• 关于

    A类函数不可用

    的搜索结果

问题

关于c++成员初始化列表

假定manager类由person类公有继承而来 新增了一个int值成员a定义manager类的复制构造函数时manager::manager(const manager & m):person(m),a(m.a) { }是不是不能...
a123456678 2019-12-01 20:09:40 940 浏览量 回答数 1

回答

前言 随着计算机技术和 Internet 的日新月异,视频点播技术因其良好的人机交互性和流媒体传输技术倍受教育、娱乐等行业青睐,而在当前, 云计算平台厂商的产品线不断成熟完善, 如果想要搭建视频点播类应用,告别刀耕火种, 直接上云会扫清硬件采购、 技术等各种障碍,以阿里云为例: image 这是一个非常典型的解决方案, 对象存储 OSS 可以支持海量视频存储,采集上传的视频被转码以适配各种终端,CDN 加速终端设备播放视频的速度。此外还有一些内容安全审查需求, 比如鉴黄、鉴恐等。 而在视频点播解决方案中, 视频转码是最消耗计算力的一个子系统,虽然您可以使用云上专门的转码服务,但在很多情况下,您会选择自己搭建转码服务。比如: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? 您有并发处理大量视频的需求。 您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF。后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF、获取视频或者音频的时长,自己搭建成本更低。 各种格式的音频转换或者各种采样率自定义、音频降噪等功能 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将它们再迁移到 OSS 上。 如果您的视频处理系统有上述需求,或者您期望实现一个 弹性、高可用、低成本、免运维、灵活支持任意处理逻辑 的视频处理系统,那么本文则是您期待的最佳实践方案。 Serverless 自定义音视频处理 在介绍具体方案之前, 先介绍两款产品: 函数计算 :阿里云函数计算是事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询、性能监控、报警等功能。 函数工作流:函数工作流(Function Flow,以下简称 FnF)是一个用来协调多个分布式任务执行的全托管云服务。您可以用顺序,分支,并行等方式来编排分布式任务,FnF 会按照设定好的步骤可靠地协调任务执行,跟踪每个任务的状态转换,并在必要时执行用户定义的重试逻辑,以确保工作流顺利完成。 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 函数计算可靠的执行任意逻辑, 逻辑可以是利用 FFmpeg 对视频任何处理操作, 也可以更新视频 meta 数据到数据库等。函数工作流对相应的函数进行编排, 比如第一步的函数是转码, 第二步的函数是转码成功后,将相应 meta 数据库写入数据库等。 至此,您应该初步理解了函数计算的自定义处理能力 + 函数工作流编排能力几乎满足您任何自定义处理的需求,接下来,本文以一个具体的示例展示基于函数计算和函数工作流打造的一个弹性高可用的 Serverless 视频处理系统,并与传统方案进行性能、成本和工程效率的对比。 Simple 视频处理系统 假设您是对视频进行单纯的处理, 架构方案图如下: image 如上图所示, 用户上传一个视频到 OSS, OSS 触发器自动触发函数执行, 函数调用 FFmpeg 进行视频转码, 并且将转码后的视频保存回 OSS。 OSS 事件触发器, 阿里云对象存储和函数计算无缝集成。您可以为各种类型的事件设置处理函数,当 OSS 系统捕获到指定类型的事件后,会自动调用函数处理。例如,您可以设置函数来处理 PutObject 事件,当您调用 OSS PutObject API 上传视频到 OSS 后,相关联的函数会自动触发来处理该视频。 Simple 视频处理系统示例工程地址 强大的监控系统: 您可以直接基于示例工程部署您的 Simple 音视频处理系统服务, 但是当您想要处理超大视频(比如 test_huge.mov ) 或者对小视频进行多种组合操作的时候, 您会发现函数会执行失败,原因是函数计算的执行环境有最大执行时间为 10 分钟的限制,如果最大的 10 分钟不能满足您的需求, 您可以选择: 对视频进行分片 -> 转码 -> 合成处理, 详情参考:fc-fnf-video-processing, 下文会详细介绍; 联系函数计算团队(钉钉群号: 11721331) 或者提工单: 适当放宽执行时长限制; 申请使用更高的函数内存 12G(8vCPU) 为了突破函数计算执行环境的限制(或者说加快大视频的转码速度), 进行各种复杂的组合操作, 此时引入函数工作流 FnF 去编排函数实现一个功能强大的视频处理工作流系统是一个很好的方案。 视频处理工作流系统 image 如上图所示, 假设用户上传一个 mov 格式的视频到 OSS,OSS 触发器自动触发函数执行, 函数调用 FnF,会同时进行 1 种或者多种格式的转码(由您触发的函数环境变量DST_FORMATS 参数控制)。 所以您可以实现如下需求: 一个视频文件可以同时被转码成各种格式以及其他各种自定义处理,比如增加水印处理或者在 after-process 更新信息到数据库等。 当有多个文件同时上传到 OSS,函数计算会自动伸缩, 并行处理多个文件, 同时每次文件转码成多种格式也是并行。 结合 NAS + 视频切片, 可以解决超大视频(大于 3G )的转码, 对于每一个视频,先进行切片处理,然后并行转码切片,最后合成,通过设置合理的切片时间,可以大大加速较大视频的转码速度。 所谓的视频切片,是将视频流按指定的时间间隔,切分成一系列分片文件,并生成一个索引文件记录分片文件的信息 视频处理工作流系统示例工程地址 示例效果: gif 函数计算 + 函数工作流 Serverless 方案 VS 传统方案 卓越的工程效率 自建服务 函数计算 + 函数工作流 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 并行&分布式视频处理 需要很强的开发能力和完善的监控系统来保证稳定性 通过 FnF 资源编排即可实现多个视频的并行处理以及单个大视频的分布式处理,稳定性和监控交由云平台 学习上手成本 除了编程语言开发能力和熟悉 FFmpeg 以外,可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码和熟悉 FFmpeg 使用即可 项目上线周期 在具体业务逻辑外耗费大量的时间和人力成本,保守估计大约 30 人天,包括硬件采购、软件和环境配置、系统开发、测试、监控报警、灰度发布系统等 预计 3 人天, 开发调试(2人天)+ 压测观察(1 人天) 弹性伸缩免运维,性能优异 自建服务 函数计算 + 函数工作流 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维,视频处理工作流系统 (FnF + FC) 压测;性能优异, 详情见下面的转码性能表 监控报警查询 ECS 或者容器级别的 metrics 提供更细粒度的 FnF 流程执行以及函数执行情况, 同时可以查询每次函数执行的 latency 和日志等, 更加完善的报警监控机制 函数计算 + 函数工作流 Serverless 方案转码性能表 实验视频为是 89s 的 mov 文件 4K 视频: 4K.mov,云服务进行 mov -> mp4 普通转码需要消耗的时间为 188s, 将这个参考时间记为 T 视频切片时间 FC转码耗时 性能加速百分比 45s 160s 117.5% 25s 100s 188% 15s 70s 268.6% 10s 45s 417.8% 5s 35s 537.1% 性能加速百分比 = T / FC转码耗时 从上表可以看出,设置的视频切片时间越短, 视频转码时间越短, 函数计算可以自动瞬时调度出更多的计算资源来一起完成这个视频的转码, 转码性能优异。 更低的成本 具有明显波峰波谷的视频处理场景(比如只有部分时间段有视频处理请求,其他时间很少甚至没有视频处理请求),选择按需付费,只需为实际使用的计算资源付费。 没有明显波峰波谷的视频处理场景,可以使用预付费(包年包月),成本仍然具有竞争力。 函数计算成本优化最佳实践文档。 假设有一个基于 ECS 搭建的视频转码服务,由于是 CPU 密集型计算, 因此在这里将平均 CPU 利用率作为核心参考指标对评估成本,以一个月为周期,10 台 C5 ECS 的总计算力为例, 总的计算量约为 30% 场景下, 两个解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元 函数计算按量付费占整个计算量的占比 <= 10%,费用约为 3×864×10% = 259.2 元,(3G 规格的函数满负载跑满一个月费用为:0.00011108×3×30×24×3600 = 863.8,详情查看计费) ITEM 平均CPU利用率 计算费用 总计 函数计算组合付费 >=80% 998(246.27×3+259.2) <= 998 按峰值预留ECS <=30% 2190(10*219) >=2190 在这个模型预估里面,可以看出 FC 方案具有很强的成本竞争力,在实际场景中, 基于 ECS 自建的视频转码服务 CPU 利用甚至很难达到 20%, 理由如下: 可能只有部分时间段有视频转码请求 为了用户体验,视频转码速度有一定的要求,可能一个视频转码就需要 10 台 ECS 并行处理来转码, 因此只能预备很多 ECS 因此,在实际场景中, FC 在视频处理上的成本竞争力远强于上述模型。 即使和云厂商视频转码服务单价 PK, 该方案仍有很强的成本竞争力 我们这边选用点播视频中最常用的两个格式(mp4、flv)之间进行相互转换,经实验验证, 函数内存设置为3G,基于该方案从 mp4 转码为 flv 的费用概览表: 实验视频为是 89s 的 mp4 和 flv 格式的文件视频, 测试视频地址: 480P.mp4 720P.mp4 1080P.mp4 4K.mp4 480P.flv 720P.flv 1080P.flv 4K.flv 测试命令: ffmpeg -i test.flv test.mp4 和 ffmpeg -i test.flv test.mp4 mp4 转 flv: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 889 kb/s 24 11.2s 0.003732288 0.032 88.3% 高清 1280720 1963 kb/s 24 20.5s 0.00683142 0.065 89.5% 超清 19201080 3689 kb/s 24 40s 0.0133296 0.126 89.4% 4K 38402160 11185 kb/s 24 142s 0.04732008 0.556 91.5% flv 转 mp4: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 712 kb/s 24 34.5s 0.01149678 0.032 64.1% 高清 1280720 1806 kb/s 24 100.3s 0.033424 0.065 48.6% 超清 19201080 3911 kb/s 24 226.4s 0.0754455 0.126 40.1% 4K 38402160 15109 kb/s 24 912s 0.30391488 0.556 45.3% 成本下降百分比 = (某云视频处理费用 - FC 转码费用)/ 云视频处理费用 某云视频处理,计费使用普通转码,转码时长不足一分钟,按照一分钟计算,这里计费采用的是 2 min,即使采用 1.5 min 计算, 成本下降百分比基本在10%以内浮动 从上表可以看出, 基于函数计算 + 函数工作流的方案在计算资源成本上对于计算复杂度较高的 flv 转 mp4 还是计算复杂度较低的 mp4 转 flv, 都具有很强的成本竞争力。 根据实际经验, 往往成本下降比上表列出来的更加明显, 理由如下: 测试视频的码率较高, 实际上很多场景绝大部分都是标清或者流畅视频的转码场景, 码率也比测试视频低,这个时候计算量变小, FC 执行时间短, 费用会降低, 但是通用的云转码服务计费是不变的. 很多视频分辨率在通用的云转码服务是计费是有很大损失的, 比如转码的视频是 856480 或者 1368768, 都会进入云转码服务的下一档计费单价, 比如856480 进入 1280720 高清转码计费档,1368768 进入 19201080 超清转码计费档, 单价基本是跨越式上升, 但是实际真正的计算量增加可能还不到30%, 而函数计算则是真正能做到按计算量付费. 操作部署 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 详情见各自示例工程的 README Simple 视频处理系统示例工程地址 视频处理工作流系统示例工程地址 总结 基于函数计算 FC 和函数工作流 FnF 的弹性高可用视频处理系统天然继承了这两个产品的优点: 无需采购和管理服务器等基础设施,只需专注视频处理业务逻辑的开发,大幅缩短项目交付时间和人力成本 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发响应用户请求 免运维,毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,性能优异 成本极具竞争力 相比于通用的转码处理服务: 超强自定义,对用户透明, 基于 FFmpeg 或者其他音视频处理工具命令快速开发相应的音视频处理逻辑 原有基于 FFmpeg 自建的音视频处理服务可以一键迁移 弹性更强, 可以保证有充足的计算资源为转码服务,比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完 各种格式的音频转换或者各种采样率自定义、音频降噪等功能, 比如专业音频处理工具 aacgain 和 mp3gain 可以和 serverless 工作流完成更加复杂、自定义的任务编排,比如视频转码完成后,记录转码详情到数据库,同时自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力 更多的方式的事件驱动, 比如可以选择 OSS 自动触发(丰富的触发规则), 也可以根据业务选择 MNS 消息(支持 tag 过滤)触发 在大部分场景下具有很强的成本竞争力相比于其他自建服务: 毫秒级弹性伸缩,弹性能力超强,支持大规模资源调用,可弹性支持几万核.小时的计算力,比如 1 万节课半个小时完成转码 只需要专注业务逻辑代码即可,原生自带事件驱动模式,简化开发编程模型,同时可以达到消息(即音视频任务)处理的优先级,可大大提高开发运维效率 函数计算采用 3AZ 部署, 安全性高,计算资源也是多 AZ 获取, 能保证每个用户需要的算力峰值 开箱即用的监控系统, 如上面 gif 动图所示,可以多维度监控函数的执行情况,根据监控快速定位问题,同时给用户提供分析能力, 比如视频的格式分布, size 分布等 在大部分场景下具有很强的成本竞争力, 因为在函数计算是真正的按量付费(计费粒度在百毫秒), 可以理解为 CPU 的利用率为 100% 最后一一回答一下之前列出的问题: Q1: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? A: 如工程示例所示,在虚拟机/容器平台上基于 FFmpeg 的服务可以轻松切换到函数计算, FFmpeg 相关命令可以直接移值到函数计算,改造成本较低, 同时天然继承了函数计算弹性高可用性特性。 Q2:您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF 等。 自己搭建成本更低。 A: 函数计算天生就是解决这些自定义问题, 你的代码你做主, 代码中快速执行几个 FFmpeg 的命令即可完成需求。典型示例: fc-oss-ffmpeg Q3: 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案),after-process 中可以做一些自定义的操作, 您还可以基于此流程再做一些额外处理等, 比如: 再增加后续流程 最开始增加 pre-process Q4: 您有并发同时处理大量视频的需求。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), 当有多个文件同时上传到 OSS, 函数计算会自动伸缩, 并行处理多个文件。详情可以参考 视频处理工作流系统 (FnF + FC) 压测 Q5:您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。A: 详情可以参考视频处理工作流系统 (FnF + FC) 压测, 可以通过控制分片的大小, 可以使得每个大视频都有足够多的计算资源参与转码计算, 大大提高转码速度。 Q6: 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF,后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), FnF 只负责编排调用函数, 因此只需要更新相应的处理函数即可,同时函数有 version 和 alias 功能, 更好地控制灰度上线, 函数计算版本管理 Q7: 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将他们再迁移到 OSS 上。 A: 函数计算可以挂载 NAS, 直接对 NAS 中的文件进行处理
1934890530796658 2020-03-27 18:21:36 0 浏览量 回答数 0

问题

Swift2.0到底「新」在哪?

