• 关于 主动同步有什么用 的搜索结果

问题

什么是元数据

云栖大讲堂 2019-12-01 21:30:00 1152 浏览量 回答数 0

问题

如何保证消息队列的高可用?【Java问答学堂】20期

剑曼红尘 2020-05-18 11:21:10 2 浏览量 回答数 1

问题

【Java问答学堂】2期 如何保证消息队列的高可用?

剑曼红尘 2020-04-17 09:04:32 75 浏览量 回答数 2

企业特惠专场

万券齐发助力企业上云,低至2.2折起

回答

面试官心理分析 如果有人问到你 MQ 的知识,高可用是必问的。上一讲提到,MQ 会导致系统可用性降低。所以只要你用了 MQ,接下来问的一些要点肯定就是围绕着 MQ 的那些缺点怎么来解决了。 要是你傻乎乎的就干用了一个 MQ,各种问题从来没考虑过,那你就杯具了,面试官对你的感觉就是,只会简单使用一些技术,没任何思考,马上对你的印象就不太好了。这样的同学招进来要是做个 20k 薪资以内的普通小弟还凑合,要是做薪资 20k+ 的高工,那就惨了,让你设计个系统,里面肯定一堆坑,出了事故公司受损失,团队一起背锅。 面试题剖析 这个问题这么问是很好的,因为不能问你 Kafka 的高可用性怎么保证?ActiveMQ 的高可用性怎么保证?一个面试官要是这么问就显得很没水平,人家可能用的就是 RabbitMQ,没用过 Kafka,你上来问人家 Kafka 干什么?这不是摆明了刁难人么。 所以有水平的面试官,问的是 MQ 的高可用性怎么保证?这样就是你用过哪个 MQ,你就说说你对那个 MQ 的高可用性的理解。 RabbitMQ 的高可用性 RabbitMQ 是比较有代表性的,因为是基于主从(非分布式)做高可用性的,我们就以 RabbitMQ 为例子讲解第一种 MQ 的高可用性怎么实现。 RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。 单机模式 单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式。 普通集群模式(无高可用性) 普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。 这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个 queue 所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。 而且如果那个放 queue 的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让 RabbitMQ 落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个 queue 拉取数据。 所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个 queue 的读写操作。 镜像集群模式(高可用性) 这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。 那么如何开启这个镜像集群模式呢?其实很简单,RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。 这样的话,好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!第二,这么玩儿,不是分布式的,就没有扩展性可言了,如果某个 queue 负载很重,你加机器,新增的机器也包含了这个 queue 的所有数据,并没有办法线性扩展你的 queue。你想,如果这个 queue 的数据量很大,大到这个机器上的容量无法容纳了,此时该怎么办呢? Kafka 的高可用性 Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据。 这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的,每个机器就放一部分数据。 实际上 RabbitMQ 之类的,并不是分布式消息队列,它就是传统的消息队列,只不过提供了一些集群、HA(High Availability, 高可用性) 的机制而已,因为无论怎么玩儿,RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。 Kafka 0.8 以前,是没有 HA 机制的,就是任何一个 broker 宕机了,那个 broker 上的 partition 就废了,没法写也没法读,没有什么高可用性可言。 比如说,我们假设创建了一个 topic,指定其 partition 数量是 3 个,分别在三台机器上。但是,如果第二台机器宕机了,会导致这个 topic 的 1/3 的数据就丢了,因此这个是做不到高可用的。 Kafka 0.8 以后,提供了 HA 机制,就是 replica(复制品) 副本机制。每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。只能读写 leader?很简单,要是你可以随意读写每个 follower,那么就要 care 数据一致性的问题,系统复杂度太高,很容易出问题。Kafka 会均匀地将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。 这么搞,就有所谓的高可用性了,因为如果某个 broker 宕机了,没事儿,那个 broker上面的 partition 在其他机器上都有副本的。如果这个宕机的 broker 上面有某个 partition 的 leader,那么此时会从 follower 中重新选举一个新的 leader 出来,大家继续读写那个新的 leader 即可。这就有所谓的高可用性了。 写数据的时候,生产者就写 leader,然后 leader 将数据落地写本地磁盘,接着其他 follower 自己主动从 leader 来 pull 数据。一旦所有 follower 同步好数据了,就会发送 ack 给 leader,leader 收到所有 follower 的 ack 之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为) 消费的时候,只会从 leader 去读,但是只有当一个消息已经被所有 follower 都同步成功返回 ack 的时候,这个消息才会被消费者读到。 看到这里,相信你大致明白了 Kafka 是如何保证高可用机制的了,对吧?不至于一无所知,现场还能给面试官画画图。要是遇上面试官确实是 Kafka 高手,深挖了问,那你只能说不好意思,太深入的你没研究过。

