• 关于

    多文件搜索怎么用

    的搜索结果

回答

Java读XML有两种 方式SAX和DOM,用SAX做流式处理读一条就输出一条,不要一次性全部load到内存再处理,不会有问题的。你用着两个当关键字搜索便知 ###### 引用来自“逝水fox”的答案 Java读XML有两种 方式SAX和DOM,用SAX做流式处理读一条就输出一条,不要一次性全部load到内存再处理,不会有问题的。你用着两个当关键字搜索便知 非常感谢你的回答,我想再问一下,如果用SAX来读的话,因为有100多万条记录,一条一条读速度会不会很慢?另外,如果是DOM的话,能不能一条一条的读啊?谢谢 ###### 才处理1G 的文件,没多大。这种情况用 SAX 没问题,用 DOM 就要看机器内存够不够大了。 ######建议用sax,java读取xml的库很多,直接用就行。第二个方案是直接解析xml文件,根据文件本身的特点进行字符串分析和处理。csv本身也是一种本地数据库格式,支持sql操作,你可以用第三方库进行操作,比如ado或支持csv的odbc驱动。######请问数据格式该怎么组织呢?对于DBLP数据集,我只要每条记录的作者,别的信息都不需要。但是很多记录有是多个作者合著,把它该写成什么格式才能让weka识别这是一条记录里的多个项啊?也就是说,怎么在csv文件里组织合著作者信息呢?###### 引用来自“jorneyr”的答案 才处理1G 的文件,没多大。这种情况用 SAX 没问题,用 DOM 就要看机器内存够不够大了。 麻烦问下,如果是用SAX的话,直接写个java的解析小程序是不是就可以了?这样的小程序是否能处理这个数据集呢? ###### 引用来自“gwgyk”的答案 引用来自“jorneyr”的答案 才处理1G 的文件,没多大。这种情况用 SAX 没问题,用 DOM 就要看机器内存够不够大了。 麻烦问下,如果是用SAX的话,直接写个java的解析小程序是不是就可以了?这样的小程序是否能处理这个数据集呢? 没问题 ######你好,请问你重新编译过weka吗?###### 引用来自“diemeng1119”的答案 你好,请问你重新编译过weka吗? 没有,才开始学着使用weka ###### spring batch###### 引用来自“Jeff_Lau_NUAA”的答案 spring batch 直接写个java小程序可以么?

kun坤 2020-06-07 22:31:35 0 浏览量 回答数 0

问题

怎么用grep在同一文件中,多次搜索不同关键字?

a123456678 2019-12-01 20:09:58 856 浏览量 回答数 1

问题

装svn后提交代码,怎么访问网站?

米汤 2019-12-01 21:02:54 7598 浏览量 回答数 3

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

问题

我想请问一个关于文件结构设计的问题,网上完全搜索不到这方面的东西:报错

kun坤 2020-06-06 16:50:27 0 浏览量 回答数 1

回答

ReOSS学堂,让你更懂阿里云存储持续更新 我刚才搞定了用Web上传功能以及文件列出。但是我现在又遇到了一个问题:怎样确保只能上传某些扩展名的文件呢?就是说,如果扩展名不正确就不让上传。还有,我可以在控制台里搜索文件名的吗?比如说把.js文件搜出来一次性删掉。 ------------------------- ReOSS学堂,让你更懂阿里云存储持续更新 我还希望能够实现一个AccessKey只能把文件上传到某个目录下面,别的目录都没有权利写入。并且确保只能上传某几种扩展名。 ------------------------- ReOSS学堂,让你更懂阿里云存储持续更新 我有一个问题:我在服务器上上传了很多文件,放在upload/2017-01-01 upload/2017-01-02 这样的目录中【就是按日期】,文件名是随机数字字母。upload目录下已经有近千个目录了(从2014年到现在,基本每天都会自动建一个新目录)。我想,怎样把upload目录下最新创建的20个目录列出来【就是最近20天里生成的文件夹】,然后呢,每个文件夹里会有几百个文件,怎样按上传时间的远近进行分页浏览,把里面几百个文件按每12个文件一页,列示出来?我怎么发现list功能里没有page呢?而且也不能够按LastModified的顺序进行逆排序。 ------------------------- ReOSS学堂,让你更懂阿里云存储持续更新 我刚才发现可以用Marker配合使用上一次返回的nextMarker来实现分页(其实只能用“下一页”功能,不能用第1页、第2页、第3页……)实际上只能用“下一页”功能,连“上一页”都不能用啊。郁闷。