【编者按】2015年6月,一年一度的苹果 WWDC 大会如期而至,在大会上苹果发布了 Swift 2.0,引入了很多新的特性,以帮助开发者更快、更简单地构建应用。本篇文章作者是 Max...
忆远0711 2019-12-01 21:30:17 8367 浏览量 回答数 0

回答

背景 AI model serving 是函数计算一个比较典型的应用场景。数据科学家训练好模型以后往往需要找软件工程师把模型变成系统或者服务,通常把这个过程称之为 model serving。函数计算无需运维和弹性伸缩的特性,正好符合数据科学家对高可用分布式系统的诉求。本文将介绍把一个 TensorFlow CharRNN 训练的自动写五言绝句古诗的模型部署到函数计算的例子。 基本上所有的 FaaS 平台为了减少平台的冷启动,都会设置代码包限制,函数计算也不例外。由于 python TensorFlow 依赖库和训练的模型的文件有数百兆,即使压缩也远超了函数计算 50M 代码包大小的限制。对于这类超大体积的文件,函数计算命令行 Fun 工具原生支持了这种大依赖部署(3.2.0 版本以上),按照向导的提示操作即可。 快速开始 1. 克隆 poetry 项目 git clone https://github.com/vangie/poetry.git 2. 安装依赖 由于训练模型的脚本比较费时,所以训练好的模型已经提前存放在 model 目录中。如果您想重新训练模型,执行 make train 即可。 $ fun install using template: template.yml start installing function dependencies without docker building poetry/poetry Funfile exist, Fun will use container to build forcely Step 1/3 : FROM registry.cn-beijing.aliyuncs.com/aliyunfc/runtime-python3.6:build-1.7.7 ---> 373f5819463b Step 2/3 : WORKDIR /code ---> Using cache ---> f9f03330ddde Step 3/3 : RUN fun-install pip install tensorflow ---> Using cache ---> af9e756d07c7 sha256:af9e756d07c77ac25548fa173997065c9ea8d92e98c760b1b12bab1f3f63b112 Successfully built af9e756d07c7 Successfully tagged fun-cache-1b39d414-0348-4823-b1ec-afb05e471666:latest copying function artifact to /Users/ellison/poetry copy from container /mnt/auto/. to localNasDir Install Success Tips for next step Invoke Event Function: fun local invokeInvoke Http Function: fun local startBuild Http Function: fun buildDeploy Resources: fun deploy本地运行函数 执行 fun local invoke 可以在本地运行函数,正确的返回内容如下: $ fun local invoke poetry Missing invokeName argument, Fun will use the first function poetry/poetry as invokeName skip pulling image aliyunfc/runtime-python3.6:1.7.7... FunctionCompute python3 runtime inited. FC Invoke Start RequestId: b125bd4b-0d23-447b-8d8c-df36808a458b .......(省略了部分日志) 犬差花上水风,一月秋中时。 江水无人去,山山有不知。 江山一中路,不与一时还。 山水不知处,江阳无所逢。 山风吹水色,秋水入云中。 水月多相见,山城入水中。 江云无处处,春水不相归。 野寺春江远,秋风落月深。 RequestId: 938334c4-5407-4a72-93e1-6d59e52774d8 Billed Duration: 14074 ms Memory Size: 1998 MB Max Memory Used: 226 MB 4. 部署函数 通过 fun deploy 部署函数并上传函数依赖到 nas。 fun deploy fun 会自动完成依赖部署,当 fun deploy 检测到打包的依赖超过了平台限制(50M),会进入到配置向导,帮助用户自动化的配置。 image.png 选择 “Y” 之后就不需要做其他事情,等到部署完成即可。 运行远端函数 通过 fun invoke 调用远端函数(也可以通过函数计算控制台调用): $ fun invoke using template: template.yml Missing invokeName argument, Fun will use the first function poetry/poetry as invokeName ========= FC invoke Logs begin ========= 省略部分日志... Restored from: /mnt/auto/model/poetry/model-10000 FC Invoke End RequestId: c0d7947d-7c44-428e-a5a0-30e6da6d1d0f Duration: 18637.47 ms, Billed Duration: 18700 ms, Memory Size: 2048 MB, Max Memory Used: 201.10 MB ========= FC invoke Logs end ========= FC Invoke Result: 役不知此月,不是无年年。 何事无时去,谁堪得故年。 不知无限处,相思在山山。 何必不知客,何当不有时。 相知无所见,不得是人心。 不得无年日,何时在故乡。 不知山上路,不是故人人。 至此,已经将古诗创作程序成功部署到函数计算了。
1934890530796658 2020-03-27 17:26:26 0 浏览量 回答数 0

