营销除应执行本规范外,还应符合《互联网电子邮件服务管理办法》及其他国家现行的有关标准的规定。二、基本规定2.1 中国互联网协会对电子邮件营销服务提供者[注2]实行登记备案管理。电子邮件营销服务提供者应当在开展电子邮件营销活动前将电子邮件发送服务器所使用的IP地址[注11]及相关信息向中国互联网协会反垃圾信息中心登记备案,并遵守以下规定:2.1.1需报备的 IP 地址及相关信息(1)备案单位基本情况,包括备案单位名称、备案单位地址、备案单位性质、备案单位组织机构代码、备案单位营业执照注册号、备案单位经营范围、备案单位注册资金、备案单位网站域名、备案单位法人代表姓名、备案单位联系人姓名、联系人电话、 联系人电子邮件、联系人即时通信方式等。(2)备案单位电子邮件发送服务器IP地址分配使用信息,包括备案单位用于发送电子邮件的IP地址数量、IP地址、IP地址段、IP地址所属单位名称、IP地址对应域名、IP地址对应发送营销电子邮件[注3]性质/类型(事务性邮件和商业性邮件等);(3)备案单位可自愿报备每次电子邮件营销活动的信息,包括本次营销活动使用IP地址、域名、发件人邮箱地址、电子邮件HELO[注19]信息、收件人数量、发送周期、平均发送速率[注10]、单IP最大发送速率、发送营销电子邮件性质/类型(事务性邮件和商业性邮件等)、营销电子邮件的原信/样信等。(4)其他需要备案的信息。2.1.2 电子邮件营销服务提供者拟变更电子邮件营销服务信息的,应当提前办理变更登记手续。2.1.3 电子邮件营销服务提供者提交的备案信息必须完整、真实、有效且符合我国相关法律法规规定。2.1.4 中国互联网协会反垃圾信息中心负责审核电子邮件营销服务提供者提交的备案资料,对符合要求的备案单位发放电子邮件营销备案资质证书。2.2 电子邮件营销服务提供者应当确保所有与电子邮件服务有关的域名和IP地址注册信息正确、完整和及时更新,并遵守以下规定:2.2.1 发送电子邮件的服务器IP地址必须使用静态IP[注12]地址,并已采取IP反向解析[注13]措施。2.2.2 发送电子邮件的邮箱域名建议与发送电子邮件的服务器IP反向解析的域名信息一致,并已采取SPF解析[注14]。2.2.3 建议使用DKIM[注15]、DMARC[注16]等反垃圾邮件技术,提高与电子邮件发送相关的域名和IP的信誉。2.2.4 关注知名的RBL[注17]组织列表,如果发现与电子邮件发送相关的域名、IP或邮箱地址出现在知名的RBL[注17]组织列表上,应及时采取措施进行申诉和解封。2.2.5 建议发送事务性邮件和商业性邮件的服务器分配不同的IP地址和发送邮箱地址。2.2.6 具有特殊功能的账户,如postmaster@账户(邮件管理员账户)或abuse@账户(投诉账户),必须保证其有效,并由专人负责管理维护。2.3 电子邮件营销服务提供者应当建立可靠有效的订阅[注5]及退订[注9]机制,并遵守以下规定:2.3.1未经电子邮件接收者明确许可,不得向其发送营销电子邮件。获取接收者许可的过程和内容应清楚、明确,且不违背我国的相关法律规定。电子邮件营销服务提供者应公布获取接收者许可的策略,保存接收者同意接收营销邮件的许可记录,以便在需要时向接收者提供相关信息。2.3.2营销电子邮件必须提供给接收者至少包含一种退订的途径和具体操作方法,退订信息应醒目、清晰,退订操作方法应简单,有效。2.3.3确保退订请求可以正常发送并能够被及时自动响应处理。不得强制要求用户提交退订原因或设置退订条件,退订请求发出后应在3个工作日内生效。2.4 电子邮件营销服务提供者应规范的使用和维护其营销用户[注4]的电子邮件地址列表[注6],并遵守以下规定:2.4.1 电子邮件营销服务提供者对营销用户的个人信息和电子邮件地址负有保密的义务。未经用户同意,不得泄露用户的个人信息和电子邮件地址,法律、行政法规另有规定的除外。2.4.2 电子邮件营销服务提供者应制定安全合理的隐私策略[注8]。营销用户的个人信息资料和电子邮件地址的使用应与收集目的一致,未经用户同意,不得用于收集目的以外的其它用途。2.4.3 必须保证每个电子邮件地址的取得都经过了用户的许可。尽量确保每个电子邮件地址都是真实有效的。2.4.4 应合理处理邮件投递过程中接收电子邮件的服务器返回的错误代码[注7]。对于返回代码表示不存在的电子邮件地址,应及时从发送列表中删除;对于连续出现投递错误的电子邮件地址,建议及时调整投递策略,减少可能导致错误发生的情况。