• 关于 主动同步是啥 的搜索结果

回答

同步异步是针对Server端而言,阻塞or非阻塞指的是Client端而言。 异步同步指的是服务提供者提供服务的方式,是立马服务,还是先接待,慢慢做,做完了,再通知你,客户无法立马得到服务。同步是 你要啥,当场就拿给你,异步是 你要啥,我记下了,我慢慢做,做好了,我通知你。 比如,饭店里一般都是异步的,你下单后,是先给你个号,做好了再通知你(通知有好几种方式,我放到你指定的位置,你自己去拿,一种是我通知你做好了,你自己过来拿,一种是自己主动不停的问:做好了吗?),不是立马为你服务。 阻塞非阻塞说的是服务需求者在得到服务反馈之前需不需要等待。 Reactor模型 一个Accptor线程,专门用来负责与Client建立连接,你可以类比到饭店门外的揽客的服务员,专门拉客进去消费的。 一个或多个EventLoop,用来负责接待顾客,你可以类比到饭店里服务接待顾客下单的服务员,你点菜,她会记录下来,然后把下单请求记录到系统,系统再把订单分派给厨师去异步处理。处理线程:就是真正干活的,类比饭店里的厨师。({江苏-互联网-零度} Reactor模型很多,可以是单线程模型、可以是多线程模型,也可以是主从多线程模型。)单线程模型就是同时只有一个厨师干活,干完了,下一个订单再派个厨师上来接着干。 来源:云原生后端社区