剑曼红尘 2020-04-17 09:31:13 0 浏览量 回答数 0

回答

关于线程和线程池的学习,我们可以从以下几个方面入手: 第一,什么是线程,线程和进程的区别是什么 第二,线程中的基本概念,线程的生命周期 第三,单线程和多线程 第四,线程池的原理解析 第五,常见的几种线程池的特点以及各自的应用场景 一、 线程,程序执行流的最小执行单位,是行程中的实际运作单位,经常容易和进程这个概念混淆。那么,线程和进程究竟有什么区别呢?首先,进程是一个动态的过程,是一个活动的实体。简单来说,一个应用程序的运行就可以被看做是一个进程,而线程,是运行中的实际的任务执行者。可以说,进程中包含了多个可以同时运行的线程。 二、 线程的生命周期,线程的生命周期可以利用以下的图解来更好的理解: 第一步,是用new Thread()的方法新建一个线程,在线程创建完成之后,线程就进入了就绪(Runnable)状态,此时创建出来的线程进入抢占CPU资源的状态,当线程抢到了CPU的执行权之后,线程就进入了运行状态(Running),当该线程的任务执行完成之后或者是非常态的调用的stop()方法之后,线程就进入了死亡状态。而我们在图解中可以看出,线程还具有一个则色的过程,这是怎么回事呢?当面对以下几种情况的时候,容易造成线程阻塞,第一种,当线程主动调用了sleep()方法时,线程会进入则阻塞状态,除此之外,当线程中主动调用了阻塞时的IO方法时,这个方法有一个返回参数,当参数返回之前,线程也会进入阻塞状态,还有一种情况,当线程进入正在等待某个通知时,会进入阻塞状态。那么,为什么会有阻塞状态出现呢?我们都知道,CPU的资源是十分宝贵的,所以,当线程正在进行某种不确定时长的任务时,Java就会收回CPU的执行权,从而合理应用CPU的资源。我们根据图可以看出,线程在阻塞过程结束之后,会重新进入就绪状态,重新抢夺CPU资源。这时候,我们可能会产生一个疑问,如何跳出阻塞过程呢?又以上几种可能造成线程阻塞的情况来看,都是存在一个时间限制的,当sleep()方法的睡眠时长过去后,线程就自动跳出了阻塞状态,第二种则是在返回了一个参数之后,在获取到了等待的通知时,就自动跳出了线程的阻塞过程 三、 什么是单线程和多线程? 单线程,顾名思义即是只有一条线程在执行任务,这种情况在我们日常的工作学习中很少遇到,所以我们只是简单做一下了解 多线程,创建多条线程同时执行任务,这种方式在我们的日常生活中比较常见。但是,在多线程的使用过程中,还有许多需要我们了解的概念。比如,在理解上并行和并发的区别,以及在实际应用的过程中多线程的安全问题,对此,我们需要进行详细的了解。 并行和并发:在我们看来,都是可以同时执行多种任务,那么,到底他们二者有什么区别呢? 并发,从宏观方面来说,并发就是同时进行多种时间,实际上,这几种时间,并不是同时进行的,而是交替进行的,而由于CPU的运算速度非常的快,会造成我们的一种错觉,就是在同一时间内进行了多种事情 而并发,则是真正意义上的同时进行多种事情。这种只可以在多核CPU的基础下完成。 还有就是多线程的安全问题?为什么会造成多线程的安全问题呢?我们可以想象一下,如果多个线程同时执行一个任务,name意味着他们共享同一种资源,由于线程CPU的资源不一定可以被谁抢占到,这是,第一条线程先抢占到CPU资源,他刚刚进行了第一次操作,而此时第二条线程抢占到了CPU的资源,name,共享资源还来不及发生变化,就同时有两条数据使用了同一条资源,具体请参考多线程买票问题。这个问题我们应该如何解决那?   有造成问题的原因我们可以看出,这个问题主要的矛盾在于,CPU的使用权抢占和资源的共享发生了冲突,解决时,我们只需要让一条线程战歌了CPU的资源时,阻止第二条线程同时抢占CPU的执行权,在代码中,我们只需要在方法中使用同步代码块即可。在这里,同步代码块不多进行赘述,可以自行了解。 四,线程池 又以上介绍我们可以看出,在一个应用程序中,我们需要多次使用线程,也就意味着,我们需要多次创建并销毁线程。而创建并销毁线程的过程势必会消耗内存。而在Java中,内存资源是及其宝贵的,所以,我们就提出了线程池的概念。 线程池:Java中开辟出了一种管理线程的概念,这个概念叫做线程池,从概念以及应用场景中,我们可以看出,线程池的好处,就是可以方便的管理线程,也可以减少内存的消耗。 那么,我们应该如何创建一个线程池那?Java中已经提供了创建线程池的一个类:Executor 而我们创建时,一般使用它的子类:ThreadPoolExecutor. public ThreadPoolExecutor(int corePoolSize,                                int maximumPoolSize,                                long keepAliveTime,                                TimeUnit unit,                                BlockingQueue workQueue,                                ThreadFactory threadFactory,                                RejectedExecutionHandler handler)这是其中最重要的一个构造方法,这个方法决定了创建出来的线程池的各种属性,下面依靠一张图来更好的理解线程池和这几个参数: 又图中,我们可以看出,线程池中的corePoolSize就是线程池中的核心线程数量,这几个核心线程,只是在没有用的时候,也不会被回收,maximumPoolSize就是线程池中可以容纳的最大线程的数量,而keepAliveTime,就是线程池中除了核心线程之外的其他的最长可以保留的时间,因为在线程池中,除了核心线程即使在无任务的情况下也不能被清除,其余的都是有存活时间的,意思就是非核心线程可以保留的最长的空闲时间,而util,就是计算这个时间的一个单位,workQueue,就是等待队列,任务可以储存在任务队列中等待被执行,执行的是FIFIO原则(先进先出)。threadFactory,就是创建线程的线程工厂,最后一个handler,是一种拒绝策略,我们可以在任务满了知乎,拒绝执行某些任务。 线程池的执行流程又是怎样的呢? 有图我们可以看出,任务进来时,首先执行判断,判断核心线程是否处于空闲状态,如果不是,核心线程就先就执行任务,如果核心线程已满,则判断任务队列是否有地方存放该任务,若果有,就将任务保存在任务队列中,等待执行,如果满了,在判断最大可容纳的线程数,如果没有超出这个数量,就开创非核心线程执行任务,如果超出了,就调用handler实现拒绝策略。 handler的拒绝策略: 有四种:第一种AbortPolicy:不执行新任务,直接抛出异常,提示线程池已满              第二种DisCardPolicy:不执行新任务,也不抛出异常              第三种DisCardOldSetPolicy:将消息队列中的第一个任务替换为当前新进来的任务执行              第四种CallerRunsPolicy:直接调用execute来执行当前任务 五,四种常见的线程池: CachedThreadPool:可缓存的线程池,该线程池中没有核心线程,非核心线程的数量为Integer.max_value,就是无限大,当有需要时创建线程来执行任务,没有需要时回收线程,适用于耗时少,任务量大的情况。 SecudleThreadPool:周期性执行任务的线程池,按照某种特定的计划执行线程中的任务,有核心线程,但也有非核心线程,非核心线程的大小也为无限大。适用于执行周期性的任务。 SingleThreadPool:只有一条线程来执行任务,适用于有顺序的任务的应用场景。 FixedThreadPool:定长的线程池,有核心线程,核心线程的即为最大的线程数量,没有非核心线程 作者:weixin_40271838 来源:CSDN 原文:https://blog.csdn.net/weixin_40271838/article/details/79998327 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:56:43 0 浏览量 回答数 0

