• 关于 重要性证明工作原理 的搜索结果

问题

【教程免费下载】概率论基础教程(英文版·第9版)

玄学酱 2019-12-01 22:08:28 4073 浏览量 回答数 5

回答

如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢。我希望这个书单列表内容丰富,可以涵盖很多东西。” 1、《代码大全》 史蒂夫·迈克康奈尔 推荐数:1684 “优秀的编程实践的百科全书,《代码大全》注重个人技术,其中所有东西加起来, 就是我们本能所说的“编写整洁的代码”。这本书有50页在谈论代码布局。” —— Joel Spolsky 对于新手来说,这本书中的观念有点高阶了。到你准备阅读此书时,你应该已经知道并实践过书中99%的观念。– esac Steve McConnell的原作《代码大全》(第1版)是公认的关于编程的最佳实践指南之一, 在过去的十多年间,本书一直在帮助开发人员编写更好的软件。 现在,作者将这本经典著作全新演绎,融入了最前沿的实践技术,加入了上百个崭新的代码示例, 充分展示了软件构建的艺术性和科学性。 McConnell汇集了来自研究机构、学术界以及业界日常实践的主要知识, 把最高效的技术和最重要的原理交织融会为这本既清晰又实用的指南。 无论您的经验水平如何,也不管您在怎样的开发环境中工作,也无论项目是大是小, 本书都将激发您的思维并帮助您构建高品质的代码。 《代码大全(第2版))》做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。 2、《程序员修炼之道》 推荐数:1504 对于那些已经学习过编程机制的程序员来说,这是一本卓越的书。 或许他们还是在校生,但对要自己做什么,还感觉不是很安全。 就像草图和架构之间的差别。虽然你在学校课堂上学到的是画图,你也可以画的很漂亮, 但如果你觉得你不太知道从哪儿下手,如果某人要你独自画一个P2P的音乐交换网络图,那这本书就适合你了。—— Joel 《程序员修炼之道:从小工到专家》内容简介:《程序员修炼之道》由一系列独立的部分组成, 涵盖的主题从个人责任、职业发展,知道用于使代码保持灵活、并且易于改编和复用的各种架构技术, 利用许多富有娱乐性的奇闻轶事、有思想性的例子及有趣的类比, 全面阐释了软件开发的许多不同方面的最佳实践和重大陷阱。 无论你是初学者,是有经验的程序员,还是软件项目经理,《程序员修炼之道:从小工到专家》都适合你阅读。 3、《计算机程序的构造和解释》 推荐数:916 就个人而言,这本书目前为止对我影响醉倒的一本编程书。 《代码大全》、《重构》和《设计模式》这些经典书会教给你高效的工作习惯和交易细节。 其他像《人件集》、《计算机编程心理学》和《人月神话》这些书会深入软件开发的心理层面。 其他书籍则处理算法。这些书都有自己所属的位置。 然而《计算机程序的构造和解释》与这些不同。 这是一本会启发你的书,它会燃起你编写出色程序的热情; 它还将教会你认识并欣赏美; 它会让你有种敬畏,让你难以抑制地渴望学习更多的东西。 其他书或许会让你成为一位更出色的程序员,但此书将一定会让你成为一名程序员。 同时,你将会学到其他东西,函数式编程(第三章)、惰性计算、元编程、虚拟机、解释器和编译器。 一些人认为此书不适合新手。 个人认为,虽然我并不完全认同要有一些编程经验才能读此书,但我还是一定推荐给初学者。 毕竟这本书是写给著名的6.001,是麻省理工学院的入门编程课程。 此书或许需要多做努力(尤其你在做练习的时候,你也应当如此),但这个价是对得起这本书的。 4、《C程序设计语言》 推荐数:774 这本书简洁易读,会教给你三件事:C 编程语言;如何像程序员一样思考;底层计算模型。 (这对理解“底层”非常重要)—— Nathan 《C程序设计语言》(第2版新版)讲述深入浅出,配合典型例证,通俗易懂,实用性强, 适合作为大专院校计算机专业或非计算机专业的C语言教材,也可以作为从事计算机相关软硬件开发的技术人员的参考书。 《C程序设计语言》(第2版新版)原著即为C语言的设计者之一Dennis M.Ritchie和著名的计算机科学家Brian W.Kernighan合著的 一本介绍C语言的权威经典著作。 我们现在见到的大量论述C语言程序设计的教材和专著均以此书为蓝本。 原著第1版中介绍的C语言成为后来广泛使用的C语言版本——标准C的基础。 人们熟知的“hello,world”程序就是由本书首次引入的,现在,这一程序已经成为所有程序设计语言入门的第一课。 5、《算法导论》 推荐数:671 《代码大全》教你如何正确编程; 《人月神话》教你如何正确管理; 《设计模式》教你如何正确设计…… 在我看来,代码只是一个工具,并非精髓。 开发软件的主要部分是创建新算法或重新实现现有算法。 其他部分则像重新组装乐高砖块或创建“管理”层。 我依然梦想这样的工作,我的大部分时间(>50%)是在写算法,其他“管理”细节则留给其他人…… —— Ran Biron 经典的算法书,被亚马逊网,《程序员》等评选为2006年最受读者喜爱的十大IT图书之一。 算法领域的标准教材,全球多所知名大学选用 MIT名师联手铸就,被誉为“计算机算法的圣经” 编写上采用了“五个一”,即一章介绍一个算法、一种设计技术、一个应用领域和一个相关话题。 6、《重构:改善既有代码的设计》 推荐数:617 《重构:改善既有代码的设计》清晰地揭示了重构的过程,解释了重构的原理和最佳实践方式, 并给出了何时以及何地应该开始挖掘代码以求改善。 书中给出了70多个可行的重构,每个重构都介绍了一种经过验证的代码变换手法的动机和技术。 《重构:改善既有代码的设计》提出的重构准则将帮助你一次一小步地修改你的代码,从而减少了开发过程中的风险。 《重构:改善既有代码的设计》适合软件开发人员、项目管理人员等阅读, 也可作为高等院校计算机及相关专业师生的参考读物。 我想我不得不推荐《重构》:改进现有代码的设计。—— Martin 我必须承认,我最喜欢的编程语录是出自这本书:任何一个傻瓜都能写出计算机能理解的程序, 而优秀的程序员却能写出别人能读得懂的程序。—— Martin Fowler 7、《设计模式》 推荐数:617 自1995年出版以来,本书一直名列Amazon和各大书店销售榜前列。 近10年后,本书仍是Addison-Wesley公司2003年最畅销的图书之一。 中文版销售逾4万册。 就我而言,我认为四人帮编著的《设计模式》是一本极为有用的书。 虽然此书并不像其他建议一样有关“元”编程,但它强调封装诸如模式一类的优秀编程技术, 因而鼓励其他人提出新模式和反模式(antipatterns),并运用于编程对话中。—— Chris Jester-Young 8、《人月神话》 推荐数:588 在软件领域,很少能有像《人月神话》一样具有深远影响力并且畅销不衰的著作。 Brooks博士为人们管理复杂项目提供了最具洞察力的见解。 既有很多发人深省的观点,又有大量软件工程的实践。 本书内容来自Brooks博士在IBM公司System/360家族和OS/360中的项目管理经验。 该书英文原版一经面世,即引起业内人士的强烈反响,后又译为德、法、日、俄中等多种语言,全球销量数百万册。 确立了其在行业内的经典地位。 9、《计算机程序设计艺术》 推荐数:542 《计算机程序设计艺术》系列著作对计算机领域产生了深远的影响。 这一系列堪称一项浩大的工程,自1962年开始编写,计划出版7卷,目前已经出版了4卷。 《美国科学家》杂志曾将这套书与爱因斯坦的《相对论》等书并列称为20世纪最重要的12本物理学著作。 目前Knuth正将毕生精力投入到这部史诗性著作的撰写中。 这是高德纳倾注心血写的一本书。—— Peter Coulton 10、《编译原理》(龙书) 推荐数:462 我很奇怪,居然没人提到龙书。(或许已有推荐,我没有看到)。 我从没忘过此书的第一版封面。 此书让我知道了编译器是多么地神奇绝妙。- DB 11、《深入浅出设计模式》 推荐数:445 强大的写作阵容。 《Head First设计模式》(中文版) 作者Eric Freeman; ElElisabeth Freeman是作家、讲师和技术顾问。 Eric拥有耶鲁大学的计算机科学博士学位,E1isabath拥有耶鲁大学的计算机科学硕士学位。 Kathy Sierra(javaranch.com的创始人)FHBert Bates是畅销的HeadFirst系列书籍的创立者,也是Sun公司Java开发员认证考试的开发者。 本书的产品设计应用神经生物学、认知科学,以及学习理论,这使得这本书能够将这些知识深深地印在你的脑海里, 不容易被遗忘。 本书的编写方式采用引导式教学,不直接告诉你该怎么做,而是利用故事当作引子,带领读者思考并想办法解决问题。 解决问题的过程中又会产生一些新的问题,再继续思考、继续解决问题,这样可以加深体会。 作者以大量的生活化故事当背景,例如第1章是鸭子,第2章是气象站,第3章是咖啡店, 书中搭配大量的插图(几乎每一页都有图),所以阅读起来生动有趣,不会感觉到昏昏欲睡。 作者还利用歪歪斜斜的手写字体,增加“现场感”。 精心设计许多爆笑的对白,让学习过程不会太枯燥。 还有模式告白节目,将设计模式拟人化成节目来宾,畅谈其内在的一切。 每一章都有数目不等的测验题。 每章最后有一页要点整理,这也是精华所在,我都是利用这一页做复习。 我知道四人帮的《设计模式》是一本标准书,但倒不如先看看这部大部头,此书更为简易。 一旦你了解了解了基本原则,可以去看四人帮的那本圣经了。- Calanus 12、《哥德尔、艾舍尔、巴赫书:集异璧之大成》 推荐数:437 如果下昂真正深入阅读,我推荐道格拉斯·侯世达(Douglas Hofstadter)的《哥德尔、艾舍尔、巴赫书》。 他极为深入研究了程序员每日都要面对的问题:递归、验证、证明和布尔代数。 这是一本很出色的读物,难度不大,偶尔有挑战,一旦你要鏖战到底,将是非常值得的。 – Jonik 13、《代码整洁之道》 推荐数:329 细节之中自有天地,整洁成就卓越代码 尽管糟糕的代码也能运行,但如果代码不整洁,会使整个开发团队泥足深陷, 写得不好的代码每年都要耗费难以计数的时间和资源。 然而这种情况并非无法避免。 著名软件专家RoberfC.Marlin在《代码整洁之道》中为你呈现出了革命性的视野。 