2.5 电子邮件营销服务提供者应使用规范的电子邮件格式与内容,并遵守以下规定:2.5.1 营销电子邮件的内容不得违反我国相关法律法规规定。2.5.2 营销电子邮件格式应符合国际通用规范标准(参见RFC 2822)。邮件中如果包含HTML格式,应遵循由万维网联盟(W3C)公布的w3.org[注18]设计规范。2.5.3 营销电子邮件应标明邮件发送方的身份和真实的可返回的邮件发送地址。邮件的标题和信体要能准确的反映出邮件的内容、真实来源和通信目的。邮件正文应包含发送方的名称、地址、联系电话和电子邮件地址等详细信息。2.5.4 营销电子邮件的主题与内容必须相匹配。邮件内容应与营销用户的订阅内容一致。2.5.5 应采取有效的措施保护未成年人,尽可能的识别未成年的邮件订阅者。营销电子邮件含有不适合未成年人阅读的内容时,应提前核实接收者的年龄,确保接收者达到合法接收和阅读的年龄。发送给未成年人的营销邮件应征得其监护人的许可,内容符合此年龄段人群的知识水准、阅历和心里成熟程度。2.6 电子邮件营销服务提供者应与邮件接收方建立良好的沟通渠道,并参考以下规定:2.6.1 中国互联网协会反垃圾信息中心负责协助电子邮件营销服务提供者与邮件接收组织之间的沟通协调,在邮件传送过程中出现问题时,及时有效的进行沟通,确保尽快使问题得到解决。2.6.2 中国互联网协会反垃圾信息中心应协助电子邮件营销服务提供者与邮件接收组织之间建立信息反馈机制,改进电子邮件营销服务提供者的服务水平。2.6.3 中国互联网协会反垃圾信息中心应对电子邮件营销活动进行监督,对电子邮件营销服务提供者的信誉进行评价。2.6.4 电子邮件营销服务提供者应建立公平、高效、安全、易于使用的邮件投诉系统,在营销电子邮件中为营销用户提供便捷的投诉方式,受理营销用户对营销电子邮件的投诉。对被投诉的营销电子邮件,应立即开展调查,采取合理有效的防范或处理措施,并将有关情况和调查结果及时向各省通信管理局等国家有关机关或者12321网络不良和垃圾信息举报受理中心报告。2.6.5 电子邮件营销服务提供者应按照邮件接收方的要求限制营销电子邮件的发送速率。邮件接收方应将未投递成功的电子邮件服务器错误信息反馈邮件发送方。对信誉良好,行为规范的电子邮件营销服务提供者,邮件接收方可适当放宽营销电子邮件的发送速率。2.7 电子邮件营销服务提供者应积极配合各省通信管理局等国家有关机关和12321网络不良和垃圾信息举报受理中心开展调查工作。2.8 中国互联网协会拥有本规范的解释权和修改权。2.9 本规范自发布之日起施行。 附注:1. 电子邮件营销:指通过电子邮件开展的营销活动。2. 电子邮件营销服务提供者:也是营销电子邮件的发送方,指提供电子邮件营销服务的单位或个人,包括直接开展电子邮件营销活动的单位或个人以及接受委托开展电子邮件营销活动的单位或个人。3. 营销电子邮件:指具有营销功能的电子邮件。根据电子邮件的发送目的,分为事务性邮件和商业性邮件两种类型。3.1 事务性邮件,是指由收件人触发并已允许发件人发送的,以推动、完成或确认相关联流程为主要目的而发送的电子邮件。常见分类包括:(1)账号相关:账号激活、信息验证、账号绑定、密码修改、密码取回等。(2)交易信息:订单通知、付款通知、退款通知、物流通知、交易投诉等。(3)账单信息:对帐单、流水账单、催款通知、账户变更等。(4)其他类型。3.2 商业性邮件,是指任何以推销或者推广某种商品或服务(包括商业性网站的内容)为主要目的而发送的电子邮件。常见分类包括:(1)期刊资讯:更新通知、各类期刊、各类报表等。(2)产品促销:新品推广、季末促销、优惠套餐、折扣优惠、积分优惠等。(3)成员营销:好友邀请、成员关怀、主题活动、用户调研等。(4)其他类型。3.3 事务性邮件如果附带商业性内容,则视为商业性邮件。4. 营销用户:指电子邮件营销活动的对象,即接收营销电子邮件的电子邮箱使用者。5. 订阅:指营销用户预先订制,同意接收订制的营销电子邮件的行为。6. 邮件列表:指已经订阅了某一类营销电子邮件的用户电子邮箱地址列表,该列表是此类营销电子邮件的发送对象。7. 错误代码/硬退回/软退回:指在邮件的SMTP发送过程中,收信方服务器每处理完一条SMTP命令,都会向发信方服务器回传一个返回信息,用于表明对这条SMTP命令的执行结果。如返回信息以4XX(如450等)开头,指接收方临时性拒收该邮件,称软退回;如返回信息以5XX(如550等)开头,指接收方永久性拒收该邮件,称硬退回。以上列举的两类代码,习惯称为错误代码。8. 隐私策略:指电子邮件营销活动所收集的营销用户信息类型,收集方式和收集技术,以及信息的提供对象和使用用途。