樊潇洁 2019-12-02 01:59:10 0 浏览量 回答数 0

回答

回1楼junhan的帖子 WB版支持X3吗?另外没放到OSS以前的附件是怎么弄的? ------------------------- 回3楼junhan的帖子 感谢回复,你现在用着有没有什么BUG,改的源文件多不多? ------------------------- Re请问有没有DZ论坛用OSS的啊,用着咱样? 用DZ的人少吗? ------------------------- 回3楼junhan的帖子 老兄,我搜索了一晚上没找到SQL语句呢,请问你在那里看到的 ------------------------- 回7楼youmu286的帖子 感谢你,看来还是坛友们给力 在阿里后台提交工单,半天屁都问不出来一个,回答的都是我搜索的答案,实质问题解决不到

scdxs 2019-12-02 01:09:57 0 浏览量 回答数 0

问题

初识Hadoop:报错

kun坤 2020-06-07 00:57:43 0 浏览量 回答数 1

回答

oracle 的话貌似直接有个内存表。。。 ######貌似我理解错了 问的是怎么读取关联的记录速度快######还从没有遇到这种业务,你做###### lucene,"|电脑|计算机|Computer|PC|",分词问题会导致查询到多个,那就再对于每条记录,看是否存在"|XXX|",取到一行,拆分。数据库做这个读取,个人感觉是不太好的。 内存中再分一块区域,存放一些用得多的就是,这个可以设置个策略,就是缓存咯。###### 主要就是不知道这种词语和同义词之间的关联用什么来表示,如果要表示的话, 电脑:计算机 计算机:电脑 电脑:PC PC:电脑 这样要弄很多吗?怎么储存,存到文件里,读起来效率不知道怎么样,存到内存的话,TOMCAT  容易崩溃。######再来个“计算机:pc”,这样就是要一个网状结构了,查询会累死。###### 引用来自“杨焱”的答案 主要就是不知道这种词语和同义词之间的关联用什么来表示,如果要表示的话, 电脑:计算机 计算机:电脑 电脑:PC PC:电脑 这样要弄很多吗?怎么储存,存到文件里,读起来效率不知道怎么样,存到内存的话,TOMCAT  容易崩溃。 一行不就搞定了么,我上面写的。lucene不慢的好吧,有的时候快过数据库查询。。。 ######具体怎么做?lucene 用的同义词是 WordNet 还是什么NetWord,是英文的。中文的不知道有没有这种的东西,查了查,查不到。###### 查找之王 : hash. IO速度之王: 内存.(寄存器不合适....)   时间和空间,总要牺牲一样, 你要是PC, 电脑,computer只存一样的话,建立它们的关系肯定会有搜索或其他时间上的消耗. 个人倾向 牺牲空间比较合适.具体结构自己设计.哈哈.######网状结构改成线性结构。###### 词                    编号 pc                    001 计算机             001   电脑                001 输入任何一个词就可以根据编号找出它的同义词    

