• 关于

    串内建函数可以做什么

    的搜索结果

回答

传值:和copy是一样的。【打个比方,我有一橦房子,我给你建筑材料,你建了一个根我的房子一模一样的房子,你在你的房子做什么事都不会影响到我,我在我的房子里做什么事也不会影响到你,彼此独立。】传引用:类似于C语言的指针了,感觉差不多。打个比方,我有一橦房子,我给你一把钥匙,我们二个都可以进入这个房子,你在房子做什么都会影响到我。【优缺点:】传值会很耗时间,特别是对于大型的字符串和对象来说,这将会是一个代价很大的操作,传送引用,函数内的任何操作等同于对传送变量的操作,传送大型变量时效率高!
huanglala 2019-12-02 01:39:41 0 浏览量 回答数 0

回答

1.字符串转义序列转义字符 描述(在行尾时) 续行符\ 反斜杠符号' 单引号" 双引号a 响铃b 退格(Backspace)e 转义000 空n 换行v 纵向制表符t 横向制表符r 回车f 换页oyy 八进制数yy代表的字符,例如:o12代表换行xyy 十进制数yy代表的字符,例如:x0a代表换行other 其它的字符以普通格式输出 2.字符串格式化 3.操作符 一、算术运算符 注意: 双斜杠 // 除法总是向下取整。 从符点数到整数的转换可能会舍入也可能截断,建议使用math.floor()和math.ceil()明确定义的转换。 Python定义pow(0, 0)和0 ** 0等于1。 二、比较运算符 运算符 描述< 小于<= 小于或等于 大于= 大于或等于== 等于 != 不等于is 判断两个标识符是不是引用自一个对象is not 判断两个标识符是不是引用自不同对象注意: 八个比较运算符优先级相同。 Python允许x < y <= z这样的链式比较,它相当于x < y and y <= z。 复数不能进行大小比较,只能比较是否相等。 三、逻辑运算符 运算符 描述 备注x or y if x is false, then y, elsex x andy if x is false, then x, elsey not x if x is false, then True,elseFalse 注意: or是个短路运算符,它只有在第一个运算数为False时才会计算第二个运算数的值。 and也是个短路运算符,它只有在第一个运算数为True时才会计算第二个运算数的值。 not的优先级比其他类型的运算符低,所以not a == b相当于not (a == b),而 a == not b是错误的。 四、位运算符 运算符 描述 备注x | y 按位或运算符 x ^ y 按位异或运算符 x & y 按位与运算符 x << n 左移动运算符 x >> n 右移动运算符 ~x 按位取反运算符 五、赋值运算符 复合赋值运算符与算术运算符是一一对应的: 六、成员运算符 Python提供了成员运算符,测试一个元素是否在一个序列(Sequence)中。 运算符 描述in 如果在指定的序列中找到值返回True,否则返回False。not in 如果在指定的序列中没有找到值返回True,否则返回False。 4.关键字总结 Python中的关键字包括如下: and del from not while as elif global or with assert else if pass yield break except import print class exec in raise continue finally is return def for lambda try你想看看有哪些关键字?OK,打开一个终端,就像这样~ long@zhouyl:~$ pythonPython 2.7.3 (default, Jan 2 2013, 16:53:07) [GCC 4.7.2] on linux2Type "help", "copyright", "credits" or "license" for more information. import keywordkeyword.kwlist ['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try', 'while', 'with', 'yield'] ============================== 华丽的 正文分隔符 ======================================== 看到这些关键字你还能记得多少?你不妨自己一个一个对照想想它的用法,下面是我总结的,我根据前面的学习笔记将上述关键字分为以下几类: 1.判断、循环 对于Python的循环及判断主要包括这些关键字: if elif else for while break continue and or is not in 这几个关键字在前面介绍 if 语法、while语法、for语法以及and...or语法中已有介绍,下面再一笔带过: 1.1 if 语法 if语法与C语言、shell脚本之下的非常类似,最大的区别就是冒号以及严格的缩进,当然这两点也是Python区别于其他语言的地方: if condition1: do something elif condition2: do another thing else: also do something 1.2 while 语法 Python的while语法区别于C、shell下的while除了冒号及缩进之外,还有一点就是while可以携带一个可选的else语句: while condition: do something else: do something 注:else语句是可选的,但是使用while语句时一定要注意判断语句可以跳出! 1.3 for 语法 与while类似,Python的for循环也包括一个可选的else语句(跳出for循环时执行,但是如果是从break语句跳出则不执行else语句块中的代码!),而且for 加上 关键字in就组成了最常见的列表解析用法(以后会写个专门的博客)。 下面是for的一般用法: for i in range(1,10,2): do something if condition: break else: do something for的列表解析用法: for items in list: print items 1.4 and...or 语法 Python的and/or操作与其他语言不同的是它的返回值是参与判断的两个值之一,所以我们可以通过这个特性来实现Python下的 a ? b : c ! 有C语言基础的知道 “ a ? b : c ! ” 语法是判断 a,如果正确则执行b,否则执行 c! 而Python下我们可以这么用:“ a and b or c ”(此方法中必须保证b必须是True值),python自左向右执行此句,先判断a and b :如果a是True值,a and b语句仍需要执行b,而此时b是True值!所以a and b的值是b,而此时a and b or c就变成了b or c,因b是True值,所以b or c的结果也是b;如果a是False值,a and b语句的结果就是a,此时 a and b or c就转化为a or c,因为此时a是 False值,所以不管c是True 还是Flase,a or c的结果就是c!!!捋通逻辑的话,a and b or c 是不是就是Python下的a ? b : c ! 用法? 1.5 is ,not is 和 is not 是Python下判断同一性的关键字,通常用来判断 是 True 、False或者None(Python下的NULL)! 比如 if alue is True : ... (不记得本节的童鞋罚复习:python 学习笔记 2 -- 判断语句) 2.函数、模块、类 对于Python的函数及模块主要包括这些关键字: from import as def pass lambda return class 那么你还能记得它们么?下面简单介绍一下: 2.1 模块 Python的编程通常大量使用标准库中的模块,使用方法就是使用import 、from以及as 关键字。 比如: import sys # 导入sys模块 from sys import argv # 从sys模块中导入argv ,这个在前面介绍脚本传参数时使用到 import cPickle as p # 将cPickle模块导入并在此将它简单命名为p,此后直接可以使用p替代cPickle模块原名,这个在介绍文件输入输出时的存储器中使用到 2.2 函数 Python中定义函数时使用到def关键字,如果你当前不想写入真实的函数操作,可以使用pass关键字指代不做任何操作: def JustAFunction: pass 当然,在需要给函数返回值时就用到了return关键字,这里简单提一下Python下的函数返回值可以是多个(接收返回值时用相应数量的变量接收!)! 此外Python下有个神奇的Lambda函数,它允许你定义单行的最小函数,这是从Lisp中借用来的,可以用在任何需要函数的地方。比如: g = lambda x : x*2 # 定义一个Lambda函数用来计算参数的2倍并返回! print g(2) # 使用时使用lambda函数返回的变量作为这个函数的函数名,括号中带入相应参数即可! (不记得本节的童鞋罚复习:python 学习笔记 4 -- 函数篇) 3.异常 对于Python的异常主要包括这些关键字: try except finally raise 异常这一节还是比较简单的,将可能出现的异常放在 try: 后面的语句块中,使用except关键字捕获一定的异常并在接下来的语句块中做相应操作,而finally中接的是无论出现什么异常总在执行最后做finally: 后面的语句块(比如关闭文件等必要的操作!) raise关键字是在一定的情况下引发异常,通常结合自定义的异常类型使用。 (不记得本节的童鞋罚复习:python 学习笔记 6 -- 异常处理) 4.其他 上面的三类过后,还剩下这些关键字: print del global with assert yield exec 首先print 在前面的笔记或者任何地方你都能见到,所以还是比较熟悉的,此处就不多介绍了!del 关键字在前面的笔记中已有所涉及,比如删除列表中的某项,我们使用 “ del mylist[0] ” 可能这些剩下来的关键字你比较陌生,所以下面来介绍一下: 4.1.global 关键字 当你在函数定义内声明变量的时候,它们与函数外具有相同名称的其他变量没有任何关系,即变量名称对于函数来说是 局部 的。这称为变量的 作用域 。所有变量的作用域是它们被定义的块,从它们的名称被定义的那点开始。 eg. ? 1 2 3 4 5 6 7 8 9 10 11 !/usr/bin/python Filename: func_local.py def func(x): print'x is', x x = 2 print'Changed local x to', x x = 50 func(x) print'x is still', x 运行的结果是这样的:? 1 2 3 4 $ python func_local.py x is 50 # 运行func函数时,先打印x的值,此时带的值是作为参数带入的外部定义的50,所以能正常打印 x=50 Changed local x to 2 # 在func函数中将x赋2,并打印 x is still 50 # 运行完func函数,打印x的值,此时x的值仍然是之前赋给的50,而不是func函数中修改过的2,因为在函数中修改的只是函数内的局部变量 那么为什么我们要在这提到局部变量呢?bingo,聪明的你一下就猜到这个global就是用来定义全局变量的。也就是说如果你想要为一个在函数外定义的变量赋值,那么你就得告诉Python这个变量名不是局部的,而是 全局 的。我们使用global语句完成这一功能。没有global语句,是不可能为定义在函数外的变量赋值的。eg.? 1 2 3 4 5 6 7 8 9 10 11 12 !/usr/bin/python Filename: func_global.py def func(): global x print'x is', x x = 2 print'Changed local x to', x x = 50 func() print'Value of x is', x 运行的结果是这样的:? 1 2 3 4 $ python func_global.py x is 50 Changed global x to 2 Value of x is 2 # global语句被用来声明x是全局的——因此,当我们在函数内把值赋给x的时候,这个变化也反映在我们在主块中使用x的值的时候。 你可以使用同一个global语句指定多个全局变量。例如global x, y, z。 4.2.with 关键字 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。如果不用with语句,打开一个文件并读文件的代码如下:? 1 2 3 file = open("/tmp/foo.txt") data = file.read() file.close() 当然这样直接打开有两个问题:一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是添加上异常处理的版本:? 1 2 3 4 5 file = open("/tmp/foo.txt") try: data = file.read() finally: file.close() 虽然这段代码运行良好,但是太冗余了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:? 1 2 with open("/tmp/foo.txt") as file: data = file.read() 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。with语句的执行逻辑如下:紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 下面例子可以具体说明with如何工作:? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 !/usr/bin/python with_example01.py classSample: def __enter__(self): print"In __enter__()" return"Foo" def __exit__(self, type, value, trace): print"In __exit__()" def get_sample(): returnSample() with get_sample() as sample: print"sample:", sample 运行代码,输出如下? 1 2 3 4 $python with_example01.py In __enter__() # __enter__()方法被执行 sample: Foo # __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample',执行代码块,打印变量"sample"的值为"Foo" In __exit__() # __exit__()方法被调用 4.3.assert 关键字 assert语句是一种插入调试断点到程序的一种便捷的方式。assert语句用来声明某个条件是真的,当assert语句失败的时候,会引发一AssertionError,所以结合try...except我们就可以处理这样的异常。 mylist # 此时mylist是有三个元素的列表['a', 'b', 'c']assert len(mylist) is not None # 用assert判断列表不为空,正确无返回assert len(mylist) is None # 用assert判断列表为空 Traceback (most recent call last): File "", line 1, in AssertionError # 引发AssertionError异常 4.4.yield 关键字 我们先看一个示例:? 1 2 3 4 5 6 7 8 def fab(max): n, a, b = 0,0,1 whilen < max: yield b # print b a, b = b, a + b n = n + 1 ''' 使用这个函数:? 1 2 3 4 5 6 7 8 forn in fab(5): ... print n ... 1 1 2 3 5 简单地讲,yield 的作用就是把一个函数变成一个 generator(生成器),带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable(可迭代的)对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 f = fab(5) f.next() 1 f.next() 1 f.next() 2 f.next() 3 f.next() 5 f.next() Traceback (most recent call last): File"", line 1, in StopIteration 当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。 我们可以得出以下结论:一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。 yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。 注:如果看完此段你还未明白yield,没问题,因为yield是初学者的一个难点,那么你下一步需要做的就是……看一看下面参考资料中给的关于yield的博文! 4.5.exec 关键字 官方文档对于exec的解释: "This statement supports dynamic execution of Python code."也就是说使用exec可以动态执行Python代码(也可以是文件)。? 1 2 3 4 5 6 7 8 9 10 11 12 13 longer = "print "Hello World ,my name is longer"" # 比如说我们定义了一个字符串 longer 'print "Hello World ,my name is longer"' exec(longer) # 使用exec 动态执行字符串中的代码 Hello World ,my name is longer exec(sayhi) # 使用exec直接打开文件名(指定sayhi,sayhi.py以及"sayhi.py"都会报一定的错,但是我觉得直接带sayhi报错非常典型) Traceback (most recent call last): File"", line 1, in TypeError: exec: arg 1must be a string, file, or code object # python IDE报错,提示exec的第一个参 数必须是一个字符串、文件或者一个代码对象 f = file("sayhi.py") # 使用file打开sayhi.py并创建f实例 exec(f) # 使用exec直接运行文件描述符f,运行正常!! Hi,thisis [''] script 上述给的例子比较简单,注意例子中exec语句的用法和eval_r(), execfile()是不一样的. exec是一个关键字(要不然我怎么会在这里介绍呢~~~), 而eval_r()和execfile()则是内建函数。更多关于exec的使用请详看引用资料或者Google之 在需要在字符中使用特殊字符时,python用反斜杠()转义字符。 原始字符串 有时我们并不想让转义字符生效,我们只想显示字符串原来的意思,这就要用r和R来定义原始字符串。如: print r’tr’ 实际输出为“tr”。 转义字符 描述 (在行尾时) 续行符 反斜杠符号 ’ 单引号 ” 双引号 a 响铃 b 退格(Backspace) e 转义 000 空 n 换行 v 纵向制表符 t 横向制表符 r 回车 f 换页 oyy 八进制数yy代表的字符,例如:o12代表换行 xyy 十进制数yy代表的字符,例如:x0a代表换行 other 其它的字符以普通格式输出
xuning715 2019-12-02 01:10:21 0 浏览量 回答数 0