回答

在函数计算中使用 C# 编程,您需要定义一个 C# 编写的函数作为入口。本文详细介绍了 C# 的函数入口定义项。 函数入口概述 C# 运行环境(dotnetcore2.1)根据是否支持 HTTP 触发器分为 普通函数入口 和 设置 HTTP 触发器 两种函数入口,为函数设置 HTTP 触发器后的函数入口形式会不同,这是为了方便处理发来的 HTTP request 请求, 同时还有相应的 initializer 入口。 普通函数 函数入口定义 Handler 方法示例 Handler 规范 普通函数完整操作示例 initializer 入口 设置 HTTP 触发器的函数 函数入口定义 HTTP 触发器的函数入口示例 HTTP 触发器的函数入口限制项 普通函数入口 函数入口定义 当创建一个基于 C# 的函数时,需要指定一个 handler 方法,该方法在函数执行时被执行。这个handler 方法可以是 static 方法或者 instance 方法,如果想在该方法中访问 IFcContext 对象,则可以将该方法中的第二个参数指定为 IFcContext 对象。支持的 handler 方法定义如下: ReturnType HandlerName(InputType input, IFcContext context); //包含IFcContext ReturnType HandlerName(InputType input); // 不包含IFcContext Async Task HandlerName(InputType input, IFcContext context); Async Task HandlerName(InputType input); 函数计算支持在使用 C# 编写的函数中应用 Async, 此时函数的执行会等待异步方法执行结束。 在上述定义中: ReturnType: 返回对像可以是 void (注:此时 Async Task 退化为 async Task), System.IO.Stream 对象或者任何可以被 JSON 序列化和 JSON 反序列化的对象,如果是 Stream对象,则该 Stream 内容直接在响应 Body 返回;否则该返回对象被 JSON 序列化后在响应 Body 返回。 InputType:input 参数可以是 System.IO.Stream 或者 任何可以被 JSON 序列化和 JSON 反序列化的对象。 IFcContext: 函数的 Context 对象,包括以下信息: 参数 类型 描述 RequestId String 当前调用请求的唯一 ID,常用于问题复查或者历史调用计数等。 FunctionParam Class 当前调用的函数的基本信息,如函数名、函数入口、函数内存和超时时间等。 Credentials Class 函数计算服务通过扮演您提供的 服务角色 获得的一组临时密钥 securityToken,每 15 分钟更新一次。您可以在函数代码中使用临时密钥去访问其他阿里云服务,例如 OSS,避免您将重要的身份凭证 AccessKey 写死在函数代码里。 ServiceMeta Class 当前调用的函数所在的服务的信息,包括服务名称,接入的日志服务的 logProject 和 logStore 信息, service 的版本信息 qualifier 和 version_id,qualifier 表示调用函数时指定的 service 版本或别名,version_id 表示实际调用的 service 版本。 Region String 当前调用的函数所在地域,如 cn-shanghai。更多详情,请参阅 地域与可用区。 AccountId String 当前调用函数用户的阿里云账号 ID。更多详情,请参阅 获取账号ID。 更多详情请参考:fc-dotnet-libs Handler方法示例 函数计算使用 C# 编写函数, 需要 Nuget 引入 Aliyun.Serverless.Core package. Stream Handler 以下方法将用户请求中的输入原样返回。 using System.IO; using System.Threading.Tasks; using Aliyun.Serverless.Core; using Microsoft.Extensions.Logging; namespace FC.Examples { public class TestHandler { public async Task Echo(Stream input, IFcContext context) { ILogger logger = context.Logger; logger.LogInformation("Handle request: {0}", context.RequestId); MemoryStream copy = new MemoryStream(); await input.CopyToAsync(copy); copy.Seek(0, SeekOrigin.Begin); return copy; } } } POCO Handler 除了 Stream 作为输入输出参数,POCO(Plain old CLR objects)对象同样也可以作为输入和输出。如果该 POCO 没有指定特定的 JSON Serializer 对象,则函数计算默认用 Json.Net 进行对象的 JSON Serialize 以及Deserialize。 using Microsoft.Extensions.Logging; namespace FC.Examples { public class TestHandler { public class Product { public string Id { get; set; } public string Description { get; set; } } // optional serializer class, if it’s not specified, the default serializer (based on JSON.Net) will be used. // [FcSerializer(typeof(MySerialization))] public Product Echo(Product product, IFcContext context) { string Id = product.Id; string Description = product.Description; context.Logger.LogInformation("Id {0}, Description {1}", Id, Description); return product; } } } Handler 规范 命名格式 在创建函数时,你需要指定一个 handler 方法的字符串,用来告诉函数计算调用哪个方法,该字符串格式如下:AssemblyFileName::FullClassName::METHOD 其中 AssemblyFileName 是该函数所在的 Assembly 的文件名(省去.dll) FullClassName 是该函数所在类的全名,Namespace.ClassName Method 是该方法的名字 在上述 Handler 例子中,如果 Assembly 文件为 test_assembly, 则其 handler 字符串为:test_assembly::FC.Examples.TestHandler::Echo 限制 Handler 参数格式严格按照上述定义,也就是说参数 1 为必须输入,参数 2 可选,但必须为 IFcContext。 Handler 函数不支持 Generic Method。 输入输出参数必须为 Stream 或者 可JSON序列化。 Async函数返回值 Task 中 T 必须为 Stream 或者 可JSON序列化的类。 Custom Serializer 函数计算针对 POCO Handler 提供了默认的基于JSON .NET Serializer,如果默认的 Serializer 不能满足需求, 可以基于 Aliyun.Serverless.Core 中的 interface IFcSerializer 实现Custom Serializer public interface IFcSerializer { T Deserialize (Stream requestStream); void Serialize (T response, Stream responseStream); } 普通函数完整操作示例 临时密钥用于辨识请求者身份和权限,在访问其他服务,例如 OSS 时,您必须设置 securityToken。下面的示例 C# 代码使用临时密钥,向 OSS 的一个 Bucket 获取指定的一个 object: 创建一个 .net core 的 console 工程 [songluo@~/tmp]# mkdir fcdotnetsample [songluo@~/tmp]# cd fcdotnetsample [songluo@~/tmp/fcdotnetsample]# dotnet new console 在 fcdotnetsample.csproj 中添加如下 package: 编辑 Program.cs using System; using System.IO; using Aliyun.OSS; using Aliyun.Serverless.Core; namespace fcdotnetsample { class Program { static void Main(string[] args) { Console.WriteLine("Hello World!"); } } public class OssFileHandlerRequest { public string Bucket; public string Key; public string Endpoint; } public class OSSFileHandler { public Stream GetOssFile(OssFileHandlerRequest req, IFcContext context) { if (req == null) { throw new ArgumentNullException(nameof(req)); } if (context == null || context.Credentials == null) { throw new ArgumentNullException(nameof(context)); } OssClient ossClient = new OssClient(req.Endpoint, context.Credentials.AccessKeyId, context.Credentials.AccessKeySecret, context.Credentials.SecurityToken); OssObject obj = ossClient.GetObject(req.Bucket, req.Key); return obj.Content; } } } publish 工程并将目标文件打成 zip 包 [songluo@~/tmp/fcdotnetsample]# dotnet publish -c Release Microsoft (R) Build Engine version 15.9.20+g88f5fadfbe for .NET Core Copyright (C) Microsoft Corporation. All rights reserved. Restore completed in 47.9 ms for /Users/songluo/tmp/fcdotnetsample/fcdotnetsample.csproj. fcdotnetsample -> /Users/songluo/tmp/fcdotnetsample/bin/Release/netcoreapp2.1/fcdotnetsample.dll fcdotnetsample -> /Users/songluo/tmp/fcdotnetsample/bin/Release/netcoreapp2.1/publish/ [songluo@~/tmp/fcdotnetsample]# cd /Users/songluo/tmp/fcdotnetsample/bin/Release/netcoreapp2.1/publish/ [songluo@~/tmp/fcdotnetsample/bin/Release/netcoreapp2.1/publish]# zip -r fcdotnetsample.zip * adding: Aliyun.OSS.Core.dll (deflated 60%) adding: Aliyun.Serverless.Core.dll (deflated 59%) adding: Microsoft.Extensions.Logging.Abstractions.dll (deflated 53%) adding: fcdotnetsample.deps.json (deflated 73%) adding: fcdotnetsample.dll (deflated 57%) adding: fcdotnetsample.pdb (deflated 27%) adding: fcdotnetsample.runtimeconfig.json (deflated 23%) [songluo@~/tmp/fcdotnetsample/bin/Release/netcoreapp2.1/publish]# ls -ll fcdotnetsample.zip -rw-r--r-- 1 songluo staff 130276 Mar 14 17:48 fcdotnetsample.zip 后面直接使用这个 fcdotnetsample.zip 创建 runtime 为 dotnetcore2.1, handler 为 fcdotnetsample::fcdotnetsample.OSSFileHandler::GetOssFile 的函数就行。 initializer 入口 函数计算提供了 Init 方法的机制,用于执行初始化工作。该 Init 方法会自动在后台容器启动时被调用,每个容器只调用一次。Init 方法定义: public void Init(); //没有context对象 public void Init(IFcContext context); //包含context对象 public static void Init(); //没有context对象 public static void Init(IFcContext context); //包含context对象 initializer 格式 MyInitializer 需要与添加 initializer 函数时的 “initializer” 字段相对应:例如创建函数时指定的 initializer 入口为 fcdotnetsample::fcdotnetsample.TestHandler::MyInitializer,那么函数计算在配置 initializer 功能后会首先加载 fcdotnetsample.TestHandler 中定义的 MyInitializer 函数。 initializer 特点 IFcContext 中的 FunctionParam 中 FunctionInitializer 和 InitializationTimeout 两个信息是为 initializer 设计的,当使用 initializer 功能时,会被设置为用户创建函数时所设置的值,否则为空,且不生效。 无返回值。在函数末尾增加 return 操作是无效的。 HTTP 触发器的函数入口 设置了 HTTP 触发器的函数入口与其他触发器要求的函数入口不同,以下为一个基本的 HTTP 触发器规定的函数入口定义: 函数计算使用 C# 编写 HTTP 触发器的函数, 需要 Nuget 引入 Aliyun.Serverless.Core 和 Aliyun.Serverless.Core.Http package. using System.Threading.Tasks; using Microsoft.AspNetCore.Hosting; using Microsoft.AspNetCore.Http; using Aliyun.Serverless.Core; using Aliyun.Serverless.Core.Http; namespace MySpace.TestHandlers { public class SingleHttpHandler : FcHttpEntrypoint { protected override void Init(IWebHostBuilder builder) { } public override async Task HandleRequest(HttpRequest request, HttpResponse response, IFcContext fcContext) { response.StatusCode = 200; response.ContentType = "text/plain"; await response.WriteAsync("hello world"); return response; } } } 函数入参 IFcContext 参数与普通函数接口的 IFcContext 接口相同。 HttpRequest HttpResponse 说明 C# 编写 HTTP 触发器的函数必须继承 Aliyun.Serverless.Core.Http 中的 FcHttpEntrypoint, 其中 Init 函数必须 override, HandleRequest 是函数入口 handler, 可以根据情况决定是否 override Single function: override HandleRequest, HandleRequest 实现自定义的逻辑处理 Asp.net core application: 只需要 override Init 函数 下节的示例会具体描述怎么使用 FcHttpEntrypoint HTTP 触发器的函数入口示例 Single function 示例 以下示例示范了如何使用 HTTP 触发器的函数入口中的 HttpRequest 和 HttpResponse: using System.IO; using System.Threading.Tasks; using Microsoft.AspNetCore.Hosting; using Microsoft.AspNetCore.Http; using Aliyun.Serverless.Core; using Aliyun.Serverless.Core.Http; using Microsoft.Extensions.Logging; namespace MySpace.TestHandlers { public class SingleHttpHandler : FcHttpEntrypoint { protected override void Init(IWebHostBuilder builder) { } public override async Task HandleRequest(HttpRequest request, HttpResponse response, IFcContext fcContext) { string method = request.Method; string relativePath = request.Path.Value; fcContext.Logger.LogInformation("method = {0}; requestPath = {1}", method, relativePath); StreamReader sr = new StreamReader(request.Body); string requestBody = sr.ReadToEnd(); fcContext.Logger.LogInformation("requestBody = {}", requestBody); // process request.Headers response.StatusCode = 200; response.Headers["Content-Type"]="text/plain"; response.Headers.Add("customheader", "v1"); await response.WriteAsync("hello world"); return response; } } } Asp.net core application 示例 using System; using Aliyun.Serverless.Core.Http; using Microsoft.AspNetCore.Hosting; namespace MySpace.TestWebApi { public class FcRemoteEntrypoint : FcHttpEntrypoint { protected override void Init(IWebHostBuilder builder) { builder .UseStartup (); } } } 具体操作 创建一个 asp.net core 的 webapi 工程 [songluo@~/tmp]# mkdir fcaspdotnetsample [songluo@~/tmp]# cd fcaspdotnetsample [songluo@~/tmp/fcaspdotnetsample]# dotnet new webapi 在 fcaspdotnetsample.csproj 中添加如下 package: 新建文件 FcRemoteEntrypoint.cs, 文件内容为 Asp.net core application 示例代码 publish 工程并将目标文件打成 zip 包 [songluo@~/tmp/fcaspdotnetsample]# dotnet publish -c Release Microsoft (R) Build Engine version 15.9.20+g88f5fadfbe for .NET Core Copyright (C) Microsoft Corporation. All rights reserved. Restore completed in 88.39 ms for /Users/songluo/tmp/fcaspdotnetsample/fcaspdotnetsample.csproj. fcaspdotnetsample -> /Users/songluo/tmp/fcaspdotnetsample/bin/Release/netcoreapp2.1/fcaspdotnetsample.dll fcaspdotnetsample -> /Users/songluo/tmp/fcaspdotnetsample/bin/Release/netcoreapp2.1/publish/ [songluo@~/tmp/fcaspdotnetsample]# cd /Users/songluo/tmp/fcaspdotnetsample/bin/Release/netcoreapp2.1/publish/ [songluo@~/tmp/fcaspdotnetsample/bin/Release/netcoreapp2.1/publish]# zip -r fcaspdotnetsample.zip * adding: appsettings.Development.json (deflated 40%) adding: appsettings.json (deflated 30%) adding: fcaspdotnetsample.deps.json (deflated 85%) adding: fcaspdotnetsample.dll (deflated 61%) adding: fcaspdotnetsample.pdb (deflated 40%) adding: fcaspdotnetsample.runtimeconfig.json (deflated 31%) adding: web.config (deflated 40%) [songluo@~/tmp/fcaspdotnetsample/bin/Release/netcoreapp2.1/publish]# ls -ll fcaspdotnetsample.zip -rw-r--r-- 1 songluo staff 39101 Mar 15 09:47 fcaspdotnetsample.zip 后面直接使用这个 fcaspdotnetsample.zip 创建 runtime 为 dotnetcore2.1, handler 为 fcaspdotnetsample::MySpace.TestWebApi.FcRemoteEntrypoint::HandleRequest 的函数就行。 如果使用 Single function, 参考 普通函数完整操作示例, 创建 console 工程,新建 FcRemoteEntrypoint.cs, 代码改成 Single function 示例代码即可。 HTTP 触发器的函数入口限制项 Request 限制项 如果 HTTP 触发器的函数入口 Request 超过以下限制,会抛出 400 状态码和 InvalidArgument 错误码 参数 限制 HTTP 状态码 错误码 headers headers 中的所有键值对(key 和 value)的大小不能超过 4 KB。 400 InvalidArgument path path 以及所有 query 参数(params)的大小不能超过 4 KB。 body HTTP body 的大小不能超过 6 MB。 Response 限制项 如果超过以下限制,会抛出 502 状态码和 BadResponse 错误码。 参数 限制 HTTP 状态码 错误码 headers headers 中的所有键值对(key 和 value)的大小不能超过 4 KB。 502 BadResponse body HTTP body 的大小不能超过 6 MB。 更多有关 http trigger 的详情,请参考 HTTP 触发器。 参考链接 有关 .NET core 运行环境的详细信息,请参阅 .NET core 运行环境。 函数计算支持 .net core 2.1(runtime = dotnetcore2.1)运行环境, 编写函数的语言为 C# 。本文主要介绍 dotnetcore2.1 运行环境相关内容: 使用 logger 使用第三方库 错误处理 使用 logger C# 函数通过 context.Logger 打印的内容会被收集到创建服务时指定的日志服务 Logstore 中。 日志级别 您可以通过改变 logger 的 property EnabledLogLevel 达到改变日志级别目的,其中有如下几种从高到低的日志级别: 日志级别 Level 接口 Critical 5 context.Logger.LogCritical Error 4 context.Logger.LogError Warning 3 context.Logger.LogWarning Information 2 context.Logger.LogInformation Debug 1 context.Logger.LogDebug Trace 0 context.Logger.LogTrace 更多有关日志 Level 的信息, 请参考:LogLevel Enum 更多有关函数日志的详情,请参阅 函数日志。 logger 示例一 using System; using System.IO; using System.Text; using Aliyun.Serverless.Core; using Microsoft.Extensions.Logging; namespace FC.Examples { public class TestLogger { public Stream Echo(Stream input, IFcContext context) { context.Logger.LogInformation(string.Format("detail = {0} ", "hello world")); using (MemoryStream output = new MemoryStream(100)) { byte[] hello = Encoding.UTF8.GetBytes("hello world"); output.Write(hello, 0, hello.Length); return output; } } } } 输出的日志内容为: 2019-03-15T03:09:59.812Z 8ba1a2a2-0eb7-9e79-c3c6-ee6606c5beaf [INFO] detail = hello world logger 示例二 using System; using System.IO; using System.Text; using Aliyun.Serverless.Core; using Microsoft.Extensions.Logging; namespace FC.Examples { public class TestLogger { public Stream Echo(Stream input, IFcContext context) { context.Logger.EnabledLogLevel = LogLevel.Error; context.Logger.LogError("console error 1"); context.Logger.LogInformation("console info 1"); context.Logger.LogWarning("console warn 1"); context.Logger.LogDebug("console debug 1"); context.Logger.EnabledLogLevel = LogLevel.Warning; context.Logger.LogError("console error 2"); context.Logger.LogInformation("console info 2"); context.Logger.LogWarning("console warn 2"); context.Logger.LogDebug("console debug 2"); context.Logger.EnabledLogLevel = LogLevel.Information; using (MemoryStream output = new MemoryStream(100)) { byte[] hello = Encoding.UTF8.GetBytes("hello world"); output.Write(hello, 0, hello.Length); return output; } } } } 输出的日志内容为: 2019-03-15T03:09:31.047Z f4ddc314-d3e9-91c9-b774-4b08c91a977d [ERROR]: console error 1 2019-03-15T03:09:31.047Z f4ddc314-d3e9-91c9-b774-4b08c91a977d [ERROR]: console error 2 2019-03-15T03:09:31.047Z f4ddc314-d3e9-91c9-b774-4b08c91a977d [WARNING]: console warn 2 使用第三方库 C# 编写的函数使用第三方库十分简单 直接编辑对应的 project 的 .csproj 文件, 增加对应的package, 比如: 使用 Visual Studio IDE, 直接 GUI 操作添加对应 Nuget 包 错误处理 C# 函数在执行过程中发生异常时,函数计算捕获异常并返回异常信息。以下示例代码返回了 oops 的异常信息: using System; using System.IO; using Aliyun.Serverless.Core; namespace FC.Examples { public class TestException { public Stream Echo(Stream input, IFcContext context) { throw new Exception("oops"); } } } 根据以上示例代码,您调用函数时可能收到如下响应信息: { "ErrorMessage": "oops", "ErrorType": "System.Exception", "StackTrace": [...] } 发生异常时,函数调用的响应的 HTTP header 中会包含 X-Fc-Error-Type: UnhandledInvocationError。更多有关函数计算的错误类型,请参阅 错误类型。
1934890530796658 2020-03-27 16:28:48 0 浏览量 回答数 0