kun坤 2020-06-07 14:48:14 0 浏览量 回答数 0

回答

这个似乎是没办法。 看这段: 在图片上传部分,其实能玩的花样很少,但是编写代码所消耗的时间最多。现在我们再假设一种情景,如果我们的图片服务器前端采用Nginx,上传功能 用PHP实现,需要写的代码很少,但是性能如何呢,答案是很差。首先PHP接收到Nginx传过来的请求后,会根据http协议(RFC1867)分离出 其中的二进制文件,存储在一个临时目录里,等我们在PHP代码里使用$_FILES["upfile"][tmp_name]获取到文件后计算MD5再存 储到指定目录,在这个过程中有一次读文件一次写文件是多余的,其实最好的情况是我们拿到http请求中的二进制文件(最好在内存里),直接计算MD5然后存储。 于是我去阅读了PHP的源代码,自己实现了POST文件的解析,让http层直接和存储层连在了一起,提高了上传图片的性能。关于RFC1867的内容和PHP是如何处理的,感兴趣的读者可以去搜索了解下,这里推荐@Laruence的文章《PHP文件上传源码分析(RFC1867) 》。 除了POST请求这个例子,zimg代码中有多处都体现了这种“减少磁盘I/O,尽量在内存中读写”和“避免内存复制”的思想,一点点的积累,最终将会带来优秀的表现。 http://www.wingdevops.com/?p=291 ######只能针对原始请求写一个HTTP处理程序了,用nginx路由过来单独处理。######大哥出手果然不同,就你知道我在乱七八糟说了些啥,哈哈。######php:input//###### 引用来自“大灰狼wow”的评论php:input// 这个恰好对付不了上传文件的表单######这也算是一个思路,传文件的请求可以由应用程序发起纯POST的。###### 如果只是统计行数的话……为啥不直接用个flash解决 ######要的效果是文件传给PHP,PHP统计出结果。这个是需求。 我说的最优方案是针对这个需求的。###### 楼主理解错了! 上传文件第一步是 由 浏览器把 本地文件上传到服务器的临时文件夹,文件上传中,PHP操作文件的时候,文件已经传完了(此时文件在临时文件中),PHP只是把临时文件移动到上传目录,所以这个以web的方式来说是实现不了的。(根本原因是上传文件这个过程压根没PHP的事,传完了PHP才来做事) ######这位仁兄说得在理,看看其它看官怎么说。######html5不是允许将文件分片上传吗? 自己切割成5m一个的包呗。######mark######是这样,最近也遇到这样的问题,貌似php是无法读取到浏览器上传文件的文件流的,只能等浏览器把文件流传送到服务器,以临时文件保存,这时候php才去处理的。。。###### 引用来自“杨佰”的评论是这样,最近也遇到这样的问题,貌似php是无法读取到浏览器上传文件的文件流的,只能等浏览器把文件流传送到服务器,以临时文件保存,这时候php才去处理的。。。 这个问题可能要绕过php了

kun坤 2020-06-07 16:24:48 0 浏览量 回答数 0

问题

OSS存储利用内网CDN叠加多台5MECS网宽

betterhomechina 2019-12-01 21:04:17 14039 浏览量 回答数 5

问题

搜索引擎背后的经典数据结构和算法 6月10日 【今日算法】

游客ih62co2qqq5ww 2020-06-15 07:32:11 0 浏览量 回答数 0

回答

引用楼主看云看海于2015-07-13 17:14发表的 请教:有关二级域名和空间的问题,急 : 我在万网买了一个顶级域名和一个云主机。当时想做个导航站,现在做好了,感觉很单一。我用域名是ip077.com   。现在我想弄个论坛想用bbs.ip077.com为域名。然后空间还用我的这个主机。请问我要怎么操作。麻烦知道的亲,能帮帮忙,先谢谢啦 [url=http://bbs.aliyun.com/job.php?action=topost&tid=250675&pid=tpc][/url] 如果是虚机,绑定多域名后让首页程序判断然后跳转就OK 如果是服务器,无论是Linux或Windows都可以在WEB服务器配置工具或配置文件中设立多站点 亲动手搜索一下,资料介绍很多的 ------------------------- Re:回1楼梦丫头的帖子 引用第4楼看云看海于2015-07-14 22:03发表的 回1楼梦丫头的帖子 : 我的是xp系统。iis6.0怎么装都安不上,只能装5.1的。可5.1的无法添加网站。  还有是那么办法吗 [url=http://bbs.aliyun.com/job.php?action=topost&tid=250675&pid=674877][/url] 亲,你的网站用的是万网提供的服务器,与你使用XP还是苹果电脑度没有关系的 你不需要在自己电脑装IIS