回答

使用断言的最佳时机偶尔会被提起,通常是因为有人误用,因此我觉得有必要写一篇文章来阐述一下什么时候应该用断言,为什么应该用,什么时候不该用。 对那些没有意识到用断言的最佳时机的人来说,Python的断言就是检测一个条件,如果条件为真,它什么都不做;反之它触发一个带可选错误信息的AssertionError。如下例所示: 很多人将断言作为当传递了错误的参数值时的一种快速而简便的触发异常的方式。但实际上这是错误的,而且是非常危险的错误,原因有两点。首先,AssertionError通常是在测试函数参数时给出的错误。你不会像下面这样编码: 你应该用TypeError来替代,“断言”解决了错误的异常类型。 但是对断言来说更危险也更纠结的是:如果你执行Python时使用了-O或-OO优化标识,这能够通过编译却从来不会被执行,实际上就是说并不能保证断言会被执行。当恰当地使用了断言,这非常好的,但当不恰当地使用了断言,在使用-O标识执行时它将导致代码被彻底中断。 那么我们什么时候应该使用断言呢?如果没有特别的目的,断言应该用于如下情况: 防御性的编程运行时对程序逻辑的检测合约性检查(比如前置条件,后置条件)程序中的常量检查文档(断言也可以用于代码测试,用作一个做事毛手毛脚的开发人员的单元测试,只要能你接受当使用-O标志时这个测试什么都不做。我有时也会在代码中用"assert Fasle"来对还没有实现的分支作标记,当然我希望他们失败。如果稍微更细节一些,或许触发NotImplementedError是更好的选择) 因为程序员是对于代码正确性表现出的信心不同,因此对于什么时候使用断言的意见各不相同。如果你确信代码是正确的,那么断言没有任何意义,因为它们从不会失败,因此你可以放心地移除它们。如果你确信它们会失败(例如对用户输入的数据的检测),你不敢用断言,这样编译就能通过,但你跳过了你的检查。 在以上两种情况之间的情况就显得特别有趣了,那就是当你相信代码是正确的,但又不是特别确定的时候。或许你忘记了一些奇怪的边角情况(因为我们都是人),在这种情况下,额外的运行时检查将帮助你尽可能早地捕获错误,而不是写了一大堆代码之后。 (这就是为什么使用断言的时机会不同。因为我们对代码正确性的信息不同,对于一个人有用的断言,对于另一个人来说却是无用的运行时测试。) 另一个断言用得好的地方就是检查程序中的不变量。一个不变量是一些你能相信为真的条件,除非一个缺陷导致它变成假。如果有一个缺陷,越早发现越好,因此我们需要对其进行测试,但我们不想因为这些测试而影响代码执行速度。因此采用断言,它能在开发时生效而在产品中失效。 一个关于不变量的例子可能是这样的情况。如果你的函数在开始的时候期望一个打开的数据库连接,并且在函数返回后该数据库连接依然是打开的,这是一个函数的不变量: 断言也是一个很好的检查点注释。为了替代如下注释: 当我们执行到这里,我们知道n>2 你可以确保在运行时用以下断言: 断言也是一种防御性的编程形式。你不是在防范当前代码发生错误,而防范由于以后的代码变更发生错误。理想情况下,单元测试应该直到这个作用,但是让我们面对这样一个现实:即使存在单元测试,他们在通常情况下也不是很完备。内建的机器人可能没有工作,但数周以来也没有人注意到它,或者人们在提交代码之前忘记了执行测试。内部检查将是防止错误渗入的另一道防线,尤其对于那些悄悄地失败,但会引起代码功能错误并返回错误结果的情况有效。 假设你有一系列的if...elif代码块,你预先知道变量期望的值: 假设这段代码现在完全正确。但它会一直正确吗?需求变更,代码变更。如果需求变为允许target = w,并关联到run_w_code,那将会发生什么情况?如果我们变更了设置target的代码,但是忘记了改变这个代码块,它就会错误地调用run_z_code(),错误就会发生。对于这段代码最好的方法就是编写一些防御性的检查,这样它的执行,即使在变更以后,要么正确,要么马上失败。 在代码开始添加注释是个好的开端,但是人们都不太喜欢读和更新这些注释,这些注释会很快变得过时。但对于断言,我们可以同时对这块代码编写文档,如果这些断言被违反了,会直接引起一个简单而又直接的失败。 这里的断言同时用于防御性编程和检查文档。我认为这是最优的解决方案: 这诱使开发者去不理代码,移除像value ==c这类不必要的测试,以及RuntimeError的“死代码”。另外,当"unexpected error"错误发生时这个消息将非常窘迫,确实会发生。 合约式设计是断言另一个用得好的地方。在合约式设计中,我们认为函数与其他调用者遵循合约,例如像这样的情况: “如果你传给我一个非空字符串,我保证返回转换成大写的首字母。” 如果合约被破坏了,不管是被函数本身还是调用者,这都会产生缺陷。我们说这个函数需要有前置条件(对期望的参数的限制)和后置条件(对返回结果的约束)。因此这个函数可能是这样的: 合约式设计的目的是,在一个正确的程序里,所有的前置条件和后置条件都将得到处理。这是断言的经典应用,自(这个想法持续)我们发布无缺陷的程序并且将其放入产品,程序将是正确的并且我们可以放心地移除检查。
xuning715 2019-12-02 01:10:08 0 浏览量 回答数 0

万券齐发助力企业上云,爆款产品低至2.2折起!

限量神券最高减1000,抢完即止!云服务器ECS新用户首购低至0.95折!

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 本次活动特邀百位阿里技术专家对Java常...
管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

问题

MaxCompute百问集锦(持续更新20171011)

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。MaxCompute 向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速的解决用户海量数据计算问题,有效...
隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

SaaS模式云数据仓库MaxCompute 百问百答合集(持续更新20201202)

产品简介 什么是MaxCompute呢? https://developer.aliyun.com/ask/289579 使用MaxCompute需要什么专业技能? https://developer.aliyun.co...
亢海鹏 2020-05-29 15:10:00 27621 浏览量 回答数 35

问题

【精品问答】Python二级考试题库

1.关于数据的存储结构,以下选项描述正确的是( D ) A: 数据所占的存储空间量 B: 存储在外存中的数据 C: 数据在计算机中的顺序存储方式 D: 数据的逻辑结构在计算机中的表示 2.关于线性...
珍宝珠 2019-12-01 22:03:38 7177 浏览量 回答数 3

