• 关于

    作业库可以做什么

    的搜索结果

问题

同步作业可以设定时间吗?

qinsilk 2019-12-01 21:26:42 3596 浏览量 回答数 3

问题

自己做一个C++库需要注意些什么?

a123456678 2019-12-01 19:45:42 953 浏览量 回答数 1

回答

Backpressure实际上指的是设置最大接收率。实际上它并不像你想象的那样工作。这里应该做的实际上是阅读结束。现在在经典的JDBC使用中,jdbc连接器具有s 的fetchSize属性PreparedStatement。所以基本上你可以考虑使用以下答案中的内容来配置fetchSize:Spark JDBC fetchsize选项Statement.setFetchSize(nSize)方法在SQL Server JDBC驱动程序中的作用是什么?这可能无法解决您的所有性能问题RDBMS。您必须知道的是,与在单个工作程序上运行的基本jdbc读取器相比,使用整数列或使用谓词序列对数据进行分区时,以分布式模式加载数据但引入了一些问题。在您的情况下,大量的并发读取可以轻松地限制数据库。为了解决这个问题,我建议如下:如果可用,请考虑通过JDBC连接使用专用数据源。考虑使用专门的或通用的批量导入/导出工具,如Postgres COPY或Apache Sqoop。请务必了解不同JDBC数据源变体的性能影响,尤其是在使用生产数据库时。考虑为Spark作业使用单独的副本。

社区小助手 2019-12-02 01:48:03 0 浏览量 回答数 0

阿里云爆款特惠专场,精选爆款产品低至0.95折!

爆款ECS云服务器8.1元/月起,云数据库低至1.5折,限时抢购!

问题

将Java数组转换为可迭代

保持可爱mmm 2020-02-06 23:49:49 1 浏览量 回答数 1

问题

有什么好的工具可以自动化SQL Server管理任务?

心有灵_夕 2019-12-25 21:11:37 1 浏览量 回答数 1

回答

此分步示例适用于可能会偶然发现此问题的其他人。本示例使用SSIS 2005并使用SQL Server 2005 64位版本服务器运行作业。 这里的答案仅集中于解决问题中提到的错误消息。该示例将演示重新创建问题的步骤以及引起问题的原因,然后介绍如何解决此问题。 NOTE:我建议使用选项将软件包配置值存储在数据库中,或者在环境变量的帮助下使用间接XML配置。同样,创建Excel文件的步骤将使用模板完成,然后将其移动到其他文件夹中进行存档。这些步骤不在本文中讨论。如前所述,本文的目的是解决错误。 让我们继续该示例。我也已经在博客上写了这个答案,可以在此链接中找到。答案是一样的。 创建一个SSIS包(创建SSIS包的步骤)。本示例使用BIDS2005。我在开始时就以YYYYMMDD_hhmm的格式命名了程序包,其后是SO代表堆栈溢出,然后是SO问题ID,最后是描述。我并不是说您应该这样命名您的包裹。这是我以后可以轻松参考的内容。请注意,我还有一个名为Adventure Works的数据源。我将使用Adventure Works数据源,该数据源指向从此链接下载的AdventureWorks数据库。该示例使用SQL Server 2008 R2数据库。请参阅截图1。 在AdventureWorks数据库中,使用以下给定脚本创建一个名为dbo.GetCurrency的存储过程。 CREATE PROCEDURE [dbo].[GetCurrency] AS BEGIN SET NOCOUNT ON; SELECT TOP 10 CurrencyCode , Name , ModifiedDate FROM Sales.Currency ORDER BY CurrencyCode END GO 在包的“连接管理器”部分,右键单击并选择“从数据源新建连接”。在“ 选择数据源”对话框中,选择“ Adventure Works”,然后单击“确定”。现在,您应该在“ 连接管理器”部分下看到Adventure Works数据源。 在包的“连接管理器”部分,再次右键单击,但是这次选择“ 新建连接…”。这是为了创建Excel连接。在“添加SSIS连接管理器”上,选择“ EXCEL”。在Excel连接管理器上,输入路径C:\ Temp \ Template.xls。将其部署到服务器时,将更改此路径。我选择了Excel版本Microsoft Excel 97-2005,并选择了保留复选框第一行的列名称已选中,以便在创建Excel文件时创建列标题。单击确定。重命名的Excel连接到Excel中,只是为了保持简单。请参阅截图#2 - #7。 在包上,创建以下变量。请参阅截图8。 SQLGetData:此变量的类型为String。这将包含存储过程执行语句。本示例使用值EXEC dbo.GetCurrency 屏幕快照#9显示了存储过程执行语句EXEC dbo.GetCurrency的输出。 在程序包的“控制流”选项卡上,放置一个Data Flow task并将其命名为“导出到Excel”。请参阅屏幕截图#10。 双击“数据流任务”以切换到“数据流”选项卡。 在“数据流”选项卡上,放置一个,OLE DB Source以连接到SQL Server数据以从存储过程中获取数据,并将其命名为SQL。双击OLE DB源,以调出OLE DB源编辑器。在“连接管理器”部分上,从OLE DB连接管理器中选择Adventure Works,从“数据访问”模式的变量中选择SQL命令,然后从“变量名”下拉列表中选择变量User :: SQLGetData。在“列”部分,确保正确映射了列名称。单击“确定”关闭OLE DB源编辑器。请参阅#11和#12屏幕截图。 在“数据流”选项卡上,放置一个,Excel Destination以将数据插入Excel文件并将其命名为Excel。双击Excel目标以打开Excel目标编辑器。在“连接管理器”部分上,从OLE DB连接管理器中选择Excel,然后选择“表”或“数据访问”模式下的视图。此时,我们没有Excel,因为在创建Excel连接管理器时,我们仅指定了路径,但从未创建文件。因此,Excel工作表的下拉名称中将没有任何值。因此,单击“ 新建”。按钮(第二个新按钮)来创建新的Excel工作表。在“创建表”窗口上,BIDS根据传入的数据源自动提供一个创建表。您可以根据自己的喜好更改值。我将通过保留默认值来简单地单击“确定”。工作表的名称将填充在Excel工作表的下拉名称中。工作表的名称取自任务名称,在本例中为Excel Destination,我们将其命名为Excel。在“映射”部分,确保正确映射了列名称。单击“确定”关闭Excel Destination Editor。请参阅截图#13 - #16。 数据流任务配置完成后,其外观应如屏幕截图#17所示。 通过按F5执行包。截图#18 - #21显示了包的两个控制流和数据流任务的成功执行。同样,该文件是在Excel连接中提供的路径C:\ Temp \ Template.xls中生成的,并且存储过程执行输出中显示的数据与写入该文件的数据匹配。 该程序包是在本地计算机上的文件夹路径C:\ Learn \ Learn.VS2005 \ Learn.SSIS中开发的。现在,我们需要将文件部署到承载SQL Server 64位版本的服务器上,以计划作业。因此,服务器上的文件夹将为D:\ SSIS \ Practice。复制包文件(.dtsx),然后将其粘贴到服务器文件夹中。另外,为了使程序包正确运行,我们需要在服务器上显示Excel电子表格。否则,验证将失败。通常,我创建一个Template文件夹,其中将包含与输出匹配的空Excel电子表格文件。稍后,在运行时,我将使用程序包配置将Excel输出路径更改为其他位置。对于此示例,我将使其保持简单。因此,我们将在本地计算机中生成的Excel文件复制到路径C:\ Temp \ Template.xls到服务器位置D:\ SSIS \ Practice中。我希望SQL作业生成名称为Currencies.xls的文件。因此,将文件Template.xls重命名为Currencies.xls。请参阅屏幕截图#22。 为了表明我确实要在64位版本的SQL Server上的服务器上运行该作业,我在SQL Server上执行了SELECT @@ version命令,屏幕快照#23显示了结果。 我们将使用执行包实用程序(dtexec.exe)生成命令行参数。登录到将在SQL作业中运行SSIS包的服务器。双击程序包文件,这将显示“执行程序包实用程序”。在“常规”部分,从“包源”中选择“文件系统”。单击省略号,然后浏览到程序包路径。在“连接管理器”部分,选择“ Excel”并将Excel文件中的路径从C:\ Temp \ Template.xls更改为D:\ SSIS \ Practice \ Currencies.xls。在实用程序中所做的更改将在“命令行”部分相应地生成命令行。在“命令行”部分,复制包含所有必需参数的命令行。我们不会从这里执行该程序包。单击关闭。参考屏幕截图#24 - #26。 接下来,我们需要设置一个作业来运行SSIS包。我们无法选择SQL Server Integration Services包类型,因为它将在64位下运行,并且找不到Excel连接提供程序。因此,我们必须将其作为Operating System (CmdExec)作业类型运行。转到SQL Server Management Studio,然后连接到数据库引擎。展开“ SQL Server代理”,然后右键单击“作业”节点。选择新作业…。在“作业属性”窗口的“常规”部分,提供作业名称为01_SSIS_Export_To_Excel,所有者将是创建作业的用户。我有一个名为SSIS的类别,因此将选择该类别,但默认类别为[未分类(本地)],并提供简短说明。在“步骤”部分,单击“ 新建...”。按钮。这将带来“作业步骤”属性。在“作业步骤”属性的“常规”部分,提供“步骤名称”为“导出到Excel”,选择“类型” Operating system (CmdExec),保留默认的“以帐户身份运行”作为“ SQL Server代理服务帐户”,并提供以下命令。单击确定。在“新建作业”窗口上,单击“确定”。请参阅截图#27 - #31。 C:\Program Files (x86)\Microsoft SQL Server\90\DTS\Binn\DTExec.exe /FILE "D:\SSIS\Practice\20110723_1015_SO_21448_Excel_64_bit_Error.dtsx" /CONNECTION Excel;"\"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\SSIS\Practice\Currencies.xls;Extended Properties=""EXCEL 8.0;HDR=YES"";\"" /MAXCONCURRENT " -1 " /CHECKPOINTING OFF /REPORTING EWCDI 新作业应显示在“ SQL Server代理–>作业”节点下。右键单击新创建的作业01_SSIS_Export_To_Excel,然后选择“ 在步骤…处启动作业”,这将开始执行作业。该作业将按预期失败,因为这是此问题的背景。单击关闭以关闭“启动作业”对话框。请参阅#32和#33屏幕截图。 让我们看看发生了什么。转到“ SQL Server代理和作业”节点。右键单击作业01_SSIS_Export_To_Excel,然后选择查看历史记录。这将打开“日志文件查看器”窗口。您会注意到作业失败。展开红叉附近的节点,然后单击“步骤ID”值为1的行。在底部,您可以看到错误消息。Option “8.0;HDR=YES’;” is not valid.单击“关闭”以关闭“日志文件查看器”窗口。请参阅#34和#35屏幕截图。 现在,右键单击作业,然后选择“属性”以打开“作业属性”。您也可以双击作业以打开“作业属性”窗口。单击左侧的步骤。然后单击编辑。用以下命令替换该命令,然后单击“确定”。在作业属性上单击确定以关闭窗口。右键单击作业01_SSIS_Export_To_Excel,然后选择“在步骤...启动作业”,这将开始执行作业。作业将无法成功执行。单击关闭以关闭“启动作业”对话框。让我们来看看历史。右键单击作业01_SSIS_Export_To_Excel,然后选择查看历史记录。这将打开“日志文件查看器”窗口。您会注意到该作业在第二次运行中成功完成。展开绿色勾号交叉点附近的节点,然后单击“步骤ID”值为1的行。在底部,您会看到消息选项步骤已成功。单击“关闭”关闭“日志文件查看器”窗口。文件D:\ SSIS \ Practice \ Currencies.xls将成功填充数据。如果您多次成功执行作业,则数据将被追加到文件中,并且您将找到更多数据。如前所述,这不是生成文件的正确方法。创建此示例的目的是为了解决此问题。参考屏幕截图 创建此示例的目的是为了解决此问题。参考屏幕截图 创建此示例的目的是为了解决此问题。参考屏幕截图#36 - #38。 屏幕截图#39显示了工作命令行参数和非工作命令行参数之间的差异。右边的是工作命令行,左边的是不正确的命令行。它需要使用反斜杠转义序列的另一个双引号来修复该错误。可能还有其他方法可以很好地解决此问题,但此选项似乎可行。 因此,该示例演示了一种从部署在64位服务器上的SSIS包访问Excel数据源时解决命令行参数问题的方法。 希望能对某人有所帮助。