宝商科技 2019-12-02 02:44:57 0 浏览量 回答数 0

问题

[精品问答]Java一百问第一期

问问小秘 2019-12-01 21:51:20 791 浏览量 回答数 1

回答

1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来。想抓取什么?这个由你来控制它咯。 比如它在抓取一个网页,在这个网中他发现了一条道路,其实就是指向网页的超链接,那么它就可以爬到另一张网上来获取数据。这样,整个连在一起的大网对这之蜘蛛来说触手可及,分分钟爬下来不是事儿。 2.浏览网页的过程 在用户浏览网页的过程中,我们可能会看到许多好看的图片,比如 http://image.baidu.com/ ,我们会看到几张的图片以及百度搜索框,这个过程其实就是用户输入网址之后,经过DNS服务器,找到服务器主机,向服务器发出一个请求,服务器经过解析之后,发送给用户的浏览器 HTML、JS、CSS 等文件,浏览器解析出来,用户便可以看到形形色色的图片了。 因此,用户看到的网页实质是由 HTML 代码构成的,爬虫爬来的便是这些内容,通过分析和过滤这些 HTML 代码,实现对图片、文字等资源的获取。 3.URL的含义 URL,即统一资源定位符,也就是我们说的网址,统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它。 URL的格式由三部分组成:①第一部分是协议(或称为服务方式)。②第二部分是存有该资源的主机IP地址(有时也包括端口号)。③第三部分是主机资源的具体地址,如目录和文件名等。爬虫爬取数据时必须要有一个目标的URL才可以获取数据,因此,它是爬虫获取数据的基本依据,准确理解它的含义对爬虫学习有很大帮助。 环境的配置 学习Python,当然少不了环境的配置,最初我用的是Notepad++,不过发现它的提示功能实在是太弱了,于是,在Windows下我用了 PyCharm,在Linux下我用了Eclipse for Python,另外还有几款比较优秀的IDE,大家可以参考这篇文章 学习Python推荐的IDE 。好的开发工具是前进的推进器,希望大家可以找到适合自己的IDE 作者:谢科链接:https://www.zhihu.com/question/20899988/answer/24923424来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 “入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。先长话短说summarize一下:你需要学习基本的爬虫工作原理基本的http抓取工具,scrapyBloom Filter: Bloom Filters by Example如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https://github.com/nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说:说说当初写的一个集群爬下整个豆瓣的经验吧。1)首先你要明白爬虫怎样工作。想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。那么在python里怎么实现呢?很简单import Queue initial_page = "http://www.renminribao.com" url_queue = Queue.Queue()seen = set() seen.insert(initial_page)url_queue.put(initial_page) while(True): #一直进行直到海枯石烂 if url_queue.size()>0: current_url = url_queue.get() #拿出队例中第一个的url store(current_url) #把这个url代表的网页存储好 for next_url in extract_urls(current_url): #提取把这个url里链向的url if next_url not in seen: seen.put(next_url) url_queue.put(next_url) else: break 写得已经很伪代码了。所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。2)效率如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。3)集群化抓取爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。代码于是写成#slave.py current_url = request_from_master()to_send = []for next_url in extract_urls(current_url): to_send.append(next_url) store(current_url);send_to_master(to_send) master.py distributed_queue = DistributedQueue()bf = BloomFilter() initial_pages = "www.renmingribao.com" while(True): if request == 'GET': if distributed_queue.size()>0: send(distributed_queue.get()) else: break elif request == 'POST': bf.put(request.url) 好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。但是如果附加上你需要这些后续处理,比如有效地存储(数据库应该怎样安排)有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...及时更新(预测这个网页多久会更新一次)