Martin携同ObjectMetltor公司的同事,从他们有关整洁代码的最佳敏捷实践中提炼出软件技艺的价值观, 以飨读者,让你成为更优秀的程序员——只要你着手研读《代码整洁之道》。 阅读《代码整洁之道》需要你做些什么呢。你将阅读代码——大量代码。 《代码整洁之道》促使你思考代码中何谓正确,何谓错误。 更重要的是,《代码整洁之道》将促使你重新评估自己的专业价值观,以及对自己技艺的承诺。 从《代码整洁之道》中可以学到: 好代码和糟糕的代码之间的区别; 如何编写好代码,如何将糟糕的代码转化为好代码; 如何创建好名称、好函数、好对象和好类; 如何格式化代码以实现其可读性的最大化; 如何在不妨碍代码逻辑的前提下充分实现错误处理; 如何进行单元测试和测试驱动开发。 虽然《代码整洁之道》和《代码大全》有很多共同之处,但它有更为简洁更为实际的清晰例子。 – Craig P. Motlin 14、《Effective C++》和《More Effective C++》 推荐数:297 在我职业生涯早期,Scott Meyer的《Effective C++》和后续的《More Effective C++》都对我的编程能力有着直接影响。 正如当时的一位朋友所说,这些书缩短你培养编程技能的过程,而其他人可能要花费数年。 去年对我影响最大的一本书是《大教堂与市集》,该书教会我很有关开源开发过程如何运作,和如何处理我代码中的Bug。 – John Channing 15、《编程珠玑》 推荐数:282 多年以来,当程序员们推选出最心爱的计算机图书时,《编程珠玑》总是位列前列。 正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师Jon Bentley以其独有的洞察力和创造力, 从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”, 成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏, 最终结集为两部不朽的计算机科学经典名著,影响和激励着一代又一代程序员和计算机科学工作者。 本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。 尽管我不得不羞愧地承认,书中一半的东西我都没有理解,但我真的推荐《编程珠玑》,书中有些令人惊奇的东西。 – Matt Warren 16、《修改代码的艺术》by Michael Feathers 本书是继《重构》和《重构与模式》之后探讨修改代码技术的又一里程碑式的著作, 而且从涵盖面和深度上都超过了前两部经典。 书中不仅讲述面向对象语言(Java、C#和C++)代码,也有专章讨论C这样的过程式语言。 作者将理解、测试和修改代码的原理、技术和最新工具(自动化重构工具、单元测试框架、仿对象、集成测试框架等), 与解依赖技术和大量开发和设计优秀代码的原则、最佳实践相结合,许多内容非常深入,而且常常发前人所未发。 书中处处体现出作者独到的洞察力,以及多年开发和指导软件项目所积累的丰富经验和深厚功力。 通过这部集大成之作,你不仅能掌握最顶尖的修改代码技术,还可以大大提高对代码和软件开发的领悟力。 我认为没有任何一本书能向这本书一样影响了我的编程观点。 它明确地告诉你如何处理其他人的代码,含蓄地教会你避免哪些(以及为什么要避免)。- Wolfbyte 同意。很多开发人员讨论用干净的石板来编写软件。 但我想几乎所有开发人员的某些时候是在吃其他开发人员的狗食。– Bernard Dy 17、《编码:隐匿在计算机软硬件背后的语言》 这是一本讲述计算机工作原理的书。 不过,你千万不要因为“工作原理”之类的字眼就武断地认为,它是晦涩而难懂的。 作者用丰富的想象和清晰的笔墨将看似繁杂的理论阐述得通俗易懂,你丝毫不会感到枯燥和生硬。 更重要的是,你会因此而获得对计算机工作原理较深刻的理解。 这种理解不是抽象层面上的,而是具有一定深度的,这种深度甚至不逊于“电气工程师”和“程序员”的理解。 不管你是计算机高手,还是对这个神奇的机器充满敬畏之心的菜鸟, 都不妨翻阅一下《编码:隐匿在计算机软硬件背后的语言》,读一读大师的经典作品,必然会有收获。 我推荐Charles Petzold的《编码》。 在这个充满工具和IDE的年代,很多复杂度已经从程序员那“抽取”走了,这本书一本开眼之作。 – hemil 18、《禅与摩托车维修艺术 / Zen and the Art of Motorcycle Maintenance》 对我影响最大的那本书是 Robert Pirsig 的《禅与摩托车维修艺术》。 不管你做什么事,总是要力求完美,彻底了解你手中的工具和任务,更为重要的是, 要有乐趣(因为如果你做事有乐趣,一切将自发引向更好的结果)。 – akr 19、《Peopleware / 人件集:人性化的软件开发》 Demarco 和 Lister 表明,软件开发中的首要问题是人,并非技术。 他们的答案并不简单,只是令人难以置信的成功。 第二版新增加了八章内容。 – Eduardo Molteni 20、《Coders at Work / 编程人生》 这是一本访谈笔录,记录了当今最具个人魅力的15位软件先驱的编程生涯。 包括DonaldKnuth、Jamie Zawinski、Joshua Bloch、Ken Thompson等在内的业界传奇人物,为我们讲述了 他们是怎么学习编程的,在编程过程中发现了什么以及他们对未来的看法, 并对诸如应该如何设计软件等长久以来一直困扰很多程序员的问题谈了自己的观点。 一本非常有影响力的书,可以从中学到一些业界顶级人士的经验,了解他们如何思考并工作。 – Jahanzeb Farooq 21、《Surely You’re Joking, Mr. Feynman! / 别闹了,费曼先生。》 虽然这本书可能有点偏题,但不管你信不信,这本书曾在计算机科学专业课程的阅读列表之上。 一个优秀的角色模型,一本有关好奇心的优秀书籍。 – mike511 22、《Effective Java 中文版》 此书第二版教你如何编写漂亮并高效的代码,虽然这是一本Java书,但其中有很多跨语言的理念。 – Marcio Aguiar 23、《Patterns of Enterprise Application Architecture / 企业应用架构模式》 很奇怪,还没人推荐 Martin Fowler 的《企业应用架构模式》- levi rosol 24、《The Little Schemer》和《The Seasoned Schemer》 nmiranda 这两本是LISP的英文书,尚无中文版。 美国东北大学网站上也有电子版。 25、《交互设计之路》英文名:《The Inmates Are Running The Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity》该书作者:Alan Cooper,人称Visual Basic之父,交互设计之父。 本书是基于众多商务案例,讲述如何创建更好的、高客户忠诚度的软件产品和基于软件的高科技产品的书。 本书列举了很多真实可信的实际例子,说明目前在软件产品和基于软件的高科技产品中,普遍存在着“难用”的问题。 作者认为,“难用”问题是由这些产品中存在着的高度“认知摩擦”引起的, 而产生这个问题的根源在于现今软件开发过程中欠缺了一个为用户利益着想的前期“交互设计”阶段。 “难用”的产品不仅损害了用户的利益,最终也将导致企业的失败。 本书通过一些生动的实例,让人信服地讲述了由作者倡导的“目标导向”交互设计方法在解决“难用”问题方面的有效性, 证实了只有改变现有观念,才能有效地在开发过程中引入交互设计,将产品的设计引向成功。 本书虽然是一本面向商务人员而编写的书,但也适合于所有参与软件产品和基于软件的高科技产品开发的专业人士, 以及关心软件行业和高科技行业现状与发展的人士阅读。 他还有另一本中文版著作:《About Face 3 交互设计精髓》 26、《Why’s (Poignant) Guide to Ruby 》 如果你不是程序员,阅读此书可能会很有趣,但如果你已经是个程序员,可能会有点乏味。 27、《Unix编程艺术》 It is useful regardless operating system you use. – J.F. Sebastian 不管你使用什么操作系统,这本书都很有用。 – J.F. Sebastian 28、《高效程序员的45个习惯:敏捷开发修炼之道》 45个习惯,分为7个方面:工作态度、学习、软件交付、反馈、编码、调试和协作。 每一个具体的习惯里,一开始提出一个谬论,然后展开分析,之后有正队性地提出正确的做法,并设身处地地讲出了正确做法给你个人的“切身感受”,最后列出几条注意事项,帮助你修正自己的做法(“平衡的艺术”)。 29、《测试驱动开发》 前面已经提到的很多书都启发了我,并影响了我,但这本书每位程序员都应该读。 它向我展示了单元测试和TDD的重要性,并让我很快上手。 – Curro 我不关心你的代码有多好或优雅。 如果你没有测试,你或许就如同没有编写代码。 这本书得到的推荐数应该更高些。 人们讨论编写用户喜欢的软件,或既设计出色并健壮的高效代码,但如果你的软件有一堆bug,谈论那些东西毫无意义。– Adam Gent 30、《点石成金:访客至上的网页设计秘笈》 可用性设计是Web设计中最重要也是难度最大的一项任务。 《点石成金-访客至上的网页设计秘笈(原书第二版)》作者根据多年从业的经验,剖析用户的心理, 在用户使用的模式、为扫描进行设计、导航设计、主页布局、可用性测试等方面提出了许多独特的观点, 并给出了大量简单、易行的可用性设计的建议。 本书短小精炼,语言轻松诙谐,书中穿插大量色彩丰富的屏幕截图、趣味丛生的卡通插图以及包含大量信息的图表, 使枯燥的设计原理变得平易近人。 本书适合从事Web设计和Web开发的技术人员阅读,特别适合为如何留住访问者而苦恼的网站/网页设计人员阅读。 这是一本关于Web设计原则而不是Web设计技术的书。 本书作者是Web设计专家,具有丰富的实践经验。 他用幽默的语言为你揭示Web设计中重要但却容易被忽视的问题,只需几个小时, 你便能对照书中讲授的设计原则找到网站设计的症结所在,令你的网站焕然一新。