问题

安卓与iOS百问,开发者系统指南

yq传送门 2019-12-01 20:14:48 27317 浏览量 回答数 26

问题

云计算自助服务开篇

阿里云支持与服务 2019-12-01 21:01:52 72890 浏览量 回答数 48

问题

云计算自助服务开篇

阿里云支持与服务 2019-12-01 21:09:49 58838 浏览量 回答数 44

问题

支付宝小程序云训练营优秀学员提问来啦

问问小秘 2020-06-15 15:57:38 159 浏览量 回答数 1

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

问题

阅读HBase源码的正确姿势建议

pandacats 2019-12-23 10:02:00 1 浏览量 回答数 0

回答

服务器和操作系统 1、主板的两个芯片分别是什么芯片,具备什么作用? 北桥:离CPU近,负责CPU、内存、显卡之间的通信。 南桥:离CPU远,负责I/O总线之间的通信。 2、什么是域和域控制器? 将网络中的计算机逻辑上组织到一起,进行集中管理,这种集中管理的环境称为域。 在域中,至少有一台域控制器,域控制器中保存着整个域的用户账号和安全数据,安装了活动目录的一台计算机为域控制器,域管理员可以控制每个域用户的行为。 3、现在有300台虚拟机在云上,你如何进行管理? 1)设定堡垒机,使用统一账号登录,便于安全与登录的考量。 2)使用ansiable、puppet进行系统的统一调度与配置的统一管理。 3)建立简单的服务器的系统、配置、应用的cmdb信息管理。便于查阅每台服务器上的各种信息记录。 4、简述raid0 raid1 raid5 三种工作模式的工作原理及特点 磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID),把硬盘整合成一个大磁盘,在大磁盘上再分区,存放数据、多块盘放在一起可以有冗余(备份)。 RAID整合方式有很多,常用的:0 1 5 10 RAID 0:可以是一块盘和N个盘组合 优点:读写快,是RAID中最好的 缺点:没有冗余,一块坏了数据就全没有了 RAID 1:只能2块盘,盘的大小可以不一样,以小的为准 10G+10G只有10G,另一个做备份。它有100%的冗余,缺点:浪费资源,成本高 RAID 5 :3块盘,容量计算10*(n-1),损失一块盘 特点:读写性能一般,读还好一点,写不好 总结: 冗余从好到坏:RAID1 RAID10 RAID 5 RAID0 性能从好到坏:RAID0 RAID10 RAID5 RAID1 成本从低到高:RAID0 RAID5 RAID1 RAID10 5、linux系统里,buffer和cache如何区分? buffer和cache都是内存中的一块区域,当CPU需要写数据到磁盘时,由于磁盘速度比较慢,所以CPU先把数据存进buffer,然后CPU去执行其他任务,buffer中的数据会定期写入磁盘;当CPU需要从磁盘读入数据时,由于磁盘速度比较慢,可以把即将用到的数据提前存入cache,CPU直接从Cache中拿数据要快的多。 6、主机监控如何实现? 数据中心可以用zabbix(也可以是nagios或其他)监控方案,zabbix图形界面丰富,也自带很多监控模板,特别是多个分区、多个网卡等自动发现并进行监控做得非常不错,不过需要在每台客户机(被监控端)安装zabbix agent。 如果在公有云上,可以使用云监控来监控主机的运行。 网络 7、主机与主机之间通讯的三要素有什么? IP地址、子网掩码、IP路由 8、TCP和UDP都可以实现客户端/服务端通信,这两个协议有何区别? TCP协议面向连接、可靠性高、适合传输大量数据;但是需要三次握手、数据补发等过程,耗时长、通信延迟大。 UDP协议面向非连接、可靠性低、适合传输少量数据;但是连接速度快、耗时短、延迟小。 9、简述TCP协议三次握手和四次分手以及数据传输过程 三次握手: (1)当主机A想同主机B建立连接,主机A会发送SYN给主机B,初始化序列号seq=x。主机A通过向主机B发送SYS报文段,实现从主机A到主机B的序列号同步,即确定seq中的x。 (2)主机B接收到报文后,同意与A建立连接,会发送SYN、ACK给主机A。初始化序列号seq=y,确认序号ack=x+1。主机B向主机A发送SYN报文的目的是实现从主机B到主机A的序列号同步,即确定seq中的y。 (3)主机A接收到主机B发送过来的报文后,会发送ACK给主机B,确认序号ack=y+1,建立连接完成,传输数据。 四次分手: (1)当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段,初始化序号seq=x。 (2)主机B收到这个FIN报文段,并不立即用FIN报文段回复主机A,而是想主机A发送一个确认序号ack=x+1,同时通知自己的应用程序,对方要求关闭连接(先发ack是防止主机A重复发送FIN报文)。 (3)主机B发送完ack确认报文后,主机B 的应用程序通知TCP我要关闭连接,TCP接到通知后会向主机A发送一个带有FIN附加标记的报文段,初始化序号seq=x,ack=x+1。 (4)主机A收到这个FIN报文段,向主机B发送一个ack确认报文,ack=y+1,表示连接彻底释放。 10、SNAT和DNAT的区别 SNAT:内部地址要访问公网上的服务时(如web访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换称为SNAT,主要用于内部共享IP访问外部。 DNAT:当内部需要提供对外服务时(如对外发布web网站),外部地址发起主动连接,由路由器或者防火墙上的网关接收这个连接,然后将连接转换到内部,此过程是由带有公网IP的网关替代内部服务来接收外部的连接,然后在内部做地址转换,此转换称为DNAT,主要用于内部服务对外发布。 数据库 11、叙述数据的强一致性和最终一致性 强一致性:在任何时刻所有的用户或者进程查询到的都是最近一次成功更新的数据。强一致性是程度最高一致性要求,也是最难实现的。关系型数据库更新操作就是这个案例。 