xuning715 2019-12-02 01:10:40 0 浏览量 回答数 0

问题

关于OSS用CDN分流,计费需注意的问题点

熊熊君 2019-12-01 21:36:09 8511 浏览量 回答数 4

问题

ECSlnmp安装/转移dedecms的诸多权限问题

黑色麦田 2019-12-01 21:44:08 5684 浏览量 回答数 0

问题

浅谈如何尽可能的避免cms网站被黑

妙正灰 2019-12-01 20:58:42 9069 浏览量 回答数 8

回答

最终我安装了高版本的centos,硬件那边就能够识别了.内核可能需要重新配置并编译一下,以选上你需要的网卡类型。搜索编译内核,可能需要分别执行(1)makemenuconfig这里选择需要支持网卡类型(2)makebzImage(3)makemodules(4)makemodules_install(5)makeinstall(6)reboot用错误信息可以搜索到问题答案,看看是不是适合你的情况dmesg报错有两种:1.dawload-0659NamespacelookupfailureAE_not_found2.psparse-0537methodparse/executionfailed[\](nodeffffffbo)ae_notfound你先执行dmesg命令看看启动过程是否有异常情况lspci|grepEthernet有显示,是不是就表明了内核已经支持此类型的网卡了呢??? sudolsmod看看你的mod是否被加载,没有的话手动sudoinsmod xxx.ko,再看看,还没有的话dmesg看看加载时报什么错,你的屏幕截图,没有make这个ko怎么生成的,一般源码都配置,编译,安装三步,直接makeinstall是不是不太对,具体请仔细看README,ko应该不是你编译出来的,所以符号错误,内核里的结构还有变量经常改来改去,所以包里已经编译出来的ko不一定能与你的内核匹配,还是自己编译源码吧,编译时注意.如果经常升级可能内核和头文件都存在多个,请确认你代码里指定的头文件包含路径与你当前使用的内核一致insmode1000e.ko或者是e100.ko报错:-1nuknownsymbolinmoduledmesg报错有两种:1.dawload-0659NamespacelookupfailureAE_not_found2.psparse-0537methodparse/executionfailed[\](nodeffffffbo)ae_notfound

爱吃鱼的程序员 2020-06-08 15:07:02 0 浏览量 回答数 0

问题

搜索引擎优化7大原理

aizhan 2019-12-01 21:00:37 6153 浏览量 回答数 0

问题

windows server服务器安装wincache加速php运行

ap2836i0b 2019-12-01 20:55:52 8776 浏览量 回答数 2

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

祁同伟 2019-12-02 01:27:09 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

青衫无名 2019-12-02 01:27:08 0 浏览量 回答数 0

回答

1.如果是一般的话只有32&162.本来在理论上不可破解,但好像被人破解了,你可以看下参考 目前网上的dm5破解都是通过建立数据库进行查询的方法进行破解的 好像还没有直接破解的工具,网上的都属于类似穷举的方法MD5简介MD5的全称是Message-digest Algorithm 5(信息-摘要算法),用于确保信息传输完整一致。在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc,的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和c语言源代码在Internet RFC 1321中有详细的描述( ,这是一份最权威的文档,由Ronald L. Rivest在1992年8月向IETF提交。 Rivest在1989年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--即没有重复。 为了加强算法的安全性,Rivest在1990年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。 尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有sha-1、RIPEMD以及Haval等。 一年以后,即1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD5完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。 Van oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。 令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。MD5破解工程权威网站 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。 MD5用的是哈希函数,在计算机网络中应用较多的不可逆加密算法有RSA公司发明的MD5算法和由美国国家技术标准研究所建议的安全散列算法SHA.[编辑本段]算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。为了让读者朋友对MD5的应用有个直观的认识,笔者以一个比方和一个实例来简要描述一下其工作过程: 大家都知道,地球上任何人都有自己独一无二的指纹,这常常成为公安机关鉴别罪犯身份最值得信赖的方法;与之类似,MD5就可以为任何文件(不管其大小、格式、数量)产生一个同样独一无二的“数字指纹”,如果任何人对文件做了任何改动,其MD5值也就是对应的“数字指纹”都会发生变化。 我们常常在某些软件下载站点的某软件信息中看到其MD5值,它的作用就在于我们可以在下载该软件后,对下载回来的文件用专门的软件(如Windows MD5 Check等)做一次MD5校验,以确保我们获得的文件与该站点提供的文件为同一文件。利用MD5算法来进行文件校验的方案被大量应用到软件下载站、论坛数据库、系统文件安全等方面。 MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫 readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现(两个MD5值不相同)。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。 所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码覆盖原来的就行了。 MD5还广泛用于操作系统的登陆认证上,如Unix、各类BSD系统登录密码、数字签名等诸多方。如在UNIX系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。MD5将任意长度的“字节串”映射为一个128bit的大整数,并且是通过该128bit反推原始字符串是困难的,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。所以,要遇到了md5密码的问题,比较好的办法是:你可以用这个系统中的md5()函数重新设一个密码,如admin,把生成的一串密码的Hash值覆盖原来的Hash值就行了。 正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。-------------------------就低频来说我认为是EX71好,如果你没有太高的要求EX71 吧 EX71是目前最好的 价钱也便宜 。最重要的是性价比超高。。。我就买了部