回答

对象的创建 说到对象的创建,首先让我们看看 Java 中提供的几种对象创建方式: Header解释使用new关键字调用了构造函数使用Class的newInstance方法调用了构造函数使用Constructor类的newInstance方法调用了构造函数使用clone方法没有调用构造函数使用反序列化没有带哦用构造函数 下面是对象创建的主要流程: 虚拟机遇到一条new指令时,先检查常量池是否已经加载相应的类,如果没有,必须先执行相应的类加载。类加载通过后,接下来分配内存。若Java堆中内存是绝对规整的,使用“指针碰撞“方式分配内存;如果不是规整的,就从空闲列表中分配,叫做”空闲列表“方式。划分内存时还需要考虑一个问题-并发,也有两种方式: CAS同步处理,或者本地线程分配缓冲(Thread Local Allocation Buffer, TLAB)。然后内存空间初始化操作,接着是做一些必要的对象设置(元信息、哈希码…),最后执行init方法。 为对象分配内存 类加载完成后,接着会在Java堆中划分一块内存分配给对象。内存分配根据Java堆是否规整,有两种方式: 指针碰撞:如果Java堆的内存是规整,即所有用过的内存放在一边,而空闲的的放在另一边。分配内存时将位于中间的指针指示器向空闲的内存移动一段与对象大小相等的距离,这样便完成分配内存工作。空闲列表:如果Java堆的内存不是规整的,则需要由虚拟机维护一个列表来记录那些内存是可用的,这样在分配的时候可以从列表中查询到足够大的内存分配给对象,并在分配后更新列表记录。 选择哪种分配方式是由 Java 堆是否规整来决定的,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。 处理并发安全问题 对象的创建在虚拟机中是一个非常频繁的行为,哪怕只是修改一个指针所指向的位置,在并发情况下也是不安全的,可能出现正在给对象 A 分配内存,指针还没来得及修改,对象 B 又同时使用了原来的指针来分配内存的情况。解决这个问题有两种方案: 对分配内存空间的动作进行同步处理(采用 CAS + 失败重试来保障更新操作的原子性);把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在 Java 堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer, TLAB)。哪个线程要分配内存,就在哪个线程的 TLAB 上分配。只有 TLAB 用完并分配新的 TLAB 时,才需要同步锁。通过-XX:+/-UserTLAB参数来设定虚拟机是否使用TLAB。 对象的访问定位 Java程序需要通过 JVM 栈上的引用访问堆中的具体对象。对象的访问方式取决于 JVM 虚拟机的实现。目前主流的访问方式有 句柄 和 直接指针 两种方式。 指针: 指向对象,代表一个对象在内存中的起始地址。 句柄: 可以理解为指向指针的指针,维护着对象的指针。句柄不直接指向对象,而是指向对象的指针(句柄不发生变化,指向固定内存地址),再由对象的指针指向对象的真实内存地址。 句柄访问 Java堆中划分出一块内存来作为句柄池,引用中存储对象的句柄地址,而句柄中包含了对象实例数据与对象类型数据各自的具体地址信息,具体构造如下图所示: 优势:引用中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而引用本身不需要修改。 直接指针 如果使用直接指针访问,引用 中存储的直接就是对象地址,那么Java堆对象内部的布局中就必须考虑如何放置访问类型数据的相关信息。 优势:速度更快,节省了一次指针定位的时间开销。由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是非常可观的执行成本。HotSpot 中采用的就是这种方式。
剑曼红尘 2020-03-11 12:54:34 0 浏览量 回答数 0

问题

MaxCompute用户指南:SQL:SQL限制项汇总

一些用户因没注意限制条件,业务启动后才发现限制条件,导致业务停止。为避免此类现象发生,方便用户查看,本文将对 MaxCompute SQL 限制项做以下汇总: 边界名最大...
行者武松 2019-12-01 22:02:57 1259 浏览量 回答数 0

回答

API(Application Programming Interface,应用程序编程接口)是一套用来控制Windows的各个部件(从桌面的外观到为一个新进程分配的内存)的外观和行为的一套预先定义的Windows函数.用户的每个动作都会引发一个或几个函数的运行以告诉Windows发生了什么. 这在某种程度上很象Windows的天然代码.其他的语言只是提供一种能自动而且更容易的访问API的方法.VB在这方面作了很多工作.它完全隐藏了API并且提供了在Windows环境下编程的一种完全不同的方法. 这也就是说,你用VB写出的每行代码都会被VB转换为API函数传递给Windows.例如,Form1.Print...VB 将会以一定的参数(你的代码中提供的,或是默认参数)调用TextOut 这个API函数. 。同样,当你点击窗体上的一个按钮时,Windows会发送一个消息给窗体(这对于你来说是隐藏的),VB获取这个调用并经过分析后生成一个特定事件(Button_Click). API函数包含在Windows系统目录下的动态连接库文件中(如User32.dll,GDI32.dll,Shell32.dll...). API 声明 正如在"什么是API"中所说,API函数包含在位于系统目录下的DLL文件中.你可以自己输入API函数的声明,但VB提供了一种更简单的方法,即使用API Text Viewer. 要想在你的工程中声明API函数,只需运行API Text Viewer,打开Win32api.txt(或.MDB如果你已经把它转换成了数据库的话,这样可以加快速度.注:微软的这个文件有很多的不足,你可以试一下本站提供下载的api32.txt),选择"声明",找到所需函数,点击"添加(Add)"并"复制(Copy)",然后粘贴(Paste)到你的工程里.使用预定义的常量和类型也是同样的方法. 你将会遇到一些问题: 假设你想在你的窗体模块中声明一个函数.粘贴然后运行,VB会告诉你:编译错误...Declare 语句不允许作为类或对象模块中的 Public 成员...看起来很糟糕,其实你需要做的只是在声明前面添加一个Private(如 Private Declare Function...).--不要忘了,可是这将使该函数只在该窗体模块可用. 在有些情况下,你会得到"不明确的名称"这样的提示,这是因为函数.常量或其他的什么东西共用了一个名称.由于绝大多数的函数(也可能是全部,我没有验证过)都进行了别名化,亦即意味着你可以通过Alias子句使用其它的而不是他们原有的名称,你只需简单地改变一下函数名称而它仍然可以正常运行. API 分为四种类型: 远程过程调用(RPC):通过作用在共享数据缓存器上的过程(或任务)实现程序间的通信。 标准查询语言(SQL):是标准的访问数据的查询语言,通过通用数据库实现应用程序间的数据共享。 文件传输:文件传输通过发送格式化文件实现应用程序间数据共享。 信息交付:指松耦合或紧耦合应用程序间的小型格式化信息,通过程序间的直接通信实现数据共享。 当前应用于 API 的标准包括 ANSI 标准 SQL API。另外还有一些应用于其它类型的标准尚在制定之中。API 可以应用于所有计算机平台和操作系统。这些 API 以不同的格式连接数据(如共享数据缓存器、数据库结构、文件框架)。每种数据格式要求以不同的数据命令和参数实现正确的数据通信,但同时也会产生不同类型的错误。因此,除了具备执行数据共享任务所需的知识以外,这些类型的 API 还必须解决很多网络参数问题和可能的差错条件,即每个应用程序都必须清楚自身是否有强大的性能支持程序间通信。相反由于这种 API 只处理一种信息格式,所以该情形下的信息交付 API 只提供较小的命令、网络参数以及差错条件子集。正因为如此,交付 API 方式大大降低了系统复杂性,所以当应用程序需要通过多个平台实现数据共享时,采用信息交付 API 类型是比较理想的选择。 API 与图形用户接口(GUI)或命令接口有着鲜明的差别: API 接口属于一种操作系统或程序接口,而后两者都属于直接用户接口。 有时公司会将 API 作为其公共开放系统。也就是说,公司制定自己的系统接口标准,当需要执行系统整合、自定义和程序应用等操作时,公司所有成员都可以通过该接口标准调用源代码,该接口标准被称之为开放式 API。 da'an'lai'yu'na'w'n答案来源网络,供您参考
问问小秘 2019-12-02 02:13:03 0 浏览量 回答数 0

问题

反射---Java高级开发必须懂的?报错

理解反射对学习Java框架有很大的帮助,如Spring框架的核心就是使用Java反射实现的,而且对做一些Java底层的操作会很有帮助。 一、Class类的使用 1、万事万物皆对象,(...
爱吃鱼的程序员 2020-06-08 13:13:13 0 浏览量 回答数 1

回答

Kotlin的简介 Kotlin是由JetBrains公司(IDEA开发者)所开发的编程语言,其名称来自于开发团队附近的科特林岛。 多平台开发 JVM :Android; Server-Side Javascript:前端 Native(beta) :开发原生应用 windows、macos、linux Swift与Kotlin非常像 http://nilhcem.com/swift-is-like-kotlin/ kotlin发展历程 image.png java发展历程 image.png JVM语言的原理 image.png JVM规范与java规范是相互独立的 只要生成的编译文件匹配JVM字节码规范,任何语言都可以由JVM编译运行. Kotlin也是一种JVM语言,完全兼容java,可以与java相互调用;Kotlin语言的设计受到Java、C#、JavaScript、Scala、Groovy等语言的启发 kotlin的特性 下面不会罗列kotlin中具体的语法,会介绍我认为比较重要的特性,以及特性背后的东西。 类型推断 空类型设计 函数式编程 类型推断 image.png 类型推断是指编程语言中在编译期自动推导出值的数据类型。推断类型的能力让很多编程任务变得容易,让程序员可以忽略类型标注的同时仍然允许类型检查。 在开发环境中,我们往往写出表达式,然后可以用快捷键来生成变量声明,往往都是很准的,这说明了编译器其实是可以很准确的推断出来类型的。编程语言所具备的类型推断能力可以把类型声明的任务由开发者转到了编译器. java中声明变量的方式是类型写在最前面,后面跟着变量名,这就迫使开发者在声明变量时就要先思考变量的类型要定义成什么,而在一些情况下比如使用集合、泛型类型的变量,定义类型就会变得比较繁琐。 Kotlin中声明变量,类型可以省略,或者放到变量名后面,这可以降低类型的权重,从必选变为可选,降低开发者思维负担。java10中也引入了类型推断。 Javascript中声明变量也是用关键字var,但是还是有本质区别的,Kotlin中的类型推断并不是变成动态类型、弱类型,类型仍然是在编译期就已经决定了的,Kotlin仍然是静态类型、强类型的编程语言。javascript由于是弱类型语言,同一个变量可以不经过强制类型转换就被赋不同数据类型的值, 编程语言的一个趋势就是抽象程度越来越高,编译器做更多的事情。 空类型设计 空类型的由来 image.png 托尼·霍尔(Tony Hoare),图灵奖得主 托尼·霍尔是ALGOL语言的设计者,该语言在编程语言发展历史上非常重要,对其他编程语言产生重大影响,大多数近代编程语言(包括C语言)皆使用类似ALGOL的语法。他在一次大会上讨论了null应用的设计: “我把 null 引用称为自己的十亿美元错误。它的发明是在1965 年,那时我用一个面向对象语言( ALGOL W )设计了第一个全面的引用类型系统。我加入了null引用设计,仅仅是因为实现起来非常容易。它导致了数不清的错误、漏洞和系统崩溃,可能在之后 40 年中造成了十亿美元的损失。” null引用存在的问题 以java为例,看null引用的设计到底存在哪些问题 空指针问题NPE 编译时不能对空指针做出检查,运行时访问null对象就会出现错误,这个就是工程中常见的空指针异常。 null本身没有语义,会存在歧义 值未被初始化 值不存在 也许表示一种状态 逻辑上有漏洞 Java中,null可以赋值给任何引用,比如赋值给String类型变量,String a = null,但是null并不是String类型: a instanceof String 返回的是false,这个其实是有些矛盾的。所以当持有一个String类型的变量,就存在两种情况,null或者真正的String. 解决NPE的方式 防御式代码 在访问对象前判空,但会有冗余代码;会规避问题,而隐藏真正的问题 抛出异常给调用方处理 方法中传参传入的空值、无效值,抛出受检查异常给上层调用方 增加注解 Android中可以增加@NonNull注解,编译时做额外检查 空状态对象设计模式 空状态对象是一个实现接口但是不做任何业务逻辑的对象,可以取代判空检查;这样的空状态对象也可以在数据不可用的时候提供默认的行为 java8 Optional类 java8中引入了Optional类,来解决广泛存在的null引用问题.官方javadoc文档介绍 A container object which may or may not contain a non-null value. If a value is present, isPresent() will return true and get() will return the value. Additional methods that depend on the presence or absence of a contained value are provided, such as orElse() (return a default value if value not present) and ifPresent() (execute a block of code if the value is present). 来看一下是如何实现的。 举一个访问对象读取熟悉的例子 java 8 之前 : image.png java 8: image.png 总结: 1.用Optional还是会比较繁琐,这个也说明了设计一个替代null的方案还是比较难的。 optional的耗时大约是普通判空的数十倍,主要是涉及泛型、使用时多创键了一个对象的创建;数据比较大时,会造成性能损失。 java8 引入Optional的意义在于提示调用者,用特殊类型包装的变量可能为空,在使用取出时需要判断 Kotlin的空类型设计 Kotlin中引入了可空类型和不可空类型的区分,可以区分一个引用可以容纳null,还是不能容纳null。 String vs String? String 类型表示变量不能为空,String?则表示变量可以为空 String?含义是String or null.这两种是不同的类型. 比如: var a:String = “abc” //ok var a:String = null //不允许 var b :String? = null //ok a=b // 不允许 String?类型的值不能给String类型的值赋值 这样就将类型分成了可空类型和不可能类型,每一个类型都有这样的处理;Kotlin中访问非空类型变量永远不会出现空指针异常。 同样上面的例子,采用Kotlin去写,就会简洁很多 image.png 编程范式-函数式编程 编程范式是什么? 编程范式是程序员看待程序和写程序的观点 主要的类型 非结构化编程 结构化编程 面向对象编程 命令式编程 函数式编程 这些类型并不是彼此互斥的,而是按照不同的维度做的划分,一种编程语言可能都支持多个编程范式 非结构化编程 第一代的高级语言往往是非结构化编程 比如 BASIC语言 每一行的代码前面都有一个数字作为行号,通常使用GOTO的跳跃指令来实现判断和循环. 看一下下面这段代码是做什么的: image.png 实际上做的是:程序在屏幕上显示数字 1 到 10 及其对应的平方 采用这种方式写程序,大量的使用goto实现逻辑的跳转,代码一长,可读性和维护性就比较差了,形成“面条式代码” 结构化编程 采用顺序、分支、循环结构来表达,禁用或者少用GOTO; 并用子程序来组织代码,采用自顶向下的方式来写程序 代表语言是C语言 实现同样的逻辑: image.png 可见采用结构化编程,代码的逻辑会更清晰。 面向对象编程 思想: 将计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。 特性: 封装性、继承性、多态性。 命令式编程 把计算机程序视为一系列的命令集合 主要思想是关注计算机执行的步骤,即一步一步告诉计算机先做什么再做什么。 “先做这,再做那”,强调“怎么做” 实现: 用变量来储存数据,用语句来执行指令,改变变量状态。 基本所有的常见的编程语言都具有此范式 函数式编程 声明式语法,描述要什么,而不是怎么做 类似于SQL语句 语言: kotlin swift python javascript scala 函数是第一等公民 可以赋值给变量,可作为参数传入另一个函数,也可作为函数的返回值 纯函数 y=f(x) 只要输入相同,返回值不变 没有副作用:不修改函数的外部状态 举个栗子 公司部门要进行outing,去哪里是个问题,要考虑多个因素,比如花费、距离、天数等等,有多个备选地点进行选择。 定义一个数据类: image.png 要进行筛选了,分别用sql,kotlin,java来实现 找出花费低于2000元的outing地点信息 SQL image.png Kotlin image.png java 7 image.png 可见kotin的写法还是比较接近于sql的思想的,声明式的写法,而不管具体如何实现;其中的:place->place.money<2000 就是函数,可以作为参数传递给fliter这个高阶函数;而且这个函数没有副作用,不改变外部状态。 再来一个复杂一点的: 找出花费低于5000元,时间不多于4天,按照距离排序的outing地点名称 SQL image.png Kotlin: image.png java 7 image.png 由此可见用kotlin的函数式写法,会更简洁,逻辑也更清晰,这段代码的目标一目了然,这种清晰在于实现了业务逻辑与控制逻辑的分离,业务逻辑就是由函数实现的,比如place->place.money<500,而控制逻辑是由filter,sorterBy等高阶函数实现的。 而java的传统写法是基于对数据的操作,避免不了遍历的操作,业务逻辑与控制逻辑交织在了一起,这段代码的目的就不是那么容易清晰看到的了。 总结 kotlin是实用的现代编程语言,吸收了众多编程语言的优点,支持类型推断、空类型安全、函数式编程、DSL等特性,非常值得学习和使用。
问问小秘 2020-04-30 16:33:40 0 浏览量 回答数 0