隐私策略中还应包括用户信息保护的安全措施、责任和实施过程。9. 退订:指营销用户取消订阅营销电子邮件的行为。10. 发送速率:指单位时间内的发送电子邮件的总数量。 常见的时间间隔单位包括:分钟、15分钟、小时、天、周、月等。11. IP地址/IP段IP地址是被用于定位互联网上的电脑一个唯一编号,地址的格式如159.226.1.1。多个IP地址的组合,即称为IP段。邮件发送过程中会?谰軮P地址,来确定邮件发送者和邮件接收者的位置。12. 静态IP地址指长期固定分配给一台计算机使用的IP地址,一般是由网络运营商分配。13. IP反向解析IP反向解析是一项常用的反垃圾邮件技术。常用的DNS服务器里面有两个区域,即“正向查找区域”和“反向查找区域”。正向查找区域是指域名解析,反向查找区域即是IP反向解析,简称PTR记录,其作用是通过查询IP地址的PTR记录来得到该IP地址指向的域名。PTR记录需要由提供IP地址的网络运营商(ISP)进行配置。14. SPFSPF(Sender Policy Framework)是一种通过IP地址来认证电子邮件发件人身份的技术,是一项非常高效的反垃圾邮件技术。它通过在DNS中发布一条TXT类型的记录,用于登记某个域名所有拥有的合法的发送邮件的所有IP地址。15. DKIMDKIM(DomainKeys Identified Mail)是一种防诈骗邮件的反垃圾邮件技术。DKIM要求邮件发送方在电子邮件的信头插入DKIM-Signature及电子签名信息,而邮件接收方则通过DNS查询得到其公钥然后进行合法性验证。16. DMARCDMARC(Domain-based Message Authentication, Reporting and Conformance)是一种防诈骗邮件的反垃圾邮件技术。DMARC结合SPF和DKIM两项技术,通过检查电子邮件信头的发件人的合法性,将诈骗邮件识别出来。17. RBLRBL(Real-time Blackhole List),即实时黑名单列表,是一些由国际知名的反垃圾邮件组织所提供的恶意发送垃圾邮件的发件人邮箱地址,IP地址,URL地址等黑名单列表的服务。若已被RBL收录,需到相应RBL官方网站上去核实并申请移除。常见的知名RBL组织,如中国互联网协会反垃圾信息中心、spamhaus,Maps,sorbs,uribl,surbl等。18. w3.org规范由万维网联盟(W3C)共同开发与公布的各种web设计规范。当邮件正文以网页的形式组织时,应当参考这些规范。19.HELO电子邮件头中邮件发送者用来标识自己的身份的命令字段。 附录:电子邮件营销常用指标1. 发送量发送的营销电子邮件数量2. 到达量发送的营销电子邮件数量-退回的营销电子邮件数量3. 到达率到达接收方邮箱的营销电子邮件数量/发送的营销电子邮件数量×100%4. 退信率退回的营销电子邮件数量/发送的营销电子邮件数量×100%5. 硬退信率硬退回的营销电子邮件数量/发送的营销电子邮件数量×100%6. 软退信率软退回的营销电子邮件数量/发送的营销电子邮件数量×100%7. 打开率打开营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复打开邮件的情况。8. 点击率点击了营销电子邮件内容中链接的接收方数量/收到营销电子邮件的接收方数量×100%,不计算重复点击的情况。9. 点击打开率点击了营销电子邮件内容中链接的接收方数量/打开营销电子邮件的接收方数量×100%,不计算重复点击和重复打开的情况。10. 退订率退订营销电子邮件的接收方数量/收到营销电子邮件的接收方数量×100%11. 投诉率被投诉的营销电子邮件数量/到达接收方邮箱的营销电子邮件数量×100%12. 信誉度邮件接收方或者第三方机构对营销电子邮件服务信誉和质量的评定结果 参考中华人民共和国信息产业部令第38号 互联网电子邮件服务管理办法中国互联网协会 电子邮件服务指南(V1.1)中国互联网协会 中国互联网协会互联网公共电子邮件服务规范YD-T 1310-2004 互联网广告电子邮件格式要求YD-T 1311-2004 防范互联网垃圾电子邮件技术要求

2019-12-01 23:24:47 0 浏览量 回答数 0

回答