Atom 2020-04-25 14:46:58 0 浏览量 回答数 0

回答

Redis里的数据不立刻更新,等redis里数据自然过期。然后去DB里取,顺带重新set redis。这种用法被称作“Cache Aside”。好处是代码比较简单,坏处是会有一段时间DB和Redis里的数据不一致。这个不一致的时间取决于redis里数据设定的有效期,比如10min。但如果Redis里数据没设置有效期,这招就不灵了。2. 更新DB时总是不直接触碰DB,而是通过代码。而代码做的显式更新DB,然后马上del掉redis里的数据。在下次取数据时,模式就恢复到了上一条说的方式。这也算是一种Cache Aside的变体。这要做的好处是,数据的一致性会比较好,一般正常情况下,数据不一致的时间会在1s以下,对于绝大部分的场景是足够了。但是有极少几率,由于更新时序,下Redis数据会和DB不一致(这个有文章解释,这里不展开)。Cache Aside,就是“Cache”在DB访问的主流程上帮个忙1和2的做法常规上被称为“Cache“。而且因为1有更新不及时的问题,2有极端情况下数据会不一致的问题,所以常规Cache代码会把1+2组合起来,要求Redis里的数据必须有过期时间,并且不能太长,这样即便是不一致也能混过去。同时如果是主动对数据进行更新,Cache的数据更新也会比较及时。并且2并不一定总是行得通。比如OLTP的服务在前面是Cache+DB的模式,而数据是由后台管理系统来更新的,总是不会触碰OLTP服务,更不会动Cache。这时将Redis看作是存储也算是一种方案。就是:3. Redis里的数据总是不过期,但是有个背景更新任务(“定时执行的代码” 或者 “被队列驱动的代码)读取db,把最新的数据塞给Redis。这种做法将Redis看作是“存储”。访问者不知道背后的实际数据源,只知道Redis是唯一可以取的数据的地方。当实际数据源更新时,背景更新任务来将数据更新到Redis。这时还是会存在Redis和实际数据源不一致的问题。如果是定时任务,最长的不一致时长就是更新任务的执行间隔;如果是用类似于队列的方式来更新,那么不一致时间取决于队列产生和消费的延迟。常用的队列(或等价物)有Redis(怎么还是Redis),Kafka,AMQ,RMQ,binglog,log文件,阿里的canal等。Cache当作“存储”来用,访问者只看得到Cache这种做法还有一种变体Write Through,写入时直接写DB,DB把数据更新Cache,而读取时读Cache。Write Through + Cache当存储以上方式无论如何都会有一段时间Redis和DB会不一致。实践上,这个不一致时间短则几十ms,长可以到几十分钟。这种程度的一致性对于很多业务场景都已经足够了。很多时候,用户无法区分自己读取的是Redis还是DB,只能读取到其中的一个。这时数据看起来直觉上是没问题的就可以接受了。只要不出现,用户先看见了数据是A,然后看到数据是B,之后一刷新,又看到A的尴尬场景就行了。(这也可以部份解释为啥用经常使用共享式的Cache而不是本地Cache方案)。但对于有些业务,比如协作文档编辑,电商秒杀的扣库存,银行转账等,以上的做法就不够用了。解决办法也有两大类。第一种是不要用Redis,只用DB。或者更直接点说是“只要一个单点的数据源”。这样肯定就没有一致性问题,代价就是CAP中因为CP被满足,因此A被牺牲掉。这就是为啥银行一系统升级就要停服务的原因。当然实际上也有CAP兼顾,但是C要的强一点,A就得弱一点,但不至于完全牺牲掉的做法。这里不展开。另外一种保证一致性的做法就是用某种分布式协议一致性来做,大致可以归结到SAGA或者TCC - 这两种需要业务代码的大量配合。通过业务代码来补偿一致性。2PC, 3PC - 现实当中有XA协议。比如Ehcache是支持XA协议的。但是性能表现不佳,运维也麻烦,我比较少见到实际这么干的。基于Paxos或者Raft的分布式锁,然后对Redis和DB进行双写,但是除非客户端和服务器么次都去访问分布式锁,也会有一点点不一致的问题。这实际上相当于将多个地方的一致性控制交给了分布式锁的集中维护。这些做法实施复杂度和运维复杂度太高,以至于对于像Redis + DB这种场景基本上没人这么干。本质上大家用Redis一般也就是想做个Cache而已。这些方案通常被用到比如多数据中心数据一致性维护的系统中。综上,除了单点DB存储之外的方案,其一致性面临的窘境是要么,接受“最终一致”,但到底多久之后一致,不一致时表现怎么样,有很多种做法。分布式一致性有各种各样的模型,比如线性一致性、顺序一致性等。他们都是在“不一致”和“强一致”之间提供某种折衷。这些折衷大量应用于我们常见的诸多业务之中、如社交、IM、电商不触及钱的地方等要么,要求必须强一致。那么在分布式条件下就要牺牲A。比如访问一个Cache,Cache知道自己的数据不是最新的,就要和DB去Sync,Sync的过程中DB的数据还不能改。期间访问者要不收到一个错误“数据不同步,不能访问”,要不就卡在那里等着同步完成。个人以为,这还不如干脆就不要Cache,在维护强一致的同时,用其他方式来优化访问性能。最最后提醒下,本文有很多不严谨的地方,包括对Cache的形式总结其实只有典型的几种,实际可能的要多得多;再比如对一致性的介绍也非常粗浅,原因是为了让初学者有一点点概念,能看得进去(就这样,已经很长了,评论区里也有人表示接受不了)。对于分布式和其一致性的完整知识的学习需要耗费大量的精力,Good Luck & Best Wishes。 来源:云原生后端社区