青衫无名 2019-12-02 01:20:04 0 浏览量 回答数 0

问题

怎样实现数据存储的管理维护

elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

回答

密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。 随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施 了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提 高,近期又出现了AES、ECC等。 使用密码学可以达到以下目的: 保密性:防止用户的标识或数据被读取。 数据完整性:防止数据被更改。 身份验证:确保数据发自特定的一方。 二. 加密算法介绍 根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。 对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。 非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。 AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高; AES 2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。 Rijndael被选中成为将来的AES。 Rijndael是在 1999 年下半年,由研究员 Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标准 (AES) 规范。 算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。 AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16 字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相 同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据 AES与3DES的比较 算法名称 算法类型 密钥长度 速度 解密时间(建设机器每秒尝试255个密钥) 资源消耗 AES 对称block密码 128、192、256位 高 1490000亿年 低 3DES 对称feistel密码 112位或168位 低 46亿年 中 非对称算法 常见的非对称加密算法如下: RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准); ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。 ECC 在1976年,由于对称加密算法已经不能满足需要,Diffie 和Hellman发表了一篇叫《密码学新动向》的文章,介绍了公匙加密的概念,由Rivet、Shamir、Adelman提出了RSA算法。 随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展,为了保障数据的安全,RSA的密钥需要不断增 加,但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,因此需要一种新的算法来 代替RSA。 1985年N.Koblitz和Miller提出将椭圆曲线用于密码算法,根据是有限域上的椭圆曲线上的点群中的离散对数问题ECDLP。ECDLP是比因子分解问题更难的问题,它是指数级的难度。 算法原理——椭圆曲线上的难题 椭圆曲线上离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。 将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,将椭圆曲线中的乘法运算与离散对数中的模幂运算相对应,我们就可以建立基于椭圆曲线的对应的密码体制。 例如,对应Diffie-Hellman公钥系统,我们可以通过如下方式在椭圆曲线上予以实现:在E上选取生成元P,要 求由P产生的群元素足够多,通信双方A和B分别选取a和b,a和b 予以保密,但将aP和bP公开,A和B间通信用的密钥为abP,这是第三者无法得知 的。 对应ELGamal密码系统可以采用如下的方式在椭圆曲线上予以实现: 将明文m嵌入到E上Pm点,选一点B∈E,每一用户都选一整数a,0<a<N,N为阶数已知,a保密,aB公开。欲向A 送m,可送去下面一对数偶:[kB,Pm+k(aAB)],k是随机产生的整数。A可以从kB求得k(aAB)。通过:Pm+k(aAB)- k(aAB)=Pm恢复Pm。同样对应DSA,考虑如下等式: K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数] 不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。 这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k<n,n为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key)。 ECC与RSA的比较 ECC和RSA相比,在许多方面都有对绝对的优势,主要体现在以下方面: Ø 抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。 Ø 计算量小,处理速度快。ECC总的速度比RSA、DSA要快得多。 Ø 存储空间占用小。ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。 Ø 带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。 ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。 下面两张表示是RSA和ECC的安全性和速度的比较: 攻破时间 (MIPS年) RSA/DSA (密钥长度) ECC 密钥长度 RSA/ECC 密钥长度比 104 512 106 5:1 108 768 132 6:1 1011 1024 160 7:1 1020 2048 210 10:1 1078 21000 600 35:1 RSA和ECC安全模长得比较 功能 Security Builder 1.2 BSAFE 3.0 163位ECC(ms) 1,023位RSA(ms) 密钥对生成 3.8 4,708.3 签名 2.1(ECNRA) 228.4 3.0(ECDSA) 认证 9.9(ECNRA) 12.7 10.7(ECDSA) Diffie—Hellman密钥交换 7.3 1,654.0 RSA和ECC速度比较 散列算法 散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结 果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有 相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。 单向散列函数一般用于产生消息摘要,密钥加密等,常见的有: Ø MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法。 Ø SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值; SHA-1 在1993年,安全散列算法(SHA)由美国国家标准和技术协会(NIST)提出,并作为联邦信息处理标准(FIPS PUB 180)公布;1995年又发布了一个修订版FIPS PUB 180-1,通常称之为SHA-1。SHA-1是基于MD4算法的,并且它的设计在很大程度上是模仿MD4的。现在已成为公认的最安全的散列算法之一,并 被广泛使用。 算法原理 SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。 单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码 的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或 信息摘要的输出。 该算法输入报文的最大长度不超过264位,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。 通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的 明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表 示明文未被改动,如果不一致表示明文已被篡改。 MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。MAC的产生参见下图。 输入信息 密码 散列函数 信息认证代码 SHA-1与MD5的比较 因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同: Ø 对强行供给的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。 Ø 对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。 Ø 速度:在相同的硬件上,SHA-1的运行速度比MD5慢。 对称与非对称算法比较 以上综述了两种加密方法的原理,总体来说主要有下面几个方面的不同: Ø 在管理方面:公钥密码算法只需要较少的资源就可以实现目的,在密钥的分配上,两者之间相差一个指数级别(一个是n一个是n2)。所以私钥密码算法不适应广域网的使用,而且更重要的一点是它不支持数字签名。 Ø 在安全方面:由于公钥密码算法基于未解决的数学难题,在破解上几乎不可能。对于私钥密码算法,到了AES虽说从理论来说是不可能破解的,但从计算机的发展角度来看。公钥更具有优越性。 Ø 从速度上来看:AES的软件实现速度已经达到了每秒数兆或数十兆比特。是公钥的100倍,如果用硬件来实现的话这个比值将扩大到1000倍。 三. 加密算法的选择 前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢。 我们应该根据自己的使用特点来确定,由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。 对称加密算法不能实现签名,因此签名只能非对称算法。 由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。 在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。 如果在选定了加密算法后,那采用多少位的密钥呢。一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。 四. 密码学在现代的应用 随着密码学商业应用的普及,公钥密码学受到前所未有的重视。除传统的密码应用系统外,PKI系统以公钥密码技术为主,提供加密、签名、认证、密钥管理、分配等功能。 保密通信:保密通信是密码学产生的动因。使用公私钥密码体制进行保密通信时,信息接收者只有知道对应的密钥才可以解密该信息。 数字签名:数字签名技术可以代替传统的手写签名,而且从安全的角度考虑,数字签名具有很好的防伪造功能。在政府机关、军事领域、商业领域有广泛的应用环境。 秘密共享:秘密共享技术是指将一个秘密信息利用密码技术分拆成n个称为共享因子的信息,分发给n个成员,只有 k(k≤n)个合法成员的共享因子才可以恢复该秘密信息,其中任何一个或m(m≤k)个成员合作都不知道该秘密信息。利用秘密共享技术可以控制任何需要多 个人共同控制的秘密信息、命令等。 认证功能:在公开的信道上进行敏感信息的传输,采用签名技术实现对消息的真实性、完整性进行验证,通过验证公钥证书实现对通信主体的身份验证。 密钥管理:密钥是保密系统中更为脆弱而重要的环节,公钥密码体制是解决密钥管理工作的有力工具;利用公钥密码体制进行密钥协商和产生,保密通信双方不需要事先共享秘密信息;利用公钥密码体制进行密钥分发、保护、密钥托管、密钥恢复等。 基于公钥密码体制可以实现以上通用功能以外,还可以设计实现以下的系统:安全电子商务系统、电子现金系统、电子选举系统、电子招投标系统、电子彩票系统等。 公钥密码体制的产生是密码学由传统的政府、军事等应用领域走向商用、民用的基础,同时互联网、电子商务的发展为密码学的发展开辟了更为广阔的前景。 五. 加密算法的未来 随着计算方法的改进,计算机运行速度的加快,网络的发展,越来越多的算法被破解。 在2004年国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做的破译MD5、HAVAL-128、MD4和RIPEMD算法的报告,令在场的国际顶尖密码学专家都为之震惊,意味着这些算法将从应用中淘汰。随后,SHA-1也被宣告被破解。 历史上有三次对DES有影响的攻击实验。1997年,利用当时各国 7万台计算机,历时96天破解了DES的密钥。1998年,电子边境基金会 (EFF)用25万美元制造的专用计算机,用56小时破解了DES的密钥。1999年,EFF用22小时15分完成了破解工作。因此。曾经有过卓越贡献的 DES也不能满足我们日益增长的需求了。 最近,一组研究人员成功的把一个512位的整数分解因子,宣告了RSA的破解。 我们说数据的安全是相对的,可以说在一定时期一定条件下是安全的,随着硬件和网络的发展,或者是另一个王小云的出现,目前的常用加密算法都有可能在 短时间内被破解,那时我们不得不使用更长的密钥或更加先进的算法,才能保证数据的安全,因此加密算法依然需要不断发展和完善,提供更高的加密安全强度和运 算速度。 纵观这两种算法一个从DES到3DES再到AES,一个从RSA到ECC。其发展角度无不是从密钥的简单性,成本的低廉性,管理的简易性,算法的复 杂性,保密的安全性以及计算的快速性这几个方面去考虑。因此,未来算法的发展也必定是从这几个角度出发的,而且在实际操作中往往把这两种算法结合起来,也 需将来一种集两种算法优点于一身的新型算法将会出现,到那个时候,电子商务的实现必将更加的快捷和安全。