行者武松 2019-12-02 01:27:09 0 浏览量 回答数 0

问题

CentOS,RedHat5 中root使用Vi不能高亮显示的解决办法 : 配置报错 

kun坤 2020-06-04 11:52:45 5 浏览量 回答数 1

问题

最近WDCP面板出问题了给大家一点安全建议

xinlike 2019-12-01 21:13:52 8650 浏览量 回答数 13

回答

面试官心理分析 这个问题是肯定要问的,说白了,就是看你有没有实际干过 es,因为啥?其实 es 性能并没有你想象中那么好的。很多时候数据量大了,特别是有几亿条数据的时候,可能你会懵逼的发现,跑个搜索怎么一下 5~10s,坑爹了。第一次搜索的时候,是 5~10s,后面反而就快了,可能就几百毫秒。 你就很懵,每个用户第一次访问都会比较慢,比较卡么?所以你要是没玩儿过 es,或者就是自己玩玩儿 demo,被问到这个问题容易懵逼,显示出你对 es 确实玩儿的不怎么样? 面试题剖析 说实话,es 性能优化是没有什么银弹的,啥意思呢?就是不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。 性能优化的杀手锏——filesystem cache 你往 es 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 filesystem cache 里面去。 es 的搜索引擎严重依赖于底层的 filesystem cache,你如果给 filesystem cache 更多的内存,尽量让内存可以容纳所有的 idx segment file 索引数据文件,那么你搜索的时候就基本都是走内存的,性能会非常高。 性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1秒、5秒、10秒。但如果是走 filesystem cache,是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。 这里有个真实的案例。某个公司 es 节点有 3 台机器,每台机器看起来内存很多,64G,总内存就是 64 * 3 = 192G。每台机器给 es jvm heap 是 32G,那么剩下来留给 filesystem cache 的就是每台机器才 32G,总共集群里给 filesystem cache 的就是 32 * 3 = 96G 内存。而此时,整个磁盘上索引数据文件,在 3 台机器上一共占用了 1T 的磁盘容量,es 数据量是 1T,那么每台机器的数据量是 300G。这样性能好吗? filesystem cache 的内存才 100G,十分之一的数据可以放内存,其他的都在磁盘,然后你执行搜索操作,大部分操作都是走磁盘,性能肯定差。 归根结底,你要让 es 性能要好,最佳的情况下,就是你的机器的内存,至少可以容纳你的总数据量的一半。 根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 es 中就存少量的数据,就是你要用来搜索的那些索引,如果内存留给 filesystem cache 的是 100G,那么你就将索引数据控制在 100G 以内,这样的话,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在 1 秒以内。 比如说你现在有一行数据。id,name,age .... 30 个字段。但是你现在搜索,只需要根据 id,name,age 三个字段来搜索。如果你傻乎乎往 es 里写入一行数据所有的字段,就会导致说 90% 的数据是不用来搜索的,结果硬是占据了 es 机器上的 filesystem cache 的空间,单条数据的数据量越大,就会导致 filesystem cahce 能缓存的数据就越少。其实,仅仅写入 es 中要用来检索的少数几个字段就可以了,比如说就写入 es id,name,age 三个字段,然后你可以把其他的字段数据存在 mysql/hbase 里,我们一般是建议用 es + hbase 这么一个架构。 hbase 的特点是适用于海量数据的在线存储,就是对 hbase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。从 es 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 doc id,然后根据 doc id 到 hbase 里去查询每个 doc id 对应的完整的数据,给查出来,再返回给前端。 写入 es 的数据最好小于等于,或者是略微大于 es 的 filesystem cache 的内存容量。然后你从 es 检索可能就花费 20ms,然后再根据 es 返回的 id 去 hbase 里查询,查 20 条数据,可能也就耗费个 30ms,可能你原来那么玩儿,1T 数据都放 es,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms。 数据预热 假如说,哪怕是你就按照上述的方案去做了,es 集群中每个机器写入的数据量还是超过了 filesystem cache 一倍,比如说你写入一台机器 60G 数据,结果 filesystem cache 就 30G,还是有 30G 数据留在了磁盘上。 其实可以做数据预热。 举个例子,拿微博来说,你可以把一些大V,平时看的人很多的数据,你自己提前后台搞个系统,每隔一会儿,自己的后台系统去搜索一下热数据,刷到 filesystem cache 里去,后面用户实际上来看这个热数据的时候,他们就是直接从内存里搜索了,很快。 或者是电商,你可以将平时查看最多的一些商品,比如说 iphone 8,热数据提前后台搞个程序,每隔 1 分钟自己主动访问一次,刷到 filesystem cache 里去。 