最终一致性:和强一致性相对,在某一时刻用户或者进程查询到的数据可能都不同,但是最终成功更新的数据都会被所有用户或者进程查询到。当前主流的nosql数据库都是采用这种一致性策略。 12、MySQL的主从复制过程是同步的还是异步的? 主从复制的过程是异步的复制过程,主库完成写操作并计入binlog日志中,从库再通过请求主库的binlog日志写入relay中继日志中,最后再执行中继日志的sql语句。 **13、MySQL主从复制的优点 ** 如果主服务器出现问题,可以快速切换到从服务器提供的服务; 可以在从服务器上执行查询操作,降低主服务器的访问压力; 可以在从服务器上执行备份,以避免备份期间影响主服务器的服务。 14、redis有哪些数据类型? (一)String 最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。 (二)hash 这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。 (三)list 使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。 (四)set 因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。 另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。 (五)Zset Zset多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。 15、叙述分布式数据库及其使用场景? 分布式数据库应该是数据访问对应用透明,每个分片默认采用主备架构,提供灾备、恢复、监控、不停机扩容等整套解决方案,适用于TB或PB级的海量数据场景。 应用 16、Apache、Nginx、Lighttpd都有哪些特点? Apache特点:1)几乎可以运行在所有的计算机平台上;2)支持最新的http/1.1协议;3)简单而且强有力的基于文件的配置(httpd.conf);4)支持通用网关接口(cgi);5)支持虚拟主机;6)支持http认证,7)集成perl;8)集成的代理服务器;9)可以通过web浏览器监视服务器的状态,可以自定义日志;10)支持服务器端包含命令(ssi);11)支持安全socket层(ssl);12)具有用户绘画过程的跟踪能力;13)支持fastcgi;14)支持java servlets Nginx特点:nginx是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器,处理静态文件,索引文件以及自动索引,无缓存的反向代理加速,简单的负载均衡和容错,具有很高的稳定性,支持热部署。 Lighttpd特点:是一个具有非常低的内存开销,CPU占用率低,效能好,以及丰富的模块,Lighttpd是众多opensource轻量级的webserver中较为优秀的一个,支持fastcgi,cgi,auth,输出压缩,url重写,alias等重要功能。 17、LVS、NGINX、HAPROXY的优缺点? LVS优点:具有很好的可伸缩性、可靠性、可管理性。抗负载能力强、对内存和CPU资源消耗比较低。工作在四层上,仅作分发,所以它几乎可以对所有的应用做负载均衡,且没有流量的产生,不会受到大流量的影响。 LVS缺点:软件不支持正则表达式处理,不能做动静分离,如果web应用比较庞大,LVS/DR+KEEPALIVED实施和管理比较复杂。相对而言,nginx和haproxy就简单得多。 nginx优点:工作在七层之上,可以针对http应用做一些分流的策略。比如针对域名、目录结构。它的正则规则比haproxy更为强大和灵活。对网络稳定性依赖非常小。理论上能PING就能进行负载均衡。配置和测试简单,可以承担高负载压力且稳定。nginx可以通过端口检测到服务器内部的故障。比如根据服务器处理网页返回的状态码、超时等。并且可以将返回错误的请求重新发送给另一个节点,同时nginx不仅仅是负载均衡器/反向代理软件。同时也是功能强大的web服务器,可以作为中层反向代理、静态网页和图片服务器使用。 nginx缺点:不支持URL检测,仅支持HTTP和EMAIL,对session的保持,cookie的引导能力相对欠缺。 Haproxy优点:支持虚拟主机、session的保持、cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。支持TCP协议的负载均衡;单纯从效率上讲比nginx更出色,且负载策略非常多。 aproxy缺点:扩展性能差;添加新功能很费劲,对不断扩展的新业务很难对付。 18、什么是中间件?什么是jdk? 中间件介绍: 中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源 中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯 是连接两个独立应用程序或独立系统的软件。相连接的系统,即使它们具有不同的接口 但通过中间件相互之间仍能交换信息。执行中间件的一个关键途径是信息传递 通过中间件,应用程序可以工作于多平台或OS环境。 jdk:jdk是Java的开发工具包 它是一种用于构建在 Java 平台上发布的应用程序、applet 和组件的开发环境 19、日志收集、日志检索、日志展示的常用工具有哪些? ELK或EFK。 Logstash:数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。 Kibana:可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。 Elasticsearch:分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。 Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,逐渐取代其位置。 20、什么是蓝绿发布和灰度发布? 蓝绿:旧版本-新版本 灰度:新旧版本各占一定比例,比例可自定义 两种发布都通过devops流水线实现