回答

一、接口的默认方法 Java 8允许我们给接口添加一个非抽象的方法实现,只需要使用 default关键字即可,这个特征又叫做扩展方法,示例如下: interface Formula { double calculate(int a); default double sqrt(int a) { return Math.sqrt(a); } } Formula接口在拥有calculate方法之外同时还定义了sqrt方法,实现了Formula接口的子类只需要实现一个calculate方法,默认方法sqrt将在子类上可以直接使用。 Formula formula = new Formula() { @Override public double calculate(int a) { return sqrt(a * 100); } }; formula.calculate(100); // 100.0 formula.sqrt(16); // 4.0 文中的formula被实现为一个匿名类的实例,该代码非常容易理解,6行代码实现了计算 sqrt(a * 100)。在下一节中,我们将会看到实现单方法接口的更简单的做法。 译者注: 在Java中只有单继承,如果要让一个类赋予新的特性,通常是使用接口来实现,在C++中支持多继承,允许一个子类同时具有多个父类的接口与功能,在其他语言中,让一个类同时具有其他的可复用代码的方法叫做mixin。新的Java 8 的这个特新在编译器实现的角度上来说更加接近Scala的trait。 在C#中也有名为扩展方法的概念,允许给已存在的类型扩展方法,和Java 8的这个在语义上有差别。 二、Lambda 表达式 首先看看在老版本的Java中是如何排列字符串的: List<String> names = Arrays.asList("peter", "anna", "mike", "xenia"); Collections.sort(names, new Comparator<String>() { @Override public int compare(String a, String b) { return b.compareTo(a); } }); 只需要给静态方法 Collections.sort 传入一个List对象以及一个比较器来按指定顺序排列。通常做法都是创建一个匿名的比较器对象然后将其传递给sort方法。 在Java 8 中你就没必要使用这种传统的匿名对象的方式了,Java 8提供了更简洁的语法,lambda表达式: Collections.sort(names, (String a, String b) -> { return b.compareTo(a); }); 看到了吧,代码变得更段且更具有可读性,但是实际上还可以写得更短: Collections.sort(names, (String a, String b) -> b.compareTo(a)); 对于函数体只有一行代码的,你可以去掉大括号{}以及return关键字,但是你还可以写得更短点: Collections.sort(names, (a, b) -> b.compareTo(a)); Java编译器可以自动推导出参数类型,所以你可以不用再写一次类型。接下来我们看看lambda表达式还能作出什么更方便的东西来 三、函数式接口 Lambda表达式是如何在java的类型系统中表示的呢?每一个lambda表达式都对应一个类型,通常是接口类型。而“函数式接口”是指仅仅只包含一个抽象方法的接口,每一个该类型的lambda表达式都会被匹配到这个抽象方法。因为 默认方法 不算抽象方法,所以你也可以给你的函数式接口添加默认方法。 我们可以将lambda表达式当作任意只包含一个抽象方法的接口类型,确保你的接口一定达到这个要求,你只需要给你的接口添加 @FunctionalInterface 注解,编译器如果发现你标注了这个注解的接口有多于一个抽象方法的时候会报错的。 @FunctionalInterface interface Converter<F, T> { T convert(F from); } Converter<String, Integer> converter = (from) -> Integer.valueOf(from); Integer converted = converter.convert("123"); System.out.println(converted); // 123 需要注意如果@FunctionalInterface如果没有指定,上面的代码也是对的。 译者注 将lambda表达式映射到一个单方法的接口上,这种做法在Java 8之前就有别的语言实现,比如Rhino JavaScript解释器,如果一个函数参数接收一个单方法的接口而你传递的是一个function,Rhino 解释器会自动做一个单接口的实例到function的适配器,典型的应用场景有 org.w3c.dom.events.EventTarget 的addEventListener 第二个参数 EventListener。 四、方法与构造函数引用 前一节中的代码还可以通过静态方法引用来表示: Converter<String, Integer> converter = Integer::valueOf; Integer converted = converter.convert("123"); System.out.println(converted); // 123 Java 8 允许你使用 :: 关键字来传递方法或者构造函数引用,上面的代码展示了如何引用一个静态方法,我们也可以引用一个对象的方法: converter = something::startsWith; String converted = converter.convert("Java"); System.out.println(converted); // "J" 接下来看看构造函数是如何使用::关键字来引用的,首先我们定义一个包含多个构造函数的简单类: class Person { String firstName; String lastName; Person() {} Person(String firstName, String lastName) { this.firstName = firstName; this.lastName = lastName; } } 接下来我们指定一个用来创建Person对象的对象工厂接口: interface PersonFactory<P extends Person> { P create(String firstName, String lastName); } 这里我们使用构造函数引用来将他们关联起来,而不是实现一个完整的工厂: PersonFactory<Person> personFactory = Person::new; Person person = personFactory.create("Peter", "Parker"); 我们只需要使用 Person::new 来获取Person类构造函数的引用,Java编译器会自动根据PersonFactory.create方法的签名来选择合适的构造函数。 五、Lambda 作用域 在lambda表达式中访问外层作用域和老版本的匿名对象中的方式很相似。你可以直接访问标记了final的外层局部变量,或者实例的字段以及静态变量。 六、访问局部变量 我们可以直接在lambda表达式中访问外层的局部变量: final int num = 1; Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num); stringConverter.convert(2); // 3 但是和匿名对象不同的是,这里的变量num可以不用声明为final,该代码同样正确: int num = 1; Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num); stringConverter.convert(2); // 3 不过这里的num必须不可被后面的代码修改(即隐性的具有final的语义),例如下面的就无法编译: int num = 1; Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num); num = 3; 在lambda表达式中试图修改num同样是不允许的。 七、访问对象字段与静态变量 和本地变量不同的是,lambda内部对于实例的字段以及静态变量是即可读又可写。该行为和匿名对象是一致的: class Lambda4 { static int outerStaticNum; int outerNum; void testScopes() { Converter<Integer, String> stringConverter1 = (from) -> { outerNum = 23; return String.valueOf(from); }; Converter<Integer, String> stringConverter2 = (from) -> { outerStaticNum = 72; return String.valueOf(from); }; } } 八、访问接口的默认方法 还记得第一节中的formula例子么,接口Formula定义了一个默认方法sqrt可以直接被formula的实例包括匿名对象访问到,但是在lambda表达式中这个是不行的。 Lambda表达式中是无法访问到默认方法的,以下代码将无法编译: Formula formula = (a) -> sqrt( a * 100); Built-in Functional Interfaces JDK 1.8 API包含了很多内建的函数式接口,在老Java中常用到的比如Comparator或者Runnable接口,这些接口都增加了@FunctionalInterface注解以便能用在lambda上。 Java 8 API同样还提供了很多全新的函数式接口来让工作更加方便,有一些接口是来自Google Guava库里的,即便你对这些很熟悉了,还是有必要看看这些是如何扩展到lambda上使用的。 Predicate接口 Predicate 接口只有一个参数,返回boolean类型。该接口包含多种默认方法来将Predicate组合成其他复杂的逻辑(比如:与,或,非): Predicate<String> predicate = (s) -> s.length() > 0; predicate.test("foo"); // true predicate.negate().test("foo"); // false Predicate<Boolean> nonNull = Objects::nonNull; Predicate<Boolean> isNull = Objects::isNull; Predicate<String> isEmpty = String::isEmpty; Predicate<String> isNotEmpty = isEmpty.negate(); Function 接口 Function 接口有一个参数并且返回一个结果,并附带了一些可以和其他函数组合的默认方法(compose, andThen): Function<String, Integer> toInteger = Integer::valueOf; Function<String, String> backToString = toInteger.andThen(String::valueOf); backToString.apply("123"); // "123" Supplier 接口 Supplier 接口返回一个任意范型的值,和Function接口不同的是该接口没有任何参数 Supplier personSupplier = Person::new; personSupplier.get(); // new Person Consumer 接口 Consumer 接口表示执行在单个参数上的操作。 Consumer greeter = (p) -> System.out.println("Hello, " + p.firstName); greeter.accept(new Person("Luke", "Skywalker")); Comparator 接口 Comparator 是老Java中的经典接口, Java 8在此之上添加了多种默认方法: Comparator comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName); Person p1 = new Person("John", "Doe"); Person p2 = new Person("Alice", "Wonderland"); comparator.compare(p1, p2); // > 0 comparator.reversed().compare(p1, p2); // < 0 Optional 接口 Optional 不是函数是接口,这是个用来防止NullPointerException异常的辅助类型,这是下一届中将要用到的重要概念,现在先简单的看看这个接口能干什么: Optional 被定义为一个简单的容器,其值可能是null或者不是null。在Java 8之前一般某个函数应该返回非空对象但是偶尔却可能返回了null,而在Java 8中,不推荐你返回null而是返回Optional。 Optional optional = Optional.of("bam"); optional.isPresent(); // true optional.get(); // "bam" optional.orElse("fallback"); // "bam" optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b" Stream 接口 java.util.Stream 表示能应用在一组元素上一次执行的操作序列。Stream 操作分为中间操作或者最终操作两种,最终操作返回一特定类型的计算结果,而中间操作返回Stream本身,这样你就可以将多个操作依次串起来。Stream 的创建需要指定一个数据源,比如 java.util.Collection的子类,List或者Set, Map不支持。Stream的操作可以串行执行或者并行执行。 首先看看Stream是怎么用,首先创建实例代码的用到的数据List: List stringCollection = new ArrayList<>(); stringCollection.add("ddd2"); stringCollection.add("aaa2"); stringCollection.add("bbb1"); stringCollection.add("aaa1"); stringCollection.add("bbb3"); stringCollection.add("ccc"); stringCollection.add("bbb2"); stringCollection.add("ddd1"); Java 8扩展了集合类,可以通过 Collection.stream() 或者 Collection.parallelStream() 来创建一个Stream。下面几节将详细解释常用的Stream操作: Filter 过滤 过滤通过一个predicate接口来过滤并只保留符合条件的元素,该操作属于中间操作,所以我们可以在过滤后的结果来应用其他Stream操作(比如forEach)。forEach需要一个函数来对过滤后的元素依次执行。forEach是一个最终操作,所以我们不能在forEach之后来执行其他Stream操作。 stringCollection .stream() .filter((s) -> s.startsWith("a")) .forEach(System.out::println); // "aaa2", "aaa1" Sort 排序 排序是一个中间操作,返回的是排序好后的Stream。如果你不指定一个自定义的Comparator则会使用默认排序。 stringCollection .stream() .sorted() .filter((s) -> s.startsWith("a")) .forEach(System.out::println); // "aaa1", "aaa2" 需要注意的是,排序只创建了一个排列好后的Stream,而不会影响原有的数据源,排序之后原数据stringCollection是不会被修改的。 System.out.println(stringCollection); // ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1 Map 映射 中间操作map会将元素根据指定的Function接口来依次将元素转成另外的对象,下面的示例展示了将字符串转换为大写字符串。你也可以通过map来讲对象转换成其他类型,map返回的Stream类型是根据你map传递进去的函数的返回值决定的。 