对于那些你觉得比较热的、经常会有人访问的数据,最好做一个专门的缓存预热子系统,就是对热数据每隔一段时间,就提前访问一下,让数据进入 filesystem cache 里面去。这样下次别人访问的时候,性能一定会好很多。 冷热分离 es 可以做类似于 mysql 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。最好是将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在 filesystem os cache 里,别让冷数据给冲刷掉。 你看,假设你有 6 台机器,2 个索引,一个放冷数据,一个放热数据,每个索引 3 个 shard。3 台机器放热数据 index,另外 3 台机器放冷数据 index。然后这样的话,你大量的时间是在访问热数据 index,热数据可能就占总数据量的 10%,此时数据量很少,几乎全都保留在 filesystem cache 里面了,就可以确保热数据的访问性能是很高的。但是对于冷数据而言,是在别的 index 里的,跟热数据 index 不在相同的机器上,大家互相之间都没什么联系了。如果有人访问冷数据,可能大量数据是在磁盘上的,此时性能差点,就 10% 的人去访问冷数据,90% 的人在访问热数据,也无所谓了。 document 模型设计 对于 MySQL,我们经常有一些复杂的关联查询。在 es 里该怎么玩儿,es 里面的复杂的关联查询尽量别用,一旦用了性能一般都不太好。 最好是先在 Java 系统里就完成关联,将关联好的数据直接写入 es 中。搜索的时候,就不需要利用 es 的搜索语法来完成 join 之类的关联搜索了。 document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es 能支持的操作就那么多,不要考虑用 es 做一些它不好操作的事情。如果真的有那种操作,尽量在 document 模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。 分页性能优化 es 的分页是较坑的,为啥呢?举个例子吧,假如你每页是 10 条数据,你现在要查询第 100 页,实际上是会把每个 shard 上存储的前 1000 条数据都查到一个协调节点上,如果你有个 5 个 shard,那么就有 5000 条数据,接着协调节点对这 5000 条数据进行一些合并、处理,再获取到最终第 100 页的 10 条数据。 分布式的,你要查第 100 页的 10 条数据,不可能说从 5 个 shard,每个 shard 就查 2 条数据,最后到协调节点合并成 10 条数据吧?你必须得从每个 shard 都查 1000 条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第 100 页的数据。你翻页的时候,翻的越深,每个 shard 返回的数据就越多,而且协调节点处理的时间越长,非常坑爹。所以用 es 做分页的时候,你会发现越翻到后面,就越是慢。 我们之前也是遇到过这个问题,用 es 作分页,前几页就几十毫秒,翻到 10 页或者几十页的时候,基本上就要 5~10 秒才能查出来一页数据了。 有什么解决方案吗? 不允许深度分页(默认深度分页性能很差) 跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差。 类似于 app 里的推荐商品不断下拉出来一页一页的 类似于微博中,下拉刷微博,刷出来一页一页的,你可以用 scroll api,关于如何使用,自行上网搜索。 scroll 会一次性给你生成所有数据的一个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动,获取下一页下一页这样子,性能会比上面说的那种分页性能要高很多很多,基本上都是毫秒级的。 但是,唯一的一点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场景。也就是说,你不能先进入第 10 页,然后去第 120 页,然后又回到第 58 页,不能随意乱跳页。所以现在很多产品,都是不允许你随意翻页的,app,也有一些网站,做的就是你只能往下拉,一页一页的翻。 初始化时必须指定 scroll 参数,告诉 es 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。 除了用 scroll api,你也可以用 search_after 来做,search_after 的思想是使用前一页的结果来帮助检索下一页的数据,显然,这种方式也不允许你随意翻页,你只能一页页往后翻。初始化时,需要使用一个唯一值的字段作为 sort 字段。 往期回顾: 【Java问答学堂】1期 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景? 【Java问答学堂】2期 如何保证消息队列的高可用? 【Java问答学堂】3期 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性? 【Java问答学堂】4期 如何保证消息的可靠性传输?(如何处理消息丢失的问题?) 【Java问答学堂】5期 如何保证消息的顺序性? 【Java问答学堂】6期 如何解决消息队列的延时以及过期失效问题? 【Java问答学堂】7期 如果让你写一个消息队列,该如何进行架构设计? 【Java问答学堂】8期 es 的分布式架构原理能说一下么(es 是如何实现分布式的啊)? 【Java问答学堂】9期 es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?