liujae 2019-12-02 01:26:38 0 浏览量 回答数 0

回答

从业余程序员到职业程序员 程序员刚入行时,我觉得最重要的是把自己培养成职业的程序员。 我的程序员起步比同龄人都晚了很多,更不用说现在的年轻人了。我大学读的是生物专业,在上大学前基本算是完全没接触过计算机。军训的时候因为很无聊,我和室友每天跑去学校的机房玩,我现在还印象很深刻,我第一次走进机房的时候,别人问,你是要玩windows,还是dos,我那是完全的一抹黑。后来就只记得在机房一堆人都是在练习盲打,军训完,盲打倒是练的差不多了,对计算机就这么产生了浓厚的兴趣,大一的时候都是玩组装机,捣鼓了一些,对计算机的硬件有了那么一些了解。 到大二后,买了一些书开始学习当时最火的网页三剑客,学会了手写HTML、PS的基本玩法之类的,课余、暑假也能开始给人做做网站什么的(那个时候做网站真的好赚钱),可能那样过了个一年左右,做静态的网页就不好赚钱了,也不好找实习工作,于是就开始学asp,写些简单的CRUD,做做留言板、论坛这些动态程序,应该算是在这个阶段接触编程了。 毕业后加入了深圳的一家做政府行业软件的公司,一个非常靠谱和给我空间的Leader,使得自己在那几年有了不错的成长,终于成了一个职业的程序员。 通常来说,业余或半职业的程序员,多数是1个人,或者很小的一个团队一起开发,使得在开发流程、协作工具(例如jira、cvs/svn/git等)、测试上通常会有很大的欠缺,而职业的程序员在这方面则会专业很多。另外,通常职业的程序员做的系统都要运行较长的时间,所以在可维护性上会特别注意,这点我是在加入阿里后理解更深的。一个运行10年的系统,和一个写来玩玩的系统显然是有非常大差别的。 这块自己感觉也很难讲清楚,只能说模模糊糊有个这样的概念。通常在有兴趣的基础上,从业余程序员跨越到成为职业程序员我觉得不会太难。 编程能力的成长 作为程序员,最重要的能力始终是编程能力,就我自己的感受而言,我觉得编程能力的成长主要有这么几个部分: 1、编程能力初级:会用 编程,首先都是从学习编程语言的基本知识学起的,不论是什么编程语言,有很多共同的基本知识,例如怎么写第一个Hello World、if/while/for、变量等,因此我比较建议在刚刚开始学一门编程语言的时候,看看编程语言自己的一些文档就好,不要上来就去看一些高阶的书。我当年学Java的时候上来就看Think in Java、Effective Java之类的,真心好难懂。 除了看文档以外,编程是个超级实践的活,所以一定要多写代码,只有这样才能真正熟练起来。这也是为什么我还是觉得在面试的时候让面试者手写代码是很重要的,这个过程是非常容易判断写代码的熟悉程度的。很多人会说由于写代码都是高度依赖IDE的,导致手写很难,但我绝对相信写代码写了很多的人,手写一段不太复杂的、可运行的代码是不难的。即使像我这种三年多没写过代码的人,让我现在手写一段不太复杂的可运行的Java程序,还是没问题的,前面N年的写代码生涯使得很多东西已经深入骨髓了。 我觉得编程能力初级这个阶段对于大部分程序员来说都不会是问题,勤学苦练,是这个阶段的核心。 2、编程能力中级:会查和避免问题 除了初级要掌握的会熟练的使用编程语言去解决问题外,中级我觉得首先是提升查问题的能力。 在写代码的过程中,出问题是非常正常的,怎么去有效且高效的排查问题,是程序员群体中通常能感受到的大家在编程能力上最大的差距。 解决问题能力强的基本很容易在程序员群体里得到很高的认可。在查问题的能力上,首先要掌握的是一些基本的调试技巧,好用的调试工具,在Java里有JDK自带的jstat、jmap、jinfo,不在JDK里的有mat、gperf、btrace等。工欲善其事必先利其器,在查问题上是非常典型的,有些时候大家在查问题时的能力差距,有可能仅仅是因为别人比你多知道一个工具而已。 除了调试技巧和工具外,查问题的更高境界就是懂原理。一个懂原理的程序员在查问题的水平上和其他程序员是有明显差距的。我想很多的同学应该能感受到,有些时候查出问题的原因仅仅是因为有效的工具,知其然不知其所以然。 我给很多阿里的同学培训过Java排查问题的方法,在这个培训里,我经常也会讲到查问题的能力的培养最主要的也是熟练,多尝试给自己写一些会出问题的程序,多积极的看别人是怎么查问题的,多积极的去参与排查问题,很多最后查问题能力强的人多数仅仅是因为“无他,但手熟尔”。 我自己排查问题能力的提升主要是在2009年和2010年。那两年作为淘宝消防队(处理各种问题和故障的虚拟团队)的成员,处理了很多的故障和问题。当时消防队还有阿里最公认的技术大神——多隆,我向他学习到了很多排查问题的技巧。和他比,我排查问题的能力就是初级的那种。 印象最深刻的是一次我们一起查一个应用cpu us高的问题,我们两定位到是一段代码在某种输入参数的时候会造成cpu us高的原因后,我能想到的继续查的方法是去生产环境抓输入参数,然后再用参数来本地debug看是什么原因。但多隆在看了一会那段代码后,给了我一个输入参数,我拿这个参数一运行,果然cpu us很高!这种case不是一次两次。所以我经常和别人说,我是需要有问题场景才能排查出问题的,但多隆是完全有可能直接看代码就能看出问题的,这是本质的差距。 除了查问题外,更厉害的程序员是在写代码的过程就会很好的去避免问题。大家最容易理解的就是在写代码时处理各种异常情况,这里通常也是造成程序员们之间很大的差距的地方。 写一段正向逻辑的代码,大部分情况下即使有差距,也不会太大,但在怎么很好的处理这个过程中有可能出现的异常上,这个时候的功力差距会非常明显。很多时候一段代码里处理异常逻辑的部分都会超过正常逻辑的代码量。 我经常说,一个优秀程序员和普通程序员的差距,很多时候压根就不需要看什么满天飞的架构图,而只用show一小段的代码就可以。 举一个小case大家感受下。当年有一个严重故障,最后查出的原因是输入的参数里有一个是数组,把这个数组里的值作为参数去查数据库,结果前面输入了一个很大的数组,导致从数据库查了大量的数据,内存溢出了,很多程序员现在看都会明白对入参、出参的保护check,但类似这样的case我真的碰到了很多。 在中级这个阶段,我会推荐大家尽可能的多刻意的去培养下自己这两个方面的能力,成为一个能写出高质量代码、有效排查问题的优秀程序员。 3、编程能力高级:懂高级API和原理 就我自己的经历而言,我是在写了多年的Java代码后,才开始真正更细致的学习和掌握Java的一些更高级的API,我相信多数Java程序员也是如此。 我算是从2003年开始用Java写商业系统的代码,但直到在2007年加入淘宝后,才开始非常认真地学习Java的IO通信、并发这些部分的API。尽管以前也学过也写过一些这样的代码,但完全就是皮毛。当然,这些通常来说有很大部分的原因会是工作的相关性,多数的写业务系统的程序员可能基本就不需要用到这些,所以导致会很难懂这些相对高级一些的API,但这些API对真正的理解一门编程语言,我觉得至关重要。 在之前的程序员成长路线的文章里我也讲到了这个部分,在没有场景的情况下,只能靠自己去创造场景来学习好。我觉得只要有足够的兴趣,这个问题还是不大的,毕竟现在有各种开源,这些是可以非常好的帮助自己创造机会学习的,例如学Java NIO,可以自己基于NIO包一个框架,然后对比Netty,看看哪些写的是不如Netty的,这样会非常有助于真正的理解。 在学习高级API的过程中,以及排查问题的过程中,我自己越来越明白懂编程语言的运行原理是非常重要的,因此我到了后面的阶段开始学习Java的编译机制、内存管理、线程机制等。对于我这种非科班出身的而言,学这些会因为缺乏基础更难很多,但这些更原理性的东西学会了后,对自己的编程能力会有质的提升,包括以后学习其他编程语言的能力,学这些原理最好的方法我觉得是先看看一些讲相关知识的书,然后去翻看源码,这样才能真正的更好的掌握,最后是在以后写代码的过程中、查问题的过程中多结合掌握的原理,才能做到即使在N年后也不会忘。 在编程能力的成长上,我觉得没什么捷径。我非常赞同1万小时理论,在中级、高级阶段,如果有人指点或和优秀的程序员们共事,会好非常多。不过我觉得这个和读书也有点像,到了一定阶段后(例如高中),天分会成为最重要的分水岭,不过就和大部分行业一样,大部分的情况下都还没到拼天分的时候,只需要拼勤奋就好。 系统设计能力的成长 除了少数程序员会进入专深的领域,例如Linux Kernel、JVM,其他多数的程序员除了编程能力的成长外,也会越来越需要在系统设计能力上成长。 通常一个编程能力不错的程序员,在一定阶段后就会开始承担一个模块的工作,进而承担一个子系统、系统、跨多领域的更大系统等。 我自己在工作的第三年开始承担一个流程引擎的设计和实现工作,一个不算小的系统,并且也是当时那个项目里的核心部分。那个阶段我学会了一些系统设计的基本知识,例如需要想清楚整个系统的目标、模块的划分和职责、关键的对象设计等,而不是上来就开始写代码。但那个时候由于我是一个人写整个系统,所以其实对设计的感觉并还没有那么强力的感觉。 在那之后的几年也负责过一些系统,但总体感觉好像在系统设计上的成长没那么多,直到在阿里的经历,在系统设计上才有了越来越多的体会。(点击文末阅读原文,查看:我在系统设计上犯过的14个错,可以看到我走的一堆的弯路)。 在阿里有一次做分享,讲到我在系统设计能力方面的成长,主要是因为三段经历,负责专业领域系统的设计 -> 负责跨专业领域的专业系统的设计 -> 负责阿里电商系统架构级改造的设计。 第一段经历,是我负责HSF。HSF是一个从0开始打造的系统,它主要是作为支撑服务化的框架,是个非常专业领域的系统,放在整个淘宝电商的大系统来看,其实它就是一个很小的子系统,这段经历里让我最深刻的有三点: 1).要设计好这种非常专业领域的系统,专业的知识深度是非常重要的。我在最早设计HSF的几个框的时候,是没有设计好服务消费者/提供者要怎么和现有框架结合的,在设计负载均衡这个部分也反复了几次,这个主要是因为自己当时对这个领域掌握不深的原因造成的; 2). 太技术化。在HSF的阶段,出于情怀,在有一个版本里投入了非常大的精力去引进OSGi以及去做动态化,这个后来事实证明是个非常非常错误的决定,从这个点我才真正明白在设计系统时一定要想清楚目标,而目标很重要的是和公司发展阶段结合; 3). 可持续性。作为一个要在生产环境持续运行很多年的系统而言,怎么样让其在未来更可持续的发展,这个对设计阶段来说至关重要。这里最low的例子是最早设计HSF协议的时候,协议头里竟然没有版本号,导致后来升级都特别复杂;最典型的例子是HSF在早期缺乏了缺乏了服务Tracing这方面的设计,导致后面发现了这个地方非常重要后,全部落地花了长达几年的时间;又例如HSF早期缺乏Filter Chain的设计,导致很多扩展、定制化做起来非常不方便。 第二段经历,是做T4。T4是基于LXC的阿里的容器,它和HSF的不同是,它其实是一个跨多领域的系统,包括了单机上的容器引擎,容器管理系统,容器管理系统对外提供API,其他系统或用户通过这个来管理容器。这个系统发展过程也是各种犯错,犯错的主要原因也是因为领域掌握不深。在做T4的日子里,学会到的最重要的是怎么去设计这种跨多个专业领域的系统,怎么更好的划分模块的职责,设计交互逻辑,这段经历对我自己更为重要的意义是我有了做更大一些系统的架构的信心。 第三段经历,是做阿里电商的异地多活。这对我来说是真正的去做一个巨大系统的架构师,尽管我以前做HSF的时候参与了淘宝电商2.0-3.0的重大技术改造,但参与和自己主导是有很大区别的,这个架构改造涉及到了阿里电商众多不同专业领域的技术团队。在这个阶段,我学会的最主要的: 1). 子系统职责划分。在这种超大的技术方案中,很容易出现某些部分的职责重叠和冲突,这个时候怎么去划分子系统,就非常重要了。作为大架构师,这个时候要从团队的职责、团队的可持续性上去选择团队; 2). 大架构师最主要的职责是控制系统风险。对于这种超大系统,一定是多个专业领域的架构师和大架构师共同设计,怎么确保在执行的过程中对于系统而言最重要的风险能够被控制住,这是我真正的理解什么叫系统设计文档里设计原则的部分。 设计原则我自己觉得就是用来确保各个子系统在设计时都会遵循和考虑的,一定不能是虚的东西,例如在异地多活架构里,最重要的是如何控制数据风险,这个需要在原则里写上,最基本的原则是可接受系统不可用,但也要保障数据一致,而我看过更多的系统设计里设计原则只是写写的,或者千篇一律的,设计原则切实的体现了架构师对目标的理解(例如当时异地多活这个其实开始只是个概念,但做到什么程度才叫做到异地多活,这是需要解读的,也要确保在技术层面的设计上是达到了目标的),技术方案层面上的选择原则,并确保在细节的设计方案里有对于设计原则的承接以及执行; 3). 考虑问题的全面性。像异地多活这种大架构改造,涉及业务层面、各种基础技术层面、基础设施层面,对于执行节奏的决定要综合考虑人力投入、机器成本、基础设施布局诉求、稳定性控制等,这会比只是做一个小的系统的设计复杂非常多。 系统设计能力的成长,我自己觉得最重要的一是先在一两个技术领域做到专业,然后尽量扩大自己的知识广度。例如除了自己的代码部分外,还应该知道具体是怎么部署的,部署到哪去了,部署的环境具体是怎么样的,和整个系统的关系是什么样的。 像我自己,是在加入基础设施团队后才更加明白有些时候软件上做的一个决策,会导致基础设施上巨大的硬件、网络或机房的投入,但其实有可能只需要在软件上做些调整就可以避免,做做研发、做做运维可能是比较好的把知识广度扩大的方法。 第二点是练习自己做tradeoff的能力,这个比较难,做tradeoff这事需要综合各种因素做选择,但这也是所有的架构师最关键的,可以回头反思下自己在做各种系统设计时做出的tradeoff是什么。这个最好是亲身经历,听一些有经验的架构师分享他们选择背后的逻辑也会很有帮助,尤其是如果恰好你也在同样的挑战阶段,光听最终的架构结果其实大多数时候帮助有限。 技术Leader我觉得最好是能在架构师的基础上,后续注重成长的方面还是有挺大差别,就不在这篇里写了,后面再专门来写一篇。 程序员金字塔 我认为程序员的价值关键体现在作品上,被打上作品标签是一种很大的荣幸,作品影响程度的大小我觉得决定了金字塔的层次,所以我会这么去理解程序员的金字塔。 当然,要打造一款作品,仅有上面的两点能力是不够的,作品里很重要的一点是对业务、技术趋势的判断。 希望作为程序员的大伙,都能有机会打造一款世界级的作品,去为技术圈的发展做出贡献。 由于目前IT技术更新速度还是很快的,程序员这个行当是特别需要学习能力的。我一直认为,只有对程序员这个职业真正的充满兴趣,保持自驱,才有可能在这个职业上做好,否则的话是很容易淘汰的。 作者简介: 毕玄,2007年加入阿里,十多年来主要从事在软件基础设施领域,先后负责阿里的服务框架、Hbase、Sigma、异地多活等重大的基础技术产品和整体架构改造。