stringCollection .stream() .map(String::toUpperCase) .sorted((a, b) -> b.compareTo(a)) .forEach(System.out::println); // "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1" Match 匹配 Stream提供了多种匹配操作,允许检测指定的Predicate是否匹配整个Stream。所有的匹配操作都是最终操作,并返回一个boolean类型的值。 boolean anyStartsWithA = stringCollection .stream() .anyMatch((s) -> s.startsWith("a")); System.out.println(anyStartsWithA); // true boolean allStartsWithA = stringCollection .stream() .allMatch((s) -> s.startsWith("a")); System.out.println(allStartsWithA); // false boolean noneStartsWithZ = stringCollection .stream() .noneMatch((s) -> s.startsWith("z")); System.out.println(noneStartsWithZ); // true Count 计数 计数是一个最终操作,返回Stream中元素的个数,返回值类型是long。 long startsWithB = stringCollection .stream() .filter((s) -> s.startsWith("b")) .count(); System.out.println(startsWithB); // 3 Reduce 规约 这是一个最终操作,允许通过指定的函数来讲stream中的多个元素规约为一个元素,规越后的结果是通过Optional接口表示的: Optional reduced = stringCollection .stream() .sorted() .reduce((s1, s2) -> s1 + "#" + s2); reduced.ifPresent(System.out::println); // "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2" 并行Streams 前面提到过Stream有串行和并行两种,串行Stream上的操作是在一个线程中依次完成,而并行Stream则是在多个线程上同时执行。 下面的例子展示了是如何通过并行Stream来提升性能: 首先我们创建一个没有重复元素的大表 int max = 1000000; List values = new ArrayList<>(max); for (int i = 0; i < max; i++) { UUID uuid = UUID.randomUUID(); values.add(uuid.toString()); } 然后我们计算一下排序这个Stream要耗时多久, 串行排序: long t0 = System.nanoTime(); long count = values.stream().sorted().count(); System.out.println(count); long t1 = System.nanoTime(); long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0); System.out.println(String.format("sequential sort took: %d ms", millis)); // 串行耗时: 899 ms 并行排序: long t0 = System.nanoTime(); long count = values.parallelStream().sorted().count(); System.out.println(count); long t1 = System.nanoTime(); long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0); System.out.println(String.format("parallel sort took: %d ms", millis)); // 并行排序耗时: 472 ms 上面两个代码几乎是一样的,但是并行版的快了50%之多,唯一需要做的改动就是将stream()改为parallelStream()。 Map 前面提到过,Map类型不支持stream,不过Map提供了一些新的有用的方法来处理一些日常任务。 Map<Integer, String> map = new HashMap<>(); for (int i = 0; i < 10; i++) { map.putIfAbsent(i, "val" + i); } map.forEach((id, val) -> System.out.println(val)); 以上代码很容易理解, putIfAbsent 不需要我们做额外的存在性检查,而forEach则接收一个Consumer接口来对map里的每一个键值对进行操作。 下面的例子展示了map上的其他有用的函数: map.computeIfPresent(3, (num, val) -> val + num); map.get(3); // val33 map.computeIfPresent(9, (num, val) -> null); map.containsKey(9); // false map.computeIfAbsent(23, num -> "val" + num); map.containsKey(23); // true map.computeIfAbsent(3, num -> "bam"); map.get(3); // val33 接下来展示如何在Map里删除一个键值全都匹配的项 map.remove(3, "val3"); map.get(3); // val33 map.remove(3, "val33"); map.get(3); // null 另外一个有用的方法 map.getOrDefault(42, "not found"); // not found 对Map的元素做合并也变得很容易了: map.merge(9, "val9", (value, newValue) -> value.concat(newValue)); map.get(9); // val9 map.merge(9, "concat", (value, newValue) -> value.concat(newValue)); map.get(9); // val9concat Merge做的事情是如果键名不存在则插入,否则则对原键对应的值做合并操作并重新插入到map中。 九、Date API Java 8 在包java.time下包含了一组全新的时间日期API。新的日期API和开源的Joda-Time库差不多,但又不完全一样,下面的例子展示了这组新API里最重要的一些部分: Clock 时钟 Clock类提供了访问当前日期和时间的方法,Clock是时区敏感的,可以用来取代 System.currentTimeMillis() 来获取当前的微秒数。某一个特定的时间点也可以使用Instant类来表示,Instant类也可以用来创建老的java.util.Date对象。 Clock clock = Clock.systemDefaultZone(); long millis = clock.millis(); Instant instant = clock.instant(); Date legacyDate = Date.from(instant); // legacy java.util.Date Timezones 时区 在新API中时区使用ZoneId来表示。时区可以很方便的使用静态方法of来获取到。 时区定义了到UTS时间的时间差,在Instant时间点对象到本地日期对象之间转换的时候是极其重要的。 System.out.println(ZoneId.getAvailableZoneIds()); // prints all available timezone ids ZoneId zone1 = ZoneId.of("Europe/Berlin"); ZoneId zone2 = ZoneId.of("Brazil/East"); System.out.println(zone1.getRules()); System.out.println(zone2.getRules()); // ZoneRules[currentStandardOffset=+01:00] // ZoneRules[currentStandardOffset=-03:00] LocalTime 本地时间 LocalTime 定义了一个没有时区信息的时间,例如 晚上10点,或者 17:30:15。下面的例子使用前面代码创建的时区创建了两个本地时间。之后比较时间并以小时和分钟为单位计算两个时间的时间差: LocalTime now1 = LocalTime.now(zone1); LocalTime now2 = LocalTime.now(zone2); System.out.println(now1.isBefore(now2)); // false long hoursBetween = ChronoUnit.HOURS.between(now1, now2); long minutesBetween = ChronoUnit.MINUTES.between(now1, now2); System.out.println(hoursBetween); // -3 System.out.println(minutesBetween); // -239 LocalTime 提供了多种工厂方法来简化对象的创建,包括解析时间字符串。 LocalTime late = LocalTime.of(23, 59, 59); System.out.println(late); // 23:59:59 DateTimeFormatter germanFormatter = DateTimeFormatter .ofLocalizedTime(FormatStyle.SHORT) .withLocale(Locale.GERMAN); LocalTime leetTime = LocalTime.parse("13:37", germanFormatter); System.out.println(leetTime); // 13:37 LocalDate 本地日期 LocalDate 表示了一个确切的日期,比如 2014-03-11。该对象值是不可变的,用起来和LocalTime基本一致。下面的例子展示了如何给Date对象加减天/月/年。另外要注意的是这些对象是不可变的,操作返回的总是一个新实例。 LocalDate today = LocalDate.now(); LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS); LocalDate yesterday = tomorrow.minusDays(2); LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4); DayOfWeek dayOfWeek = independenceDay.getDayOfWeek(); System.out.println(dayOfWeek); // FRIDAY 从字符串解析一个LocalDate类型和解析LocalTime一样简单: DateTimeFormatter germanFormatter = DateTimeFormatter .ofLocalizedDate(FormatStyle.MEDIUM) .withLocale(Locale.GERMAN); LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter); System.out.println(xmas); // 2014-12-24 LocalDateTime 本地日期时间 LocalDateTime 同时表示了时间和日期,相当于前两节内容合并到一个对象上了。LocalDateTime和LocalTime还有LocalDate一样,都是不可变的。LocalDateTime提供了一些能访问具体字段的方法。 LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59); DayOfWeek dayOfWeek = sylvester.getDayOfWeek(); System.out.println(dayOfWeek); // WEDNESDAY Month month = sylvester.getMonth(); System.out.println(month); // DECEMBER long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY); System.out.println(minuteOfDay); // 1439 只要附加上时区信息,就可以将其转换为一个时间点Instant对象,Instant时间点对象可以很容易的转换为老式的java.util.Date。 Instant instant = sylvester .atZone(ZoneId.systemDefault()) .toInstant(); Date legacyDate = Date.from(instant); System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014 格式化LocalDateTime和格式化时间和日期一样的,除了使用预定义好的格式外,我们也可以自己定义格式: DateTimeFormatter formatter = DateTimeFormatter .ofPattern("MMM dd, yyyy - HH:mm"); LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter); String string = formatter.format(parsed); System.out.println(string); // Nov 03, 2014 - 07:13 和java.text.NumberFormat不一样的是新版的DateTimeFormatter是不可变的,所以它是线程安全的。 关于时间日期格式的详细信息:http://download.java.net/jdk8/docs/api/java/time/format/DateTimeFormatter.html 十、Annotation 注解 在Java 8中支持多重注解了,先看个例子来理解一下是什么意思。 首先定义一个包装类Hints注解用来放置一组具体的Hint注解: @interface Hints { Hint[] value(); } @Repeatable(Hints.class) @interface Hint { String value(); } Java 8允许我们把同一个类型的注解使用多次,只需要给该注解标注一下@Repeatable即可。 例 1: 使用包装类当容器来存多个注解(老方法) @Hints({@Hint("hint1"), @Hint("hint2")}) class Person {} 例 2:使用多重注解(新方法) @Hint("hint1") @Hint("hint2") class Person {} 第二个例子里java编译器会隐性的帮你定义好@Hints注解,了解这一点有助于你用反射来获取这些信息: Hint hint = Person.class.getAnnotation(Hint.class); System.out.println(hint); // null Hints hints1 = Person.class.getAnnotation(Hints.class); System.out.println(hints1.value().length); // 2 Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class); System.out.println(hints2.length); // 2 即便我们没有在Person类上定义@Hints注解,我们还是可以通过 getAnnotation(Hints.class) 来获取 @Hints注解,更加方便的方法是使用 getAnnotationsByType 可以直接获取到所有的@Hint注解。 另外Java 8的注解还增加到两种新的target上了: @Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE}) @interface MyAnnotation {}
日你dady哟 2019-12-02 03:08:13 0 浏览量 回答数 0