剑曼红尘 2020-04-28 14:17:05 0 浏览量 回答数 0

问题

【Java问答学堂】10期 es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?

剑曼红尘 2020-04-28 14:16:56 0 浏览量 回答数 1

问题

影响网页渲染的关键!

sunny夏筱 2019-12-01 21:52:37 7114 浏览量 回答数 1

回答

第一问简单 用队列就行 第二问 队列中间件或者原子锁 但这就不是同时了######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######你现在希望实现的就是有序嘛,那肯定要用锁才行,比如两个请求A和B同时发出,首先都需要获取锁,如果没获取成功,就等待,强制有序;存取都一样,只要保证了顺序,其他的都好说。######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######就是并发及队列的应用,这方面的技术都有相应的解决方案,可以去google搜索试试。######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######高并发问题嘛。队列 + 微秒时间######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??######gearman######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??###### 第一个比较好解决,业务部分不考虑并发和排序,在表中有2个字段,id(对于mysql用自增,对于oracle用sequence),另一个timestamp记录时间,但是要是原子性事务保证。排序的时候用 order by timestamp,id 就可以了。 第二个,在php这玩意下,不提供线程、并发控制和锁、CAS原子量,mysql没有实现sequence等等,所以你这个方案暂时看很难实现(当然手动锁表之类方式也能实现,但实现了也没啥价值 )。 ######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??###### 有很多数据拥有相同的时间标签, 这个时间标签怎么定的?在计算机里有真正的“同时”? 时间搞细点,再做个队列 ######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??###### 另外,“同时”“并列”这些概念是不对的,只要时间片足够小,先后顺序是一定存在的。 即使并发很大,竞争很激烈,但只有一个能够获得锁,所以看起来“同时”的东西,会变成锁机制下的硬性排序。  ######感谢你的回答!追问:1、向淘宝有时间搞秒杀活动,几十万用户同时发出请求,淘宝是怎样选出第一个请求的? 2、还有如果有几十万用户同时登陆一个网站,在PHP网站下,都是访问到LOGIN.PHP这个文件,这时这个LOGIN.PHP文件是什么样的工作状态??

爱吃鱼的程序员 2020-06-03 16:39:55 0 浏览量 回答数 0

回答

建议考虑下NoSql数据库和Map/Reduce架构(如Hadoop)######放在数据库里面###### 一个用户有上亿条数据? 还是在上亿条里面有所有用户。 ######就是解决大数据在java中的计算,及内存开销问题######分布式集群、搜索引擎和nosql ###### 对于这种上网日志行为的数据。如果把所有用户的数据放到同一个表格同一个数据库里面,说明设计上就有问题。 这种历史数据,完全可以采用分库分表策略(按用户的ID进行分库分表) ######换php######你确定 这样可以?######他说有1一条日志,不是1亿访问量,用个算法处理一下,再分文件存储 [0]###### 应该分层处理以及避免过早优化, 程序该怎么写就怎么写。 数据库自动cache或者加面对开发透明的cache,诸如mc/redis,适当修改逻辑,提高命中率就好。 不过要考虑网络传输成本,或者多几个节点来分流预热数据,尽量减少网络和磁盘开销。Java数据读取:http://edu.51cto.com/course/course_id-3283.html

kun坤 2020-06-06 23:14:47 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站