心有灵_夕 2019-12-25 21:28:07 0 浏览量 回答数 0

回答

同步两个SQLServer数据库 如何同步两个sqlserver数据库的内容?程序代码可以有版本管理cvs进行同步管理,可是数据库同步就非常麻烦,只能自己改了一个后再去改另一个,如果忘记了更改另一个经常造成两个数据库的结构或内容上不一致.各位有什么好的方法吗? 一、分发与复制 用强制订阅实现数据库同步操作. 大量和批量的数据可以用数据库的同步机制处理: // 说明: 为方便操作,所有操作均在发布服务器(分发服务器)上操作,并使用推模式 在客户机器使用强制订阅方式。 二、测试通过 1:环境 服务器环境: 机器名称: zehuadb 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 客户端 机器名称:zlp 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 2:建用户帐号 在服务器端建立域用户帐号 我的电脑管理->本地用户和组->用户->建立 username:zlp userpwd:zlp 3:重新启动服务器mssqlserver 我的电脑->控制面版->管理工具->服务->mssqlserver 服务 (更改为:域用户帐号,我们新建的zlp用户 .\zlp,密码:zlp) 4:安装分发服务器 a:配置分发服务器 工具->复制->配置发布、订阅服务器和分发->下一步->下一步(所有的均采用默认配置) b:配置发布服务器 工具->复制->创建和管理发布->选择要发布的数据库(sz)->下一步->快照发布->下一步->选择要发布的内容->下一步->下一步->下一步->完成 c:强制配置订阅服务器(推模式,拉模式与此雷同) 工具->复制->配置发布、订阅服务器和分发->订阅服务器->新建->sql server数据库->输入客户端服务器名称(zlp)->使用sql server 身份验证(sa,空密码)->确定->应用->确定 d:初始化订阅 复制监视器->发布服务器(zehuadb)->双击订阅->强制新建->下一步->选择启用的订阅服务器->zlp->下一步->下一步->下一步->下一步->完成 5:测试配置是否成功 复制监视器->发布衿?zehuadb)->双击sz:sz->点状态->点立即运行代理程序 查看: 复制监视器->发布服务器(zehuadb)->sz:sz->选择zlp:sz(类型强制)->鼠标右键->启动同步处理 如果没有错误标志(红色叉),恭喜您配置成功 6:测试数据 在服务器执行: 选择一个表,执行如下sql: insert into wq_newsgroup_s select '测试成功',5 复制监视器->发布服务器(zehuadb)->sz:sz->快照->启动代理程序 ->zlp:sz(强制)->启动同步处理 去查看同步的 wq_newsgroup_s 是否插入了一条新的记录 测试完毕,通过。 7:修改数据库的同步时间,一般选择夜晚执行数据库同步处理 (具体操作略) :d /* 注意说明: 服务器一端不能以(local)进行数据的发布与分发,需要先删除注册,然后新建注册本地计算机名称 卸载方式:工具->复制->禁止发布->是在"zehuadb"上静止发布,卸载所有的数据库同步配置服务器 注意:发布服务器、分发服务器中的sqlserveragent服务必须启动 采用推模式: "d:\microsoft sql server\mssql\repldata\unc" 目录文件可以不设置共享 拉模式:则需要共享~! */ 少量数据库同步可以采用触发器实现,同步单表即可。 三、配置过程中可能出现的问题 在sql server 2000里设置和使用数据库复制之前,应先检查相关的几台sql server服务器下面几点是否满足: 1、mssqlserver和sqlserveragent服务是否是以域用户身份启动并运行的(.\administrator用户也是可以的) 如果登录用的是本地系统帐户local,将不具备网络功能,会产生以下错误: 进程未能连接到distributor '@server name' (如果您的服务器已经用了sql server全文检索服务, 请不要修改mssqlserver和sqlserveragent服务的local启动。 会照成全文检索服务不能用。请换另外一台机器来做sql server 2000里复制中的分发服务器。) 修改服务启动的登录用户,需要重新启动mssqlserver和sqlserveragent服务才能生效。 2、检查相关的几台sql server服务器是否改过名称(需要srvid=0的本地机器上srvname和datasource一样) 在查询分析器里执行: use master select srvid,srvname,datasource from sysservers 如果没有srvid=0或者srvid=0(也就是本机器)但srvname和datasource不一样, 需要按如下方法修改: use master go -- 设置两个变量 declare @serverproperty_servername varchar(100), @servername varchar(100) -- 取得windows nt 服务器和与指定的 sql server 实例关联的实例信息 select @serverproperty_servername = convert(varchar(100), serverproperty('servername')) -- 返回运行 microsoft sql server 的本地服务器名称 select @servername = convert(varchar(100), @@servername) -- 显示获取的这两个参数 select @serverproperty_servername,@servername --如果@serverproperty_servername和@servername不同(因为你改过计算机名字),再运行下面的 --删除错误的服务器名 exec sp_dropserver @server=@servername --添加正确的服务器名 exec sp_addserver @server=@serverproperty_servername, @local='local' 修改这项参数,需要重新启动mssqlserver和sqlserveragent服务才能生效。 这样一来就不会在创建复制的过程中出现18482、18483错误了。 3、检查sql server企业管理器里面相关的几台sql server注册名是否和上面第二点里介绍的srvname一样 不能用ip地址的注册名。 (我们可以删掉ip地址的注册,新建以sql server管理员级别的用户注册的服务器名) 这样一来就不会在创建复制的过程中出现14010、20084、18456、18482、18483错误了。 4、检查相关的几台sql server服务器网络是否能够正常访问 如果ping主机ip地址可以,但ping主机名不通的时候,需要在 winnt\system32\drivers\etc\hosts (win2000) windows\system32\drivers\etc\hosts (win2003) 文件里写入数据库服务器ip地址和主机名的对应关系。 例如: 127.0.0.1 localhost 192.168.0.35 oracledb oracledb 192.168.0.65 fengyu02 fengyu02 202.84.10.193 bj_db bj_db 或者在sql server客户端网络实用工具里建立别名,例如: 5、系统需要的扩展存储过程是否存在(如果不存在,需要恢复): sp_addextendedproc 'xp_regenumvalues',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletevalue',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletekey',@dllname ='xpstar.dll' go sp_addextendedproc xp_cmdshell ,@dllname ='xplog70.dll' 接下来就可以用sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发]的图形界面来配置数据库复制了。 下面是按顺序列出配置复制的步骤: 1、建立发布和分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器]->[使"@servername"成为它自己的分发服务器,sql server将创建分发数据库和日志] ->[制定快照文件夹]-> [自定义配置] -> [否,使用下列的默认配置] -> [完成] 上述步骤完成后, 会在当前"@servername" sql server数据库里建立了一个distribion库和 一个distributor_admin管理员级别的用户(我们可以任意修改密码)。 服务器上新增加了四个作业: [ 代理程序历史记录清除: distribution ] [ 分发清除: distribution ] [ 复制代理程序检查 ] [ 重新初始化存在数据验证失败的订阅 ] sql server企业管理器里多了一个复制监视器, 当前的这台机器就可以发布、分发、订阅了。 我们再次在sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发] 我们可以在 [发布服务器和分发服务器的属性] 窗口-> [发布服务器] -> [新增] -> [确定] -> [发布数据库] -> [事务]/[合并] -> [确定] -> [订阅服务器] -> [新增] -> [确定] 把网络上的其它sql server服务器添加成为发布或者订阅服务器. 新增一台发布服务器的选项: 我这里新建立的jin001发布服务器是用管理员级别的数据库用户test连接的, 到发布服务器的管理链接要输入密码的可选框, 默认的是选中的, 在新建的jin001发布服务器上建立和分发服务器fengyu/fengyu的链接的时需要输入distributor_admin用户的密码。到发布服务器的管理链接要输入密码的可选框,也可以不选,也就是不需要密码来建立发布到分发服务器的链接(这当然欠缺安全,在测试环境下可以使用)。 2、新建立的网络上另一台发布服务器(例如jin001)选择分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器] -> 使用下列服务器(选定的服务器必须已配置为分发服务器) -> 选定服务器 -> [下一步] -> [输入分发服务器(例如fengyu/fengyu)的distributor_admin用户的密码两次] -> [下一步] -> [自定义配置] -> [否,使用下列的默认配置] -> [下一步] -> [完成] -> [确定] 建立一个数据库复制发布的过程: [复制] -> [发布内容] -> 右键选择 -> [新建发布] -> [下一步] -> [选择发布数据库] -> [选中一个待发布的数据库] -> [下一步] -> [选择发布类型] -> [事务发布]/[合并发布] -> [下一步] -> [指定订阅服务器的类型] -> [运行sql server 2000的服务器] -> [下一步] -> [指定项目] -> [在事务发布中只可以发布带主键的表] -> [选中一个有主键的待发布的表] ->[在合并发布中会给表增加唯一性索引和 rowguidcol 属性的唯一标识符字段[rowguid],默认值是newid()] (添加新列将: 导致不带列列表的 insert 语句失败,增加表的大小,增加生成第一个快照所要求的时间) ->[选中一个待发布的表] -> [下一步] -> [选择发布名称和描述] -> -> [下一步] -> [自定义发布的属性] -> [否,根据指定方式创建发布] -> [下一步] -> [完成] -> [关闭] 发布属性里有很多有用的选项:设定订阅到期(例如24小时) 设定发布表的项目属性: 常规窗口可以指定发布目的表的名称,可以跟原来的表名称不一样。 下图是命令和快照窗口的栏目 ( sql server 数据库复制技术实际上是用insert,update,delete操作在订阅服务器上重做发布服务器上的事务操作 看文档资料需要把发布数据库设成完全恢复模式,事务才不会丢失 但我自己在测试中发现发布数据库是简单恢复模式下,每10秒生成一些大事务,10分钟后再收缩数据库日志, 这期间发布和订阅服务器上的作业都暂停,暂停恢复后并没有丢失任何事务更改 ) 发布表可以做数据筛选,例如只选择表里面的部分列: 例如只选择表里某些符合条件的记录, 我们可以手工编写筛选的sql语句: 发布表的订阅选项,并可以建立强制订阅: 成功建立了发布以后,发布服务器上新增加了一个作业: [ 失效订阅清除 ] 分发服务器上新增加了两个作业: [ jin001-dack-dack-5 ] 类型[ repl快照 ] [ jin001-dack-3 ] 类型[ repl日志读取器 ] 上面蓝色字的名称会根据发布服务器名,发布名及第几次发布而使用不同的编号 repl快照作业是sql server复制的前提条件,它会先把发布的表结构,数据,索引,约束等生成到发布服务器的os目录下文件 (当有订阅的时候才会生成, 当订阅请求初始化或者按照某个时间表调度生成) repl日志读取器在事务复制的时候是一直处于运行状态。(在合并复制的时候可以根据调度的时间表来运行) 建立一个数据库复制订阅的过程: [复制] -> [订阅] -> 右键选择 -> [新建请求订阅] -> [下一步] -> [查找发布] -> [查看已注册服务器所做的发布] -> [下一步] -> [选择发布] -> [选中已经建立发布服务器上的数据库发布名] -> [下一步] -> [指定同步代理程序登录] -> [当代理程序连接到代理服务器时:使用sql server身份验证] (输入发布服务器上distributor_admin用户名和密码) -> [下一步] -> [选择目的数据库] -> [选择在其中创建订阅的数据库名]/[也可以新建一个库名] -> [下一步] -> [允许匿名订阅] -> [是,生成匿名订阅] -> [下一步] -> [初始化订阅] -> [是,初始化架构和数据] -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] (订阅服务器要能访问发布服务器的repldata文件夹,如果有问题,可以手工设置网络共享及共享权限) -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] -> [下一步] -> [设置分发代理程序调度] -> [使用下列调度] -> [更改] -> [例如每五分钟调度一次] -> [下一步] -> [启动要求的服务] -> [该订阅要求在发布服务器上运行sqlserveragent服务] -> [下一步] -> [完成] -> [确定] 成功建立了订阅后,订阅服务器上新增加了一个类别是[repl-分发]作业(合并复制的时候类别是[repl-合并]) 它会按照我们给的时间调度表运行数据库同步复制的作业。 3、sql server复制配置好后, 可能出现异常情况的实验日志: 1.发布服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制没有多大影响 中断期间,分发和订阅都接收到没有复制的事务信息 2.分发服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制有一些影响 中断期间,发布服务器的事务排队堆积起来 (如果设置了较长时间才删除过期订阅的选项, 繁忙发布数据库的事务日志可能会较快速膨胀), 订阅服务器会因为访问不到发布服务器,反复重试 我们可以设置重试次数和重试的时间间隔(最大的重试次数是9999, 如果每分钟重试一次,可以支持约6.9天不出错) 分发服务器sql server服务启动,网络接通以后,发布服务器上的堆积作业将按时间顺序作用到订阅机器上: 会需要一个比较长的时间(实际上是生成所有事务的insert,update,delete语句,在订阅服务器上去执行) 我们在普通的pc机上实验的58个事务100228个命令执行花了7分28秒. 3.订阅服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制影响比较大,可能需要重新初试化 我们实验环境(订阅服务器)从18:46分意外停机以, 第二天8:40分重启动后, 已经设好的复制在8:40分以后又开始正常运行了, 发布服务器上的堆积作业将按时间顺序作用到订阅机器上, 但复制管理器里出现快照的错误提示, 快照可能需要重新初试化,复制可能需要重新启动.(我们实验环境的机器并没有进行快照初试化,复制仍然是成功运行的) 4、删除已经建好的发布和定阅可以直接用delete删除按钮 我们最好总是按先删定阅,再删发布,最后禁用发布的顺序来操作。 如果要彻底删去sql server上面的复制设置, 可以这样操作: [复制] -> 右键选择 [禁用发布] -> [欢迎使用禁用发布和分发向导] -> [下一步] -> [禁用发布] -> [要在"@servername"上禁用发布] -> [下一步] -> [完成禁用发布和分发向导] -> [完成] 我们也可以用t-sql命令来完成复制中发布及订阅的创建和删除, 选中已经设好的发布和订阅, 按属标右键可以[生成sql脚本]。(这里就不详细讲了, 后面推荐的网站内有比较详细的内容) 当你试图删除或者变更一个table时,出现以下错误 server: msg 3724, level 16, state 2, line 1 cannot drop the table 'object_name' because it is being used for replication. 比较典型的情况是该table曾经用于复制,但是后来又删除了复制。 处理办法: select * from sysobjects where replinfo >'0' sp_configure 'allow updates', 1 go reconfigure with override go begin transaction update sysobjects set replinfo = '0' where replinfo >'0' commit transaction go rollback transaction go sp_configure 'allow updates', 0 go reconfigure with override go 答案来源于网络