剑曼红尘 2020-03-23 15:51:44 0 浏览量 回答数 0

回答

分布式事务的解决方案有如下几种: 全局消息基于可靠消息服务的分布式事务TCC最大努力通知方案1:全局事务(DTP模型)全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色: AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。 TM:Transaction Manager 事务管理器 分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。RM:Resource Manager 资源管理器 能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。有没有基于DTP模型的分布式事务中间件?DTP模型有啥优缺点?方案2:基于可靠消息服务的分布式事务这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。 title 在系统A处理任务A前,首先向消息中间件发送一条消息消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。消息中间件持久化成功后,便向系统A返回一个确认应答;系统A收到确认应答后,则可以开始处理任务A;任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。上述过程可以得出如下几个结论: 消息中间件扮演者分布式事务协调者的角色。 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。 上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示: title 若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。此时系统又处于一致性状态,因为任务A和任务B都没有执行。 上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。 title 系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果: 提交 若获得的状态是“提交”,则将该消息投递给系统B。回滚 若获得的状态是“回滚”,则直接将条消息丢弃。处理中 若获得的状态是“处理中”,则继续等待。消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。 下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。 消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕! 如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。 title title 有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递? 这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。 不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢? 首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。 那么,消息中间件和下游系统之间为什么要采用同步通信呢? 异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。 方案3:最大努力通知(定期校对)最大努力通知也被称为定期校对,其实在方案二中已经包含,这里再单独介绍,主要是为了知识体系的完整性。这种方案也需要消息中间件的参与,其过程如下: title 上游系统在完成任务后,向消息中间件同步地发送一条消息,确保消息中间件成功持久化这条消息,然后上游系统可以去做别的事情了;消息中间件收到消息后负责将该消息同步投递给相应的下游系统,并触发下游系统的任务执行;当下游系统处理成功后,向消息中间件反馈确认应答,消息中间件便可以将该条消息删除,从而该事务完成。上面是一个理想化的过程,但在实际场景中,往往会出现如下几种意外情况: 消息中间件向下游系统投递消息失败上游系统向消息中间件发送消息失败对于第一种情况,消息中间件具有重试机制,我们可以在消息中间件中设置消息的重试次数和重试时间间隔,对于网络不稳定导致的消息投递失败的情况,往往重试几次后消息便可以成功投递,如果超过了重试的上限仍然投递失败,那么消息中间件不再投递该消息,而是记录在失败消息表中,消息中间件需要提供失败消息的查询接口,下游系统会定期查询失败消息,并将其消费,这就是所谓的“定期校对”。 如果重复投递和定期校对都不能解决问题,往往是因为下游系统出现了严重的错误,此时就需要人工干预。 对于第二种情况,需要在上游系统中建立消息重发机制。可以在上游系统建立一张本地消息表,并将 任务处理过程 和 向本地消息表中插入消息 这两个步骤放在一个本地事务中完成。如果向本地消息表插入消息失败,那么就会触发回滚,之前的任务处理结果就会被取消。如果这量步都执行成功,那么该本地事务就完成了。接下来会有一个专门的消息发送者不断地发送本地消息表中的消息,如果发送失败它会返回重试。当然,也要给消息发送者设置重试的上限,一般而言,达到重试上限仍然发送失败,那就意味着消息中间件出现严重的问题,此时也只有人工干预才能解决问题。 对于不支持事务型消息的消息中间件,如果要实现分布式事务的话,就可以采用这种方式。它能够通过重试机制+定期校对实现分布式事务,但相比于第二种方案,它达到数据一致性的周期较长,而且还需要在上游系统中实现消息重试发布机制,以确保消息成功发布给消息中间件,这无疑增加了业务系统的开发成本,使得业务系统不够纯粹,并且这些额外的业务逻辑无疑会占用业务系统的硬件资源,从而影响性能。 因此,尽量选择支持事务型消息的消息中间件来实现分布式事务,如RocketMQ。 方案4:TCC(两阶段型、补偿型)TCC即为Try Confirm Cancel,它属于补偿型分布式事务。顾名思义,TCC实现分布式事务一共有三个步骤: Try:尝试待执行的业务 这个过程并未执行业务,只是完成所有业务的一致性检查,并预留好执行所需的全部资源Confirm:执行业务 这个过程真正开始执行业务,由于Try阶段已经完成了一致性检查,因此本过程直接执行,而不做任何检查。并且在执行的过程中,会使用到Try阶段预留的业务资源。Cancel:取消执行的业务 若业务执行失败,则进入Cancel阶段,它会释放所有占用的业务资源,并回滚Confirm阶段执行的操作。下面以一个转账的例子来解释下TCC实现分布式事务的过程。 假设用户A用他的账户余额给用户B发一个100元的红包,并且余额系统和红包系统是两个独立的系统。 Try 创建一条转账流水,并将流水的状态设为交易中将用户A的账户中扣除100元(预留业务资源)Try成功之后,便进入Confirm阶段Try过程发生任何异常,均进入Cancel阶段Confirm 向B用户的红包账户中增加100元将流水的状态设为交易已完成Confirm过程发生任何异常,均进入Cancel阶段Confirm过程执行成功,则该事务结束Cancel 将用户A的账户增加100元将流水的状态设为交易失败在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来完成的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。 TCC全局事务必须基于RM本地事务来实现全局事务TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。 这一点不难理解,考虑一下如下场景: title 假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。 不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。 反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。 换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。 TCC事务框架应该提供Confirm/Cancel服务的幂等性保障一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。 在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。 既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。