保持可爱mmm 2020-04-22 10:23:06 0 浏览量 回答数 0

回答

分布式事务的解决方案有如下几种: 全局消息基于可靠消息服务的分布式事务TCC最大努力通知方案1:全局事务(DTP模型)全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色: AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。 TM:Transaction Manager 事务管理器 分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。RM:Resource Manager 资源管理器 能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。有没有基于DTP模型的分布式事务中间件?DTP模型有啥优缺点?方案2:基于可靠消息服务的分布式事务这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。 title 在系统A处理任务A前,首先向消息中间件发送一条消息消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。消息中间件持久化成功后,便向系统A返回一个确认应答;系统A收到确认应答后,则可以开始处理任务A;任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。上述过程可以得出如下几个结论: 消息中间件扮演者分布式事务协调者的角色。 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。 上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示: title 若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。此时系统又处于一致性状态,因为任务A和任务B都没有执行。 上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。 title 系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果: 提交 若获得的状态是“提交”,则将该消息投递给系统B。回滚 若获得的状态是“回滚”,则直接将条消息丢弃。处理中 若获得的状态是“处理中”,则继续等待。消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。 下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。 消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕! 如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。 title title 有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递? 这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。 不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢? 首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。 那么,消息中间件和下游系统之间为什么要采用同步通信呢? 异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。 方案3:最大努力通知(定期校对)最大努力通知也被称为定期校对,其实在方案二中已经包含,这里再单独介绍,主要是为了知识体系的完整性。这种方案也需要消息中间件的参与,其过程如下: title 上游系统在完成任务后,向消息中间件同步地发送一条消息,确保消息中间件成功持久化这条消息,然后上游系统可以去做别的事情了;消息中间件收到消息后负责将该消息同步投递给相应的下游系统,并触发下游系统的任务执行;当下游系统处理成功后,向消息中间件反馈确认应答,消息中间件便可以将该条消息删除,从而该事务完成。上面是一个理想化的过程,但在实际场景中,往往会出现如下几种意外情况: 消息中间件向下游系统投递消息失败上游系统向消息中间件发送消息失败对于第一种情况,消息中间件具有重试机制,我们可以在消息中间件中设置消息的重试次数和重试时间间隔,对于网络不稳定导致的消息投递失败的情况,往往重试几次后消息便可以成功投递,如果超过了重试的上限仍然投递失败,那么消息中间件不再投递该消息,而是记录在失败消息表中,消息中间件需要提供失败消息的查询接口,下游系统会定期查询失败消息,并将其消费,这就是所谓的“定期校对”。 如果重复投递和定期校对都不能解决问题,往往是因为下游系统出现了严重的错误,此时就需要人工干预。 对于第二种情况,需要在上游系统中建立消息重发机制。可以在上游系统建立一张本地消息表,并将 任务处理过程 和 向本地消息表中插入消息 这两个步骤放在一个本地事务中完成。如果向本地消息表插入消息失败,那么就会触发回滚,之前的任务处理结果就会被取消。如果这量步都执行成功,那么该本地事务就完成了。接下来会有一个专门的消息发送者不断地发送本地消息表中的消息,如果发送失败它会返回重试。当然,也要给消息发送者设置重试的上限,一般而言,达到重试上限仍然发送失败,那就意味着消息中间件出现严重的问题,此时也只有人工干预才能解决问题。 对于不支持事务型消息的消息中间件,如果要实现分布式事务的话,就可以采用这种方式。它能够通过重试机制+定期校对实现分布式事务,但相比于第二种方案,它达到数据一致性的周期较长,而且还需要在上游系统中实现消息重试发布机制,以确保消息成功发布给消息中间件,这无疑增加了业务系统的开发成本,使得业务系统不够纯粹,并且这些额外的业务逻辑无疑会占用业务系统的硬件资源,从而影响性能。 因此,尽量选择支持事务型消息的消息中间件来实现分布式事务,如RocketMQ。 方案4:TCC(两阶段型、补偿型)TCC即为Try Confirm Cancel,它属于补偿型分布式事务。顾名思义,TCC实现分布式事务一共有三个步骤: Try:尝试待执行的业务 这个过程并未执行业务,只是完成所有业务的一致性检查,并预留好执行所需的全部资源Confirm:执行业务 这个过程真正开始执行业务,由于Try阶段已经完成了一致性检查,因此本过程直接执行,而不做任何检查。并且在执行的过程中,会使用到Try阶段预留的业务资源。Cancel:取消执行的业务 若业务执行失败,则进入Cancel阶段,它会释放所有占用的业务资源,并回滚Confirm阶段执行的操作。下面以一个转账的例子来解释下TCC实现分布式事务的过程。 假设用户A用他的账户余额给用户B发一个100元的红包,并且余额系统和红包系统是两个独立的系统。 Try 创建一条转账流水,并将流水的状态设为交易中将用户A的账户中扣除100元(预留业务资源)Try成功之后,便进入Confirm阶段Try过程发生任何异常,均进入Cancel阶段Confirm 向B用户的红包账户中增加100元将流水的状态设为交易已完成Confirm过程发生任何异常,均进入Cancel阶段Confirm过程执行成功,则该事务结束Cancel 将用户A的账户增加100元将流水的状态设为交易失败在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来完成的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。 TCC全局事务必须基于RM本地事务来实现全局事务TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。 这一点不难理解,考虑一下如下场景: title 假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。 不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。 反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。 换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。 TCC事务框架应该提供Confirm/Cancel服务的幂等性保障一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。 在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。 既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。

1210119897362579 2019-12-02 00:14:25 0 浏览量 回答数 0

新用户福利专场,云服务器ECS低至96.9元/年

新用户福利专场,云服务器ECS低至96.9元/年

问题

支付宝小程序云训练营优秀学员提问来啦

问问小秘 2020-06-15 15:57:38 159 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播