养狐狸的猫 2019-12-02 02:18:58 0 浏览量 回答数 0

回答

同步两个SQLServer数据库 如何同步两个sqlserver数据库的内容?程序代码可以有版本管理cvs进行同步管理,可是数据库同步就非常麻烦,只能自己改了一个后再去改另一个,如果忘记了更改另一个经常造成两个数据库的结构或内容上不一致.各位有什么好的方法吗? 一、分发与复制 用强制订阅实现数据库同步操作. 大量和批量的数据可以用数据库的同步机制处理: // 说明: 为方便操作,所有操作均在发布服务器(分发服务器)上操作,并使用推模式 在客户机器使用强制订阅方式。 二、测试通过 1:环境 服务器环境: 机器名称: zehuadb 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 客户端 机器名称:zlp 操作系统:windows 2000 server 数据库版本:sql 2000 server 个人版 2:建用户帐号 在服务器端建立域用户帐号 我的电脑管理->本地用户和组->用户->建立 username:zlp userpwd:zlp 3:重新启动服务器mssqlserver 我的电脑->控制面版->管理工具->服务->mssqlserver 服务 (更改为:域用户帐号,我们新建的zlp用户 .\zlp,密码:zlp) 4:安装分发服务器 a:配置分发服务器 工具->复制->配置发布、订阅服务器和分发->下一步->下一步(所有的均采用默认配置) b:配置发布服务器 工具->复制->创建和管理发布->选择要发布的数据库(sz)->下一步->快照发布->下一步->选择要发布的内容->下一步->下一步->下一步->完成 c:强制配置订阅服务器(推模式,拉模式与此雷同) 工具->复制->配置发布、订阅服务器和分发->订阅服务器->新建->sql server数据库->输入客户端服务器名称(zlp)->使用sql server 身份验证(sa,空密码)->确定->应用->确定 d:初始化订阅 复制监视器->发布服务器(zehuadb)->双击订阅->强制新建->下一步->选择启用的订阅服务器->zlp->下一步->下一步->下一步->下一步->完成 5:测试配置是否成功 复制监视器->发布衿?zehuadb)->双击sz:sz->点状态->点立即运行代理程序 查看: 复制监视器->发布服务器(zehuadb)->sz:sz->选择zlp:sz(类型强制)->鼠标右键->启动同步处理 如果没有错误标志(红色叉),恭喜您配置成功 6:测试数据 在服务器执行: 选择一个表,执行如下sql:        insert into wq_newsgroup_s select '测试成功',5 复制监视器->发布服务器(zehuadb)->sz:sz->快照->启动代理程序 ->zlp:sz(强制)->启动同步处理 去查看同步的 wq_newsgroup_s 是否插入了一条新的记录 测试完毕,通过。 7:修改数据库的同步时间,一般选择夜晚执行数据库同步处理 (具体操作略) :d /* 注意说明: 服务器一端不能以(local)进行数据的发布与分发,需要先删除注册,然后新建注册本地计算机名称 卸载方式:工具->复制->禁止发布->是在"zehuadb"上静止发布,卸载所有的数据库同步配置服务器 注意:发布服务器、分发服务器中的sqlserveragent服务必须启动 采用推模式: "d:\microsoft sql server\mssql\repldata\unc" 目录文件可以不设置共享 拉模式:则需要共享~! */ 少量数据库同步可以采用触发器实现,同步单表即可。 三、配置过程中可能出现的问题 在sql server 2000里设置和使用数据库复制之前,应先检查相关的几台sql server服务器下面几点是否满足: 1、mssqlserver和sqlserveragent服务是否是以域用户身份启动并运行的(.\administrator用户也是可以的) 如果登录用的是本地系统帐户local,将不具备网络功能,会产生以下错误: 进程未能连接到distributor '@server name' (如果您的服务器已经用了sql server全文检索服务, 请不要修改mssqlserver和sqlserveragent服务的local启动。 会照成全文检索服务不能用。请换另外一台机器来做sql server 2000里复制中的分发服务器。) 修改服务启动的登录用户,需要重新启动mssqlserver和sqlserveragent服务才能生效。 2、检查相关的几台sql server服务器是否改过名称(需要srvid=0的本地机器上srvname和datasource一样) 在查询分析器里执行: use master select srvid,srvname,datasource from sysservers 如果没有srvid=0或者srvid=0(也就是本机器)但srvname和datasource不一样, 需要按如下方法修改: use master go -- 设置两个变量 declare @serverproperty_servername  varchar(100), @servername    varchar(100) -- 取得windows nt 服务器和与指定的 sql server 实例关联的实例信息 select @serverproperty_servername = convert(varchar(100), serverproperty('servername')) -- 返回运行 microsoft sql server 的本地服务器名称 select @servername = convert(varchar(100), @@servername) -- 显示获取的这两个参数 select @serverproperty_servername,@servername --如果@serverproperty_servername和@servername不同(因为你改过计算机名字),再运行下面的 --删除错误的服务器名 exec sp_dropserver @server=@servername --添加正确的服务器名 exec sp_addserver @server=@serverproperty_servername, @local='local' 修改这项参数,需要重新启动mssqlserver和sqlserveragent服务才能生效。 这样一来就不会在创建复制的过程中出现18482、18483错误了。 3、检查sql server企业管理器里面相关的几台sql server注册名是否和上面第二点里介绍的srvname一样 不能用ip地址的注册名。 (我们可以删掉ip地址的注册,新建以sql server管理员级别的用户注册的服务器名) 这样一来就不会在创建复制的过程中出现14010、20084、18456、18482、18483错误了。 4、检查相关的几台sql server服务器网络是否能够正常访问 如果ping主机ip地址可以,但ping主机名不通的时候,需要在 winnt\system32\drivers\etc\hosts   (win2000) windows\system32\drivers\etc\hosts (win2003) 文件里写入数据库服务器ip地址和主机名的对应关系。 例如: 127.0.0.1       localhost 192.168.0.35    oracledb    oracledb 192.168.0.65    fengyu02    fengyu02 202.84.10.193   bj_db       bj_db 或者在sql server客户端网络实用工具里建立别名,例如: 5、系统需要的扩展存储过程是否存在(如果不存在,需要恢复): sp_addextendedproc 'xp_regenumvalues',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletevalue',@dllname ='xpstar.dll' go sp_addextendedproc 'xp_regdeletekey',@dllname ='xpstar.dll' go sp_addextendedproc xp_cmdshell ,@dllname ='xplog70.dll'  接下来就可以用sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发]的图形界面来配置数据库复制了。 下面是按顺序列出配置复制的步骤: 1、建立发布和分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器]->[使"@servername"成为它自己的分发服务器,sql server将创建分发数据库和日志] ->[制定快照文件夹]-> [自定义配置] -> [否,使用下列的默认配置] -> [完成] 上述步骤完成后, 会在当前"@servername" sql server数据库里建立了一个distribion库和 一个distributor_admin管理员级别的用户(我们可以任意修改密码)。 服务器上新增加了四个作业: [ 代理程序历史记录清除: distribution ] [ 分发清除: distribution ] [ 复制代理程序检查 ] [ 重新初始化存在数据验证失败的订阅 ] sql server企业管理器里多了一个复制监视器, 当前的这台机器就可以发布、分发、订阅了。 我们再次在sql server企业管理器里[复制]-> 右键选择 ->[配置发布、订阅服务器和分发] 我们可以在 [发布服务器和分发服务器的属性] 窗口-> [发布服务器] -> [新增]   -> [确定] -> [发布数据库] -> [事务]/[合并] -> [确定]  -> [订阅服务器] -> [新增]  -> [确定] 把网络上的其它sql server服务器添加成为发布或者订阅服务器. 新增一台发布服务器的选项: 我这里新建立的jin001发布服务器是用管理员级别的数据库用户test连接的, 到发布服务器的管理链接要输入密码的可选框, 默认的是选中的, 在新建的jin001发布服务器上建立和分发服务器fengyu/fengyu的链接的时需要输入distributor_admin用户的密码。到发布服务器的管理链接要输入密码的可选框,也可以不选,也就是不需要密码来建立发布到分发服务器的链接(这当然欠缺安全,在测试环境下可以使用)。 2、新建立的网络上另一台发布服务器(例如jin001)选择分发服务器 [欢迎使用配置发布和分发向导]->[选择分发服务器] -> 使用下列服务器(选定的服务器必须已配置为分发服务器) -> [选定服务器](例如fengyu/fengyu) -> [下一步] -> [输入分发服务器(例如fengyu/fengyu)的distributor_admin用户的密码两次] -> [下一步] -> [自定义配置] -> [否,使用下列的默认配置] -> [下一步] -> [完成] -> [确定] 建立一个数据库复制发布的过程: [复制] -> [发布内容] -> 右键选择 -> [新建发布] -> [下一步] -> [选择发布数据库] -> [选中一个待发布的数据库] -> [下一步] -> [选择发布类型] -> [事务发布]/[合并发布] -> [下一步] -> [指定订阅服务器的类型] -> [运行sql server 2000的服务器] -> [下一步] -> [指定项目] -> [在事务发布中只可以发布带主键的表] -> [选中一个有主键的待发布的表] ->[在合并发布中会给表增加唯一性索引和 rowguidcol 属性的唯一标识符字段[rowguid],默认值是newid()] (添加新列将: 导致不带列列表的 insert 语句失败,增加表的大小,增加生成第一个快照所要求的时间) ->[选中一个待发布的表] -> [下一步] -> [选择发布名称和描述] -> -> [下一步] -> [自定义发布的属性] -> [否,根据指定方式创建发布] -> [下一步] -> [完成] -> [关闭] 发布属性里有很多有用的选项:设定订阅到期(例如24小时) 设定发布表的项目属性: 常规窗口可以指定发布目的表的名称,可以跟原来的表名称不一样。 下图是命令和快照窗口的栏目 ( sql server 数据库复制技术实际上是用insert,update,delete操作在订阅服务器上重做发布服务器上的事务操作 看文档资料需要把发布数据库设成完全恢复模式,事务才不会丢失 但我自己在测试中发现发布数据库是简单恢复模式下,每10秒生成一些大事务,10分钟后再收缩数据库日志, 这期间发布和订阅服务器上的作业都暂停,暂停恢复后并没有丢失任何事务更改 ) 发布表可以做数据筛选,例如只选择表里面的部分列: 例如只选择表里某些符合条件的记录, 我们可以手工编写筛选的sql语句: 发布表的订阅选项,并可以建立强制订阅: 成功建立了发布以后,发布服务器上新增加了一个作业: [ 失效订阅清除 ] 分发服务器上新增加了两个作业: [ jin001-dack-dack-5 ] 类型[ repl快照 ] [ jin001-dack-3 ]      类型[ repl日志读取器 ] 上面蓝色字的名称会根据发布服务器名,发布名及第几次发布而使用不同的编号 repl快照作业是sql server复制的前提条件,它会先把发布的表结构,数据,索引,约束等生成到发布服务器的os目录下文件 (当有订阅的时候才会生成, 当订阅请求初始化或者按照某个时间表调度生成) repl日志读取器在事务复制的时候是一直处于运行状态。(在合并复制的时候可以根据调度的时间表来运行) 建立一个数据库复制订阅的过程: [复制] -> [订阅] -> 右键选择 -> [新建请求订阅] -> [下一步] -> [查找发布] -> [查看已注册服务器所做的发布] -> [下一步] -> [选择发布] -> [选中已经建立发布服务器上的数据库发布名] -> [下一步] -> [指定同步代理程序登录] -> [当代理程序连接到代理服务器时:使用sql server身份验证] (输入发布服务器上distributor_admin用户名和密码) -> [下一步] -> [选择目的数据库] -> [选择在其中创建订阅的数据库名]/[也可以新建一个库名] -> [下一步] -> [允许匿名订阅] -> [是,生成匿名订阅] -> [下一步] -> [初始化订阅] -> [是,初始化架构和数据] -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] (订阅服务器要能访问发布服务器的repldata文件夹,如果有问题,可以手工设置网络共享及共享权限) -> [下一步] -> [快照传送] -> [使用该发布的默认快照文件夹中的快照文件] -> [下一步] -> [设置分发代理程序调度] -> [使用下列调度] -> [更改] -> [例如每五分钟调度一次] -> [下一步] -> [启动要求的服务] -> [该订阅要求在发布服务器上运行sqlserveragent服务] -> [下一步] -> [完成] -> [确定] 成功建立了订阅后,订阅服务器上新增加了一个类别是[repl-分发]作业(合并复制的时候类别是[repl-合并]) 它会按照我们给的时间调度表运行数据库同步复制的作业。 3、sql server复制配置好后, 可能出现异常情况的实验日志: 1.发布服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制没有多大影响 中断期间,分发和订阅都接收到没有复制的事务信息 2.分发服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制有一些影响 中断期间,发布服务器的事务排队堆积起来 (如果设置了较长时间才删除过期订阅的选项, 繁忙发布数据库的事务日志可能会较快速膨胀), 订阅服务器会因为访问不到发布服务器,反复重试 我们可以设置重试次数和重试的时间间隔(最大的重试次数是9999, 如果每分钟重试一次,可以支持约6.9天不出错) 分发服务器sql server服务启动,网络接通以后,发布服务器上的堆积作业将按时间顺序作用到订阅机器上: 会需要一个比较长的时间(实际上是生成所有事务的insert,update,delete语句,在订阅服务器上去执行) 我们在普通的pc机上实验的58个事务100228个命令执行花了7分28秒. 3.订阅服务器断网,sql server服务关闭,重启动,关机的时候,对已经设置好的复制影响比较大,可能需要重新初试化 我们实验环境(订阅服务器)从18:46分意外停机以, 第二天8:40分重启动后, 已经设好的复制在8:40分以后又开始正常运行了, 发布服务器上的堆积作业将按时间顺序作用到订阅机器上, 但复制管理器里出现快照的错误提示, 快照可能需要重新初试化,复制可能需要重新启动.(我们实验环境的机器并没有进行快照初试化,复制仍然是成功运行的) 4、删除已经建好的发布和定阅可以直接用delete删除按钮 我们最好总是按先删定阅,再删发布,最后禁用发布的顺序来操作。 如果要彻底删去sql server上面的复制设置, 可以这样操作: [复制] -> 右键选择 [禁用发布] -> [欢迎使用禁用发布和分发向导] -> [下一步] -> [禁用发布] -> [要在"@servername"上禁用发布] -> [下一步] -> [完成禁用发布和分发向导] -> [完成] 我们也可以用t-sql命令来完成复制中发布及订阅的创建和删除, 选中已经设好的发布和订阅, 按属标右键可以[生成sql脚本]。(这里就不详细讲了, 后面推荐的网站内有比较详细的内容) 当你试图删除或者变更一个table时,出现以下错误 server: msg 3724, level 16, state 2, line 1 cannot drop the table 'object_name' because it is being used for replication. 比较典型的情况是该table曾经用于复制,但是后来又删除了复制。 处理办法: select * from sysobjects where replinfo >'0' sp_configure 'allow updates', 1 go reconfigure with override go begin transaction update sysobjects set replinfo = '0' where replinfo >'0' commit transaction go rollback transaction go sp_configure 'allow updates', 0 go reconfigure with override go 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 03:02:42 0 浏览量 回答数 0