茶什i 2020-01-10 15:19:35 0 浏览量 回答数 0

回答

RSA加密算法 该算法于1977年由美国麻省理工学院MIT(Massachusetts Institute of Technology)的Ronal Rivest,Adi Shamir和Len Adleman三位年轻教授提出,并以三人的姓氏Rivest,Shamir和Adlernan命名为RSA算法。该算法利用了数论领域的一个事实,那就是虽然把两个大质数相乘生成一个合数是件十分容易的事情,但要把一个合数分解为两个质数却十分困难。合数分解问题目前仍然是数学领域尚未解决的一大难题,至今没有任何高效的分解方法。与Diffie-Hellman算法相比,RSA算法具有明显的优越性,因为它无须收发双方同时参与加密过程,且非常适合于电子函件系统的加密。 RSA算法可以表述如下: (1) 密钥配制。假设m是想要传送的报文,现任选两个很大的质数p与q,使得: (12-1); 选择正整数e,使得e与(p-1)(q-1)互质;这里(p-1)(q-1)表示二者相乘。再利用辗转相除法,求得d,使得: (12-2); 其中x mod y是整数求余运算,其结果是x整除以y后剩余的余数,如5 mod 3 = 2。 这样得: (e,n),是用于加密的公共密钥,可以公开出去;以及 (d,n),是用于解密的专用钥匙,必须保密。 (2) 加密过程。使用(e,n)对明文m进行加密,算法为: (12-3); 这里的c即是m加密后的密文。 (3) 解密过程。使用(d,n)对密文c进行解密,算法为: (12-4); 求得的m即为对应于密文c的明文。 RSA算法实现起来十分简捷,据说英国的一位程序员只用了3行Perl程序便实现了加密和解密运算。 RSA算法建立在正整数求余运算基础之上,同时还保持了指数运算的性质,这一点我们不难证明。例如: (12-5); (12-6)。 RSA公共密钥加密算法的核心是欧拉(Euler)函数ψ。对于正整数n,ψ(n)定义为小于n且与n互质的正整数的个数。例如ψ(6) = 2,这是因为小于6且与6互质的数有1和5共两个数;再如ψ(7) = 6,这是因为互质数有1,2,3,5,6共6个。 欧拉在公元前300多年就发现了ψ函数的一个十分有趣的性质,那就是对于任意小于n且与n互质的正整数m,总有mψ(n) mod n = 1。例如,5ψ(6) mod 6 = 52 mod 6= 25 mod 6 =1。也就是说,在对n求余的运算下,ψ(n)指数具有周期性。 当n很小时,计算ψ(n)并不难,使用穷举法即可求出;但当n很大时,计算ψ(n)就十分困难了,其运算量与判断n是否为质数的情况相当。不过在特殊情况下,利用ψ函数的两个性质,可以极大地减少运算量。 性质1:如果p是质数,则ψ(p) = (p-1)。 性质2:如果p与q均为质数,则ψ(p·q) = ψ(p)·ψ(q) = (p-1)(q-1)。 RSA算法正是注意到这两条性质来设计公共密钥加密系统的,p与q的乘积n可以作为公共密钥公布出来,而n的因子p和q则包含在专用密钥中,可以用来解密。如果解密需要用到ψ(n),收信方由于知道因子p和q,可以方便地算出ψ(n) = (p-1)(q-1)。如果窃听者窃得了n,但由于不知道它的因子p与q,则很难求出ψ(n)。这时,窃听者要么强行算出ψ(n),要么对n进行因数分解求得p与q。然而,我们知道,在大数范围内作合数分解是十分困难的,因此窃密者很难成功。 有了关于ψ函数的认识,我们再来分析RSA算法的工作原理: (1) 密钥配制。设m是要加密的信息,任选两个大质数p与q,使得 ;选择正整数e,使得e与ψ(n) = (p-1)(q-1)互质。 利用辗转相除法,计算d,使得ed mod ψ(n) = ,即ed = kψ(n) +1,其中k为某一正整数。 公共密钥为(e,n),其中没有包含任何有关n的因子p和q的信息。 专用密钥为(d,n),其中d隐含有因子p和q的信息。 (2) 加密过程。使用公式(12-3)对明文m进行加密,得密文c。 (3) 解密过程。使用(d,n)对密文c进行解密,计算过程为: cd mod n = (me mod n)d mod n = med mod n = m(kψ(n) + 1) mod n = (mkψ(n) mod n)·(m mod n) = m m即为从密文c中恢复出来的明文。 例如,假设我们需要加密的明文代码信息为m = 14,则: 选择e = 3,p = 5,q = 11; 计算出n = p·q = 55,(p-1)(q-1) = 40,d = 27; 可以验证:(e·d) mod (p-1)(q-1) = 81 mod 40 = 1; 加密:c = me mod n = 143 mod 55 = 49; 解密:m = cd mod n = 4927 mod 55 = 14。 关于RSA算法,还有几点需要进一步说明: (1) 之所以要求e与(p-1)(q-1)互质,是为了保证 ed mod (p-1)(q-1)有解。 (2) 实际操作时,通常先选定e,再找出并确定质数p和q,使得计算出d后它们能满足公式(12-3)。常用的e有3和65537,这两个数都是费马序列中的数。费马序列是以17世纪法国数学家费马命名的序列。 (3) 破密者主要通过将n分解成p·q的办法来解密,不过目前还没有办法证明这是唯一的办法,也可能有更有效的方法,因为因数分解问题毕竟是一个不断发展的领域,自从RSA算法发明以来,人们已经发现了不少有效的因数分解方法,在一定程度上降低了破译RSA算法的难度,但至今还没有出现动摇RSA算法根基的方法。 (4) 在RSA算法中,n的长度是控制该算法可靠性的重要因素。目前129位、甚至155位的RSA加密勉强可解,但目前大多数加密程序均采用231、308甚至616位的RSA算法,因此RSA加密还是相当安全的。 据专家测算,攻破512位密钥RSA算法大约需要8个月时间;而一个768位密钥RSA算法在2004年之前无法攻破。现在,在技术上还无法预测攻破具有2048位密钥的RSA加密算法需要多少时间。美国Lotus公司悬赏1亿美元,奖励能破译其Domino产品中1024位密钥的RSA算法的人。从这个意义上说,遵照SET协议开发的电子商务系统是绝对安全的。