134题 其实就是水平扩容了,Zookeeper在这方面不太好。两种方式:全部重启:关闭所有Zookeeper服务,修改配置之后启动。不影响之前客户端的会话。逐个重启:这是比较常用的方式。 133题 集群最低3(2N+1)台,保证奇数,主要是为了选举算法。一个由 3 台机器构成的 ZooKeeper 集群,能够在挂掉 1 台机器后依然正常工作,而对于一个由 5 台服务器构成的 ZooKeeper 集群,能够对 2 台机器挂掉的情况进行容灾。注意,如果是一个由6台服务器构成的 ZooKeeper 集群,同样只能够挂掉 2 台机器,因为如果挂掉 3 台,剩下的机器就无法实现过半了。 132题 基于“过半”设计原则,ZooKeeper 在运行期间,集群中至少有过半的机器保存了最新的数据。因此,只要集群中超过半数的机器还能够正常工作,整个集群就能够对外提供服务。 131题 不是。官方声明:一个Watch事件是一个一次性的触发器,当被设置了Watch的数据发生了改变的时候,则服务器将这个改变发送给设置了Watch的客户端,以便通知它们。为什么不是永久的,举个例子,如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,这太消耗性能了。一般是客户端执行getData(“/节点A”,true),如果节点A发生了变更或删除,客户端会得到它的watch事件,但是在之后节点A又发生了变更,而客户端又没有设置watch事件,就不再给客户端发送。在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。 130题 数据发布/订阅,负载均衡,命名服务,分布式协调/通知,集群管理,Master 选举,分布式锁,分布式队列 129题 客户端 SendThread 线程接收事件通知, 交由 EventThread 线程回调 Watcher。客户端的 Watcher 机制同样是一次性的, 一旦被触发后, 该 Watcher 就失效了。 128题 1、服务端接收 Watcher 并存储; 2、Watcher 触发; 2.1 封装 WatchedEvent; 2.2 查询 Watcher; 2.3 没找到;说明没有客户端在该数据节点上注册过 Watcher; 2.4 找到;提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher; 3、调用 process 方法来触发 Watcher。 127题 1.调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象 2.标记请求 request,封装 Watcher 到 WatchRegistration 3.封装成 Packet 对象,发服务端发送 request 4.收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理 5.请求返回,完成注册。 126题 Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。工作机制:(1)客户端注册 watcher(2)服务端处理 watcher(3)客户端回调 watcher 125题 服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。 LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。 FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。 LEADING:领导者状态。表明当前服务器角色是 Leader。 OBSERVING:观察者状态。表明当前服务器角色是 Observer。 124题 Zookeeper 有三种部署模式:单机部署:一台集群上运行;集群部署:多台集群运行;伪集群部署:一台集群启动多个 Zookeeper 实例运行。 123题 Paxos算法是分布式选举算法,Zookeeper使用的 ZAB协议(Zookeeper原子广播),二者有相同的地方,比如都有一个Leader,用来协调N个Follower的运行;Leader要等待超半数的Follower做出正确反馈之后才进行提案;二者都有一个值来代表Leader的周期。不同的地方在于:ZAB用来构建高可用的分布式数据主备系统(Zookeeper),Paxos是用来构建分布式一致性状态机系统。Paxos算法、ZAB协议要想讲清楚可不是一时半会的事儿,自1990年莱斯利·兰伯特提出Paxos算法以来,因为晦涩难懂并没有受到重视。