1210119897362579 2019-12-02 00:14:25 0 浏览量 回答数 0

问题

对症下药:Tomcat停机过程分析与线程处理方法

驻云科技 2019-12-01 21:36:46 4001 浏览量 回答数 0

问题

【一周热点】送给程序员终身受用的建议

问问小秘 2019-12-01 22:05:12 4740 浏览量 回答数 3

问题

使用HTTPDNS时该如何API访问

猫饭先生 2019-12-01 21:51:27 1353 浏览量 回答数 0

回答

重试作用: 对于重试是有场景限制的,不是什么场景都适合重试,比如参数校验不合法、写操作等(要考虑写是否幂等)都不适合重试。 远程调用超时、网络突然中断可以重试。在微服务治理框架中,通常都有自己的重试与超时配置,比如dubbo可以设置retries=1,timeout=500调用失败只重试1次,超过500ms调用仍未返回则调用失败。 比如外部 RPC 调用,或者数据入库等操作,如果一次操作失败,可以进行多次重试,提高调用成功的可能性。 优雅的重试机制要具备几点: 无侵入:这个好理解,不改动当前的业务逻辑,对于需要重试的地方,可以很简单的实现 可配置:包括重试次数,重试的间隔时间,是否使用异步方式等 通用性:最好是无改动(或者很小改动)的支持绝大部分的场景,拿过来直接可用 优雅重试共性和原理: 正常和重试优雅解耦,重试断言条件实例或逻辑异常实例是两者沟通的媒介。 约定重试间隔,差异性重试策略,设置重试超时时间,进一步保证重试有效性以及重试流程稳定性。 都使用了命令设计模式,通过委托重试对象完成相应的逻辑操作,同时内部封装实现重试逻辑。 Spring-tryer和guava-tryer工具都是线程安全的重试,能够支持并发业务场景的重试逻辑正确性。 优雅重试适用场景: 功能逻辑中存在不稳定依赖场景,需要使用重试获取预期结果或者尝试重新执行逻辑不立即结束。比如远程接口访问,数据加载访问,数据上传校验等等。 对于异常场景存在需要重试场景,同时希望把正常逻辑和重试逻辑解耦。 对于需要基于数据媒介交互,希望通过重试轮询检测执行逻辑场景也可以考虑重试方案。 优雅重试解决思路: 切面方式 这个思路比较清晰,在需要添加重试的方法上添加一个用于重试的自定义注解,然后在切面中实现重试的逻辑,主要的配置参数则根据注解中的选项来初始化 优点: 真正的无侵入 缺点: 某些方法无法被切面拦截的场景无法覆盖(如spring-aop无法切私有方法,final方法) 直接使用aspecj则有些小复杂;如果用spring-aop,则只能切被spring容器管理的bean 消息总线方式 这个也比较容易理解,在需要重试的方法中,发送一个消息,并将业务逻辑作为回调方法传入;由一个订阅了重试消息的consumer来执行重试的业务逻辑 优点: 重试机制不受任何限制,即在任何地方你都可以使用 利用EventBus框架,可以非常容易把框架搭起来 缺点: 业务侵入,需要在重试的业务处,主动发起一条重试消息 调试理解复杂(消息总线方式的最大优点和缺点,就是过于灵活了,你可能都不知道什么地方处理这个消息,特别是新的童鞋来维护这段代码时) 如果要获取返回结果,不太好处理, 上下文参数不好处理 模板方式 优点: 简单(依赖简单:引入一个类就可以了; 使用简单:实现抽象类,讲业务逻辑填充即可;) 灵活(这个是真正的灵活了,你想怎么干都可以,完全由你控制) 缺点: 强侵入 代码臃肿 把这个单独捞出来,主要是某些时候我就一两个地方要用到重试,简单的实现下就好了,也没有必用用到上面这么重的方式;而且我希望可以针对代码快进行重试 这个的设计还是非常简单的,基本上代码都可以直接贴出来,一目了然: 复制代码 public abstract class RetryTemplate { private static final int DEFAULT_RETRY_TIME = 1; private int retryTime = DEFAULT_RETRY_TIME; private int sleepTime = 0;// 重试的睡眠时间 public int getSleepTime() { return sleepTime; } public RetryTemplate setSleepTime(int sleepTime) { if(sleepTime < 0) { throw new IllegalArgumentException("sleepTime should equal or bigger than 0"); } this.sleepTime = sleepTime; return this; } public int getRetryTime() { return retryTime; } public RetryTemplate setRetryTime(int retryTime) { if (retryTime <= 0) { throw new IllegalArgumentException("retryTime should bigger than 0"); } this.retryTime = retryTime; return this; } /** * 重试的业务执行代码 * 失败时请抛出一个异常 * * todo 确定返回的封装类,根据返回结果的状态来判定是否需要重试 * * @return */ protected abstract Object doBiz() throws Exception; //预留一个doBiz方法由业务方来实现,在其中书写需要重试的业务代码,然后执行即可 public Object execute() throws InterruptedException { for (int i = 0; i < retryTime; i++) { try { return doBiz(); } catch (Exception e) { log.error("业务执行出现异常,e: {}", e); Thread.sleep(sleepTime); } } return null; } public Object submit(ExecutorService executorService) { if (executorService == null) { throw new IllegalArgumentException("please choose executorService!"); } return executorService.submit((Callable) () -> execute()); } } 复制代码 使用示例: 复制代码 public void retryDemo() throws InterruptedException { Object ans = new RetryTemplate() { @Override protected Object doBiz() throws Exception { int temp = (int) (Math.random() * 10); System.out.println(temp); if (temp > 3) { throw new Exception("generate value bigger then 3! need retry"); } return temp; } }.setRetryTime(10).setSleepTime(10).execute(); System.out.println(ans); } 复制代码 spring-retry Spring Retry 为 Spring 应用程序提供了声明性重试支持。 它用于Spring批处理、Spring集成、Apache Hadoop(等等)的Spring。 在分布式系统中,为了保证数据分布式事务的强一致性,在调用RPC接口或者发送MQ时,针对可能会出现网络抖动请求超时情况采取一下重试操作。 用的最多的重试方式就是MQ了,但是如果你的项目中没有引入MQ,就不方便了。 还有一种方式,是开发者自己编写重试机制,但是大多不够优雅。 缺陷 spring-retry 工具虽能优雅实现重试,但是存在两个不友好设计: 一个是重试实体限定为 Throwable 子类,说明重试针对的是可捕捉的功能异常为设计前提的,但是我们希望依赖某个数据对象实体作为重试实体, 但 sping-retry框架必须强制转换为Throwable子类。 另一个是重试根源的断言对象使用的是 doWithRetry 的 Exception 异常实例,不符合正常内部断言的返回设计。 Spring Retry 提倡以注解的方式对方法进行重试,重试逻辑是同步执行的,当抛出相关异常后执行重试, 如果你要以返回值的某个状态来判定是否需要重试,可能只能通过自己判断返回值然后显式抛出异常了。只读操作可以重试,幂等写操作可以重试,但是非幂等写操作不能重试,重试可能导致脏写,或产生重复数据。 @Recover 注解在使用时无法指定方法,如果一个类中多个重试方法,就会很麻烦。 spring-retry 结构 BackOff:补偿值,一般指失败后多久进行重试的延迟值。 Sleeper:暂停应用的工具,通常用来应用补偿值。 RetryState:重试状态,通常包含一个重试的键值。 RetryCallback:封装你需要重试的业务逻辑(上文中的doSth) RecoverCallback:封装了多次重试都失败后你需要执行的业务逻辑(上文中的doSthWhenStillFail) RetryContext:重试语境下的上下文,代表了能被重试动作使用的资源。可用于在多次Retry或者Retry 和Recover之间传递参数或状态(在多次doSth或者doSth与doSthWhenStillFail之间传递参数) RetryOperations: 定义了“重试”的模板(重试的API),要求传入RetryCallback,可选传入RecoveryCallback; RetryTemplate :RetryOperations的具体实现,组合了RetryListener[],BackOffPolicy,RetryPolicy。 RetryListener:用来监控Retry的执行情况,并生成统计信息。 RetryPolicy:重试的策略或条件,可以简单的进行多次重试,可以是指定超时时间进行重试(上文中的someCondition),决定失败能否重试。 BackOffPolicy: 重试的回退策略,在业务逻辑执行发生异常时。如果需要重试,我们可能需要等一段时间(可能服务器过于繁忙,如果一直不间隔重试可能拖垮服务器),当然这段时间可以是0,也可以是固定的,可以是随机的(参见tcp的拥塞控制算法中的回退策略)。