马铭芳 2019-12-02 01:26:59 0 浏览量 回答数 0

回答

拜托:老大,你的家庭作业也来问? 你自己学吧:下面是课文^ RSA加密算法 该算法于1977年由美国麻省理工学院MIT(Massachusetts Institute of Technology)的Ronal Rivest,Adi Shamir和Len Adleman三位年轻教授提出,并以三人的姓氏Rivest,Shamir和Adlernan命名为RSA算法。该算法利用了数论领域的一个事实,那就是虽然把两个大质数相乘生成一个合数是件十分容易的事情,但要把一个合数分解为两个质数却十分困难。合数分解问题目前仍然是数学领域尚未解决的一大难题,至今没有任何高效的分解方法。与Diffie-Hellman算法相比,RSA算法具有明显的优越性,因为它无须收发双方同时参与加密过程,且非常适合于电子函件系统的加密。 RSA算法可以表述如下: (1) 密钥配制。假设m是想要传送的报文,现任选两个很大的质数p与q,使得: (12-1); 选择正整数e,使得e与(p-1)(q-1)互质;这里(p-1)(q-1)表示二者相乘。再利用辗转相除法,求得d,使得: (12-2); 其中x mod y是整数求余运算,其结果是x整除以y后剩余的余数,如5 mod 3 = 2。 这样得: (e,n),是用于加密的公共密钥,可以公开出去;以及 (d,n),是用于解密的专用钥匙,必须保密。 (2) 加密过程。使用(e,n)对明文m进行加密,算法为: (12-3); 这里的c即是m加密后的密文。 (3) 解密过程。使用(d,n)对密文c进行解密,算法为: (12-4); 求得的m即为对应于密文c的明文。 RSA算法实现起来十分简捷,据说英国的一位程序员只用了3行Perl程序便实现了加密和解密运算。 RSA算法建立在正整数求余运算基础之上,同时还保持了指数运算的性质,这一点我们不难证明。例如: (12-5); (12-6)。 RSA公共密钥加密算法的核心是欧拉(Euler)函数ψ。对于正整数n,ψ(n)定义为小于n且与n互质的正整数的个数。例如ψ(6) = 2,这是因为小于6且与6互质的数有1和5共两个数;再如ψ(7) = 6,这是因为互质数有1,2,3,5,6共6个。 欧拉在公元前300多年就发现了ψ函数的一个十分有趣的性质,那就是对于任意小于n且与n互质的正整数m,总有mψ(n) mod n = 1。例如,5ψ(6) mod 6 = 52 mod 6= 25 mod 6 =1。也就是说,在对n求余的运算下,ψ(n)指数具有周期性。 当n很小时,计算ψ(n)并不难,使用穷举法即可求出;但当n很大时,计算ψ(n)就十分困难了,其运算量与判断n是否为质数的情况相当。不过在特殊情况下,利用ψ函数的两个性质,可以极大地减少运算量。 性质1:如果p是质数,则ψ(p) = (p-1)。 性质2:如果p与q均为质数,则ψ(p·q) = ψ(p)·ψ(q) = (p-1)(q-1)。 RSA算法正是注意到这两条性质来设计公共密钥加密系统的,p与q的乘积n可以作为公共密钥公布出来,而n的因子p和q则包含在专用密钥中,可以用来解密。如果解密需要用到ψ(n),收信方由于知道因子p和q,可以方便地算出ψ(n) = (p-1)(q-1)。如果窃听者窃得了n,但由于不知道它的因子p与q,则很难求出ψ(n)。这时,窃听者要么强行算出ψ(n),要么对n进行因数分解求得p与q。然而,我们知道,在大数范围内作合数分解是十分困难的,因此窃密者很难成功。 有了关于ψ函数的认识,我们再来分析RSA算法的工作原理: (1) 密钥配制。设m是要加密的信息,任选两个大质数p与q,使得 ;选择正整数e,使得e与ψ(n) = (p-1)(q-1)互质。 利用辗转相除法,计算d,使得ed mod ψ(n) = ,即ed = kψ(n) +1,其中k为某一正整数。 公共密钥为(e,n),其中没有包含任何有关n的因子p和q的信息。 专用密钥为(d,n),其中d隐含有因子p和q的信息。 (2) 加密过程。使用公式(12-3)对明文m进行加密,得密文c。 (3) 解密过程。使用(d,n)对密文c进行解密,计算过程为: cd mod n = (me mod n)d mod n = med mod n = m(kψ(n) + 1) mod n = (mkψ(n) mod n)·(m mod n) = m m即为从密文c中恢复出来的明文。 例如,假设我们需要加密的明文代码信息为m = 14,则: 选择e = 3,p = 5,q = 11; 计算出n = p·q = 55,(p-1)(q-1) = 40,d = 27; 可以验证:(e·d) mod (p-1)(q-1) = 81 mod 40 = 1; 加密:c = me mod n = 143 mod 55 = 49; 解密:m = cd mod n = 4927 mod 55 = 14。 关于RSA算法,还有几点需要进一步说明: (1) 之所以要求e与(p-1)(q-1)互质,是为了保证 ed mod (p-1)(q-1)有解。 (2) 实际操作时,通常先选定e,再找出并确定质数p和q,使得计算出d后它们能满足公式(12-3)。常用的e有3和65537,这两个数都是费马序列中的数。费马序列是以17世纪法国数学家费马命名的序列。 (3) 破密者主要通过将n分解成p·q的办法来解密,不过目前还没有办法证明这是唯一的办法,也可能有更有效的方法,因为因数分解问题毕竟是一个不断发展的领域,自从RSA算法发明以来,人们已经发现了不少有效的因数分解方法,在一定程度上降低了破译RSA算法的难度,但至今还没有出现动摇RSA算法根基的方法。 (4) 在RSA算法中,n的长度是控制该算法可靠性的重要因素。目前129位、甚至155位的RSA加密勉强可解,但目前大多数加密程序均采用231、308甚至616位的RSA算法,因此RSA加密还是相当安全的。 据专家测算,攻破512位密钥RSA算法大约需要8个月时间;而一个768位密钥RSA算法在2004年之前无法攻破。现在,在技术上还无法预测攻破具有2048位密钥的RSA加密算法需要多少时间。美国Lotus公司悬赏1亿美元,奖励能破译其Domino产品中1024位密钥的RSA算法的人。从这个意义上说,遵照SET协议开发的电子商务系统是绝对安全的。