回答

12月17日更新 请问下同时消费多个topic的情况下,在richmap里面可以获取到当前消息所属的topic吗? 各位大佬,你们实时都是怎样重跑数据的? 有木有大神知道Flink能否消费多个kafka集群的数据? 这个问题有人遇到吗? 你们实时读取广业务库到kafka是通过什么读的?kafka connector 的原理是定时去轮询,这样如果表多了,会不会影响业务库的性能?甚至把业务库搞挂? 有没有flink 1.9 连接 hive的例子啊?官网文档试了,没成功 请问各位是怎么解决实时流数据倾斜的? 请问一下,对于有状态的任务,如果任务做代码升级的时候,可否修改BoundedOutOfOrdernessTimestampExtractor的maxOutOfOrderness呢?是否会有影响数据逻辑的地方呢? 老哥们有做过统计从0点开始截止到现在时刻的累计用户数吗? 比如五分钟输出一次,就是7点输出0点到7点的累计用户,7:05输出0点到7:05的累计用户。 但是我这里有多个维度,现在用redis来做的。 想知道有没有更好的姿势? 实时数仓用什么存储介质来存储维表,维表有大有小,大的大概5千万左右。 各位大神有什么建议和经验分享吗? 请教个问题,就是flink的窗口触发必须是有数据才会触发吗?我现在有个这样的需求,就是存在窗口内没有流数据进入,但是窗口结束是要触发去外部系统获取上一个窗口的结果值作为本次窗口的结果值!现在没有流数据进入窗口结束时如何触发? kafkaSource.setStartFromTimestamp(timestamp); 发现kafkasource从指定时间开始消费,有些topic有效,有效topic无效,大佬们有遇到过吗? 各位大佬,flink两个table join的时候,为什么打印不出来数据,已经赋了关联条件了,但是也不报错 各位大佬 请教一下 一个faile的任务 会在这里面存储展示多久啊? 各位大佬,我的程序每五分钟一个窗口做了基础指标的统计,同时还想统计全天的Uv,这个是用State就能实现吗? 大佬们,flink的redis sink是不是只适用redis2.8.5版本? 有CEP 源码中文注释的发出来学习一下吗? 有没有拿flink和tensorflow集成的? 那位大神,给一个java版的flink1.7 读取kafka数据,做实时监控和统计的功能的代码案例。 请问下风控大佬,flink为风控引擎做数据支撑的时候,怎么应对风控规则的不断变化,比如说登录场景需要实时计算近十分钟内登录次数超过20次用户,这个规则可能会变成计算近五分钟内登录次数超过20次的。 想了解一下大家线上Flink作业一般开始的时候都分配多少内存?广播没办法改CEP flink支持多流(大于2流)join吗? 谁能帮忙提供一下flink的多并行度的情况下,怎么保证数据有序 例如map并行度为2 那就可能出现数据乱序的情况啊 请教下现在从哪里可以可以看单任务的运行状况和内存占用情况,flink页面上能看单个任务的内存、cpu 大佬们 flink1.9 停止任务手动保存savepoint的命令是啥? flink 一个流计算多个任务和 还是一个流一个任务好? flink 1.9 on yarn, 自定义个connector里面用了jni, failover以后 就起不来了, 报错重复load so的问题。 我想问一下 这个,怎么解决。 难道flink 里面不能用jni吗。 ide里面调试没有问题,部署到集群就会报错了,可能什么问题? 请教一下对于长时间耗内存很大的任务,大家都是开checkpoint机制,采用rocksdb做状态后端吗? 请问下大佬,flink jdbc读取mysql,tinyin字段类型自动转化为Boolean有没有好的解决方法 Flink 1.9版本的Blink查询优化器,Hive集成,Python API这几个功能好像都是预览版,请问群里有大佬生产环境中使用这些功能了吗? 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 想做一个监控或数据分析的功能,如果我flink 的datastreaming实现消费Kafka的数据,但是我监控的规则数据会增加或修改,但是不想停这个正在运行的flink程序,要如何传递这个动态变化的规则数据,大神给个思路,是用ConnectedStream这个吗?还是用Broadcast ?还有一个,比如我的规则数据是存放在Mysql表中,用什么事件隔30秒去触发读取mysql规则表呢?谢谢! 各位大佬,在一个 Job 计算过程中,查询 MySQL 来补全额外数据,是一个好的实践嘛?还是说流处理过程中应该尽量避免查询额外的数据? Flink web UI是jquery写的吗? 12月9日更新 成功做完一次checkpoint后,会覆盖上一次的checkpoint吗? 数据量较大时,flink实时写入hbase能够异步写入吗? flink的异步io,是不是只是适合异步读取,并不适合异步写入呀? 请问一下,flink将结果sink到redis里面会不会对存储的IO造成很大的压力,如何批量的输出结果呢? 大佬们,flink 1.9.0版本里DataStream api,若从kafka里加载完数据以后,从这一个流中获取数据进行两条业务线的操作,是可以的吗? flink 中的rocksdb状态怎么样能可视化的查看有大佬知道吗? 感觉flink 并不怎么适合做hive 中的计算引擎来提升hive 表的查询速度 大佬们,task端rocksdb状态 保存路径默认是在哪里的啊?我想挂载个新磁盘 把状态存到那里去 flink 的state 在窗口滑动到下一个窗口时候 上一个窗口销毁时候 state会自己清除吗? 求助各位大佬,一个sql里面包含有几个大的hop滑动窗口,如15个小时和24个小时,滑动步长为5分钟,这样就会产生很多overlap 数据,导致状态会很快就达到几百g,然后作业内存也很快达到瓶颈就oom了,然后作业就不断重启,很不稳定,请问这个业务场景有什么有效的解决方案么? 使用jdbcsink的时候,如果连接长时间不使用 就会被关掉,有人遇到过吗?使用的是ddl的方式 如何向云邪大佬咨询FLink相关技术问题? 请问各位公司有专门开发自己的实时计算平台的吗? 请问各位公司有专门开发自己的实时计算平台的吗? 有哪位大佬有cdh集成安装flink的文档或者手册? 有哪位大佬有cdh集成安装flink的文档或者手册? 想问下老哥们都是怎么统计一段时间的UV的? 是直接用window然后count嘛? Flink是不是也是这样的? 请问现在如有个实时程序,根据一个mysql的维表来清洗,但是我这个mysql表里面就只有几条信息且可能会变。 我想同一个定时器去读mysql,然后存在对象中,流清洗的时候读取这个数据,这个想法可行吗?我目前在主类里面定义一个对象,然后往里面更新,发现下面的map方法之类的读不到我更新进去的值 有大佬做过flink—sql的血缘分析吗? 12月3日更新 请教一下,为什么我flume已经登录成功了keytab认证的kafka集群,但是就是消费不到数据呢? flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink timestamp转换为date类型,有什么函数吗 Run a single Flink job on YARN 我采用这种模式提交任务,出现无法找到 开启 HA 的ResourceManager Failed to connect to server: xxxxx:8032: retries get failed due to exceeded maximum allowed retries number: 0 有大佬遇到过吗 ? 各位大佬,请问有Flink写S3的方案吗? flink 连接hbase 只支持1.4.3版本? onnector: type: hbase version: "1.4.3" 请问 flink1.9能跑在hadoop3集群上吗? 滑动窗口 排序 报错这个是什么原因呢? 这个pravega和kafka有啥区别? flink 开发里数据源配置了RDS,但是在RDS里没有看到创建的表,是为什么呢? Tumbling Window里的数据,是等窗口期内的数据到齐之后一次性处理,还是到了一条就处理一条啊 双流join后再做time window grouping. 但是双流join会丢失时间属性,请问大家如何解决 stream processing with apache flink,这本书的中译版 现在可以买吗? flink on yarn时,jm和tm占用的内存最小是600M,这个可以修改吗? 各位大佬,使用默认的窗口Trigger,在什么情况下会触发两次啊?窗口关闭后,然后还来了这个窗口期内的数据,并且开了allowedLateness么? flink web里可以像storm那样 看每条数据在该算子中的平均耗时吗? 各位大佬,flink任务的并发数调大到160+以后,每隔几十分钟就会出现一次TM节点连接丢失的异常,导致任务重启。并发在100时运行比较稳定,哪位大佬可以提供下排查的思路? 感觉stateful function 是下一个要发力的点,这个现在有应用案例吗? 我有2个子网(a子网,b子网)用vpn联通,vpn几周可能会断一次。a子网有一个kafka集群,b子网运行我自己的flink集群和应用,b子网的flink应用连接到a子网的kafka集群接收消息来处理入库到数仓去。我的问题是,如果vpn断开,flink consumer会异常整个作业退出吗?如果作业退出,我重连vpn后,能从auto checkpoint再把flink应用恢复到出错时flink kafka consumer应该读取的partition/offset位置吗?flink的checkpoint除了保存自己开发的算子里的state,kafkaconsumer里的partition/offset也会保存和恢复吗? flink的反压为什么不加入metrics呢 hdfs是不是和flink共用一个集群? flink消费kafka,可以从指定时间消费的吗?目前提供的接口只是根据offset消费?有人知道怎么处理? flink 的Keyby是不是只是repartition而已?没有将key相同的数据放到一个组合里面 电商大屏 大家推荐用什么来做吗? 我比较倾向用数据库,因为有些数据需要join其他表,flink充当了什么角色,对这个有点迷,比如统计当天订单量,卖了多少钱,各个省的销量,销售金额,各个品类的销售量销售金额 开源1.9的sql中怎么把watermark给用起来,有大神知道吗? 有没有人能有一些flink的教程 代码之类的分享啊 采用了checkpoint,程序停止了之后,什么都不改,直接重启,还是能接着继续运行吗?如果可以的话,savepoint的意义又是什么呢? 有人做过flink 的tpc-ds测试吗,能不能分享一下操作的流程方法 checkpoint是有时间间隔的,也就可以理解为checkpoint是以批量操作的,那如果还没进行ckecnpoint就挂了,下次从最新的一次checkpoint重启,不是重复消费了? kafka是可以批量读取数据,但是flink是一条一条处理的,应该也可以一条一条提交吧。 各位大佬,flink sql目前是不是不支持tumbling window join,有人了解吗? 你们的HDFS是装在taskmanager上还是完全分开的,请问大佬们有遇到这种情况吗? 大佬们flink检查点存hdfs的话怎么自动清理文件啊 一个128M很快磁盘就满了 有谁遇到过这个问题? 请教一下各位,这段代码里面,我想加一个trigger,实现每次有数据进window时候,就输出,而不是等到window结束再输出,应该怎么加? 麻烦问下 flink on yarn 执行 客户端启动时 报上面错,是什么原因造成的 求大佬指点 ERROR org.apache.flink.client.program.rest.RestClusterClient - Error while shutting down cluster java.util.concurrent.ExecutionException: org.apache.flink.runtime.concurrent.FutureUtils$RetryException: Could not complete the operation. Number of retries has been exhausted. 大家怎么能动态的改变 flink WindowFunction 窗口数据时间 flink on yarn之后。yarn的日志目录被写满,大家如配置的? Flink1.9 启动 yarn-session报这个错误 怎么破? yarn 模式下,checkpoint 是存在 JobManager的,提交任务也是提交给 JobManager 的吧? heckpoint机制,会不会把window里面的数据全部放checkpoint里面? Flink On Yarn的模式下,如果通过REST API 停止Job,并触发savepiont呢 jenkins自动化部署flink的job,一般用什么方案?shell脚本还是api的方式? 