回退策略在上文中体现为wait(); RetryPolicy提供了如下策略实现: NeverRetryPolicy:只允许调用RetryCallback一次,不允许重试; AlwaysRetryPolicy:允许无限重试,直到成功,此方式逻辑不当会导致死循环; SimpleRetryPolicy:固定次数重试策略,默认重试最大次数为3次,RetryTemplate默认使用的策略; TimeoutRetryPolicy:超时时间重试策略,默认超时时间为1秒,在指定的超时时间内允许重试; CircuitBreakerRetryPolicy:有熔断功能的重试策略,需设置3个参数openTimeout、resetTimeout和delegate delegate:是真正判断是否重试的策略,当重试失败时,则执行熔断策略;应该配置基于次数的SimpleRetryPolicy或者基于超时的TimeoutRetryPolicy策略,且策略都是全局模式,而非局部模式,所以要注意次数或超时的配置合理性。 openTimeout:openWindow,配置熔断器电路打开的超时时间,当超过openTimeout之后熔断器电路变成半打开状态(主要有一次重试成功,则闭合电路); resetTimeout:timeout,配置重置熔断器重新闭合的超时时间 CompositeRetryPolicy:组合重试策略,有两种组合方式,乐观组合重试策略是指只要有一个策略允许重试即可以,悲观组合重试策略是指只要有一个策略不允许重试即可以,但不管哪种组合方式,组合中的每一个策略都会执行。 BackOffPolicy 提供了如下策略实现: NoBackOffPolicy:无退避算法策略,即当重试时是立即重试; FixedBackOffPolicy:固定时间的退避策略,需设置参数sleeper(指定等待策略,默认是Thread.sleep,即线程休眠)、backOffPeriod(休眠时间,默认1秒); UniformRandomBackOffPolicy:随机时间退避策略,需设置sleeper、minBackOffPeriod、maxBackOffPeriod,该策略在[minBackOffPeriod,maxBackOffPeriod之间取一个随机休眠时间,minBackOffPeriod默认500毫秒,maxBackOffPeriod默认1500毫秒; ExponentialBackOffPolicy:指数退避策略,需设置参数sleeper、initialInterval、maxInterval和multiplier。initialInterval指定初始休眠时间,默认100毫秒,maxInterval指定最大休眠时间,默认30秒,multiplier指定乘数,即下一次休眠时间为当前休眠时间*multiplier; ExponentialRandomBackOffPolicy:随机指数退避策略,引入随机乘数,固定乘数可能会引起很多服务同时重试导致DDos,使用随机休眠时间来避免这种情况。 RetryTemplate主要流程实现: 复制代码 //示例一 public void upload(final Map<String, Object> map) throws Exception { // 构建重试模板实例 RetryTemplate retryTemplate = new RetryTemplate(); // 设置重试策略,主要设置重试次数 SimpleRetryPolicy policy =         new SimpleRetryPolicy(3, Collections.<Class<? extends Throwable>, Boolean> singletonMap(Exception.class, true)); // 设置重试回退操作策略,主要设置重试间隔时间 FixedBackOffPolicy fixedBackOffPolicy = new FixedBackOffPolicy(); fixedBackOffPolicy.setBackOffPeriod(100); retryTemplate.setRetryPolicy(policy); retryTemplate.setBackOffPolicy(fixedBackOffPolicy); // 通过RetryCallback 重试回调实例包装正常逻辑逻辑,第一次执行和重试执行执行的都是这段逻辑 final RetryCallback<Object, Exception> retryCallback = new RetryCallback<Object, Exception>() { //RetryContext 重试操作上下文约定,统一spring-try包装 public Object doWithRetry(RetryContext context) throws Exception { System.out.println("do some thing"); Exception e = uploadToOdps(map); System.out.println(context.getRetryCount()); throw e;//这个点特别注意,重试的根源通过Exception返回 } }; // 通过RecoveryCallback 重试流程正常结束或者达到重试上限后的退出恢复操作实例 final RecoveryCallback recoveryCallback = new RecoveryCallback() { public Object recover(RetryContext context) throws Exception { System.out.println("do recory operation"); return null; } }; try { // 由retryTemplate 执行execute方法开始逻辑执行 retryTemplate.execute(retryCallback, recoveryCallback); } catch (Exception e) { e.printStackTrace(); } } //示例二 protected <T, E extends Throwable> T doExecute(RetryCallback<T, E> retryCallback,RecoveryCallback recoveryCallback,   RetryState state) throws E, ExhaustedRetryException { //重试策略 RetryPolicy retryPolicy = this.retryPolicy; //退避策略 BackOffPolicy backOffPolicy = this.backOffPolicy; //重试上下文,当前重试次数等都记录在上下文中 RetryContext context = open(retryPolicy, state); try { //拦截器模式,执行RetryListener#open boolean running = doOpenInterceptors(retryCallback, context); //判断是否可以重试执行 while (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { try {//执行RetryCallback回调 return retryCallback.doWithRetry(context); } catch (Throwable e) {//异常时,要进行下一次重试准备 //遇到异常后,注册该异常的失败次数 registerThrowable(retryPolicy, state, context, e); //执行RetryListener#onError doOnErrorInterceptors(retryCallback, context, e); //如果可以重试,执行退避算法,比如休眠一小段时间后再重试 if (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) { backOffPolicy.backOff(backOffContext); } //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy, context, state)) { throw RetryTemplate. wrapIfNecessary(e); } } //如果是有状态重试,且有GLOBAL_STATE属性,则立即跳出重试终止;       //当抛出的异常是非需要执行回滚操作的异常时,才会执行到此处,CircuitBreakerRetryPolicy会在此跳出循环; if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } } //重试失败后,如果有RecoveryCallback,则执行此回调,否则抛出异常 return handleRetryExhausted(recoveryCallback, context, state); } catch (Throwable e) { throw RetryTemplate. wrapIfNecessary(e); } finally { //清理环境 close(retryPolicy, context, state, lastException == null || exhausted); //执行RetryListener#close,比如统计重试信息 doCloseInterceptors(retryCallback, context, lastException); } } 复制代码 有状态or无状态 无状态重试,是在一个循环中执行完重试策略,即重试上下文保持在一个线程上下文中,在一次调用中进行完整的重试策略判断。如远程调用某个查询方法时是最常见的无状态重试: 复制代码 RetryTemplate template = new RetryTemplate(); //重试策略:次数重试策略 RetryPolicy retryPolicy = new SimpleRetryPolicy(3); template.setRetryPolicy(retryPolicy); //退避策略:指数退避策略 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy(); backOffPolicy.setInitialInterval(100); backOffPolicy.setMaxInterval(3000); backOffPolicy.setMultiplier(2); backOffPolicy.setSleeper(new ThreadWaitSleeper()); template.setBackOffPolicy(backOffPolicy); //当重试失败后,抛出异常 String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { throw new RuntimeException("timeout"); } }); //当重试失败后,执行RecoveryCallback String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }); 复制代码 有状态重试,有两种情况需要使用有状态重试,事务操作需要回滚、熔断器模式。 