云篆 2019-12-02 01:26:48 0 浏览量 回答数 0

回答

HTTPS基本原理 一、http为什么不安全。 http协议没有任何的加密以及身份验证的机制,非常容易遭遇窃听、劫持、篡改,因此会造成个人隐私泄露,恶意的流量劫持等严重的安全问题。 国外很多网站都支持了全站https,国内方面目前百度已经在年初完成了搜索的全站https,其他大型的网站也在跟进中,百度最先完成全站https的最大原因就是百度作为国内最大的流量入口,劫持也必然是首当其冲的,造成的有形的和无形的损失也就越大。关于流量劫持问题,我在另一篇文章中也有提到,基本上是互联网企业的共同难题,https也是目前公认的比较好的解决方法。但是https也会带来很多性能以及访问速度上的牺牲,很多互联网公司在做大的时候都会遇到这个问题:https成本高,速度又慢,规模小的时候在涉及到登录和交易用上就够了,做大以后遇到信息泄露和劫持,想整体换,代价又很高。 2、https如何保证安全 要解决上面的问题,就要引入加密以及身份验证的机制。 这时我们引入了非对称加密的概念,我们知道非对称加密如果是公钥加密的数据私钥才能解密,所以我只要把公钥发给你,你就可以用这个公钥来加密未来我们进行数据交换的秘钥,发给我时,即使中间的人截取了信息,也无法解密,因为私钥在我这里,只有我才能解密,我拿到你的信息后用私钥解密后拿到加密数据用的对称秘钥,通过这个对称密钥来进行后续的数据加密。除此之外,非对称加密可以很好的管理秘钥,保证每次数据加密的对称密钥都是不相同的。 但是这样似乎还不够,如果中间人在收到我的给你公钥后并没有发给你,而是自己伪造了一个公钥发给你,这是你把对称密钥用这个公钥加密发回经过中间人,他可以用私钥解密并拿到对称密钥,此时他在把此对称密钥用我的公钥加密发回给我,这样中间人就拿到了对称密钥,可以解密传输的数据了。为了解决此问题,我们引入了数字证书的概念。我首先生成公私钥,将公钥提供给相关机构(CA),CA将公钥放入数字证书并将数字证书颁布给我,此时我就不是简单的把公钥给你,而是给你一个数字证书,数字证书中加入了一些数字签名的机制,保证了数字证书一定是我给你的。 所以综合以上三点: 非对称加密算法(公钥和私钥)交换秘钥 + 数字证书验证身份(验证公钥是否是伪造的) + 利用秘钥对称加密算法加密数据 = 安全 3、https协议简介 为什么是协议简介呢。因为https涉及的东西实在太多了,尤其是一些加密算法,非常的复杂,对于这些算法面的东西就不去深入研究了,这部分仅仅是梳理一下一些关于https最基本的原理,为后面分解https的连接建立以及https优化等内容打下理论基础。 3.1 对称加密算法 对称加密是指加密和解密使用相同密钥的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信至关重要。 对称加密又分为两种模式:流加密和分组加密。 流加密是将消息作为位流对待,并且使用数学函数分别作用在每一个位上,使用流加密时,每加密一次,相同的明文位会转换成不同的密文位。流加密使用了密钥流生成器,它生成的位流与明文位进行异或,从而生成密文。现在常用的就是RC4,不过RC4已经不再安全,微软也建议网络尽量不要使用RC4流加密。 分组加密是将消息划分为若干位分组,这些分组随后会通过数学函数进行处理,每次一个分组。假设需要加密发生给对端的消息,并且使用的是64位的分组密码,此时如果消息长度为640位,就会被划分成10个64位的分组,每个分组都用一系列数学公式公式进行处理,最后得到10个加密文本分组。然后,将这条密文消息发送给对端。对端必须拥有相同的分组密码,以相反的顺序对10个密文分组使用前面的算法解密,最终得到明文的消息。比较常用的分组加密算法有DES、3DES、AES。其中DES是比较老的加密算法,现在已经被证明不安全。而3DES是一个过渡的加密算法,相当于在DES基础上进行三重运算来提高安全性,但其本质上还是和DES算法一致。而AES是DES算法的替代算法,是现在最安全的对称加密算法之一。分组加密算法除了算法本身外还存在很多种不同的运算方式,比如ECB、CBC、CFB、OFB、CTR等,这些不同的模式可能只针对特定功能的环境中有效,所以要了解各种不同的模式以及每种模式的用途。这个部分后面的文章中会详细讲。 对称加密算法的优、缺点: 优点:算法公开、计算量小、加密速度快、加密效率高。 缺点:(1)交易双方都使用同样钥匙,安全性得不到保证; (2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。 (3)能提供机密性,但是不能提供验证和不可否认性。 3.2 非对称加密算法 在非对称密钥交换算法出现以前,对称加密一个很大的问题就是不知道如何安全生成和保管密钥。非对称密钥交换过程主要就是为了解决这个问题,使得对称密钥的生成和使用更加安全。 密钥交换算法本身非常复杂,密钥交换过程涉及到随机数生成,模指数运算,空白补齐,加密,签名等操作。 常见的密钥交换算法有RSA,ECDHE,DH,DHE等算法。涉及到比较复杂的数学问题,下面就简单介绍下最经典的RSA算法。RSA:算法实现简单,诞生于1977年,历史悠久,经过了长时间的破解测试,安全性高。缺点就是需要比较大的素数也就是质数(目前常用的是2048位)来保证安全强度,很消耗CPU运算资源。RSA是目前唯一一个既能用于密钥交换又能用于证书签名的算法。我觉得RSA可以算是最经典的非对称加密算法了,虽然算法本身都是数学的东西,但是作为最经典的算法,我自己也花了点时间对算法进行了研究,后面会详细介绍。 非对称加密相比对称加密更加安全,但也存在两个明显缺点: 1,CPU计算资源消耗非常大。一次完全TLS握手,密钥交换时的非对称解密计算量占整个握手过程的90%以上。而对称加密的计算量只相当于非对称加密的0.1%,如果应用层数据也使用非对称加解密,性能开销太大,无法承受。 2,非对称加密算法对加密内容的长度有限制,不能超过公钥长度。比如现在常用的公钥长度是2048位,意味着待加密内容不能超过256个字节。 所以公钥加密(极端消耗CPU资源)目前只能用来作密钥交换或者内容签名,不适合用来做应用层传输内容的加解密。 3.3 身份认证 https协议中身份认证的部分是由数字证书来完成的,证书由公钥、证书主体、数字签名等内容组成,在客户端发起SSL请求后,服务端会将数字证书发给客户端,客户端会对证书进行验证(验证查看这张证书是否是伪造的。也就是公钥是否是伪造的),并获取用于秘钥交换的非对称密钥(获取公钥)。 数字证书有两个作用: 1,身份授权。确保浏览器访问的网站是经过CA验证的可信任的网站。 2,分发公钥。每个数字证书都包含了注册者生成的公钥(验证确保是合法的,非伪造的公钥)。在SSL握手时会通过certificate消息传输给客户端。 申请一个受信任的数字证书通常有如下流程: 1,终端实体(可以是一个终端硬件或者网站)生成公私钥和证书请求。 2,RA(证书注册及审核机构)检查实体的合法性。如果个人或者小网站,这一步不是必须的。 3,CA(证书签发机构)签发证书,发送给申请者。 4,证书更新到repository(负责数字证书及CRL内容存储和分发),终端后续从repository更新证书,查询证书状态等。 数字证书验证: 申请者拿到CA的证书并部署在网站服务器端,那浏览器发起握手接收到证书后,如何确认这个证书就是CA签发的呢。怎样避免第三方伪造这个证书。答案就是数字签名(digital signature)。数字签名是证书的防伪标签,目前使用最广泛的SHA-RSA(SHA用于哈希算法,RSA用于非对称加密算法)数字签名的制作和验证过程如下: 1,数字签名的签发。首先是使用哈希函数对待签名内容进行安全哈希,生成消息摘要,然后使用CA自己的私钥对消息摘要进行加密。 2,数字签名的校验。使用CA的公钥解密签名,然后使用相同的签名函数对待签名证书内容进行签名并和服务端数字签名里的签名内容进行比较,如果相同就认为校验成功。 需要注意的是: 1)数字签名签发和校验使用的密钥对是CA自己的公私密钥,跟证书申请者提交的公钥没有关系。 2)数字签名的签发过程跟公钥加密的过程刚好相反,即是用私钥加密,公钥解密。 3)现在大的CA都会有证书链,证书链的好处一是安全,保持根CA的私钥离线使用。第二个好处是方便部署和撤销,即如果证书出现问题,只需要撤销相应级别的证书,根证书依然安全。 4)根CA证书都是自签名,即用自己的公钥和私钥完成了签名的制作和验证。而证书链上的证书签名都是使用上一级证书的密钥对完成签名和验证的。 5)怎样获取根CA和多级CA的密钥对。它们是否可信。当然可信,因为这些厂商跟浏览器和操作系统都有合作,它们的公钥都默认装到了浏览器或者操作系统环境里。 3.4 数据完整性验证 数据传输过程中的完整性使用MAC算法来保证。为了避免网络中传输的数据被非法篡改,SSL利用基于MD5或SHA的MAC算法来保证消息的完整性。 MAC算法是在密钥参与下的数据摘要算法,能将密钥和任意长度的数据转换为固定长度的数据。发送者在密钥的参与下,利用MAC算法计算出消息的MAC值,并将其加在消息之后发送给接收者。接收者利用同样的密钥和MAC算法计算出消息的MAC值,并与接收到的MAC值比较。如果二者相同,则报文没有改变;否则,报文在传输过程中被修改,接收者将丢弃该报文。 由于MD5在实际应用中存在冲突的可能性比较大,所以尽量别采用MD5来验证内容一致性。SHA也不能使用SHA0和SHA1,中国山东大学的王小云教授在2005年就宣布破解了 SHA-1完整版算法。微软和google都已经宣布16年及17年之后不再支持sha1签名证书。MAC算法涉及到很多复杂的数学问题,这里就不多讲细节了。 专题二--【实际抓包分析】 抓包结果: fiddler: wireshark: 可以看到,百度和我们公司一样,也采用以下策略: (1)对于高版本浏览器,如果支持 https,且加解密算法在TLS1.0 以上的,都将所有 http请求重定向到 https请求 (2)对于https请求,则不变。 【以下只解读https请求】 1、TCP三次握手 可以看到,我们访问的是 http://www.baidu.com/ , 在初次建立 三次握手的时候, 用户是去 连接 8080端口的(因为公司办公网做了代理,因此,我们实际和代理机做的三次握手,公司代理机再帮我们去连接百度服务器的80端口) 2、CONNECT 建立 由于公司办公网访问非腾讯域名,会做代理,因此,在进行https访问的时候,我们的电脑需要和公司代理机做 " CONNECT " 连接(关于 " CONNECT " 连接, 可以理解为虽然后续的https请求都是公司代理机和百度服务器进行公私钥连接和对称秘钥通信,但是,有了 " CONNECT " 连接之后,可以认为我们也在直接和百度服务器进行公私钥连接和对称秘钥通信。 ) fiddler抓包结果: CONNECT之后, 后面所有的通信过程,可以看做是我们的机器和百度服务器在直接通信 3、 client hello 整个 Secure Socket Layer只包含了: TLS1.2 Record Layer内容 (1)随机数 在客户端问候中,有四个字节以Unix时间格式记录了客户端的协调世界时间(UTC)。协调世界时间是从1970年1月1日开始到当前时刻所经历的秒数。在这个例子中,0x2516b84b就是协调世界时间。在他后面有28字节的随机数( random_C ),在后面的过程中我们会用到这个随机数。 (2)SID(Session ID) 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 (3) 密文族(Cipher Suites): RFC2246中建议了很多中组合,一般写法是"密钥交换算法-对称加密算法-哈希算法,以“TLS_RSA_WITH_AES_256_CBC_SHA”为例: (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 浏览器支持的加密算法一般会比较多,而服务端会根据自身的业务情况选择比较适合的加密组合发给客户端。(比如综合安全性以及速度、性能等因素) (4) Server_name扩展:( 一般浏览器也支持 SNI(Server Name Indication)) 当我们去访问一个站点时,一定是先通过DNS解析出站点对应的ip地址,通过ip地址来访问站点,由于很多时候一个ip地址是给很多的站点公用,因此如果没有server_name这个字段,server是无法给与客户端相应的数字证书的,Server_name扩展则允许服务器对浏览器的请求授予相对应的证书。 还有一个很好的功能: SNI(Server Name Indication)。这个的功能比较好,为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。一句话简述它的工作原理就是,在连接到服务器建立SSL连接之前先发送要访问站点的域名(Hostname),这样服务器根据这个域名返回一个合适的CA证书。目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8已经内置这一功能,据说新版的nginx也支持SNI。) 4、 服务器回复(包括 Server Hello, Certificate, Certificate Status) 服务器在收到client hello后,会回复三个数据包,下面分别看一下: 1)Server Hello 1、我们得到了服务器的以Unix时间格式记录的UTC和28字节的随机数 (random_S)。 2、Seesion ID,服务端对于session ID一般会有三种选择 (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) : 1)恢复的session ID:我们之前在client hello里面已经提到,如果client hello里面的session ID在服务端有缓存,服务端会尝试恢复这个session; 2)新的session ID:这里又分两种情况,第一种是client hello里面的session ID是空值,此时服务端会给客户端一个新的session ID,第二种是client hello里面的session ID此服务器并没有找到对应的缓存,此时也会回一个新的session ID给客户端; 3)NULL:服务端不希望此session被恢复,因此session ID为空。 3、我们记得在client hello里面,客户端给出了21种加密族,而在我们所提供的21个加密族中,服务端挑选了“TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256”。 (a) TLS为协议,RSA为密钥交换的算法; (b) AES_256_CBC是对称加密算法(其中256是密钥长度,CBC是分组方式); (c) SHA是哈希的算法。 这就意味着服务端会使用ECDHE-RSA算法进行密钥交换,通过AES_128_GCM对称加密算法来加密数据,利用SHA256哈希算法来确保数据完整性。这是百度综合了安全、性能、访问速度等多方面后选取的加密组合。 2)Certificate 在前面的https原理研究中,我们知道为了安全的将公钥发给客户端,服务端会把公钥放入数字证书中并发给客户端(数字证书可以自签发,但是一般为了保证安全会有一个专门的CA机构签发),所以这个报文就是数字证书,4097 bytes就是证书的长度。 我们打开这个证书,可以看到证书的具体信息,这个具体信息通过抓包报文的方式不是太直观,可以在浏览器上直接看。 (点击 chrome 浏览器 左上方的 绿色 锁型按钮) 3)Server Hello Done 我们抓的包是将 Server Hello Done 和 server key exchage 合并的包: 4)客户端验证证书真伪性 客户端验证证书的合法性,如果验证通过才会进行后续通信,否则根据错误情况不同做出提示和操作,合法性验证包括如下: 证书链的可信性trusted certificate path,方法如前文所述; 证书是否吊销revocation,有两类方式离线CRL与在线OCSP,不同的客户端行为会不同; 有效期expiry date,证书是否在有效时间范围; 域名domain,核查证书域名是否与当前的访问域名匹配,匹配规则后续分析; 5)秘钥交换 这个过程非常复杂,大概总结一下: (1)首先,其利用非对称加密实现身份认证和密钥协商,利用非对称加密,协商好加解密数据的 对称秘钥(外加CA认证,防止中间人窃取 对称秘钥) (2)然后,对称加密算法采用协商的密钥对数据加密,客户端和服务器利用 对称秘钥 进行通信; (3)最后,基于散列函数验证信息的完整性,确保通信数据不会被中间人恶意篡改。 此时客户端已经获取全部的计算协商密钥需要的信息:两个明文随机数random_C和random_S与自己计算产生的Pre-master(由客户端和服务器的 pubkey生成的一串随机数),计算得到协商对称密钥; enc_key=Fuc(random_C, random_S, Pre-Master) 6)生成 session ticket 如果出于某种原因,对话中断,就需要重新握手。为了避免重新握手而造成的访问效率低下,这时候引入了session ID的概念, session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。 因为我们抓包的时候,是几个小时内第一次访问 https://www.baodu.com 首页,因此,这里并没有 Session ID. (稍会儿我们会看到隔了半分钟,第二次抓包就有这个Session ID) session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。 后续建立新的https会话,就可以利用 session ID 或者 session Tickets , 对称秘钥可以再次使用,从而免去了 https 公私钥交换、CA认证等等过程,极大地缩短 https 会话连接时间。 7) 利用对称秘钥传输数据 【半分钟后,再次访问百度】: 有这些大的不同: 由于服务器和浏览器缓存了 Session ID 和 Session Tickets,不需要再进行 公钥证书传递,CA认证,生成 对称秘钥等过程,直接利用半分钟前的 对称秘钥 加解密数据进行会话。 1)Client Hello 2)Server Hello