各位大佬,开启增量checkpoint 情况下,这个state size 是总的checkpoint 大小,还是增量上传的大小? 想用状态表作为子表 外面嵌套窗口 如何实现呢 因为状态表group by之后 ctime会失去时间属性,有哪位大佬知道的? 你们有试过在同样的3台机器上部署两套kafka吗? 大家有没有比较好的sql解析 组件(支持嵌套sql)? richmapfuntion的open/close方法,和处理数据的map方法,是在同一个线程,还是不同线程调用的? flink on yarn 提交 参数 -p 20 -yn 5 -ys 3 ,我不是只启动了5个container么? Flink的乱序问题怎么解决? 我对数据流先进行了keyBy,print的时候是有数据的,一旦进行了timeWindow滑动窗口就没有数据了,请问是什么情况呢? 搭建flinksql平台的时候,怎么处理udf的呀? 怎么查看sentry元数据里哪些角色有哪些权限? 用java api写的kafka consumer能消费到的消息,但是Flink消费不到,这是为啥? 我state大小如果为2G左右 每次checkpoint会不会有压力? link-table中的udaf能用deltaTrigger么? flink1.7.2,场景是一分钟为窗口计算每分钟传感器的最高温度,同时计算当前分钟与上一分钟最高温 001 Flink集群支持kerberos认证吗?也就是说flink客户端需要向Flink集群进行kerberos认证,认证通过之后客户端才能提交作业到Flink集群运行002 Flink支持多租户吗? 如果要对客户端提交作业到flink进行访问控制,你们有类似的这种使用场景吗? flink可以同时读取多个topic的数据吗? Flink能够做实时ETL(oracle端到oracle端或者多端)么? Flink是否适合普通的关系型数据库呢? Flink是否适合普通的关系型数据库呢? 流窗口关联mysql中的维度表大佬们都是怎么做的啊? 怎么保证整个链路的exactly one episode精准一次,从source 到flink到sink? 在SQL的TUMBLE窗口的统计中,如果没数据进来的,如何让他也定期执行,比如进行count计算,让他输出0? new FlinkKafkaConsumer010[String]("PREWARNING",new JSONKeyValueDeserializationSchema(true), kafkaProps).setStartFromGroupOffsets() ) 我这样new 它说要我传个KeyedDeserializationSchema接口进去 flink里面broadcast state想定时reload怎么做?我用kafka里的stream flink独立模式高可用搭建必需要hadoop吗? 有人用增量cleanupIncrementally的方式来清理状态的嘛,感觉性能很差。 flink sink to hbase继承 RichOutputFormat运行就报错 kafka 只有低级 api 才拿得到 offset 吗? 有个问题咨询下大家,我的flinksql中有一些参数是要从mysql中获取的,比如我flink的sql是select * from aa where cc=?,这个问号的参数需要从mysql中获取,我用普通的jdbc进行连接可以获的,但是有一个问题,就是我mysql的数据改了之后必须重启flink程序才能解决这个问题,但这肯定不符合要求,请问大家有什么好的办法吗? flink里怎样实现多表关联制作宽表 flink写es,因为半夜es集群做路由,导致写入容易失败,会引起source的反压,然后导致checkpoint超时任务卡死,请问有没有办法在下游es处理慢的时候暂停上游的导入来缓解反压? flink 写parquet 文件,使用StreamingFileSink streamingFileSink = StreamingFileSink.forBulkFormat( new Path(path), ParquetAvroWriters.forReflectRecord(BuyerviewcarListLog.class)). withBucketAssigner(bucketAssigner).build(); 报错 java.lang.UnsupportedOperationException: Recoverable writers on Hadoop are only supported for HDFS and for Hadoop version 2.7 or newer 1.7.2 NoWindowInnerJoin这个实现,我看实现了CleanupState可更新过期时间删除当前key状态的接口,是不是这个1.7.2版本即使有个流的key一直没有被匹配到他的状态也会被清理掉,就不会存在内存泄漏的问题了? flink1.7.2 想在Table的UDAF中使用State,但是发现UDAF的open函数的FunctionContext中对于RuntimeContext是一个private,无法使用,大佬,如何在Table的UDAF中使用State啊? Flink有什么性能测试工具吗? 项目里用到了了KafkaTableSourceSinkFactory和JDBCTableSourceSinkFactory。maven打包后,META-INF里只会保留第一个 标签的org.apache.flink.table.factories.TableFactory内容。然后执行时就会有找不到合适factory的报错,请问有什么解决办法吗? 为什么这个这段逻辑 debug的时候 是直接跳过的 各位大佬,以天为单位的窗口有没有遇到过在八点钟的时候会生成一条昨天的记录? 想问一下,我要做一个规则引擎,需要动态改变规则,如何在flink里面执行? flink-1.9.1/bin/yarn-session.sh: line 32: construc 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 我要用sql做一个规则引擎,需要动态改变规则,如何在flink里面执行? 一般公司的flink job有没有进程进行守护?有专门的工具或者是自己写脚本?这种情况针对flink kafka能不能通过java获取topic的消息所占空间大小? Flink container was removed这个咋解决的。我有时候没有数据的时候也出现这 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更 问大家个Hive问题,新建的hive外部分区表, 怎么把HDFS数据一次性全部导入hive里 ? flink里面的broadcast state值,会出现broad流的数据还没put进mapstat Flink SQL DDL 创建表时,如何定义字段的类型为proctime? 请问下窗口计算能对历史数据进行处理吗?比如kafka里的写数据没停,窗口计算的应用停掉一段时间再开起 请问下,想统计未退费的订单数量,如果一个订单退费了(发过来一个update流),flink能做到对结果进行-1吗,这样的需求sql支持吗? 使用Flink sql时,对table使用了group by操作。然后将结果转换为流时是不是只能使用的toRetractStream方法不能使用toAppendStream方法。 百亿数据实时去重,有哪位同学实践过吗? 你们的去重容许有误差?因为bloom filter其实只能给出【肯定不存在】和【可能存在】两种结果。对于可能存在这种结果,你们会认为是同一条记录? 我就运行了一个自带的示例,一运行就报错然后web页面就崩了 flink定时加载外部数据有人做过吗? NoSuchMethodError: org.apache.flink.api.java.Utils.resolveFactory(Ljava/lang/ThreadLocal;Ljava/lang/Object;)Ljava/util/Optional 各位知道这个是那个包吗? flink 可以把大量数据写入mysql吗?比如10g flink sql 解析复杂的json可以吗? 在页面上写规则,用flink执行,怎么传递给flink? 使用cep时,如何动态添加规则? 如何基于flink 实现两个很大的数据集的交集 并集 差集? flink的应用场景是?除了实时 各位好,请教一下,滑动窗口,每次滑动都全量输出结果,外部存储系统压力大,是否有办法,只输出变化的key? RichSinkFunction close只有任务结束时候才会去调用,但是数据库连接一直拿着,最后成了数据库连接超时了,大佬们有什么好的建议去处理吗?? 为啥我的自定义函数注册,然后sql中使用不了? 请问一下各位老师,flink flapmap 中的collector.collect经常出现Buffer pool is destroyed可能是什么原因呢? 用asyncIO比直接在map里实现读hbase还慢,在和hbase交互这块儿,每个算子都加了时间统计 请教一下,在yarn上运行,会找不到 org.apache.flink.streaming.util 请问下大佬,flink1.7.2对于sql的支持是不是不怎么好啊 ,跑的数据一大就会报错。 各位大佬,都用什么来监控flink集群? flink 有那种把多条消息聚合成一条的操作吗,比如说每五十条聚合成一条 如何可以让checkpoint 跳过对齐呢? 请问 阿里云实时计算(Blink)支持这4个源数据表吗?DataHub Kafka MQ MaxCompute? 为啥checkpoint时间会越来越长,请问哪位大佬知道是因为啥呢? 请问Flink的最大并行度跟kafka partition数量有关系吗? source的并行度应该最好是跟partition数量一致吧,那剩下的算子并行度呢? Flink有 MLIB库吗,为什么1.9中没有了啊? 请教一下,有没有flink ui的文章呢?在这块内存配置,我给 TM 配置的内存只有 4096 M,但是这里为什么对不上呢?请问哪里可以看 TM 内存使用了多少呢? 请教个问题,fink RichSinkFunction的invoke方法是什么时候被调用的? 请教一下,flink的window的触发条件 watermark 小于 window 的 end_time。这个 watermark 为什么是针对所有数据的呢?没有设计为一个 key 一个 watermark 呢? 就比如说有 key1、key2、key3,有3个 watermark,有 3个 window interval不支持left join那怎么可以实现把窗口内左表的数据也写到下游呢? 各位 1、sink如何只得到最终的结果而不是也输出过程结果 ;2、不同的运算如何不借助外部系统的存储作为另外一个运算的source 请教各位一个问题,flink中设置什么配置可以取消Generic这个泛型,如图报错: 有大佬在吗,线上遇到个问题,但是明明内存还有200多G,然后呢任务cancel不了,台也取消不了程序 flink遇到The assigned slot container_1540803405745_0094_01_000008_1 was removed. 有木有大佬遇到过。在flink on yarn上跑 这个报错是什么意思呢?我使用滑动窗口的时候出现报错 flink 双流union状态过期不清理有遇到的吗? 大家有没有这种场景,数据从binlog消费,这个信息是订单信息,同一个订单id,会有不同状态的变更,如果订单表与商品明细join查询,就会出现n条重复数据,这样数据就不准了,flink 这块有没有比较好的实战经验的。 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink 有办法 读取 pytorch的 模型文件吗? 大佬们、有没有人遇到过使用一分钟的TumblingEventTimeWindows,但是没有按时触发窗口、而是一直等到下一条消息进来之后才会把这个窗口的数据发送出去的? flink timestamp转换为date类型,有什么函数吗 flink 写入mysql 很长一段时间没有写入,报错怎么解决呢? flink 有办法 读取 pytorch的 模型文件吗? 有没有大佬知道实时报表怎么做?就是统计的结果要实时更新,热数据。 刚接触flink 1.9 求问flink run脚本中怎么没有相关提交到yarn的命令了 请教一下,flink里怎么实现batch sink的操作而不导致数据丢失