问题

【精品问答】Java必备核心知识1000+(附源码)

为了方便Java开发者快速找到相关技术问题和答案,开发者社区策划了Java技术1000问内容,包含最基础的如何学Java、实践中遇到的技术问题、RocketMQ面试、Java容器部署实践等维度内容。 我们会以每...
问问小秘 2019-12-01 22:00:28 870 浏览量 回答数 1

回答

一、 Afinal官方介绍:Afinal是一个Android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。详情请通过以下网址查看。Afinal 是一个android的sqlite orm 和 ioc 框架。同时封装了android中的http框架,使其更加简单易用;使用finalBitmap,无需考虑bitmap在android中加载的时候oom的问题和快速滑动的时候图片加载位置错位等问题。Afinal的宗旨是简洁,快速。约定大于配置的方式。尽量一行代码完成所有事情。项目地址:https://github.com/yangfuhai/afinal功能:一个android的ioc,orm框架,内置了四大模块功能:FinalAcitivity,FinalBitmap,FinalDb,FinalHttp。通过finalActivity,我们可以通过注解的方式进行绑定ui和事件。通过finalBitmap,我们可以方便的加载bitmap图片,而无需考虑oom等问题。通过finalDB模块,我们一行代码就可以对android的sqlite数据库进行增删改查。通过FinalHttp模块,我们可以以ajax形式请求http数据。优点:功能比较全面,文档完善,代码效率比较高。缺点:没有项目demo,框架的时间比较久,代码冗余比较多(这也是无可避免的),文档比较老跟不上代码更新进度。(这个评价是其他高人评的,他自己也有写了框架。我个人觉得以前Afinal算是经典了 用的人多)。二、 xUtilsGit地址:https://github.com/wyouflf/xUtilsxUtils:可以说是Afinal的升级版。xUtils 包含了很多实用的android工具。xUtils 支持大文件上传,更全面的http请求协议支持(10种谓词),拥有更加灵活的ORM,更多的事件注解支持且不受混淆影响...xUitls 最低兼容android 2.2 (api level 8)三、 ThinkAndroid项目地址:https://github.com/white-cat/ThinkAndroid官方介绍:ThinkAndroid是一个免费的开源的、简易的、遵循Apache2开源协议发布的Android开发框架,其开发宗旨是简单、快速的进行Android应用程序的开发,包含Android mvc、简易sqlite orm、ioc模块、封装Android httpclitent的http模块,具有快速构建文件缓存功能,无需考虑缓存文件的格式,都可以非常轻松的实现缓存,它还基于文件缓存模块实现了图片缓存功能,在android中加载的图片的时候,对oom的问题,和对加载图片错位的问题都轻易解决。他还包括了一个手机开发中经常应用的实用工具类,如日志管理,配置文件管理,android下载器模块,网络切换检测等等工具优点:功能看起来比较完善。个人觉得名字起的好。缺点:从2013年就停止维护了,没有项目文档。四、 LoonAndroid官方介绍:如果你想看ui方面的东西,这里没有,想要看牛逼的效果这里也没有。这只是纯实现功能的框架,它的目标是节省代码量,降低耦合,让代码层次看起来更清晰。整个框架一部分是网上的,一部分是我改的,为了适应我的编码习惯,还有一部分像orm完全是网上的组件。在此感谢那些朋友们。 整个框架式的初衷是为了偷懒,之前都是一个功能一个jar,做项目的时候拉进去,这样对于我来说依然还是比较麻烦。最后就导致我把所有的jar做成了一个工具集合包。 有很多框架都含有这个工具集合里的功能,这些不一定都好用,因为这是根据我个人使用喜欢来实现的,如果你们有自己的想法,可以自己把架包解压了以后,源码拉出来改动下。 目前很多框架都用到了注解,除了androidannotations没有入侵我们应用的代码以外,其他的基本上都有,要么是必须继承框架里面的activity,要么是必须在activity的oncreat里面调用某个方法。 整个框架式不同于androidannotations,Roboguice等ioc框架,这是一个类似spring的实现方式。在整应用的生命周期中找到切入点,然后对activity的生命周期进行拦截,然后插入自己的功能。开源地址:https://github.com/gdpancheng/LoonAndroid功能:1自动注入框架(只需要继承框架内的application既可)2图片加载框架(多重缓存,自动回收,最大限度保证内存的安全性)3网络请求模块(继承了基本上现在所有的http请求)4 eventbus(集成一个开源的框架)5验证框架(集成开源框架)6 json解析(支持解析成集合或者对象)7 数据库(不知道是哪位写的 忘记了)8 多线程断点下载(自动判断是否支持多线程,判断是否是重定向)9 自动更新模块10 一系列工具类有点:功能多缺点:文档方面五、 KJFrameForAndroid项目地址:https://github.com/kymjs/KJFrameForAndroid官方介绍:KJFrameForAndroid 又叫KJLibrary,是一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用;KJFrameForAndroid的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。我们提倡用最少的代码,完成最多的操作,用最高的效率,完成最复杂的功能。功能:一个android的orm 和 ioc 框架。同时封装了android中的Bitmap与Http操作的框架,使其更加简单易用; KJFrameForAndroid开发框架的设计思想是通过封装Android原生SDK中复杂的复杂操作而达到简化Android应用级开发,最终实现快速而又安全的开发APP。总共分为五大模块:UILibrary,UtilsLibrary,HttpLibrary,BitmapLibrary,DBLibrary。优点:功能比较全面,代码效率很高,文档完善,有项目demo,出来的比较晚借鉴了很多大型框架经验。缺点:项目文档是html页面,查看起来很不方便,项目交流平台没多少人说话(难道大神都是不说话的?)(这两个评价是KJFrameForAndroid的作者对自己的评价,个人觉得作者是个天才。他的评价可能刚写完网上发布后写的。我在给他更新评价。因为现在已经过去了几个月一直在时不时更新。功能很全,项目文档也很全面,而且代码里注释最多 这方面这个很难得。交流平台人很多挺热闹,作者希望更热闹这样框架越来越完善。对于初学者希望看到Demo更完善)六、 dhroid官方介绍:dhroid 是基于android 平台, 极速开发框架,其核心设计目标是开发迅速、代码量少、学习简单、功能强大、轻量级、易扩展.使你更快,更好的开发商业级别应用开源地址: http://git.oschina.net/tengzhinei/dhroid功能:1.Ioc容器: (用过spring的都知道)视图注入,对象注入,接口注入,解决类依赖关系2.Eventbus: android平台事件总线框架,独创延时事件,事件管理轻松3.Dhnet: 网络http请求的解决方案,使用简单,减少代码,自带多种网络访问缓存策略4.adapter模块: 数据绑定轻松,不用写多余的adapter,天生网络支持(一行代码搞定加载,刷新问题)5.DhDb: android中sqlite的最轻量orm框架(增删改查轻松搞定)6.Perference: android自带Perference 升级版,让你的Perference更强大,更方便工具集合 JSONUtil(安全处理json),ViewUtil(数据绑定更快) ThreadWorker(异步任务工具)...优点:功能全面,有demo,作者也是为公司开发的框架。缺点:文档方面现在不是很好,就eoe上的那些。七、 SmartAndroid项目地址:http://www.aplesson.com/smartAndroid/demos官方介绍:SmartAndroid是一套给 Android开发者使用的应用程序开发框架和工具包。它提供一套丰富的标准库以及简单的接口和逻辑结构,其目的是使开发人员更快速地进行项目开发。使用 SmartAndroid可以减少代码的编写量,并将你的精力投入到项目的创造性开发上。功能:SmartAndroid 拥有全范围的类库,可以完成大多数通常需要的APP开发任务,包括: 异步网络操作相关所有功能、强大的图片处理操作、轻量级ORM数据库Sqlite库、zip操作 、动画特效、Html等解析采集、事件总线EventBus/Otto、Gson(Json)、AQuery、主流所有UI控件(例如:ActionbarSherlock,SlidingMenu,BottomView,Actionbar,DragListView等10多种UI库)等。优点:功能非常全,超出你索要、文档完善(作者很全面,官方网站是web响应式网站,框架里功能有UI各种特效应该最全了,一直更新中)缺点:jar包大点?(功能多不可避免,不是问题),在线文档(随响应式的手机访问也方便,但是网速慢就不好了,页面打开不是很流畅)八、 andBase官方介绍:andbase是为Android开发者量身打造的一款开源类库产品开源地址:https://code.jd.com/zhaoqp2010_m/andbase功能:1.andbase中包含了大量的开发常用手段。如网络下载,多线程与线程池的管理,数据库ORM,图片缓存管理,图片文件下载上传,Http请求工具,常用工具类(字符串,日期,文件处理,图片处理工具类等),能够使您的应用在团队开发中减少冗余代码,很大的提高了代码的维护性与开发高效性,能很好的规避由于开发疏忽而导致常犯的错误。2.andbase封装了大量的常用控件。如list分页,下拉刷新,图片轮播,表格,多线程下载器,侧边栏,图片上传,轮子选择,图表,Tab滑动,日历选择器等。3.强大的AbActivity,您没有理由不继承它。继承它你能够获得一个简单强大可设置的操作栏,以及一系列的简单调用,如弹出框,提示框,进度框,副操作栏等。4.提供效率较高图片缓存管理策略,使内存大幅度节省,利用率提高,效率提高。程序中要管理大量的图片资源,andbase提供简单的方法,几步完成下载与显示,并支持缩放,裁剪,缓存功能。5.封装了大量常见工具类。包括日期,字符,文件,图片等各种处理函数,多而全。6.用andbase大量减少handler的使用,而采用回调函数,代码更整洁。handler会产生大量代码,并且不好维护,andbase对handler进行了封装。7.简单轻量支持注解自动建表的ORM框架(支持一/多对多的关联操作)。写sql,建表,工作量大,andbase提供更傻瓜异步增删改查工具类。8.异步请求http框架,网络请求标准化,支持文件上传下载,get,post,进度显示。包含了异步与http请求的工具类,实用。9.热情的支持群体。优点:功能很全,demo做的好 、API文档完善、接近完美缺点:希望文档更详细些。九、 AndroidAnnotations项目地址:https://github.com/excilys/androidannotations功能:完全注解框架,一切皆为注解:声明控件,绑定控件,设置监听,setcontentview,长按事件,异步线程,全部通过注解实现。优点:完全的注解,使开发起来更加便利,程序员写的代码也更少。缺点:文档是全英文的加上功能比较少没有具体研究,由于一切都是注解,感觉效率不高,不过根据官方介绍说并不是使用的反射加载,所以效率比一般注解高很多。十、 volley项目地址: https://github.com/smanikandan14/Volley-demo功能:Volley是Android平台上的网络通信库,能使网络通信更快,更简单,更健壮异步加载网络图片、网络数据优点:Google官方推荐,请看去年的开发者大会介绍。缺点:功能比较少,只有网络数据加载和网络图片加载十一、 android-async-http项目地址:https://github.com/loopj/android-async-http文档介绍:http://loopj.com/android-async-http/ (1) 在匿名回调中处理请求结果 (2) 在UI线程外进行http请求 (3) 文件断点上传 (4) 智能重试 (5) 默认gzip压缩 (6) 支持解析成Json格式 (7) 可将Cookies持久化到SharedPreferences 有点:很简单很实用缺点:功能比较少, (只是针对的功能不是什么缺点)最后来个总结吧: 以上的开发框架网上都可以下载源码,也有demo实例的。当然我没分析和对比框架的效率性能,但是都非常实用,其作者大部分是个人,都是些牛人或天才。你可以直接使用,也可以把有用跳出来用,至少有很多使用工具。如果有发现Bug,作者希望把bug交给他。 Afinal 和 xUtils简单实用但是demo和更新的问题。 KJFrameForAndroid 算是新出的,功能也多,效率也应该好,代码也注释多 用起来也很方便。Dhroid 作者自己公司的框架,也可以直接请教。SmartAndroid 强劲的框架功能俱全。andBase 出来早各个方面算是完整的吧。转自:http://blog.csdn.net/buddyuu/article/details/40503471
元芳啊 2019-12-02 00:55:54 0 浏览量 回答数 0