玄学酱 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

作者:谢科链接:https://www.zhihu.com/question/20899988/answer/24923424来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。先长话短说summarize一下:你需要学习基本的爬虫工作原理基本的http抓取工具,scrapyBloom Filter: Bloom Filters by Example如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说:说说当初写的一个集群爬下整个豆瓣的经验吧。1)首先你要明白爬虫怎样工作。想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。那么在python里怎么实现呢?很简单import Queueinitial_page = "http://www.renminribao.com"url_queue = Queue.Queue()seen = set()seen.insert(initial_page)url_queue.put(initial_page)while(True): #一直进行直到海枯石烂if url_queue.size()>0: current_url = url_queue.get() #拿出队例中第一个的url store(current_url) #把这个url代表的网页存储好 for next_url in extract_urls(current_url): #提取把这个url里链向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break写得已经很伪代码了。所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。2)效率如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。3)集群化抓取爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。代码于是写成#slave.pycurrent_url = request_from_master()to_send = []for next_url in extract_urls(current_url):to_send.append(next_url) store(current_url);send_to_master(to_send)master.pydistributed_queue = DistributedQueue()bf = BloomFilter()initial_pages = "www.renmingribao.com"while(True):if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url) 好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。但是如果附加上你需要这些后续处理,比如有效地存储(数据库应该怎样安排)有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...及时更新(预测这个网页多久会更新一次)

xuning715 2019-12-02 01:10:18 0 浏览量 回答数 0

回答

1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来。想抓取什么?这个由你来控制它咯。 比如它在抓取一个网页,在这个网中他发现了一条道路,其实就是指向网页的超链接,那么它就可以爬到另一张网上来获取数据。这样,整个连在一起的大网对这之蜘蛛来说触手可及,分分钟爬下来不是事儿。 2.浏览网页的过程 在用户浏览网页的过程中,我们可能会看到许多好看的图片,比如 http://image.baidu.com/ ,我们会看到几张的图片以及百度搜索框,这个过程其实就是用户输入网址之后,经过DNS服务器,找到服务器主机,向服务器发出一个请求,服务器经过解析之后,发送给用户的浏览器 HTML、JS、CSS 等文件,浏览器解析出来,用户便可以看到形形色色的图片了。 因此,用户看到的网页实质是由 HTML 代码构成的,爬虫爬来的便是这些内容,通过分析和过滤这些 HTML 代码,实现对图片、文字等资源的获取。 3.URL的含义 URL,即统一资源定位符,也就是我们说的网址,统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它。 URL的格式由三部分组成:①第一部分是协议(或称为服务方式)。②第二部分是存有该资源的主机IP地址(有时也包括端口号)。③第三部分是主机资源的具体地址,如目录和文件名等。爬虫爬取数据时必须要有一个目标的URL才可以获取数据,因此,它是爬虫获取数据的基本依据,准确理解它的含义对爬虫学习有很大帮助。 环境的配置 学习Python,当然少不了环境的配置,最初我用的是Notepad++,不过发现它的提示功能实在是太弱了,于是,在Windows下我用了 PyCharm,在Linux下我用了Eclipse for Python,另外还有几款比较优秀的IDE,大家可以参考这篇文章 学习Python推荐的IDE 。好的开发工具是前进的推进器,希望大家可以找到适合自己的IDE 作者:谢科链接:https://www.zhihu.com/question/20899988/answer/24923424来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 “入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。先长话短说summarize一下:你需要学习基本的爬虫工作原理基本的http抓取工具,scrapyBloom Filter: Bloom Filters by Example如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说:说说当初写的一个集群爬下整个豆瓣的经验吧。1)首先你要明白爬虫怎样工作。想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。那么在python里怎么实现呢?很简单import Queue initial_page = "http://www.renminribao.com" url_queue = Queue.Queue()seen = set() seen.insert(initial_page)url_queue.put(initial_page) while(True): #一直进行直到海枯石烂 if url_queue.size()>0: current_url = url_queue.get() #拿出队例中第一个的url store(current_url) #把这个url代表的网页存储好 for next_url in extract_urls(current_url): #提取把这个url里链向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break 写得已经很伪代码了。所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。2)效率如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。3)集群化抓取爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。代码于是写成#slave.py current_url = request_from_master()to_send = []for next_url in extract_urls(current_url): to_send.append(next_url) store(current_url);send_to_master(to_send) master.py distributed_queue = DistributedQueue()bf = BloomFilter() initial_pages = "www.renmingribao.com" while(True): if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url) 好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。但是如果附加上你需要这些后续处理,比如有效地存储(数据库应该怎样安排)有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...及时更新(预测这个网页多久会更新一次)

xuning715 2019-12-02 01:10:40 0 浏览量 回答数 0

问题

荆门开诊断证明-scc

游客5k2abgdj3m2ti 2019-12-01 22:09:00 1 浏览量 回答数 0

问题

从一道面试题谈谈一线大厂码农应该具备的基本能力 7月16日 【今日算法】

游客ih62co2qqq5ww 2020-07-22 13:45:47 118 浏览量 回答数 1

问题

“木兰抄袭Python”官方致歉!从“红芯”到“木兰”,国产套壳何时休?

茶什i 2020-01-20 12:00:45 1642 浏览量 回答数 1

问题

十大经典排序算法最强总结(内含代码实现)

游客pklijor6gytpx 2020-01-09 14:44:55 1240 浏览量 回答数 2
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播