后续几年,兰伯特通过好几篇论文对其进行更进一步地解释,也直到06年谷歌发表了三篇论文,选择Paxos作为chubby cell的一致性算法,Paxos才真正流行起来。对于普通开发者来说,尤其是学习使用Zookeeper的开发者明确一点就好:分布式Zookeeper选举Leader服务器的算法与Paxos有很深的关系。 122题 ZAB协议是为分布式协调服务Zookeeper专门设计的一种支持崩溃恢复的原子广播协议(paxos算法的一种实现)。ZAB协议包括两种基本的模式:崩溃恢复和消息广播。当整个zookeeper集群刚刚启动或者Leader服务器宕机、重启或者网络故障导致不存在过半的服务器与Leader服务器保持正常通信时,所有进程(服务器)进入崩溃恢复模式,首先选举产生新的Leader服务器,然后集群中Follower服务器开始与新的Leader服务器进行数据同步,当集群中超过半数机器与该Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式,Leader服务器开始接收客户端的事务请求生成事物提案来进行事务请求处理。 121题 Zookeeper本身也是集群,推荐配置不少于3个服务器。Zookeeper自身也要保证当一个节点宕机时,其他节点会继续提供服务。如果是一个Follower宕机,还有2台服务器提供访问,因为Zookeeper上的数据是有多个副本的,数据并不会丢失;如果是一个Leader宕机,Zookeeper会选举出新的Leader。ZK集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。所以,3个节点的cluster可以挂掉1个节点(leader可以得到2票>1.5),2个节点的cluster就不能挂掉任何1个节点了(leader可以得到1票<=1)。 120题 选完Leader以后,zk就进入状态同步过程。1、Leader等待server连接;2、Follower连接leader,将最大的zxid发送给leader;3、Leader根据follower的zxid确定同步点;4、完成同步后通知follower 已经成为uptodate状态;5、Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。 119题 在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。zookeeper中有三种选举算法,分别是LeaderElection,FastLeaderElection,AuthLeaderElection, FastLeaderElection此算法和LeaderElection不同的是它不会像后者那样在每轮投票中要搜集到所有结果后才统计投票结果,而是不断的统计结果,一旦没有新的影响leader结果的notification出现就返回投票结果。这样的效率更高。 118题 zk的负载均衡是可以调控,nginx只是能调权重,其他需要可控的都需要自己写插件;但是nginx的吞吐量比zk大很多,应该说按业务选择用哪种方式。 117题 Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。 116题 有临时节点和永久节点,分再细一点有临时有序/无序节点,有永久有序/无序节点。当创建临时节点的程序结束后,临时节点会自动消失,临时节点上的数据也会一起消失。 115题 在分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,这就是主节点存在的意义。 114题 ZooKeeper 实现分布式事务,类似于两阶段提交,总共分为以下 4 步:客户端先给 ZooKeeper 节点发送写请求;ZooKeeper 节点将写请求转发给 Leader 节点,Leader 广播给集群要求投票,等待确认;Leader 收到确认,统计投票,票数过半则提交事务;事务提交成功后,ZooKeeper 节点告知客户端。 113题 ZooKeeper 实现分布式锁的步骤如下:客户端连接 ZooKeeper,并在 /lock 下创建临时的且有序的子节点,第一个客户端对应的子节点为 /lock/lock-10000000001,第二个为 /lock/lock-10000000002,以此类推。