回答

Layout Go工程项目的整体组织 首先我们看一下整个 Go 工程是怎么组织起来的。 很多同事都在用 GitLab 的,GitLab 的一个 group 里面可以创建很多 project。如果我们进行微服务化改造,以前很多巨石架构的应用可能就拆成了很多个独立的小应用。那么这么多小应用,你是要建 N 个 project 去维护,还是说按照部门或者组来组织这些项目呢?在 B 站的话,我们之前因为是 Monorepo,现在是按照部门去组织管理代码,就是说在单个 GitLab 的 project 里面是有多个 app 的,每一个 app 就表示一个独立的微服务,它可以独立去交付部署。所以说我们看到下面这张图里面,app 的目录里面是有好多个子目录的,比方说我们的评论服务,会员服务。跟 app 同级的目录有一个叫 pkg,可以存放业务有关的公共库。这是我们的一个组织方式。当然,还有一种方式,你可以按照 GitLab 的 project 去组织,但我觉得这样的话可能相对要创建的 project 会非常多。 如果你按部门组织的话,部门里面有很多 app,app 目录怎么去组织?我们实际上会给每一个 app 取一个全局唯一名称,可以理解为有点像 DNS 那个名称。我们对业务的命名也是一样的,我们基本上是三段式的命名,比如账号业务,它是一个账号业务、服务、子服务的三段命名。三段命名以后,在这个 app 目录里面,你也可以按照这三层来组织。比如我们刚刚说的账号目录,我可能就是 account 目录,然后 VIP,在 VIP 目录下可能会放各种各样的不同角色的微服务,比方说可能有一些是做 job,做定时任务或者流式处理的一些任务,有可能是做对外暴露的 API 的一些服务,这个就是我们关于整个大的 app 的组织的一种形式。 微服务中的 app 服务分类 微服务中单个 app 的服务里又分为几类不同的角色。我们基本上会把 app 分为 interface(BFF)、service、job(补充:还有一个 task,偏向定时执行,job 偏向流式) 和 admin。 Interface 是对外的业务网关服务,因为我们最终是面向终端用户的 API,面向 app,面向 PC 场景的,我们把这个叫成业务网关。因为我们不是统一的网关,我们可能是按照大的业务线去独立分拆的一些子网关,这个的话可以作为一个对外暴露的 HTTP 接口的一个目录去组织它的代码,当然也可能是 gRPC 的(参考 B 站对外的 gRPC Moss 分享)。 Service 这个角色主要是面向对内通信的微服务,它不直接对外。也就是说,业务网关的请求会转发或者是会 call 我们的内部的 service,它们之间的通讯可能是使用自己的 RPC,在 b 站我们主要是使用 gRPC。使用 gRPC 通讯以后,service 它因为不直接对外,service 之间可能也可以相互去 call。 Admin 区别于 service,很多应用除了有面向用户的一些接口,实际上还有面向企业内部的一些运营侧的需求,通常数据权限更高,从安全设计角度需要代码物理层面隔离,避免意外。 第四个是 ecode。我们当时也在内部争论了很久,我们的错误码定义到底是放在哪里?我们目前的做法是,一个应用里面,假设你有多种角色,它们可能会复用一些错误码。所以说我们会把我们的 ecode 给单独抽出来,在这一个应用里面是可以复用的。注意,它只在这一个应用里面复用,它不会去跨服跨目录应用,它是针对业务场景的一个业务错误码的组织。 App 目录组织 我们除了一个应用里面多种角色的这种情况,现在展开讲一下具体到一个 service 里面,它到底是怎么组织的。我们的 app 目录下大概会有 api、cmd、configs、 internal 目录,目录里一般还会放置 README、CHANGELOG、OWNERS。 API 是放置 api 定义以及对应的生成的 client 代码,包含基于 pb 定义(我们使用 PB 作为 DSL 描述 API) 生成的 swagger.json。 而 cmd,就是放 main 函数的。Configs 目录主要是放一些服务所需的配置文件,比方说说我们可能会使用 TOML 或者是使用 YAML 文件。 Internal 的话,它里面有四个子目录,分别是 model、dao、service 和 server。Model 的定位职责就是对我们底层存储的持久化层或者存储层的数据的映射,它是具体的 Go 的一个 struct。我们再看 dao,你实际就是要操作 MySQL 或者 Redis,最终返回的就是这些 model(存储映射)。Service 组织起来比较简单,就是我们通过 dao 里面的各个方法来完成一个完整的业务逻辑。我们还看到有个 server,因为我一个微服务有可能企业内部不一定所有 RPC 都统一,那我们处于过渡阶段,所以 server 里面会有两个小目录,一个是 HTTP 目录,暴露的是 HTTP 接口,还有一个是 gRPC 目录,我们会暴露 gRPC 的协议。所以在 server 里面,两个不同的启动的 server,就是说一个服务和启动两个端口,然后去暴露不同的协议,HTTP 接 RPC,它实际上会先 call 到 service,service 再 call 到 dao,dao 实际上会使用 model 的一些数据定义 struct。但这里面有一个非常重要的就是,因为这个结构体不能够直接返回给我们的 api 做外对外暴露来使用,为什么?因为可能从数据库里面取的敏感字段,当我们实际要返回到 api 的时候,可能要隐藏掉一些字段,在 Java 里面,会抽象的一个叫 DTO 的对象,它只是用来传输用的,同理,在我们 Go 里面,实际也会把这些 model 的一些结构体映射成 api 里面的结构体(基于 PB Message 生成代码后的 struct)。 Rob Pike 当时说过的一句话,a little copying is better than a little dependency,我们就遵循了这个理念。在我们这个目录结构里面,有 internal 目录,我们知道 Go 的目录只允许这个目录里面的人去 import 到它,跨目录的人实际是不能直接引用到它的。所以说,我们看到 service 有一个 model,那我的 job 代码,我做一些定时任务的代码或者是我的网关代码有可能会映射同一个 model,那是不是要把这个 model 放到上一级目录让大家共享?对于这个问题,其实我们当时内部也争论过很久。我们认为,每一个微服务应该只对自己的 model 负责,所以我们宁愿去做一小部分的代码 copy,也不会去为了几个服务之间要共享这一点点代码,去把这个 model 提到和 app 目录级别去共用,因为你一改全错,当然了,你如果是拷贝的话,就是每个地方都要去改,那我们觉得,依赖的问题可能会比拷贝代码相对来说还是要更复杂的。 这个是一个标准的 PB 文件,就是我们内部的一个 demo 的 service。最上面的 package 是 PB 的包名,demo.service.v1,这个包使用的是三段式命名,全局唯一的名称。那这个名称为什么不是用 ID?我见过有些公司对内部做的 CMDB 或者做服务树去管理企业内部微服务的时候,是用了一些名称加上 ID 来搞定唯一性,但是我们知道后面那一串 ID 数字是不容易被传播或者是不容易被记住的,这也是 DNS 出来的一个意义,所以我们用绝对唯一的一个名称来表示这个包的名字,在后面带上这一个 PB 文件的版本号 V1。 我们看第二段定义,它有个 Service Demo 代码,其实就表示了我们这个服务要启动的服务的一个名称,我们看到这个服务名称里面有很多个 RPC 的方法,表示最终这一个应用或者这个 service 要对外暴露这几个 RPC 的方法。这里面有个小细节,我们看一下 SayHello 这个方法,实际它有 option 的一个选项。通过这一个 PB 文件,你既可以描述出你要暴露的是 gRPC 协议,又暴露出 HTTP 的一个接口,这个好处是你只需要一个 PB 文件描述你暴露的所有 api。我们回想一下,我们刚刚目录里面有个 api 目录,实际这里面就是放这一个 PB 文件,描述这一个工程到底返回的接口是什么。不管是 gRPC 还是 HTTP 都是这一个文件。还有一个好处是什么?实际上我们可以在 PB 文件里面加上很多的注释。用 PB 文件的好处是你不需要额外地再去写文档,因为写文档和写服务的定义,它本质上是两个步骤,特别容易不一致,接口改了,文档不同步。我们如果基于这一个 PB 文件,它生成的 service 代码或者调用代码或者是文档都是唯一的。 依赖顺序与 api 维护 就像我刚刚讲到的,model 是一个存储层的结构体的一一映射,dao 处理一些数据读写包,比方说数据库缓存,server 的话就是启动了一些 gRPC 或者 HTTP Server,所以它整个依赖顺序如下:main 函数启动 server,server 会依赖 api 定义好的 PB 文件,定义好这些方法或者是服务名之后,实际上生成代码的时候,比方说 protocbuf 生成代码的时候,它会把抽象 interface 生成好。然后我们看一下 service,它实际上是弱依赖的 api,就是说我的 server 启动以后,要注册一个具体的业务代码的逻辑,映射方法,映射名字,实际上是弱依赖的 api 生成的 interface 的代码,你就可以很方便地启动你的 server,把你具体的 service 的业务逻辑给注入到这个 server,和方法进行一一绑定。最后,dao 和 service 实际上都会依赖这个 model。 因为我们在 PB 里面定义了一些 message,这些 message 生成的 Go 的 struct 和刚刚 model 的 struct 是两个不同的对象,所以说你要去手动 copy 它,把它最终返回。但是为了快捷,你不可能每次手动去写这些代码,因为它要做 mapping,所以我们又把 K8s 里类似 DeepCopy 的两个结构体相互拷贝的工具给抠出来了,方便我们内部 model 和 api 的 message 两个代码相互拷贝的时候,可以少写一些代码,减少一些工作量。 上面讲的就是我们关于工程的一些 layout 实践。简单回溯一下,大概分为几块,第一就是 app 是怎么组织的,app 里面有多种角色的服务是怎么组织的,第三就是一个 app 里面的目录是怎么组织的,最后我重点讲了一下 api 是怎么维护的。 Unittest 测试方法论 现在回顾一下单元测试。我们先看这张图,这张图是我从《Google 软件测试之道》这本书里面抠出来的,它想表达的意思就是最小型的测试不能给我们的最终项目的质量带来最大的信心,它比较容易带来一些优秀的代码质量,良好的异常处理等等。但是对于一个面向用户场景的服务,你只有做大型测试,比方做接口测试,在 App 上验收功能的这种测试,你应用交付的信心可能会更足。这个其实要表达的就是一个“721 原则”。我们就是 70% 写小型测试,可以理解为单元测试,因为它相对来说好写,针对方法级别。20% 是做一些中型测试,可能你要连调几个项目去完成你的 api。剩下 10% 是大型测试,因为它是最终面向用户场景的,你要去使用我们的 App,或者用一些测试 App 去测试它。这个就是测试的一些简单的方法论。 单元测试原则 我们怎么去对待 Go 里面的单元测试?在《Google 软件测试之道》这本书里面,它强调的是对于一个小型测试,一个单元测试,它要有几个特质。它不能依赖外部的一些环境,比如我们公司有测试环境,有持续集成环境,有功能测试环境,你不能依赖这些环境构建自己的单元测试,因为测试环境容易被破坏,它容易有数据的变更,数据容易不一致,你之前构建的案例重跑的话可能就会失败。 