问问小秘 2019-12-02 03:19:17 0 浏览量 回答数 0

回答

背景 Kubernetes的优势 Spark on kubernetes相比于on YARN等传统部署方式的优势: 1、统一的资源管理。不论是什么类型的作业都可以在一个统一kubernetes的集群运行。不再需要单独为大数据作业维护一个独立的YARN集群。 2、弹性的集群基础设施。资源层和应用层提供了丰富的弹性策略,我们可以根据应用负载需求选择 ECS 虚拟机、神龙裸金属和 GPU 实例进行扩容,除了kubernetes集群本生具备的强大的扩缩容能力,还可以对接生态,比如virtual kubelet。 3、轻松实现复杂的分布式应用的资源隔离和限制,从YRAN复杂的队列管理和队列分配中解脱。 4、容器化的优势。每个应用都可以通过docker镜像打包自己的依赖,运行在独立的环境,甚至包括Spark的版本,所有的应用之间都是隔离的。 5、大数据上云。目前大数据应用上云常见的方式有两种:1)用ECS自建YARN(不限于YARN)集群;2)购买EMR服务。如今多了一个选择——Kubernetes。既能获得完全的集群级别的掌控,又能从复杂的集群管理、运维中解脱,还能享受云所带来的弹性和成本优势。 Spark自2.3.0开始试验性支持Standalone、on YARN以及on Mesos之外的新的部署方式:Running Spark on Kubernetes ,并在后续的发行版中不断地加强。 后文将是实际的操作,分别让Spark应用在普通的Kubernetes集群、Serverless Kubernetes集群、以及Kubernetes + virtual kubelet等三种场景中部署并运行。 Spark on Kubernetes 准备数据以及Spark应用镜像 参考: 在ECI中访问HDFS的数据 在ECI中访问OSS的数据 创建kubernetes集群 如果已经有阿里云的ACK集群,该步可以忽略。 具体的创建流程参考:创建Kubernetes 托管版集群。 提交作业 为Spark创建一个RBAC的role 创建账号(默认namespace) kubectl create serviceaccount spark 绑定角色 kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=default:spark --namespace=default 直接使用spark-submit提交(不推荐的提交方式) liumihustdeMacBook-Pro:spark-on-k8s liumihust$ ./spark-2.3.0-bin-hadoop2.6/bin/spark-submit --master k8s://121.199.47.XX:6443 --deploy-mode cluster --name WordCount --class com.aliyun.liumi.spark.example.WordCount --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark --conf spark.executor.instances=2 --conf spark.kubernetes.container.image=registry.cn-beijing.aliyuncs.com/liumi/spark:2.4.4-example local:///opt/spark/jars/SparkExampleJava-1.0-SNAPSHOT.jar 参数解释 —master :k8s集群的apiserver,这是决定spark是在k8s集群跑,还是在yarn上跑。 —deploy-mode:driver可以部署在集群的master节点(client)也可以在非master(cluster)节点。 spark.executor.instances: executor的数量 spark.kubernetes.container.image spark打包镜像(包含driver、excutor、应用,也支持单独配置) 提交基本流程 spark-10.png Running Spark on Kubernetes Spark先在k8s集群中创建Spark Driver(pod)。 Driver起来后,调用k8s API创建Executors(pods),Executors才是执行作业的载体。 作业计算结束,Executor Pods会被自动回收,Driver Pod处于Completed状态(终态)。可以供用户查看日志等。 Driver Pod只能被用户手动清理,或者被k8s GC回收。 结果分析 执行过程中的截图如下:spark-5.png 我们30G的数据用2个1C1G的Excutor处理了大约20分钟。 作业运行结束后查看结果: [root@liumi-hdfs ~]# $HADOOP_HOME/bin/hadoop fs -cat /pod/data/A-Game-of-Thrones-Result/* (142400000,the) (78400000,and) (77120000,) (62200000,to) (56690000,of) (56120000,a) (43540000,his) (35160000,was) (30480000,he) (29060000,in) (26640000,had) (26200000,her) (23050000,as) (22210000,with) (20450000,The) (19260000,you) (18300000,I) (17510000,she) (16960000,that) (16450000,He) (16090000,not) (15980000,it) (15080000,at) (14710000,for) (14410000,on) (12660000,but) (12470000,him) (12070000,is) (11240000,from) (10300000,my) (10280000,have) (10010000,were) 至此,已经能在kubernetes集群部署并运行spark作业。 Spark on Serverless Kubernetes Serverless Kubernetes (ASK) 相比于普通的kubernetes集群,比较大的一个优势是,提交作业前无需提前预留任何资源,无需关心集群的扩缩容,所有资源都是随作业提交自动开始申请,作业执行结束后自动释放。作业执行完后就只剩一个SparkApplication和终态的Driver pod(只保留管控数据)。原理图如下图所示:spark-7.png Running Spark on Serverless Kubernetes ASK通过virtual kubelet调度pod到阿里云弹性容器实例。虽然架构上跟ACK有明显的差异,但是两者都是全面兼容kubernetes标准的。所以on ASK跟前面的spark on kubernetes准备阶段的基本是一致的,即HDFS数据准备,spark base镜像的准备、spark应用镜像的准备等。主要就是作业提交方式稍有不同,以及一些额外的基本环境配置。 创建serverless kubernetes集群 创建以及操作集群的详细步骤参考:操作Serverless Kubernetes集群的方式 本文都是拷贝kubeconfig到本地服务器来访问集群。 选择标准serverless集群:eci-spark-4 基本参数: 1、自定义集群名。 2、选择地域、以及可用区。 3、专有网络可以用已有的也可以由容器服务自动创建的。 4、是否公网暴露API server,如有需求建议开启。 5、开启privatezone,必须开启。 6、日志收集,建议开启。eci-spark-5 注: 1、提交之前一定要升级集群的集群的virtual kubelet的版本(新建的集群可以忽略),只有目前最新版的VK才能跑Spark作业。 2、ASK集群依赖privatezone做服务发现,所以集群不需要开启privatezone,创建的时候需要勾选。如果创建的时候没有勾选,需要联系我们帮开启。不然Spark excutor会找不到driver service。 *制作镜像cache 由于后面可能要进行大规模启动,为了提高容器启动速度,提前将Spark应用的镜像缓存到ECI本地,采用k8s标准的CRD的方式,具体的流程参考:使用CRD加速创建Pod 提交: 由于spark submit目前支持的参数非常有限,所以ASK场景中建议不要使用spark submit直接提交,而是直接采用Spark Operator。也是我们推荐的方式。 Spark Operator 就是为了解决在Kubernetes集群部署并维护Spark应用而开发的。 eci-spark-6 Spark Operator几个主要的概念: SparkApplication:标准的k8s CRD,有CRD就有一个Controller 与之对应。Controller负责监听CRD的创建、更新、以及删除等事件,并作出对应的Action。 ScheduledSparkApplication:SparkApplication的升级,支持带有自定义时间调度策略的作业提交,比如cron。 Submission runner:对Controller发起的创建请求提交spark-submit。 Spark pod monitor:监听Spark pods的状态和事件更新并告知Controller。 安装Spark Operator 推荐用 helm 3.0 helm repo add incubator http://storage.googleapis.com/kubernetes-charts-incubator helm install incubator/sparkoperator --namespace default --set operatorImageName=registry.cn-hangzhou.aliyuncs.com/eci_open/spark-operator --set operatorVersion=v1beta2-1.0.1-2.4.4 --generate-name --set enableWebhook=true 注:在Serverless Kubernetes安装时不要使用enableWebhook=true选项 安装完成后可以看到集群多了个spark operator pod。eci-saprk-7 选项说明: 1、—set operatorImageName:指定operator镜像,默认的google的镜像阿里云ECI内拉不下来,可以先拉取到本地然后推到ACR。 2、—set operatorVersion operator:镜像仓库名和版本不要写在一起。 3、—generate-name 可以不用显式设置安装名。 4、—set enableWebhook 默认不会打开,对于需要使用ACK+ECI的用户,会用到nodeSelector、tolerations这些高级特性,Webhook 必须要打开,后面会讲到。Serverless Kubernetes 不要打开。 注: 创建spark operator的时候,一定要确保镜像能拉下来,推荐直接使用eci_open提供的镜像,因为spark operator卸载的时候也是用相同的镜像启动job进行清理,如果镜像拉不下来清理job也会卡主,导致所有的资源都要手动清理,比较麻烦。 申明wordcount SparkApplication: apiVersion: "sparkoperator.k8s.io/v1beta2" kind: SparkApplication metadata: name: wordcount namespace: default spec: type: Java mode: cluster image: "registry.cn-beijing.aliyuncs.com/liumi/spark:2.4.4-example" imagePullPolicy: IfNotPresent mainClass: com.aliyun.liumi.spark.example.WordCount mainApplicationFile: "local:///opt/spark/jars/SparkExampleJava-1.0-SNAPSHOT.jar" sparkVersion: "2.4.4" restartPolicy: type: OnFailure onFailureRetries: 2 onFailureRetryInterval: 5 onSubmissionFailureRetries: 2 onSubmissionFailureRetryInterval: 10 timeToLiveSeconds: 36000 sparkConf: "spark.kubernetes.allocation.batch.size": "10" driver: cores: 2 memory: "4096m" labels: version: 2.4.4 spark-app: spark-wordcount role: driver annotations: k8s.aliyun.com/eci-image-cache: "true" serviceAccount: spark executor: cores: 1 instances: 100 memory: "1024m" labels: version: 2.4.4 role: executor annotations: k8s.aliyun.com/eci-image-cache: "true" 注:大部分的参数都可以直接通过SparkApplication CRD已经支持的参数设置,目前支持的所有参数参考:SparkApplication CRD,此外还支持直接以sparkConf形式的传入。 提交: kubectl create -f wordcount-operator-example.yaml 结果分析 我们是100个1C1G的Excutor并发启动,应用的镜像大小约为 500 MB。 作业执行过程截图:eci-spark-8eci-spark-9 可以看到并发启动的100个pod基本在30s内可以完成全部的启动,其中93%可以在20秒内完成启动。 看下作业执行时间(包括了vk调度100个Excutor pod时间、每个Excutor pod资源准备的时间、以及作业实际执行的时间等): exitCode: 0 finishedAt: '2019-11-16T07:31:59Z' reason: Completed startedAt: '2019-11-16T07:29:01Z' 可以看到总共只花了178S,时间降了一个数量级。 ACK + ECI 在Spark中,Driver和Excutor之间的启动顺序是串行的。尽管ECI展现了出色的并发创建Executor pod的能力,但是ASK这种特殊架构会让Driver和Excutor之间的这种串行体现的比较明显,通常情况下在ECI启动一个Driver pod需要大约20s的时间,然后才是大规模的Excutor pod的启动。对于一些响应要求高的应用,Driver的启动速度可能比Excutor执行作业的耗时更重要。这个时候,我们可以采用ACK+ECI,即传统的Kubernetes集群 + virtual kubelet的方式:eci-spark-9 对于用户来说,只需如下简单的几步就可以将excutor调度到ECI的virtual node。 1、在ACK集群中安装ECI的virtual kubelet。 进入容器服务控制台的应用目录栏,搜索”ack-virtual-node”: eci-spark-10 点击进入,选择要安装的集群。eci-spark-11 必填参数参考: virtualNode: image: repository: registry.cn-hangzhou.aliyuncs.com/acs/virtual-nodes-eci tag: v1.0.0.1-aliyun affinityAdminssion: enabled: true image: repository: registry.cn-hangzhou.aliyuncs.com/ask/virtual-node-affinity-admission-controller tag: latest env: ECI_REGION: "cn-hangzhou" #集群所在的地域 ECI_VPC: vpc-bp187fy2e7l123456 # 集群所在的vpc,和创建集群的时候保持一致即可,可以在集群概览页查看 ECI_VSWITCH: vsw-bp1bqf53ba123456 # 资源所在的交换机,同上 ECI_SECURITY_GROUP: sg-bp12ujq5zp12346 # 资源所在的安全组,同上 ECI_ACCESS_KEY: XXXXX #账号AK ECI_SECRET_KEY: XXXXX #账号SK ALIYUN_CLUSTERID: virtual-kubelet 2、修改应用的yaml 为excutor增加如下参数即可: nodeSelector: type: virtual-kubelet tolerations: - key: virtual-kubelet.io/provider operator: Exists 完整的应用参数如下: apiVersion: "sparkoperator.k8s.io/v1beta2" kind: SparkApplication metadata: name: wordcount namespace: default spec: type: Java mode: cluster image: "registry.cn-beijing.aliyuncs.com/liumi/spark:2.4.4-example" imagePullPolicy: IfNotPresent mainClass: com.aliyun.liumi.spark.example.WordCount mainApplicationFile: "local:///opt/spark/jars/SparkExampleJava-1.0-SNAPSHOT.jar" sparkVersion: "2.4.4" restartPolicy: type: OnFailure onFailureRetries: 2 onFailureRetryInterval: 5 onSubmissionFailureRetries: 2 onSubmissionFailureRetryInterval: 10 timeToLiveSeconds: 36000 sparkConf: "spark.kubernetes.allocation.batch.size": "10" driver: cores: 2 memory: "4096m" labels: version: 2.4.4 spark-app: spark-wordcount role: driver annotations: k8s.aliyun.com/eci-image-cache: "true" serviceAccount: spark executor: cores: 1 instances: 100 memory: "1024m" labels: version: 2.4.4 role: executor annotations: k8s.aliyun.com/eci-image-cache: "true" #nodeName: virtual-kubelet nodeSelector: type: virtual-kubelet tolerations: - key: virtual-kubelet.io/provider operator: Exists 这样就可以将Driver调度到ACK,Excutor调度到ECI上,完美互补。 3、提交 效果如下:eci-spark-12 看下作业执行时间: exitCode: 0 finishedAt: '2019-11-16T07:25:05Z' reason: Completed startedAt: '2019-11-16T07:22:40Z' 总共花了145秒,更重要的是Driver直接在本地起,只花了约2秒的时间就启动了。 附录 Spark Base 镜像: 本样例采用的是谷歌提供的 gcr.io/spark-operator/spark:v2.4.4 ECI已经帮拉取到ACR仓库,各地域地址如下: 公网地址:registry.{对应regionId}.aliyuncs.com/eci_open/spark:2.4.4 vpc网络地址:registry-vpc.{对应regionId}.aliyuncs.com/eci_open/spark:2.4.4 Spark Operator 镜像 本样例采用的是谷歌提供的 gcr.io/spark-operator/spark-operator:v1beta2-1.0.1-2.4.4 ECI已经帮拉取到ACR仓库,各地域地址如下: 公网地址:registry.{对应regionId}.aliyuncs.com/eci_open/spark-operator:v1beta2-1.0.1-2.4.4 vpc网络地址:registry-vpc.{对应regionId}.aliyuncs.com/eci_open/spark-operator:v1beta2-1.0.1-2.4.4