事务操作需要回滚场景时,当整个操作中抛出的是数据库异常DataAccessException,则不能进行重试需要回滚,而抛出其他异常则可以进行重试,可以通过RetryState实现: 复制代码 //当前状态的名称,当把状态放入缓存时,通过该key查询获取 Object key = "mykey"; //是否每次都重新生成上下文还是从缓存中查询,即全局模式(如熔断器策略时从缓存中查询) boolean isForceRefresh = true; //对DataAccessException进行回滚 BinaryExceptionClassifier rollbackClassifier = new BinaryExceptionClassifier(Collections.<Class<? extends Throwable>>singleton(DataAccessException.class)); RetryState state = new DefaultRetryState(key, isForceRefresh, rollbackClassifier); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new TypeMismatchDataAccessException(""); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); 复制代码 RetryTemplate中在有状态重试时,回滚场景时直接抛出异常处理代码: //state != null && state.rollbackFor(context.getLastThrowable()) //在有状态重试时,如果是需要执行回滚操作的异常,则立即抛出异常 if (shouldRethrow(retryPolicy,context, state)) { throw RetryTemplate. wrapIfNecessary(e); } 熔断器场景。在有状态重试时,且是全局模式,不在当前循环中处理重试,而是全局重试模式(不是线程上下文),如熔断器策略时测试代码如下所示。 复制代码 RetryTemplate template = new RetryTemplate(); CircuitBreakerRetryPolicy retryPolicy = new CircuitBreakerRetryPolicy(new SimpleRetryPolicy(3)); retryPolicy.setOpenTimeout(5000); retryPolicy.setResetTimeout(20000); template.setRetryPolicy(retryPolicy); for (int i = 0; i < 10; i++) { try { Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key, isForceRefresh); String result = template.execute(new RetryCallback<String, RuntimeException>() { @Override public String doWithRetry(RetryContext context) throws RuntimeException { System.out.println("retry count:" + context.getRetryCount()); throw new RuntimeException("timeout"); } }, new RecoveryCallback () { @Override public String recover(RetryContext context) throws Exception { return "default"; } }, state); System.out.println(result); } catch (Exception e) { System.out.println(e); } } 复制代码 为什么说是全局模式呢?我们配置了isForceRefresh为false,则在获取上下文时是根据key “circuit”从缓存中获取,从而拿到同一个上下文。 Object key = "circuit"; boolean isForceRefresh = false; RetryState state = new DefaultRetryState(key,isForceRefresh); 如下RetryTemplate代码说明在有状态模式下,不会在循环中进行重试。 if (state != null && context.hasAttribute(GLOBAL_STATE)) { break; } 判断熔断器电路是否打开的代码: 复制代码 public boolean isOpen() { long time = System.currentTimeMillis() - this.start; boolean retryable = this.policy.canRetry(this.context); if (!retryable) {//重试失败 //在重置熔断器超时后,熔断器器电路闭合,重置上下文 if (time > this.timeout) { this.context = createDelegateContext(policy, getParent()); this.start = System.currentTimeMillis(); retryable = this.policy.canRetry(this.context); } else if (time < this.openWindow) { //当在熔断器打开状态时,熔断器电路打开,立即熔断 if ((Boolean) getAttribute(CIRCUIT_OPEN) == false) { setAttribute(CIRCUIT_OPEN, true); } this.start = System.currentTimeMillis(); return true; } } else {//重试成功 //在熔断器电路半打开状态时,断路器电路闭合,重置上下文 if (time > this.openWindow) { this.start = System.currentTimeMillis(); this.context = createDelegateContext(policy, getParent()); } } setAttribute(CIRCUIT_OPEN, !retryable); return !retryable; } 复制代码 从如上代码可看出spring-retry的熔断策略相对简单: 当重试失败,且在熔断器打开时间窗口[0,openWindow) 内,立即熔断; 当重试失败,且在指定超时时间后(>timeout),熔断器电路重新闭合; 在熔断器半打开状态[openWindow, timeout] 时,只要重试成功则重置上下文,断路器闭合。 注解介绍 @EnableRetry 表示是否开始重试。 序号 属性 类型 默认值 说明 1 proxyTargetClass boolean false 指示是否要创建基于子类的(CGLIB)代理,而不是创建标准的基于Java接口的代理。当proxyTargetClass属性为true时,使用CGLIB代理。默认使用标准JAVA注解 @Retryable 标注此注解的方法在发生异常时会进行重试 序号 属性 类型 默认值 说明 1 interceptor String ”” 将 interceptor 的 bean 名称应用到 retryable() 2 value class[] {} 可重试的异常类型 3 include class[] {} 和value一样,默认空,当exclude也为空时,所有异常都重试 4 exclude class[] {} 指定异常不重试,默认空,当include也为空时,所有异常都重试 5 label String ”” 统计报告的唯一标签。如果没有提供,调用者可以选择忽略它,或者提供默认值。 6 maxAttempts int 3 尝试的最大次数(包括第一次失败),默认为3次。 7 backoff @Backoff @Backoff() 重试补偿机制,指定用于重试此操作的backoff属性。默认为空 @Backoff 不设置参数时,默认使用FixedBackOffPolicy(指定等待时间),重试等待1000ms 序号 属性 类型 默认值 说明 1 delay long 0 指定延迟后重试 ,如果不设置则默认使用 1000 milliseconds 2 maxDelay long 0 最大重试等待时间 3 multiplier long 0 指定延迟的倍数,比如delay=5000l,multiplier=2时,第一次重试为5秒后,第二次为10秒,第三次为20秒(大于0生效) 4 random boolean false 随机重试等待时间 @Recover 用于恢复处理程序的方法调用的注释。返回类型必须与@retryable方法匹配。 可抛出的第一个参数是可选的(但是没有它的方法只会被调用)。 从失败方法的参数列表按顺序填充后续的参数。 用于@Retryable重试失败后处理方法,此注解注释的方法参数一定要是@Retryable抛出的异常,否则无法识别,可以在该方法中进行日志处理。 说明: 使用了@Retryable的方法不能在本类被调用,不然重试机制不会生效。也就是要标记为@Service,然后在其它类使用@Autowired注入或者@Bean去实例才能生效。 要触发@Recover方法,那么在@Retryable方法上不能有返回值,只能是void才能生效。 使用了@Retryable的方法里面不能使用try...catch包裹,要在发放上抛出异常,不然不会触发。 在重试期间这个方法是同步的,如果使用类似Spring Cloud这种框架的熔断机制时,可以结合重试机制来重试后返回结果。 Spring Retry不只能注入方式去实现,还可以通过API的方式实现,类似熔断处理的机制就基于API方式实现会比较宽松。 转载于:https://www.cnblogs.com/whatarewords/p/10656514.html

养狐狸的猫 2019-12-02 02:11:54 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 云栖号物联网 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 云栖号弹性计算 阿里云云栖号 云栖号案例 云栖号直播