我觉得单元测试主要有四点要求。第一,快速,你不能说你跑个单元测试要几分钟。第二,要环境一致,也就是说你跑测试前和跑测试后,它的环境是一致的。第三,你写的所有单元测试的方法可以以任意顺序执行,不应该有先后的依赖,如果有依赖,也是在你测试的这个方法里面,自己去 setup 和 teardown,不应该有 Test Stub 函数存在顺序依赖。第四,基于第三点,你可以做并行的单元测试,假设我写了一百个单元测试,一个个跑肯定特别慢。 doker-compose 最近一段时间,我们演进到基于 docker-compose 实现跨平台跨语言环境的容器依赖管理方案,以解决运行 unittest 场景下的容器依赖问题。 首先,你要跑单元测试,你不应该用 VPN 连到公司的环境,好比我在星巴克点杯咖啡也可以写单元测试,也可以跑成功。基于这一点,Docker 实际上是非常好的解决方式。我们也有同学说,其他语言有一些 in-process 的 mock,是不是可以启动 MySQL 的 mock ,然后在 in-process 上跑?可以,但是有一个问题,你每一个语言都要写一个这样的 mock ,而且要写非常多种,因为我们中间件越来越多,MySQL,HBase,Kafka,什么都有,你很难覆盖所有的组件 Mock。这种 mock 或者 in-process 的实现不能完整地代表线上的情况,比方说,你可能 mock 了一个 MySQL,检测到 query 或者 insert ,没问题,但是你实际要跑一个 transaction,要验证一些功能就未必能做得非常完善了。所以基于这个原因,我们当时选择了 docker-compose,可以很好地解决这个问题。 我们对开发人员的要求就是,你本地需要装 Docker,我们开发人员大部分都是用 Mac,相对来说也比较简单,Windows 也能搞定,如果是 Linux 的话就更简单了。本地安装 Docker,本质上的理解就是无侵入式的环境初始化,因为你在容器里面,你拉起一个 MySQL,你自己来初始化数据。在这个容器被销毁以后,它的环境实际上就满足了我们刚刚提的环境一致的问题,因为它相当于被重置了,也可以很方便地快速重置环境,也可以随时随地运行,你不需要依赖任何外部服务,这个外部服务指的是像 MySQL 这种外部服务。当然,如果你的单元测试依赖另外一个 RPC 的 service 的话,PB 的定义会生成一个 interface,你可以把那个 interface 代码给 mock 掉,所以这个也是能做掉的。对于小型测试来说,你不依赖任何外部环境,你也能够快速完成。 另外,docker-compose 是声明式的 API,你可以声明你要用 MySQL,Redis,这个其实就是一个配置文件,非常简单。这个就是我们在单元测试上的一些实践。 我们现在看一下,service 目录里面多了一个 test 目录,我们会在这个里面放 docker-compose 的 YAML 文件来表示这次单元化测试需要初始化哪些资源,你要构建自己的一些测试的数据集。因为是这样的,你是写 dao 层的单元测试的话,可能就需要 database.sql 做一些数据的初始化,如果你是做 service 的单元测试的话,实际你可以把整个 dao 给 mock 掉,我觉得反而还相对简单,所以我们主要针对场景就是在 dao 里面偏持久层的,利用 docker-compose 来解决。 容器的拉起,容器的销毁,这些工作到底谁来做?是开发同学自己去拉起和销毁,还是说你能够把它做成一个 Library,让我们的同学写单元测试的时候比较方便?我倾向的是后者。所以在我们最终写单元测试的时候,你可以很方便地 setup 一个依赖文件,去 setup 你的容器的一些信息,或者把它销毁掉。所以说,你把环境准备好以后,最终可以跑测试代码也非常方便。当然我们也提供了一些命令函,就是 binary 的一些工具,它可以针对各个语言方便地拉起容器和销毁容器,然后再去执行代码,所以我们也提供了一些快捷的方式。 刚刚我也提到了,就是我们对于 service 也好,API 也好,因为依赖下层的 dao 或者依赖下层的 service,你都很方便 mock 掉,这个写单元测试相对简单,这个我不展开讲,你可以使用 GoMock 或者 GoMonkey 实现这个功能。 Toolchain 我们利用多个 docker-compose 来解决 dao 层的单元测试,那对于我刚刚提到的项目的一些规范,单元测试的一些模板,甚至是我写了一些 dao 的一些占位符,或者写了一些 service 代码的一些占位符,你有没有考虑过这种约束有没有人会去遵循?所以我这里要强调一点,工具一定要大于约束和文档,你写了约束,写了文档,那么你最终要通过工具把它落实。所以在我们内部会有一个类似 go tool 的脚手架,叫 Kratos Tool,把我们刚刚说的约定规范都通过这个工具一键初始化。 对于我们内部的工具集,我们大概会分为几块。第一块就是 API 的,就是你写一个 PB 文件,你可以基于这个 PB 文件生成 gRPC,HTTP 的框架代码,你也可以基于这个 PB 文件生成 swagger 的一些 JSON 文件或者是 Markdown 文件。当然了,我们还会生成一些 API,用于 debug 的 client 方便去调试,因为我们知道,gRPC 调试起来相对麻烦一些,你要去写代码。 还有一些工具是针对 project 的,一键生成整个应用的 layout,非常方便。我们还提了 model,就是方便 model 和 DTO,DTO 就是 API 里面定义的 message 的 struct 做 DeepCopy,这个也是一个工具。 对于 cache 的话,我们操作 memcache,操作 Redis 经常会要做什么逻辑?假如我们有一个 cache aside 场景,你读了一个 cache,cache miss 要回原 DB,你要把这个缓存回塞回去,甚至你可能这个回塞缓存想异步化,甚至是你要去读这个 DB 的时候要做归并回源(singleflight),我们把这些东西做成一些工具,让它整个回源到 DB 的逻辑更加简单,就是把这些场景描述出来,然后你通过工具可以一键生成这些代码,所以也是会比较方便。 我们再看最后一个,就是 test 的一些工具。我们会基于项目里面,比方说 dao 或者是 service 定义的 interface 去帮你写好 mock 的代码,我直接在里面填,只要填代码逻辑就行了,所以也会加速我们的生产。 上图是 Kratos 的一个 demo,基本就是支持了一些 command。这里就是一个 kratos new kratos-demo 的一个工程,-d YourPath 把它导到某一个路径去,--proto 顺便把 API 里面的 proto 代码也生成了,所以非常简单,一行就可以很快速启动一个 HTTP 或者 gRPC 服务。 我们知道,一个微服务的框架实际非常重,有很多初始化的方式等等,非常麻烦。所以说,你通过脚手架的方式就会非常方便,工具大于约定和文档这个这个理念就是这么来的。 Configuration 讲完工具以后,最后讲一下配置文件。我为什么单独提一下配置文件?实际它也是工程化的一部分。我们一个线上的业务服务包含三大块,第一,应用程序,第二,配置文件,第三,数据集。配置文件最容易导致线上出 bug,因为你改一行配置,整个行为可能跟 App 想要的行为完全不一样。而且我们的代码的开发交付需要经过哪些流程?需要 commit 代码,需要 review,需要单元测试,需要 CD,需要交付到线上,需要灰度,它的整个流程是非常长的。在一步步的环境里面,你的 bug 需要前置解决,越前置解决,成本越低。因为你的代码的开发流程是这么一个 pipeline,所以 bug 最终流到线上的概率很低,但是配置文件没有经过这么复杂的流程,可能大家发现线上有个问题,决定要改个线上配置,就去配置中心或者配置文件改,然后 push 上线,接着就问题了,这个其实很常见。 从 SRE 的角度来说,导致线上故障的主因就是来自配置变更,所以 SRE 很大的工作是控制变更管理,如果能把变更管理做好,实际上很多问题都不会出现。配置既然在整个应用里面这么重要,那在我们整个框架或者在 Go 的工程化实践里面,我们应该对配置文件做一些什么事情? 我觉得是几个。第一,我们的目标是什么?配置文件不应该太复杂,我见过很多框架,或者是业务的一些框架,它实际功能非常强大,但是它的配置文件超级多。我就发现有个习惯,只要有一个同事写错了这个配置,当我新起一个项目的时候,一定会有人把这个错误的配置拷贝到另外一个系统里面去。然后当发现这个应用出问题的时候,我们一般都会内部说一下,你看看其他同事有没有也配错的,实际这个配错概率非常高。因为你的配置选项越多,复杂性越高,它越容易出错。所以第一个要素就是说,尽量避免复杂的配置文件。配得越多,越容易出错。 第二,实际我们的配置方式也非常多,有些用 JSON,有些用 YAML,有些用 Properties,有些用 INI。那能不能收敛成通用的一种方式呢?无论它是用 Python 的脚本也好,或者是用 JSON 也好,你只要有一种唯一的约定,不需要太多样的配置方式,对我们的运维,对我们的 SRE 同时来说,他跨项目的变更成本会变低。 第三,一定要往简单化去努力。这句话其实包含了几个方面的含义。首先,我们很多配置它到底是必须的还是可选的,如果是可选,配置文件是不是就可以把它踢掉,甚至不要出现?我曾经有一次看到我们 Java 同事的配置 retry 有一个重试默认是零,内部重试是 80 次,直接把 Redis cluster 打故障了,为什么?其实这种事故很低级,所以简单化努力的另外一层含义是指,我们在框架层面,尤其是提供 SDK 或者是提供 framework 的这些同事尽量要做一些防御编程,让这种错配漏配也处于一个可控的范围,比方重试 80 次,你觉得哪个 SDK 会这么做?所以这个是我们要考虑的。但是还有一点要强调的是,我们对于业务开发的同事,我们的配置应该足够的简单,这个简单还包含,如果你的日志基本上都是写在这个目录,你就不要提供这个配置给他,反而不容易出错。但是对于我们内部的一些 infrastructure,它可能需要非常复杂的配置来优化,根据我的场景去做优化,所以它是两种场景,一种是业务场景,足够简单,一种是我要针对我的通用的 infrastructure 去做场景的优化,需要很复杂的配置,所以它是两种场景,所以我们要想清楚你的业务到底是哪一种形态。 还有一个问题就是我们配置文件一定要做好权限的变更和跟踪,因为我们知道上线出问题的时候,我们的第一想法不是查 bug,是先止损,止损先找最近有没有变更。如果发现有变更,一般是先回滚,回滚的时候,我们通常只回滚了应用程序,而忘记回滚了配置。每个公司可能内部的配置中心,或者是配置场景,或者跟我们的二进制的交付上线都不一样,那么这里的理念就是你的应用程序和配置文件一定是同一个版本,或者是某种意义上让他们产生一个版本的映射,比方说你的应用程序 1.0,你的配置文件 2.0,它们之间存在一个强绑定关系,我们在回滚的时候应该是一起回滚的。我们曾经也因为类似的一些不兼容的配置的变更,二进制程序上线,但配置文件忘记回滚,出现过事故,所以这个是要强调的。 另外,配置的变更也要经过 review,如果没问题,应该也是按照 App 发布一样,先灰度,再放量,再全量等等类似的一种方式去推,演进式的这种发布,我们也叫滚动发布,我觉得配置文件也是一样的思路。 加入阿里云钉钉群享福利:每周技术直播,定期群内有奖活动、大咖问答 原文链接
有只黑白猫 2020-01-09 17:29:54 0 浏览量 回答数 0