1934890530796658 2020-03-20 18:30:16 0 浏览量 回答数 0

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

问题

网站技术职位之我见:报错

kun坤 2020-06-09 13:55:57 0 浏览量 回答数 1

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

问题

基础语言百问-Python

薯条酱 2019-12-01 20:12:27 56807 浏览量 回答数 30

问题

【精品问答】130+大数据面试汇总

问问小秘 2019-12-01 21:52:42 1644 浏览量 回答数 2

问题

支付宝小程序云训练营优秀学员提问来啦

问问小秘 2020-06-15 15:57:38 159 浏览量 回答数 1

问题

【精品问答】大数据计算技术1000问

问问小秘 2019-12-01 21:57:13 6895 浏览量 回答数 2

问题

Python请求在Travis上超时的会话,但不是本地的

kun坤 2019-12-30 10:18:43 0 浏览量 回答数 0

问题

【案例】从hadoop框架与MapReduce模式中谈海量数据处理

jack.cai 2019-12-01 21:00:28 15859 浏览量 回答数 3

问题

Apache Flink常见问题汇总【精品问答】

黄一刀 2020-05-19 17:51:47 11230 浏览量 回答数 2

回答

原版英文链接:点击这里 作者 | Md Kamaruzzaman 译者 | 无明 策划 | 小智 基础设施:条条道路通云端 对于云厂商来说,2019 年是硕果累累的一年。不仅初创公司在使用云计算,那些很注重安全的“保守派”公司(如政府机构、医疗保健机构、银行、保险公司,甚至是美国五角大楼)也在迁移到云端。这种趋势在 2020 年将会继续,大大小小的公司都将(或者至少有计划)迁移到云端。Gartner 公司最近发布了一个数字: 如果你是一个还在考虑要不要迁移到云端的决策者,不妨重新审视一下你的策略。如果你是一个独立开发者,并且还没使用过云基础设施,那么完全可以在 2020 年尝试一下。很多大型的云厂商(如亚马逊、微软、谷歌)都提供了免费的体验机会。谷歌在这方面做得特别大方,它提供了价值 300 美元的一年免费服务。 策划注:阿里、腾讯、华为等国内云厂商同样有免费云服务试用产品。 云平台:亚马逊领头,其他跟上 作为第一大云厂商,亚马逊在 2019 年可谓风生水起。凭借其丰富的产品组合,亚马逊将把它的优势延续到 2020 年。Canalys 发布的 2019 年第三季度报告指出,大型云厂商(AWS、Azure、GCP)占据 56% 的市场份额,其中 AWS 独享 32.6%。 其他云厂商也在努力缩短与 AWS 之间的差距。微软把主要目标转向了大型企业。最近,微软打败了亚马逊,从美国五角大楼拿到了一个 100 亿美元的大单子。这个单子将提升 Azure 的声誉,同时削弱 AWS 的士气。 谷歌一直在推动 CNCF,实现云计算运维的标准化。谷歌的长期目标是让云迁移变得更容易,方便企业从 AWS 迁移到 GCP。IBM 之前斥资 360 亿美元收购了 RedHat,也想要在云计算市场占有一席之地。 在亚太地区,阿里云市场规模超过了 AWS、Azure 的总和,全球排名第三。中国国内腾讯云等企业的增长势头也十分迅猛。 2020 年将出现更多的并购。当然,很多初创公司将会带来新的想法和创新,例如多云服务。因为竞争激烈,这些公司只能从降价和推出更多的创新产品来获取利润。 容器化:Kubernetes 将会更酷 在容器编排领域,虽然一度出现了“三足鼎立”(Kubernetes、Docker Swarm 和 Mesos),但 Kubernetes 最终脱颖而出,成为绝对的赢家。云是一个分布式系统,而 Kubernetes 是它的 OS(分布式的 Linux)。2019 年北美 KubeCon+CloudNativeCon 大会的参会者达到了 12000 名,比 2018 年增长了 50%。以下是过去 4 年参会人数的增长情况。 在 2020 年,Kubernetes 不仅不会后退,只会变得越来越强,你完全可以把赌注压在 Kubernetes 身上。另外值得一提的是,Migrantis 最近收购了 Docker Enterprise,不过收购数额不详。 几年前,人们张口闭口说的都是 Docker,而现在换成了 Kubernetes。Docker 在它的全盛时期未能盈利,反而在优势渐退几年之后才尝试变现。这再次说明,在现代技术世界,时机就是一切。 软件架构:微服务将成为主流 谷歌趋势表明,微服务架构范式在 2019 年持续增长了一整年。 随着软件行业整体逐步迁移到云端,微服务也将成为占主导地位的架构范式。微服务架构崛起的一个主要原因是它与云原生完美契合,可以实现快速的软件开发。我在之前的一篇博文中解释了微服务架构的基本原则及其优势和劣势。 https://towardsdatascience.com/microservice-architecture-a-brief-overview-and-why-you-should-use-it-in-your-next-project-a17b6e19adfd 我假设现在也存在一种回归到单体架构的趋势,因为在很多情况下,微服务架构有点过头了,而且做好微服务架构设计其实很难。微服务架构有哪些好的实践?在之前的另一篇博文中,我也给出了一些大概,希望对读者有用。 https://towardsdatascience.com/effective-microservices-10-best-practices-c6e4ba0c6ee2 编程语言(整体):Python 将吞噬世界 机器学习、数据分析、数据处理、Web 开发、企业软件开发,甚至是拼接黑洞照片,Python 的影子无处不在。 在著名的编程语言排行榜网站 TIOBE 上,Python 位居最流行编程语言第三位,仅次于 Java 和 C 语言。 更有意思的是,在 2019 年,Python 的流行度翻了一番(从 5% 到 10%)。 Python 的崛起将在 2020 年延续,并缩短与 Java 和 C 语言之间的差距。另一门无所不在的编程语言 JavaScript 正面临下行的风险。为什么 Python 的势头会如此强劲?因为它的入手门槛低,有一个优秀的社区在支持,并受到数据科学家和新生代开发者的喜爱。 编程语言(企业方面):Java 将占主导 之前的 TIOBE 网站截图显示,Java 仍然是一门占主导地位的编程语言,并将在 2020 年继续保持这种地位。JVM 是 Java 的基石,其他编程语言(如 Kotlin、Scala、Clojure、Groovy)也将 JVM 作为运行时。最近,Oracle 修改了 JVM 的许可协议。 新的许可协议意味着使用 Java、Kotlin、Scala 或其他 JVM 编程语言的公司需要向 Oracle 支付大额费用。所幸的是,OpenJDK 让 JVM 继续免费。另外,还有其他一些公司为 JVM 提供企业支持。 因为体积和速度方面的问题,基于 JVM 的编程语言并不适合用在今天的无服务器环境中。Oracle 正在推动 GraalVM 计划,旨在让 Java 变得更加敏捷和快速,让它更适合用在无服务器环境中。因为除了 Java,没有其他编程语言可以提供企业级的稳定性和可靠性,所以 Java 将在 2020 年继续占主导地位。 企业版 Java:Spring 继续发力 曾几何时,在企业开发领域,Spring 和 JavaEE 之间存在着白热化的竞争。但因为 Oracle 在 JavaEE 方面没有作为,在竞争中惨败,这导致了“MicroProfile”计划的形成,并最终促成了 JakartaEE。 虽然所有的政策和活动都是围绕 JavaEE 展开,但 Spring 事实上已经赢得了这场企业 JVM 之争。2020 年,Spring 将成为 JVM 生态系统的头牌。 有两个正在进展中的项目,它们旨在减小 Java 的体积,让它更适合用在无服务器环境中。 其中一个是 Micronaut(https://micronaut.io/)。 另一个是 Quarkus(https://quarkus.io/)。 这两个项目都使用了 GraalVM,它们在 2020 年将会得到 Java 社区更多的关注。 编程语言:后起之秀的突破 2000 年代,编程语言的发展出现了停滞。大多数人认为没有必要再去开发新的编程语言,Java、C 语言、C++、JavaScript 和 Python 已经可以满足所有的需求。但是,谷歌的 Go 语言为新编程语言大门打开了一扇大门。在过去十年出现了很多有趣的编程语言,比如 Rust、Swift、Kotlin、TypeScript。导致这种情况的一个主要原因是已有的编程语言无法充分利用硬件优势(例如多核、更快的网络、云)。另一个原因是现代编程语言更加关注开发者经济,即实现更快速更容易的开发。