客户端获取 /lock 下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听刚好在自己之前一位的子节点删除消息,获得子节点变更通知后重复此步骤直至获得锁;执行业务代码;完成业务流程后,删除对应的子节点释放锁。 112题 ZooKeeper 特性如下:顺序一致性(Sequential Consistency):来自相同客户端提交的事务,ZooKeeper 将严格按照其提交顺序依次执行;原子性(Atomicity):于 ZooKeeper 集群中提交事务,事务将“全部完成”或“全部未完成”,不存在“部分完成”;单一系统镜像(Single System Image):客户端连接到 ZooKeeper 集群的任意节点,其获得的数据视图都是相同的;可靠性(Reliability):事务一旦完成,其产生的状态变化将永久保留,直到其他事务进行覆盖;实时性(Timeliness):事务一旦完成,客户端将于限定的时间段内,获得最新的数据。 111题 ZooKeeper 通常有三种搭建模式:单机模式:zoo.cfg 中只配置一个 server.id 就是单机模式了,此模式一般用在测试环境,如果当前主机宕机,那么所有依赖于当前 ZooKeeper 服务工作的其他服务器都不能进行正常工作;伪分布式模式:在一台机器启动不同端口的 ZooKeeper,配置到 zoo.cfg 中,和单机模式相同,此模式一般用在测试环境;分布式模式:多台机器各自配置 zoo.cfg 文件,将各自互相加入服务器列表,上面搭建的集群就是这种完全分布式。 110题 ZooKeeper 主要提供以下功能:分布式服务注册与订阅:在分布式环境中,为了保证高可用性,通常同一个应用或同一个服务的提供方都会部署多份,达到对等服务。而消费者就须要在这些对等的服务器中选择一个来执行相关的业务逻辑,比较典型的服务注册与订阅,如 Dubbo。分布式配置中心:发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到 ZooKeeper 节点上,供订阅者获取数据,实现配置信息的集中式管理和动态更新。命名服务:在分布式系统中,通过命名服务客户端应用能够根据指定名字来获取资源、服务地址和提供者等信息。分布式锁:这个主要得益于 ZooKeeper 为我们保证了数据的强一致性。 109题 Dubbo是 SOA 时代的产物,它的关注点主要在于服务的调用,流量分发、流量监控和熔断。而 Spring Cloud诞生于微服务架构时代,考虑的是微服务治理的方方面面,另外由于依托了 Spirng、Spirng Boot的优势之上,两个框架在开始目标就不一致,Dubbo 定位服务治理、Spirng Cloud 是一个生态。 108题 Dubbo通过Token令牌防止用户绕过注册中心直连,然后在注册中心上管理授权。Dubbo还提供服务黑白名单,来控制服务所允许的调用方。 107题 Dubbo超时时间设置有两种方式: 服务提供者端设置超时时间,在Dubbo的用户文档中,推荐如果能在服务端多配置就尽量多配置,因为服务提供者比消费者更清楚自己提供的服务特性。 服务消费者端设置超时时间,如果在消费者端设置了超时时间,以消费者端为主,即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消费方超时,服务端线程不会定制,会产生警告。 106题 Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀; RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求; ConstantHash LoadBalance: 一致性Hash策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动; 缺省时为Random随机调用。 105题 Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心。 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer。 104题 Provider:暴露服务的服务提供方。 Consumer:调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 103题 主要就是如下3个核心功能: Remoting:网络通信框架,提供对多种NIO框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。 Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 102题 透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何API侵入。软负载均衡及容错机制,可在内网替代F5等硬件负载均衡器,降低成本,减少单点。服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。 101题 垂直分表定义:将一个表按照字段分成多表,每个表存储其中一部分字段。水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。 100题 垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用。水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。 99题 QPS:每秒查询数。TPS:每秒处理事务数。Uptime:服务器已经运行的时间,单位秒。Questions:已经发送给数据库查询数。Com_select:查询次数,实际操作数据库的。Com_insert:插入次数。Com_delete:删除次数。Com_update:更新次数。Com_commit:事务次数。Com_rollback:回滚次数。 98题 如果需要跨主机进行JOIN,跨应用进行JOIN,或者数据库不能获得较好的执行计划,都可以自己通过程序来实现JOIN。 例如:SELECT a.,b. FROM a,b WHERE a.col1=b.col1 AND a.col2> 10 ORDER BY a.col2; 可以利用程序实现,先SELECT * FROM a WHERE a.col2>10 ORDER BY a.col2;–(1) 利用(1)的结果集,做循环,SELECT * FROM b WHERE b.col1=a.col1; 这样可以避免排序,可以在程序里控制执行的速度,有效降低数据库压力,也可以实现跨主机的JOIN。 97题 搭建复制的必备条件:复制的机器之间网络通畅,Master打开了binlog。 搭建复制步骤:建立用户并设置权限,修改配置文件,查看master状态,配置slave,启动从服务,查看slave状态,主从测试。 96题 Heartbeat方案:利用Heartbeat管理VIP,利用crm管理MySQL,MySQL进行双M复制。(Linux系统下没有分库的标准方案)。 LVS+Keepalived方案:利用Keepalived管理LVS和VIP,LVS分发请求到MySQL,MySQL进行双M复制。(Linux系统下无分库无事务的方案)。 Cobar方案:利用Cobar进行HA和分库,应用程序请求Cobar,Cobar转发请求道数据库。(有分库的标准方案,Unix下唯一方案)。 95题 聚集(clustered)索引,也叫聚簇索引,数据行的物理顺序与列值(一般是主键的那一列)的逻辑顺序相同,一个表中只能拥有一个聚集索引。但是,覆盖索引可以模拟多个聚集索引。存储引擎负责实现索引,因此不是所有的存储索引都支持聚集索引。当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。 优点:可以把相关数据保存在一起。数据访问快。 缺点:聚集能最大限度地提升I/O密集负载的性能。聚集能最大限度地提升I/O密集负载的性能。建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。聚集表可会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。 94题 以下原因是导致mysql 表毁坏的常见原因: 服务器突然断电导致数据文件损坏; 强制关机,没有先关闭mysql 服务; mysqld 进程在写表时被杀掉; 使用myisamchk 的同时,mysqld 也在操作表; 磁盘故障;服务器死机;mysql 本身的bug 。 93题 1.定位慢查询 首先先打开慢查询日志设置慢查询时间; 2.分析慢查询(使用explain工具分析sql语句); 3.优化慢查询 。

游客ih62co2qqq5ww 2020-06-15 13:55:41 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播