问题

游戏盾SDK接入指南的介绍

概述 通过本文,您可以了解到如何使用游戏盾产品的SDK,接入游戏盾。 [backcolor=transparent]典型接入场景 集成准备 获取appKey。集成游戏盾SDK之前&...
云栖大讲堂 2019-12-01 21:49:47 3560 浏览量 回答数 0

问题

【技术干货】前端工程师看过来!一种Ajax缩放图片上传的办法 !

本文作者:上海驻云开发实施工程师 方舟 以下正文 最近做的应用里面有上传图片的功能,由于图片直接丢进阿里云OSS,所以不想通过服务器端程序来写缩放功能,查了一下找到一篇文章&...
驻云科技 2019-12-01 21:08:17 6525 浏览量 回答数 2

问题

详解 Spring 3.0 基于 Annotation 的依赖注入实现 配置报错 

作者:张 建平, 项目经理, iSoftStone Co.,Ltd 简介: Spring 的依赖配置方式与 Spring 框架的内核自身是松耦合设计的。然而,直到 Spring 3.0 以前...
kun坤 2020-06-01 09:44:47 3 浏览量 回答数 1

回答

递归算法:是一种直接或者间接地调用自身的算法。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。   递归算法的特点   递归过程一般通过函数或子过程来实现。   递归算法:在函数或子过程的内部,直接或者间接地调用自己的算法。   递归算法的实质:是把问题转化为规模缩小了的同类问题的子问题。然后递归调用函数(或过程)来表示问题的解。   递归算法解决问题的特点:   (1) 递归就是在过程或函数里调用自身。   (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。   (3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。   (4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。   递归算法所体现的“重复”一般有三个要求:   一是每次调用在规模上都有所缩小(通常是减半);   二是相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入);   三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。   例子如下:   描述:把一个整数按n(2<=n<=20)进制表示出来,并保存在给定字符串中。比如121用二进制表示得到结果为:“1111001”。   参数说明:s: 保存转换后得到的结果。   n: 待转换的整数。   b: n进制(2<=n<=20)   void   numbconv(char *s, int n, int b)   {   int len;   if(n == 0) {   strcpy(s, "");   return;   }   /* figure out first n-1 digits */   numbconv(s, n/b, b);   /* add last digit */   len = strlen(s);   s[len] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[n%b];   s[len+1] = '\0';   }   void   main(void)   {   char s[20];   int i, base;   FILE *fin, *fout;   fin = fopen("palsquare.in", "r");   fout = fopen("palsquare.out", "w");   assert(fin != NULL && fout != NULL);   fscanf(fin, "%d", &base);   /*PLS set START and END*/   for(i=START; i <= END; i++) {   numbconv(s, i*i, base);   fprintf(fout, "%s\n", s);   }   exit(0);   }   递归算法简析(PASCAL语言)   递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写   程序能是程序变得简洁和清晰.   一 递归的概念   1.概念   一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).   如:   procedure a;   begin   .   .   .   a;   .   .   .   end;   这种方式是直接调用.   又如:   procedure b; procedure c;   begin begin   . .   . .   . .   c; b;   . .   . .   . .   end; end;   这种方式是间接调用.   例1计算n!可用递归公式如下:   1 当 n=0 时   fac(n)={n*fac(n-1) 当n>0时   可编写程序如下:   program fac2;   var   n:integer;   function fac(n:integer):real;   begin   if n=0 then fac:=1 else fac:=n*fac(n-1)   end;   begin   write('n=');readln(n);   writeln('fac(',n,')=',fac(n):6:0);   end.   例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.   设n阶台阶的走法数为f(n)   显然有   1 n=1   f(n)={   f(n-1)+f(n-2) n>2   可编程序如下:   program louti;   var n:integer;   function f(x:integer):integer;   begin   if x=1 then f:=1 else   if x=2 then f:=2 else f:=f(x-1)+f(x-2);   end;   begin   write('n=');read(n);   writeln('f(',n,')=',f(n))   end.   二,如何设计递归算法   1.确定递归公式   2.确定边界(终了)条件   三,典型例题   例3 梵塔问题   如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子   从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上   不能出现大盘压小盘.找出移动次数最小的方案.   程序如下:   program fanta;   var   n:integer;   procedure move(n,a,b,c:integer);   begin   if n=1 then writeln(a,'--->',c)   else begin   move(n-1,a,c,b);   writeln(a,'--->',c);   move(n-1,b,a,c);   end;   end;   begin   write('Enter n=');   read(n);   move(n,1,2,3);   end.   例4 快速排序   快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.   程序如下:   program kspv;   const n=7;   type   arr=array[1..n] of integer;   var   a:arr;   i:integer;   procedure quicksort(var b:arr; s,t:integer);   var i,j,x,t1:integer;   begin   i:=s;j:=t;x:=b;   repeat   while (b[j]>=x) and (j>i) do j:=j-1;   if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end;   while (b<=x) and (i<j) do i:=i+1;   if i<j then begin t1:=b[j];b[j]:=b;b:=t1; end   until i=j;   b:=x;   i:=i+1;j:=j-1;   if s<j then quicksort(b,s,j);   if i<t then quicksort(b,i,t);   end;   begin   write('input data:');   for i:=1 to n do read(a);   writeln;   quicksort(a,1,n);   write('output data:');   for i:=1 to n do write(a:6);   writeln;   end.-------------------------通过这一个程序自动生成
游客886 2019-12-02 01:24:20 0 浏览量 回答数 0

回答

从计算机科学的角度出发,以太坊可以看作是一个分布式状态机,其中交易区块等同于状态转换函数,新的交易区块由从状态A到状态B的状态转换记录构成。因此,以太坊就像一个巨大的虚拟状态引擎或去中心化的计算机,可供多方共享计算平台并基于此运行智能合约。以太坊有一种原生资产—以太币,它是以太坊生态系统中的价值基础。以太币用于调整运营智能合约的激励机制,同时提高网络的安全性。 与比特币比较起来,以太坊是一个应用程序平台,而不仅是加密货币。比特币主要用于交易,而以太坊则可以执行更为复杂的规则,是一个用于构建分布式应用程序的平台。以太坊有一个图灵完备的脚本语言,利用程序代码将合约规则实例化成智能合约。智能合约是表达、验证并协商或强制执行数字合约的一段计算机代码,它可以在没有任何第三方的情况下被以太坊网络自动执行。以太坊的脚本语言比比特币的脚本语言要强大得多,可以实现复杂的智能合约规则。借助以太坊计算平台,开发人员可以用分布式应用程序(DApp)替代集中式应用程序。因为没有集中的数据库可以成为黑客的目标,DApp极大地增强了网络安全性。典型的DApp案例包括去中心化的内容发布平台Steemit、社交网络Synereo、去中心化的打车平台LaZooz、音乐版权平台Ujo Music和去中心化的就业市场Ethlance等。 比特币和以太坊之间的另一个区别在于,比特币是基于UTXO(未花费的交易(tx)输出)的,而以太坊是基于账户体系的区块链。在比特币中,交易的所有输入必须在UTXO数据库中才有效。UTXO是先前交易中未支出的金额,需要确认为未花费用作为当前交易的输入,比特币用户的可用余额是由其私钥控制的UTXO总和。而以太坊使用基于账户的模型,用户的可用余额记录在用户的账户中,该账户具有用户的地址、余额以及可选代码字段中的任何数据。例如在比特币中,Alice拥有控制一组UTXO的私钥;在以太坊中,Carol拥有控制由地址、余额和代码字段组成的账户的私钥。通过账户模型,以太坊节点只需更新其账户余额而不是存储每个UTXO,因此更节省空间。同时,以太坊也更直观,因为智能合约是一种更有效的编程机制,其可以在账户之间转移余额,而不是不断更新UTXO集来计算用户的可用余额。 以太坊有两种账户类型:外部账户(EOA)和合约账户,这两种账户都有用户地址和以太币余额。EOA通常被用于某种形式的外部实体(如个人或公司),这类用户在注册以太坊网络时都被分配为EOA账户。EOA具有加密地址,它可以发送交易(将以太币转移到其他账户或触发合约代码)。第二种账户类型是合约账户,这些账户具有地址、以太币余额以及任何关联的合约代码。代码执行由从其他合约或EOA中收到的交易或消息(函数调用)触发。这意味着合约是以太坊网络上的自主账户,其他账户(EOA或合约账户)可以与它们进行交互,但没有人控制它们(因为一旦启动,它们就是自治的)。由于其他程序可以调用合约上的函数,因此可以与合约账户交互或执行某些交易,但是不能直接控制合约账户。以太坊账户以交易为媒介,与以太坊网络上的其他账户、其他合约和合约状态进行交互。 以太坊某一时刻的所有账户状态构成了整个以太坊的网络状态,它们需要就每个账户的当前余额、存储状态和合约代码达成共识。每个新的区块都需要获取前一个区块的信息并更新新的以太坊网络状态,每个网络节点都必须就新的网络状态达成一致。因此,交易区块是以太坊网络状态之间的状态转换函数。
问问小秘 2019-12-02 03:10:04 0 浏览量 回答数 0