回答

*1、查询SQL尽量不要使用select ,而是select具体字段。 反例子: select * from employee; 正例子: select id,name from employee; 理由: 只取需要的字段,节省资源、减少网络开销。select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。 2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1 假设现在有employee员工表,要找出一个名字叫jay的人. CREATE TABLE `employee` ( `id` int(11) NOT NULL, `name` varchar(255) DEFAULT NULL, `age` int(11) DEFAULT NULL, `date` datetime DEFAULT NULL, `sex` int(1) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 反例: select id,name from employee where name='jay' 正例 select id,name from employee where name='jay' limit 1; 理由: 加上limit 1后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。当然,如果name是唯一索引的话,是不必要加上limit 1了,因为limit的存在主要就是为了防止全表扫描,从而提高性能,如果一个语句本身可以预知不用全表扫描,有没有limit ,性能的差别并不大。 3、应尽量避免在where子句中使用or来连接条件 新建一个user表,它有一个普通索引userId,表结构如下: CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `userId` int(11) NOT NULL, `age` int(11) NOT NULL, `name` varchar(255) NOT NULL, PRIMARY KEY (`id`), KEY `idx_userId` (`userId`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下sql 反例: select * from user where userid=1 or age =18 正例: //使用union all select * from user where userid=1 union all select * from user where age = 18 //或者分开两条sql写: select * from user where userid=1 select * from user where age = 18 理由: 使用or可能会使索引失效,从而全表扫描。 对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程: 全表扫描+索引扫描+合并 如果它一开始就走全表扫描,直接一遍扫描就完事。 mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。 4、优化limit分页 我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。 反例: select id,name,age from employee limit 10000,10 正例: //方案一 :返回上次查询的最大记录(偏移量) select id,name from employee where id>10000 limit 10. //方案二:order by + 索引 select id,name from employee order by id limit 10000,10 //方案三:在业务允许的情况下限制页数: 理由: 当偏移量最大的时候,查询效率就会越低,因为Mysql并非是跳过偏移量直接去取后面的数据,而是先把偏移量+要取的条数,然后再把前面偏移量这一段的数据抛弃掉再返回的。 如果使用优化方案一,返回上次最大查询记录(偏移量),这样可以跳过偏移量,效率提升不少。 方案二使用order by+索引,也是可以提高查询效率的。 方案三的话,建议跟业务讨论,有没有必要查这么后的分页啦。因为绝大多数用户都不会往后翻太多页。 5、优化你的like语句 日常开发中,如果用到模糊关键字查询,很容易想到like,但是like很可能让你的索引失效。 反例: select userId,name from user where userId like '%123'; 正例: select userId,name from user where userId like '123%'; 理由: 把%放前面,并不走索引,如下: 把% 放关键字后面,还是会走索引的。如下: 6、使用where条件限定要查询的数据,避免返回多余的行 假设业务场景是这样:查询某个用户是否是会员。曾经看过老的实现代码是这样。。。 反例: List<Long> userIds = sqlMap.queryList("select userId from user where isVip=1"); boolean isVip = userIds.contains(userId); 正例: Long userId = sqlMap.queryObject("select userId from user where userId='userId' and isVip='1' ") boolean isVip = userId!=null; 理由: 需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销。 7、尽量避免在索引列上使用mysql的内置函数 业务需求:查询最近七天内登陆过的用户(假设loginTime加了索引) 反例: select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAY) >=now(); 正例: explain select userId,loginTime from loginuser where loginTime >= Date_ADD(NOW(),INTERVAL - 7 DAY); 理由: 索引列上使用mysql的内置函数,索引失效 8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致系统放弃使用索引而进行全表扫 反例: select * from user where age-1 =10; 正例: select * from user where age =11; 理由: 9、Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小 Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集 left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。 right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。 都满足SQL需求的前提下,推荐优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。 反例: select * from tab1 t1 left join tab2 t2 on t1.size = t2.size where t1.id>2; 正例: select * from (select * from tab1 where id >2) t1 left join tab2 t2 on t1.size = t2.size; 理由: 如果inner join是等值连接,或许返回的行数比较少,所以性能相对会好一点。 同理,使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少。 10、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 反例: select age,name from user where age <>18; 正例: //可以考虑分开两条sql写 select age,name from user where age <18; select age,name from user where age >18; 理由: 使用!=和<>很可能会让索引失效 11、使用联合索引时,注意索引列的顺序,一般遵循最左匹配原则。 表结构:(有一个联合索引idx_userid_age,userId在前,age在后) CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `userId` int(11) NOT NULL, `age` int(11) DEFAULT NULL, `name` varchar(255) NOT NULL, PRIMARY KEY (`id`), KEY `idx_userid_age` (`userId`,`age`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8; 反例: select * from user where age = 10; 正例: //符合最左匹配原则 select * from user where userid=10 and age =10; //符合最左匹配原则 select * from user where userid =10; 理由: 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。 联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的。 12、对查询进行优化,应考虑在 where 及 order by 涉及的列上建立索引,尽量避免全表扫描。 反例: select * from user where address ='深圳' order by age ; 正例: 添加索引 alter table user add index idx_address_age (address,age) 13、如果插入数据过多,考虑批量插入。 反例: for(User u :list){ INSERT into user(name,age) values(#name#,#age#) } 正例: //一次500批量插入,分批进行 insert into user(name,age) values <foreach collection="list" item="item" index="index" separator=","> (#{item.name},#{item.age}) </foreach> 理由: 批量插入性能好,更加省时间 打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),你可以选择一次运送一块砖,也可以一次运送500,你觉得哪个时间消耗大? 14、在适当的时候,使用覆盖索引。 覆盖索引能够使得你的SQL语句不需要回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。 反例: // like模糊查询,不走索引了 select * from user where userid like '%123%' 正例: //id为主键,那么为普通索引,即覆盖索引登场了。 select id,name from user where userid like '%123%'; 15、慎用distinct关键字 distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。 反例: SELECT DISTINCT * from user; 正例: select DISTINCT name from user; 理由: 带distinct的语句cpu时间和占用时间都高于不带distinct的语句。因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较,过滤的过程会占用系统资源,cpu时间。 16、删除冗余和重复索引 反例: KEY `idx_userId` (`userId`) KEY `idx_userId_age` (`userId`,`age`) 正例: //删除userId索引,因为组合索引(A,B)相当于创建了(A)和(A,B)索引 KEY `idx_userId_age` (`userId`,`age`) 理由: 重复的索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能的。 17、如果数据量较大,优化你的修改/删除语句。 避免同时修改或删除过多数据,因为会造成cpu利用率过高,从而影响别人对数据库的访问。 反例: //一次删除10万或者100万+? delete from user where id <100000; //或者采用单一循环操作,效率低,时间漫长 for(User user:list){ delete from user; } 正例: //分批进行删除,如每次500 delete user where id<500 delete product where id>=500 and id<1000; 理由: 一次性删除太多数据,可能会有lock wait timeout exceed的错误,所以建议分批操作。 18、where子句中考虑使用默认值代替null。 反例: select * from user where age is not null; 正例: //设置0为默认值 select * from user where age>0; 理由: 并不是说使用了is null 或者 is not null 就会不走索引了,这个跟mysql版本以及查询成本都有关。 如果mysql优化器发现,走索引比不走索引成本还要高,肯定会放弃索引,这些条件!=,>is null,is not null经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃的。 如果把null值,换成默认值,很多时候让走索引成为可能,同时,表达意思会相对清晰一点。 19、不要有超过5个以上的表连接 连表越多,编译的时间和开销也就越大。 把连接表拆开成较小的几个执行,可读性更高。 如果一定需要连接很多表才能得到数据,那么意味着糟糕的设计了。 20、exist & in的合理利用 假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下SQL: select * from A where deptId in (select deptId from B); 这样写等价于: 先查询部门表B select deptId from B 再由部门deptId,查询A的员工 select * from A where A.deptId = B.deptId 可以抽象成这样的一个循环: List<> resultSet ; for(int i=0;i<B.length;i++) { for(int j=0;j<A.length;j++) { if(A[i].id==B[j].id) { resultSet.add(A[i]); break; } } } 显然,除了使用in,我们也可以用exists实现一样的查询功能,如下: select * from A where exists (select 1 from B where A.deptId = B.deptId); 因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得意保留。 那么,这样写就等价于: select * from A,先从A表做循环 select * from B where A.deptId = B.deptId,再从B表做循环. 同理,可以抽象成这样一个循环: List<> resultSet ; for(int i=0;i<A.length;i++) { for(int j=0;j<B.length;j++) { if(A[i].deptId==B[j].deptId) { resultSet.add(A[i]); break; } } } 数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。 因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist。 21、尽量用 union all 替换 union 如果检索结果中不会有重复的记录,推荐union all 替换 union。 反例: select * from user where userid=1 union select * from user where age = 10 正例: select * from user where userid=1 union all select * from user where age = 10 理由: 如果使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序。如果已知检索结果没有重复记录,使用union all 代替union,这样会提高效率。 22、索引不宜太多,一般5个以内。 索引并不是越多越好,索引虽然提高了查询的效率,但是也降低了插入和更新的效率。 insert或update时有可能会重建索引,所以建索引需要慎重考虑,视具体情况来定。 一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否没有存在的必要。 23、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型 反例: king_id` varchar(20) NOT NULL COMMENT '守护者Id' 正例: `king_id` int(11) NOT NULL COMMENT '守护者Id'` 理由: 相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销。 24、索引不适合建在有大量重复数据的字段上,如性别这类型数据库字段。 因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。 25、尽量避免向客户端返回过多数据量。 假设业务需求是,用户请求查看自己最近一年观看过的直播数据。 反例: //一次性查询所有数据回来 select * from LivingInfo where watchId =useId and watchTime >= Date_sub(now(),Interval 1 Y) 正例: //分页查询 select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit offset,pageSize //如果是前端分页,可以先查询前两百条记录,因为一般用户应该也不会往下翻太多页, select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit 200 ; 26、当在SQL语句中连接多个表时,请使用表的别名,并把别名前缀于每一列上,这样语义更加清晰。 反例: select * from A inner join B on A.deptId = B.deptId; 正例: select memeber.name,deptment.deptName from A member inner join B deptment on member.deptId = deptment.deptId; 27、尽可能使用varchar/nvarchar 代替 char/nchar。 反例: `deptName` char(100) DEFAULT NULL COMMENT '部门名称' 正例: `deptName` varchar(100) DEFAULT NULL COMMENT '部门名称' 理由: 因为首先变长字段存储空间小,可以节省存储空间。 其次对于查询来说,在一个相对较小的字段内搜索,效率更高。 28、为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。 反例: select job,avg(salary) from employee group by job having job ='president' or job = 'managent' 正例: select job,avg(salary) from employee where job ='president' or job = 'managent' group by job; 29、如何字段类型是字符串,where时一定用引号括起来,否则索引失效 反例: select * from user where userid =123; 正例: select * from user where userid ='123'; 理由: 为什么第一条语句未加单引号就不走索引了呢? 这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。 30、使用explain 分析你SQL的计划 日常开发写SQL的时候,尽量养成一个习惯吧。用explain分析一下你写的SQL,尤其是走不走索引这一块。 explain select * from user where userid =10086 or age =18;
剑曼红尘 2020-04-21 14:01:32 0 浏览量 回答数 0
阿里云企业服务平台 陈四清的老板信息查询 上海奇点人才服务相关的云产品 爱迪商标注册信息 安徽华轩堂药业的公司信息查询 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 天籁阁商标注册信息 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 北京芙蓉天下的公司信息查询