问题

只在条件为真时才在“如果”中执行函数

我正在编写一个简单的迷宫游戏。我已经创建了一个带有move方法的Player类——但是每当我想检查移动是否在可用路径列表中时,它都会运行move方法并改变我的角色位置。 class Player : def __i...
kun坤 2019-12-27 17:54:38 0 浏览量 回答数 1

问题

用户指南-读写分离-读写分离简介

功能介绍 当您开通读写分离功能后,实例中会存在如下三类地址: 主实例的连接地址:可以只有内网或者外网地址,也可以内外网地址共存。只读实例的连接地址:可以只有内网或者外...
李沃晟 2019-12-01 21:38:38 697 浏览量 回答数 0

回答

  递归做为一种算法在程序设计语言中广泛应用.是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现像.   程序调用自身的编程技巧称为递归( recursion)。   一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。   一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。   注意:   (1) 递归就是在过程或函数里调用自身;   (2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。   递归算法一般用于解决三类问题:   (1)数据的定义是按递归定义的。(Fibonacci函数)   (2)问题解法按递归算法实现。(回溯)   (3)数据的结构形式是按递归定义的。(树的遍历,图的搜索)   递归的缺点:   递归算法解题的运行效率较低。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。   例子:   #include <iostream.h>   void move (char getone,char putone)   {   cout <<getone<<"-->"<}   void hanoi(int n,char one ,char two ,char three)   {   void move (char getone,char putone );   if (n==1)   move (one,three);   else   {   hanoi(n-1,one,three,two);   move (one ,three);   hanoi(n-1,two,one,three);   }   }   void main()   {   void hanoi(int n ,char one ,char two ,char three);   int m ;   cout <<"Input the numberof disker:";   cin>>m;   cout<<"the steps to moving "<<m<<"diskes   :"<<endl;   hanoi(m,'A','B','C');   }   第二章 递归   2.1 递归的概念   2.2 如何设计递归算法   2.3 典型例题   递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写   程序能是程序变得简洁和清晰.   2.1 递归的概念   1.概念   一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数).   如:   procedure a;   begin   .   .   .   a;   .   .   .   end;   这种方式是直接调用.   又如:   procedure b; procedure c;   begin begin   . .   . .   . .   c; b;   . .   . .   . .   end; end;   这种方式是间接调用.   例1计算n!可用递归公式如下:   1 当 n=0 时   fac(n)={n*fac(n-1) 当n>0时   可编写程序如下:   program fac2;   var   n:integer;   function fac(n:integer):real;   begin   if n=0 then fac:=1 else fac:=n*fac(n-1)   end;   begin   write('n=');readln(n);   writeln('fac(',n,')=',fac(n):6:0);   end.   例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法.   设n阶台阶的走法数为f(n)   显然有   1 n=1   f(n)={2 n=2   f(n-1)+f(n-2) n>2   可编程序如下:   program louti;   var n:integer;   function f(x:integer):integer;   begin   if x=1 then f:=1 else   if x=2 then f:=2 else f:=f(x-1)+f(x-2);   end;   begin   write('n=');read(n);   writeln('f(',n,')=',f(n))   end.   2.2 如何设计递归算法   1.确定递归公式   2.确定边界(终了)条件   练习:   用递归的方法完成下列问题   1.求数组中的最大数   2.1+2+3+...+n   3.求n个整数的积   4.求n个整数的平均值   5.求n个自然数的最大公约数与最小公倍数   6.有一对雌雄兔,每两个月就繁殖雌雄各一对兔子.问n个月后共有多少对兔子?   7.已知:数列1,1,2,4,7,13,24,44,...求数列的第 n项.   2.3典型例题   例3 梵塔问题   如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子   从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上   不能出现大盘压小盘.找出移动次数最小的方案.   程序如下:   program fanta;   var   n:integer;   procedure move(n,a,b,c:integer);   begin   if n=1 then writeln(a,'--->',c)   else begin   move(n-1,a,c,b);   writeln(a,'--->',c);   move(n-1,b,a,c);   end;   end;   begin   write('Enter n=');   read(n);   move(n,1,2,3);   end.   例4 快速排序   快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束.   程序如下:   program kspv;   const n=7;   type   arr=array[1..n] of integer;   var   a:arr;   i:integer;   procedure quicksort(var b:arr; s,t:integer);   var i,j,x,t1:integer;   begin   i:=s;j:=t;x:=b;   repeat   while (b[j]>=x) and (j>i) do j:=j-1;   if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end;   while (b<=x) and (i<j) do i:=i+1;   if i<j then begin t1:=b[j];b[j]:=b;b:=t1; end   until i=j;   b:=x;   i:=i+1;j:=j-1;   if s<j then quicksort(b,s,j);   if i<t then quicksort(b,i,t);   end;   begin   write('input data:');   for i:=1 to n do read(a);   writeln;   quicksort(a,1,n);   write('output data:');   for i:=1 to n do write(a:6);   writeln;   end.   练习:   1.计算ackerman函数值:   n+1 m=0   ack(m,n)={ ack(m-1,1) m<>0 ,n=0   ack(m-1,ack(m,n-1)) m<>0,n<>0   求ack(5,4)
知与谁同 2019-12-02 01:25:22 0 浏览量 回答数 0

问题

Linux堆内存管理深入分析(下)

Linux堆内存管理深入分析 (下半部) 作者@走位,阿里聚安全 0 前言回顾 在上一篇文章中,详细介绍了堆内存管理中涉及到的基本概念以及相互关系,同时也...
移动安全 2019-12-01 21:29:55 5623 浏览量 回答数 0

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么? 遍历方式有以下几种: for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。 最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。 如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。 说一下 ArrayList 的优缺点 ArrayList的优点如下: ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。 ArrayList 的缺点如下: 删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。 ArrayList 比较适合顺序添加、随机访问的场景。 如何实现数组和 List 之间的转换? 数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。 代码示例: ArrayList 和 LinkedList 的区别是什么? 数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全; 综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。 补充:数据结构基础之双向链表 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。 ArrayList 和 Vector 的区别是什么? 这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合 线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。 Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。 插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性? ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。 Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。 LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。 多线程场景下如何使用 ArrayList? ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样: 为什么 ArrayList 的 elementData 加上 transient 修饰? ArrayList 中的数组定义如下: private transient Object[] elementData; 再看一下 ArrayList 的定义: public class ArrayList extends AbstractList implements List<E>, RandomAccess, Cloneable, java.io.Serializable 可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现: 每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。 List 和 Set 的区别 List , Set 都是继承自Collection 接口 List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。 Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。 另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。 Set和List对比 Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变 Set接口 说一下 HashSet 的实现原理? HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。 HashSet如何检查重复?HashSet是如何保证数据不可重复的? 向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。 HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。 以下是HashSet 部分源码: hashCode()与equals()的相关规定: 如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个equals方法返回true 两个对象有相同的hashcode值,它们也不一定是相等的 综上,equals方法被覆盖过,则hashCode方法也必须被覆盖 hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)。 ** ==与equals的区别** ==是判断两个变量或实例是不是指向同一个内存空间 equals是判断两个变量或实例所指向的内存空间的值是不是相同 ==是指对内存地址进行比较 equals()是对字符串的内容进行比较3.==指引用是否相同 equals()指的是值是否相同 HashSet与HashMap的区别 Queue BlockingQueue是什么? Java.util.concurrent.BlockingQueue是一个队列,在进行检索或移除一个元素的时候,它会等待队列变为非空;当在添加一个元素时,它会等待队列中的可用空间。BlockingQueue接口是Java集合框架的一部分,主要用于实现生产者-消费者模式。我们不需要担心等待生产者有可用的空间,或消费者有可用的对象,因为它都在BlockingQueue的实现类中被处理了。Java提供了集中BlockingQueue的实现,比如ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,、SynchronousQueue等。 在 Queue 中 poll()和 remove()有什么区别? 相同点:都是返回第一个元素,并在队列中删除返回的对象。 不同点:如果没有元素 poll()会返回 null,而 remove()会直接抛出 NoSuchElementException 异常。 代码示例: Queue queue = new LinkedList (); queue. offer("string"); // add System. out. println(queue. poll()); System. out. println(queue. remove()); System. out. println(queue. size()); Map接口 说一下 HashMap 的实现原理? HashMap概述: HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 HashMap的数据结构: 在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。 HashMap 基于 Hash 算法实现的 当我们往Hashmap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标存储时,如果出现hash值相同的key,此时有两种情况。(1)如果key相同,则覆盖原始值;(2)如果key不同(出现冲突),则将当前的key-value放入链表中获取时,直接找到hash值对应的下标,在进一步判断key是否相同,从而找到对应值。理解了以上过程就不难明白HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。 需要注意Jdk 1.8中对HashMap的实现做了优化,当链表中的节点数据超过八个之后,该链表会转为红黑树来提高查询效率,从原来的O(n)到O(logn) HashMap在JDK1.7和JDK1.8中有哪些不同?HashMap的底层实现 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做拉链法的方式可以解决哈希冲突。 JDK1.8之前 JDK1.8之前采用的是拉链法。拉链法:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。 JDK1.8之后 相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。 JDK1.7 VS JDK1.8 比较 JDK1.8主要解决或优化了一下问题: resize 扩容优化引入了红黑树,目的是避免单条链表过长而影响查询效率,红黑树算法请参考解决了多线程死循环问题,但仍是非线程安全的,多线程时可能会造成数据丢失问题。 HashMap的put方法的具体流程? 当我们put的时候,首先计算 key的hash值,这里调用了 hash方法,hash方法实际是让key.hashCode()与key.hashCode()>>>16进行异或操作,高16bit补0,一个数和0异或不变,所以 hash 函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或,目的是减少碰撞。按照函数注释,因为bucket数组大小是2的幂,计算下标index = (table.length - 1) & hash,如果不做 hash 处理,相当于散列生效的只有几个低 bit 位,为了减少散列的碰撞,设计者综合考虑了速度、作用、质量之后,使用高16bit和低16bit异或来简单处理减少碰撞,而且JDK8中用了复杂度 O(logn)的树结构来提升碰撞下的性能。 putVal方法执行流程图 ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容; ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③; ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals; ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤; ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可; ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。 HashMap的扩容操作是怎么实现的? ①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容; ②.每次扩展的时候,都是扩展2倍; ③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。 在putVal()中,我们看到在这个函数里面使用到了2次resize()方法,resize()方法表示的在进行第一次初始化时会对其进行扩容,或者当该数组的实际大小大于其临界值值(第一次为12),这个时候在扩容的同时也会伴随的桶上面的元素进行重新分发,这也是JDK1.8版本的一个优化的地方,在1.7中,扩容之后需要重新去计算其Hash值,根据Hash值对其进行分发,但在1.8版本中,则是根据在同一个桶的位置中进行判断(e.hash & oldCap)是否为0,重新进行hash分配后,该元素的位置要么停留在原始位置,要么移动到原始位置+增加的数组大小这个位置上 HashMap是怎么解决哈希冲突的? 答:在解决这个问题之前,我们首先需要知道什么是哈希冲突,而在了解哈希冲突之前我们还要知道什么是哈希才行; 什么是哈希? Hash,一般翻译为“散列”,也有直接音译为“哈希”的,这就是把任意长度的输入通过散列算法,变换成固定长度的输出,该输出就是散列值(哈希值);这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 所有散列函数都有如下一个基本特性**:根据同一散列函数计算出的散列值如果不同,那么输入值肯定也不同。但是,根据同一散列函数计算出的散列值如果相同,输入值不一定相同**。 什么是哈希冲突? 当两个不同的输入值,根据同一散列函数计算出相同的散列值的现象,我们就把它叫做碰撞(哈希碰撞)。 HashMap的数据结构 在Java中,保存数据有两种比较简单的数据结构:数组和链表。数组的特点是:寻址容易,插入和删除困难;链表的特点是:寻址困难,但插入和删除容易;所以我们将数组和链表结合在一起,发挥两者各自的优势,使用一种叫做链地址法的方式可以解决哈希冲突: 这样我们就可以将拥有相同哈希值的对象组织成一个链表放在hash值所对应的bucket下,但相比于hashCode返回的int类型,我们HashMap初始的容量大小DEFAULT_INITIAL_CAPACITY = 1 << 4(即2的四次方16)要远小于int类型的范围,所以我们如果只是单纯的用hashCode取余来获取对应的bucket这将会大大增加哈希碰撞的概率,并且最坏情况下还会将HashMap变成一个单链表,所以我们还需要对hashCode作一定的优化 hash()函数 上面提到的问题,主要是因为如果使用hashCode取余,那么相当于参与运算的只有hashCode的低位,高位是没有起到任何作用的,所以我们的思路就是让hashCode取值出的高位也参与运算,进一步降低hash碰撞的概率,使得数据分布更平均,我们把这样的操作称为扰动,在JDK 1.8中的hash()函数如下: static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);// 与自己右移16位进行异或运算(高低位异或) } 这比在JDK 1.7中,更为简洁,相比在1.7中的4次位运算,5次异或运算(9次扰动),在1.8中,只进行了1次位运算和1次异或运算(2次扰动); JDK1.8新增红黑树 通过上面的链地址法(使用散列表)和扰动函数我们成功让我们的数据分布更平均,哈希碰撞减少,但是当我们的HashMap中存在大量数据时,加入我们某个bucket下对应的链表有n个元素,那么遍历时间复杂度就为O(n),为了针对这个问题,JDK1.8在HashMap中新增了红黑树的数据结构,进一步使得遍历复杂度降低至O(logn); 总结 简单总结一下HashMap是使用了哪些方法来有效解决哈希冲突的: 使用链地址法(使用散列表)来链接拥有相同hash值的数据;使用2次扰动函数(hash函数)来降低哈希冲突的概率,使得数据分布更平均;引入红黑树进一步降低遍历的时间复杂度,使得遍历更快; **能否使用任何类作为 Map 的 key? **可以使用任何类作为 Map 的 key,然而在使用之前,需要考虑以下几点: 如果类重写了 equals() 方法,也应该重写 hashCode() 方法。 类的所有实例需要遵循与 equals() 和 hashCode() 相关的规则。 如果一个类没有使用 equals(),不应该在 hashCode() 中使用它。 用户自定义 Key 类最佳实践是使之为不可变的,这样 hashCode() 值可以被缓存起来,拥有更好的性能。不可变的类也可以确保 hashCode() 和 equals() 在未来不会改变,这样就会解决与可变相关的问题了。 为什么HashMap中String、Integer这样的包装类适合作为K? 答:String、Integer等包装类的特性能够保证Hash值的不可更改性和计算准确性,能够有效的减少Hash碰撞的几率 都是final类型,即不可变性,保证key的不可更改性,不会存在获取hash值不同的情况 内部已重写了equals()、hashCode()等方法,遵守了HashMap内部的规范(不清楚可以去上面看看putValue的过程),不容易出现Hash值计算错误的情况; 如果使用Object作为HashMap的Key,应该怎么办呢? 答:重写hashCode()和equals()方法 重写hashCode()是因为需要计算存储数据的存储位置,需要注意不要试图从散列码计算中排除掉一个对象的关键部分来提高性能,这样虽然能更快但可能会导致更多的Hash碰撞; 重写equals()方法,需要遵守自反性、对称性、传递性、一致性以及对于任何非null的引用值x,x.equals(null)必须返回false的这几个特性,目的是为了保证key在哈希表中的唯一性; HashMap为什么不直接使用hashCode()处理后的哈希值直接作为table的下标 答:hashCode()方法返回的是int整数类型,其范围为-(2 ^ 31)~(2 ^ 31 - 1),约有40亿个映射空间,而HashMap的容量范围是在16(初始化默认值)~2 ^ 30,HashMap通常情况下是取不到最大值的,并且设备上也难以提供这么多的存储空间,从而导致通过hashCode()计算出的哈希值可能不在数组大小范围内,进而无法匹配存储位置; 那怎么解决呢? HashMap自己实现了自己的hash()方法,通过两次扰动使得它自己的哈希值高低位自行进行异或运算,降低哈希碰撞概率也使得数据分布更平均; 在保证数组长度为2的幂次方的时候,使用hash()运算之后的值与运算(&)(数组长度 - 1)来获取数组下标的方式进行存储,这样一来是比取余操作更加有效率,二来也是因为只有当数组长度为2的幂次方时,h&(length-1)才等价于h%length,三来解决了“哈希值与数组大小范围不匹配”的问题; HashMap 的长度为什么是2的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。 这个算法应该如何设计呢? 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。 那为什么是两次扰动呢? 答:这样就是加大哈希值低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性&均匀性,最终减少Hash冲突,两次就够了,已经达到了高位低位同时参与运算的目的; HashMap 与 HashTable 有什么区别? 线程安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!); 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它; 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛NullPointerException。 **初始容量大小和每次扩充容量大小的不同 **: ①创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。②创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂作为哈希表的大小,后面会介绍到为什么是2的幂次方。 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 推荐使用:在 Hashtable 的类注释可以看到,Hashtable 是保留类不建议使用,推荐在单线程环境下使用 HashMap 替代,如果需要多线程使用则用 ConcurrentHashMap 替代。 如何决定使用 HashMap 还是 TreeMap? 对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。 HashMap 和 ConcurrentHashMap 的区别 ConcurrentHashMap对整个桶数组进行了分割分段(Segment),然后在每一个分段上都用lock锁进行保护,相对于HashTable的synchronized锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。(JDK1.8之后ConcurrentHashMap启用了一种全新的方式实现,利用CAS算法。) HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。 ConcurrentHashMap 和 Hashtable 的区别? ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的; 实现线程安全的方式(重要): ① 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在JDK1.8中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;② Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。 两者的对比图: HashTable: JDK1.7的ConcurrentHashMap: JDK1.8的ConcurrentHashMap(TreeBin: 红黑二叉树节点 Node: 链表节点): 答:ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。 ConcurrentHashMap 锁的方式是稍微细粒度的。 ConcurrentHashMap 底层具体实现知道吗?实现原理是什么? JDK1.7 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 在JDK1.7中,ConcurrentHashMap采用Segment + HashEntry的方式进行实现,结构如下: 一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和HashMap类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个HashEntry数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment的锁。 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个HashEntry 数组里得元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。 JDK1.8 在JDK1.8中,放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。 结构如下: 如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount; 辅助工具类 Array 和 ArrayList 有何区别? Array 可以存储基本数据类型和对象,ArrayList 只能存储对象。Array 是指定固定大小的,而 ArrayList 大小是自动扩展的。Array 内置方法没有 ArrayList 多,比如 addAll、removeAll、iteration 等方法只有 ArrayList 有。 对于基本类型数据,集合使用自动装箱来减少编码工作量。但是,当处理固定大小的基本数据类型的时候,这种方式相对比较慢。 如何实现 Array 和 List 之间的转换? Array 转 List: Arrays. asList(array) ;List 转 Array:List 的 toArray() 方法。 comparable 和 comparator的区别? comparable接口实际上是出自java.lang包,它有一个 compareTo(Object obj)方法用来排序comparator接口实际上是出自 java.util 包,它有一个compare(Object obj1, Object obj2)方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写compareTo方法或compare方法,当我们需要对某一个集合实现两种排序方式,比如一个song对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写compareTo方法和使用自制的Comparator方法或者以两个Comparator来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的Collections.sort(). 方法如何比较元素? TreeSet 要求存放的对象所属的类必须实现 Comparable 接口,该接口提供了比较元素的 compareTo()方法,当插入元素时会回调该方法比较元素的大小。TreeMap 要求存放的键值对映射的键必须实现 Comparable 接口从而根据键对元素进 行排 序。 Collections 工具类的 sort 方法有两种重载的形式, 第一种要求传入的待排序容器中存放的对象比较实现 Comparable 接口以实现元素的比较; 第二种不强制性的要求容器中的元素必须可比较,但是要求传入第二个参数,参数是Comparator 接口的子类型(需要重写 compare 方法实现元素的比较),相当于一个临时定义的排序规则,其实就是通过接口注入比较元素大小的算法,也是对回调模式的应用(Java 中对函数式编程的支持)。
剑曼红尘 2020-03-24 14:41:57 0 浏览量 回答数 0

问题

整理发布本人所有开源代码、工具及相关博文(C++):报错

为了更方便地管理博文中涉及的各种代码与工具资源,现在把这些资源迁移到 Google Code 中,有兴趣者可前往下载。 C++ 1、《【五一呈献】通用高性能 Windows Socket 组件 H...
kun坤 2020-06-09 12:15:48 0 浏览量 回答数 1

问题

有没有更好的方法来处理这类数据?

在我的项目中,我必须处理形状异常的数据,我认为这不是一种有效的处理方法。这是以下: 对于一个条目,您指定一个延迟值和1-4个omega值(一个是必需的,其他是可选的) 4个条目的一个例...
kun坤 2019-12-28 13:43:10 0 浏览量 回答数 0

回答

printf("aaa\n");这不是在打印a字符吗?,而且,只有段越界才会引起进程的段错误信号,你访问的地址仍然在进程的合法空间范围内,当然空指针这类地址基本不合法。回复 @xxdd:看看gdb进程的infoprocmappings或者去cat/proc/$pid/maps,崩溃指的是程序read,write,execute了一个virtualaddress,这个address不在操作系统给其进程分配的虚拟地址段之内,称其为段错误回复 @xxdd:我的理解是,只有当指针指向只读区域时,你更改才会报错。想想八门神器,一个程序都可以改别的程序里的内存值,这不就很好的解释了你的疑问了吗?您好,我指的是fun()函数里面的n[111],已经越界了,为什么程序可以正常运行,而不是崩溃? 因为根本报不了错。 编译器,编译器怎么判断数组下标的范围?没有任何一种万无一失的方法,最多用静态检查工具,处理掉一些错误。 运行期,程序持有的信息更少,数组元素的访问就是数组其实元素的地址+偏移量计算出地址。这个时候就是对地址的直接访问,运行期是不会记录类型信息的,根本不知道这个数组设定的大小。这个时候程序是否崩溃就要看人品了,只有操作系统发现你访问了不该访问的内存区域,程序才会崩溃。谢谢,应该是这样的。c++本来就不会检查边界的,所以遇到数组参数的时候,一般会加一个长度,而java是基于这个问题做了优化编译器不检查,但是为什么运行的时候,也不报错? 数组下标越界是undefinedbehavior. 结果是未定义的知道什么意思吧 两种写法程序都可以正常运行,为啥?明明操作了非法的地址。越界是 undefinedbehavior。所谓 undefinedbehavior就是怎样都行,可以崩溃、可以什么都不干。你如果非要问为什么C++这样规定,那是因为检查这些错误代价实在太大了。您好,我想知道的是,为什么这个程序可以正常运行?数组已经指向了非法的地址。数组传递变成指针,他允许你进行修改,改的对不对成了问题 你把堆改成栈再试试回复 @xxdd:堆所分配的是系统中剩余的可用内存。new出来的内存指针所指向的地址,在你指定的大小之后,仍然可能有很大一块可用内存,不报错是有可能的。inta[2];fun(a);这个就是栈吧?这应该和系统内存分配有关系吧,报错应该是系统认为地址非法给你报错,系统肯定是认为你这个地址不非法呗,所以不报错newint[2]是从堆上分配的,数组越界是未定义行为,可能是没有进程默认堆大,没有非法访问,所以没有coredump掉。你越界大一些看看好像是这个原因,那栈上那个为什么也不报错? 楼主听说过“缓冲区溢出”的说法吧 我个人理解一个指针本来就能在自己的地盘里指来指去,想要指到哪里是程序员的自由,编译器不做这方面的任何限制与检查。 Linux上检查缓冲区溢出跟内存泄露可以试试valgrind还有电网electric-fence
爱吃鱼的程序员 2020-06-12 14:05:26 0 浏览量 回答数 0

回答

Redis常见的几种主要使用方式: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster(集群) Redis 自研 Redis各种使用方式的优缺点: 1 Redis单副本 Redis各种使用方式的优缺点: Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 2 Redis多副本(主从) Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 3 Redis Sentinel(哨兵) Redis Sentinel是社区版本推出的原生高可用解决方案,Redis Sentinel部署架构主要包括两部分:Redis Sentinel集群和Redis数据集群,其中Redis Sentinel集群是由若干Sentinel节点组成的分布式集群。可以实现故障发现、故障自动转移、配置中心和客户端通知。Redis Sentinel的节点数量要满足2n+1(n>=1)的奇数个。 优点: 1、Redis Sentinel集群部署简单 2、能够解决Redis主从模式下的高可用切换问题 3、很方便实现Redis数据节点的线形扩展,轻松突破Redis自身单线程瓶颈,可极大满足对Redis大容量或高性能的业务需求。 4、可以实现一套Sentinel监控一组Redis数据节点或多组数据节点 缺点: 1、部署相对Redis 主从模式要复杂一些,原理理解更繁琐 2、资源浪费,Redis数据节点中slave节点作为备份节点不提供服务 3、Redis Sentinel主要是针对Redis数据节点中的主节点的高可用切换,对Redis的数据节点做失败判定分为主观下线和客观下线两种,对于Redis的从节点有对节点做主观下线操作,并不执行故障转移。 4、不能解决读写分离问题,实现起来相对复杂 建议: 1、如果监控同一业务,可以选择一套Sentinel集群监控多组Redis数据节点的方案,反之选择一套Sentinel监控一组Redis数据节点的方案 2、sentinel monitor 配置中的 建议设置成Sentinel节点的一半加1,当Sentinel部署在多个IDC的时候,单个IDC部署的Sentinel数量不建议超过(Sentinel数量 – quorum)。 3、合理设置参数,防止误切,控制切换灵敏度控制 quorum down-after-milliseconds 30000 failover-timeout 180000 maxclient timeout 4、部署的各个节点服务器时间尽量要同步,否则日志的时序性会混乱 5、Redis建议使用pipeline和multi-keys操作,减少RTT次数,提高请求效率 6、自行搞定配置中心(zookeeper),方便客户端对实例的链接访问 4 Redis Cluster(集群) Redis Cluster是社区版推出的Redis分布式集群解决方案,主要解决Redis分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster能起到很好的负载均衡的目的。Redis Cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。Redis Cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所印映射的键值数据。 优点: 1、无中心架构 2、数据按照slot存储分布在多个节点,节点间数据共享,可动态调整数据分布。 3、可扩展性,可线性扩展到1000多个节点,节点可动态添加或删除。 4、高可用性,部分节点不可用时,集群仍可用。通过增加Slave做standby数据副本,能够实现故障自动failover,节点之间通过gossip协议交换状态信息,用投票机制完成Slave到Master的角色提升。 5、降低运维成本,提高系统的扩展性和可用性。 缺点: 1、Client实现复杂,驱动要求实现Smart Client,缓存slots mapping信息并及时更新,提高了开发难度,客户端的不成熟影响业务的稳定性。目前仅JedisCluster相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。 2、节点会因为某些原因发生阻塞(阻塞时间大于clutser-node-timeout),被判断下线,这种failover是没有必要的。 3、数据通过异步复制,不保证数据的强一致性。 4、多个业务使用同一套集群时,无法根据统计区分冷热数据,资源隔离性较差,容易出现相互影响的情况。 5、Slave在集群中充当“冷备”,不能缓解读压力,当然可以通过SDK的合理设计来提高Slave资源的利用率。 6、key批量操作限制,如使用mset、mget目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于keys 不支持跨slot查询,所以执行mset、mget、sunion等操作支持不友好。 7、key事务操作支持有限,只支持多key在同一节点上的事务操作,当多个key分布于不同的节点上时无法使用事务功能。 8、key作为数据分区的最小粒度,因此不能将一个很大的键值对象如hash、list等映射到不同的节点。 9、不支持多数据库空间,单机下的redis可以支持到16个数据库,集群模式下只能使用1个数据库空间,即db 0。 10、复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。 11、避免产生hot-key,导致主库节点成为系统的短板。 12、避免产生big-key,导致网卡撑爆、慢查询等。 13、重试时间应该大于cluster-node-time时间 14、Redis Cluster不建议使用pipeline和multi-keys操作,减少max redirect产生的场景。 使用场景 数据量较大 Redis 集群版可以有效的扩展数据规模,相比标准版支持存储量更大的64、128、256 GB 集群版,可以有效的满足数据扩展需求。 QPS 压力较大 标准版 Redis 无法支撑较大的 QPS,需要采用多节点的部署方式来冲破 Redis 单线程的性能瓶颈。 吞吐密集型应用 相比标准版,Redis 集群版的内网吞吐限制相对较低,针对热点数据读取、大吞吐类型的业务可以友好的支持。 对 Redis 协议不敏感的应用 由于集群版的架构引入了多个组件,在 Redis 协议支持上相比标准版有一定限制。
剑曼红尘 2020-04-27 14:41:57 0 浏览量 回答数 0

问题

得到一个无法得到<类的通知。模型的报告。用于连接到Postgres数据库的django通知的Noti

我被这个问题困扰了很长一段时间,不知道是什么原因导致的。我为我的Django应用程序实现了一个实时通知系统。我使用了Django-notifications库来实现它。它将未读计数和未读通知显示为导航栏的下拉列表。以前我使用的...
kun坤 2019-12-25 22:21:38 3 浏览量 回答数 0

问题

什么是PCDN SDK OTT版手册

概述 PCDN SDK支持点播和直播的P2P加速服务,采用独立进程的方式运行,不影响APP主进程的使用,请根据自身需求配置使用点播和直播服务。 [backcolor=transparen...
云栖大讲堂 2019-12-01 21:19:12 2375 浏览量 回答数 0

问题

图解九大数据结构 6月13日 【今日算法】

数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据结构和算法也是基本功之一。数据结构本身其实不过是数据按照特点关系进行存储或者组织的集合,特殊的结构在不同的应用场景中往往会带来不一...
游客ih62co2qqq5ww 2020-06-17 13:17:00 29 浏览量 回答数 1

问题

MathML 介绍:报错

MathML 是一个 W3C 推荐标准,旨在为标记数学表达式定义一个 XML 词汇表。版本 1 作为一个 W3C 推荐标准发布于 1998 年,就在 XML 规范发布后不久。MathML 已作为推荐标准发布的另外...
kun坤 2020-06-08 11:09:17 2 浏览量 回答数 1

回答

本文介绍了如何使用 Serverless 工作流提供长流程分布式事务保证,帮助用户聚焦于自身业务逻辑。 简介 复杂的业务场景例如电商网站、酒店、航班预定这类涉及订单管理的应用通常要访问多个远程服务,并且对操作事务性语义(即所有步骤全部成功或全部失败,不存在中间状态)有较高要求。在流量较小、数据存储集中的应用中,事务性可以通过关系型数据库提供的 ACID 特性满足。然而在大流量场景下,为了高可用和可扩展性,业务通常选择向微服务的分布式架构方向演进。在这样的架构中提供多步骤事务性的保证通常需要引入队列和数据库来持久化消息以及展现流程状态,这类系统的开发和运维会给业务方带来额外的成本和负担。而使用 Serverless 工作流提供长流程分布式事务保证会帮您解决这些问题。 场景描述 假设某应用为其用户提供预定火车票、航班和酒店的功能,要求三个步骤保证事务性。该功能需要三个远程调用实现(例如预定火车票需要调用 12306 接口),如果三个调用都成功则该订单成功。然而实际上任何一个远程调用都有可能会失败,因此该应用需要对不同的失败场景做出相应的补偿逻辑,回退已完成操作。如下图所示: 如果预定火车票(BuyTrainTicket)成功,而预定航班(ReserveFlight)失败,则需要取消已经购买的火车票 (CancelTrainTicket),并告知用户订单失败。 如果预定火车票(BuyTrainTicket)和预定航班(ReserveFlight)均成功,但是预订酒店(ReserveHotel) 失败,则需要取消已经预定的航班(CancelFlight)和火车票(CancelTrainTicket),并告知用户订单失败。 longtxn-saga_train_flight_hotel Serverless 工作流实现 下文的示例将 FC 函数编排成一个 Serverless 工作流流程从而实现了一个可靠的多步骤长流程,该示例分为 3 步: 创建 FC 函数 创建流程 执行并查看结果 步骤 1:创建 FC 函数(模拟上面提到的3个操作:预定火车票、预定航班、预定酒店) 创建下面的 Python2.7 的函数,关于创建的详细步骤,可以参见 FC 文档,建议命名: Service: fnf-demo Function: Operation Operation 函数模拟各操作(例如预定航班、预定酒店)的实现,根据输入决定该操作执行结果(成功或失败)。 import json import logging import uuid def handler(event, context): evt = json.loads(event) logger = logging.getLogger() id = uuid.uuid4() op = "operation" if 'operation' in evt: op = evt['operation'] if op in evt: result = evt[op] if result == False: logger.info("%s failed" % op) exit() logger.info("%s succeeded, id %s" % (op, id)) return '{"%s":"success", "%s_txnID": "%s"}' % (op, op, id) 步骤 2:创建流程 使用 Serverless 工作流控制台创建下面的流程。 配置流程 RAM 角色 { "Statement": [ { "Action": "sts:AssumeRole", "Effect": "Allow", "Principal": { "Service": [ "fnf.aliyuncs.com" ] } } ], "Version": "1" } 流程定义 version: v1 type: flow steps: - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: BuyTrainTicket inputMappings: - target: operation source: buy_train_ticket - target: buy_train_ticket source: $input.buy_train_ticket_result catch: - errors: - FC.Unknown goto: OrderFailed - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: ReserveFlight inputMappings: - target: operation source: reserve_flight - target: reserve_flight source: $input.reserve_flight_result catch: # 捕获 ReserveFlight task 抛出的 FC.Unknown 错误,跳转到 CancelTrainTicket。 - errors: - FC.Unknown goto: CancelTrainTicket - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: ReserveHotel inputMappings: - target: operation source: reserve_hotel - target: reserve_hotel source: $input.reserve_hotel_result retry: # 对 FC.Unknown 类型的错误最多指数退避重试 3 次,初始间隔 1s,后续间隔 = 上次间隔 * 2。 - errors: - FC.Unknown intervalSeconds: 1 maxAttempts: 3 multiplier: 2 catch: # 捕获 ReserveHotel task 抛出的 FC.Unknown 错误,跳转到 CancelFlight。 - errors: - FC.Unknown goto: CancelFlight - type: succeed name: OrderSucceeded - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: CancelFlight inputMappings: - target: operation source: cancel_flight - target: reserve_flight_txnID source: $local.reserve_flight_txnID - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: CancelTrainTicket inputMappings: - target: operation source: cancel_train_ticket - target: reserve_flight_txnID source: $local.reserve_flight_txnID - type: fail name: OrderFailed 步骤 3:执行并查看结果 在控制台上对创建好的流程(Flow)开始一个新的执行(Execution)。StartExecution API 要求传入 JSON 格式的输入。下面的 JSON 对象可以模拟每个步骤的成功或失败(例如 "reserve_hotel_result":"fail" 代表模拟预定酒店这步失败)。StartExecution 是一个异步 API,调用结束后,Serverless 工作流会返回一个执行名字用来查询流程执行状态。 { "buy_train_ticket_result":"success", "reserve_flight_result":"success", "reserve_hotel_result":"fail" } 流程执行开始后,在 Serverless 工作流控制台单击进入该执行并查看执行过程和结果。可以看到,由于 "reserve_hotel_result":"fail" 和 ReserveHotel 函数调用失败,Serverless 工作流按照流程定义,依次取消航班(CancelFlight)、取消火车票(CancelTrainTicket)。Serverless 工作流每个步骤转换有持久化的保证,因此网络中断或进程崩溃等失败场景不会影响流程事务性的保证。 Screen Shot 2019-06-26 at 12.14.50 PM 流程执行会产生执行历史事件(event),这些事件可以通过控制台或者 SDK/CLI 调用 GetExecutionHistory API 查询。 Screen Shot 2019-06-26 at 12.17.26 PM 错误处理和重试 上面示例中的预定航班、预定酒店等远程调用都有可能受到网络或服务错误等原因导致调用失败,而增加对瞬时错误的重试可以提高订单流程成功率。Serverless 工作流在任务(Task)类型的步骤(Step)自带重试功能,如预定酒店这个步骤用下面的写法可以实现对 FC.Unknown 类型的错误指数退避。假设重试到达最大次数后 ReserveHotel 都无法成功,按照该步骤中 catch 的定义,ReserveHotel 函数抛出的 FC.Unknown 错误会被捕获并将跳转到 CancelFlight 执行定义好的补偿逻辑。 - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: ReserveHotel inputMappings: - target: operation source: reserve_hotel retry: # 对 FC.Unknown 类型的错误最多指数退避重试3次,初始间隔1s,后续间隔 = 上次间隔 * 2。 - errors: - FC.Unknown intervalSeconds: 1 maxAttempts: 3 multiplier: 2 catch: # 捕获 ReserveHotel task 抛出的 FC.Unknown 错误,跳转到 CancelFlight。 - errors: - FC.Unknown goto: CancelFlight 下图可以看到加入重试之后预订酒店(ReserveHotel)任务执行了多次直到最大重试数。Screen Shot 2019-06-26 at 12.19.55 PM 步骤间的数据传递 预定酒店失败后需要取消航班和火车票,这两部分别需要用到预定航班和预定火车票返回的交易 ID (txnID),下面的 inputMapping 对象描述了如何将之前步骤产生的输出传入 CancelFlight 这个步骤中。 - type: task resourceArn: acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation name: CancelFlight inputMappings: - target: operation source: cancel_flight - target: reserve_flight_txnID source: $local.reserve_flight_txnID 流程执行各步骤结束的输出都会被放在 StepExited 事件详情(EventDetail)的 local 对象中。 { "input":{ "operation":"reserve_hotel", "reserve_hotel_result":"fail" }, "local":{ "buy_train_ticket":"success", "buy_train_ticket_txnID":"d37412b3-bb68-4d04-9d90-c8c15643d45e", "reserve_flight_result":"success", "reserve_flight_txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55" }, "resourceArn":"acs:fc:{region}:{accountID}:services/fnf-demo/functions/Operation", "cause":"{"errorMessage":"Process exited unexpectedly before completing request (duration: 12ms, maxMemoryUsage: 9.18MB)"}", "error":"FC.Unknown", "retryCount":3, "goto":"CancelFlight" } 结合上面的 EventDetail 和 inputMappings 的映射之后,传入到 CancelFlight 步骤的输入变成如下 JSON 对象,这样 CancelFlight 函数的输入会包含 reserve_flight_txnID 字段。 "input":{ "operation":"cancel_flight", "reserve_flight_txnID":"024caecf-cfa3-43a6-b561-9b6fe0571b55" }
1934890530796658 2020-03-27 10:47:41 0 浏览量 回答数 0

问题

图解!24张图彻底弄懂九大常见数据结构! 7月22日 【今日算法】

数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据结构和算法也是基本功之一。数据结构本身其实不过是数据按照特点关系进行存储或者组织的集合,特殊的结构在不同的应用场景中往往会带来不一...
游客ih62co2qqq5ww 2020-07-27 13:19:32 6 浏览量 回答数 1
阿里云企业服务平台 陈四清的老板信息查询 上海奇点人才服务相关的云产品 爱迪商标注册信息 安徽华轩堂药业的公司信息查询 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 天籁阁商标注册信息 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 北京芙蓉天下的公司信息查询