在 Stackoverflow 提供的一份开发者报告中,排名靠前的现代编程语言如下所示(Rust 连续 4 年名列第一)。 在之前的一篇博文中,我深入探讨了现代编程语言,对比 Rust 和 Go 语言,并说明了为什么现在是采用这些语言的好时机。 https://towardsdatascience.com/back-to-the-metal-top-3-programming-language-to-develop-big-data-frameworks-in-2019-69a44a36a842 最近,微软宣布他们在探索使用 Rust 来开发更安全的软件。 亚马逊最近也宣布要赞助 Rust。 谷歌宣布将 Kotlin 作为 Android 官方开发语言,所以,在 JVM 领域,Kotlin 成了 Java 的主要竞争对手。 Angular 使用 TypeScript 代替 JavaScript,将其作为主要的编程语言,其他 JavaScript 框架(如 React 和 Vue)也开始为 TypeScript 提供更多的支持。 这种趋势将在 2020 年延续下去,很多巨头公司将会深入了解新一代编程语言(如 Rust、Swift、TypeScript、Kotlin),它们会站出来公开表示支持。 Web:JavaScript 继续占主导地位 曾几何时,JavaScript 并不被认为是一门强大的编程语言。在当时,前端内容主要通过后端框架在服务器端进行渲染。2014 年,AngularJS 的出现改变了这种局面。从那个时候开始,更多的 JavaScript 框架开始涌现(Angular 2+、React、Vue、Meteor),JavaScript 已然成为主流的 Web 开发语言。随着 JavaScript 框架不断创新以及微服务架构的崛起,JavaScript 框架在 2020 年将继续主导前端开发。 JavaScript 框架:React 闪耀 虽然 React 是在 AngularJS 之后出现的,但在过去十年对 Web 开发产生了巨大的影响,这也让 Facebook 在与 Google+ 的竞争中打了一场胜战。React 为前端开发带来了一些新的想法,比如事件溯源、虚拟 DOM、单向数据绑定、基于组件的开发,等等。它对开发者社区产生了重大影响,以至于谷歌放弃了 AngularJS,并借鉴 React 的想法推出了彻底重写的 Angular 2+。React 是目前为止最为流行的 JavaScript 框架,下图显示了相关的 NPM 下载统计信息。 为了获得更好的并发和用户体验,Facebook 宣布完全重写 React 的核心算法,推出了 React-Fiber 项目。 2020 年,React 仍然是你开发新项目的首选 Web 框架。其他框架(如 Angular/Angular 2+ 或 Vue)呢?Angular 仍然是一个不错的 Web 开发框架,特别适合企业开发。我敢肯定谷歌在未来几年会在 Angular 上加大投入。Vue 是另一个非常流行的 Web 框架,由中国的巨头公司阿里巴巴提供支持。如果你已经在使用 Angular 或 Vue,就没必要再迁移到 React 了。 App 开发:原生应用 在移动 App 开发方面,有关混合应用开发的炒作有所消停。混合开发提供了更快的开发速度,因为只需要一个开发团队,而不是多个。但原生应用提供了更好的用户体验和性能。另外,混合应用需要经过调整才能使用一些高级特性。对于企业来说,原生应用仍然是首选的解决方案,这种趋势将在 2020 年延续。Airbnb 在一篇博文中非常详细地说明了为什么他们要放弃混合应用开发平台 React Native。 https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a 尽管 Facebook 尝试改进 React Native,谷歌也非常努力地推动混合 App 开发平台 Flutter,但它们仍然只适合用于原型、POC、MVP 或轻量级应用的开发。所以,原生应用在 2020 年仍将继续占主导地位。 在原生应用开发方面,谷歌和苹果分别将 Kotlin 和 Swift 作为各自平台主要的编程语言。谷歌最近再次重申了对 Kotlin 的支持,这对于 Kotlin 用户来说无疑是个好消息。 混合应用开发:React Native 在很多情况下,混合应用是个不错的选择。在这方面也有很多选择:Xamarin、Inoic、React Native 和 Flutter。Facebook 基于成熟的 React 框架推出了 React Native。就像 React 在 Web 框架领域占据主导地位一样,React Native 在混合应用领域也占据着主导地位,如下图所示。 React Native 和 React 有共同的基因,都提供了高度的代码重用性以及“一次开发,到处运行”的能力。React Native 的另一个优势是 Facebook 本身也用它来开发移动应用。谷歌在这个领域起步较晚,但在去年,谷歌的混合应用开发框架 Flutter 获得了不少关注。Flutter 提供了更好的性能,但需要使用另一门不是那么流行的编程语言 Dart。React Native 在 2020 年将继续占主导地位。 API:REST 将占主导地位 REST 是 API 领域事实上的标准,被广泛用在基于 API 的服务间通信上。当然,除了 REST,我们还有其他选择,比如来自谷歌的 gRPC 和来自 Facebook 的 GraphQL。 它们提供了不同的能力。谷歌开发的 gRPC 作为远程过程调用(如 SOAP)的化身,使用 Protobuf 代替 JSON 作为消息格式。Facebook 开发的 GraphQL 作为一个集成层,避免频繁的 REST 调用。gRPC 和 GraphQL 都在各自的领域取得了成功。2020 年,REST 仍然是占主导地位的 API 技术,而 GraphQL 和 gRPC 将作为补充技术。 人工智能:Tensorflow 2.0 将占主导地位 谷歌和 Facebook 也是深度学习 / 神经网络领域的主要玩家。谷歌基于深度学习框架 Theano 推出了 TensorFlow,它很快就成为深度学习 / 神经网络的主要开发库。谷歌还推出了特别设计的 GPU(TPU)来加速 TensorFlow 的计算。 Facebook 在深度学习领域也不甘落后,他们拥有世界上最大的图像和视频数据集合。Facebook 基于另一个深度学习库 Torch 推出了深度学习库 PyTorch。TensorFlow 和 PyTorch 之间有一些区别,前者使用的是静态图进行计算,而 PyTorch 使用的是动态图。使用动态图的好处是可以在运行时纠正自己。另外,PyTorch 对 Python 支持更好,而 Python 是数据科学领域的一门主要编程语言。 随着 PyTorch 变得越来越流行,谷歌也赶紧在 2019 年 10 月推出了 TensorFlow 2.0,也使用了动态图,对 Python 的支持也更好。 2020 年,TensorFlow 2.0 和 PyTorch 将齐头并进。考虑到 TensorFlow 拥有更大的社区,我估计 TensorFlow 2.0 将成为占主导地位的深度学习库。 数据库:SQL是王者,分布式SQL是王后 在炒作 NoSQL 的日子里,人们嘲笑 SQL,还指出了 SQL 的种种不足。有很多文章说 NoSQL 有多么的好,并将要取代 SQL。但等到炒作的潮水褪去,人们很快就意识到,我们的世界不能没有 SQL。以下是最流行的数据库的排名。 可以看到,SQL 数据库占据了前四名。SQL 之所以占主导地位,是因为它提供了 ACID 事务保证,而 ACID 是业务系统最潜在的需求。NoSQL 数据库提供了横向伸缩能力,但代价是不提供 ACID 保证。 互联网公司一直在寻找“大师级数据库”,也就是既能提供 ACID 保证又能像 NoSQL 那样可横向伸缩的数据库。目前有两个解决方案可以部分满足对“大师级数据库”的要求,一个是亚马逊的 Aurora,一个是谷歌的 Spanner。Aurora 提供了几乎所有的 SQL 功能,但不支持横向写伸缩,而 Spanner 提供了横向写伸缩能力,但对 SQL 支持得不好。 2020 年,但愿这两个数据库能够越走越近,或者有人会带来一个“分布式 SQL”数据库。如果真有人做到了,那一定要给他颁发图灵奖。 数据湖:MinIO 将要崛起 现代数据平台非常的复杂。企业一般都会有支持 ACID 事务的 OLTP 数据库(SQL),也会有用于数据分析的 OLAP 数据库(NoSQL)。除此之外,它们还有其他各种数据存储系统,比如用于搜索的 Solr、ElasticSearch,用于计算的 Spark。企业基于数据库构建自己的数据平台,将 OLTP 数据库的数据拷贝到数据湖中。各种类型的数据应用程序(比如 OLAP、搜索)将数据湖作为它们的事实来源。 HDFS 原本是事实上的数据湖,直到亚马逊推出了对象存储 S3。S3 可伸缩,价格便宜,很快就成为很多公司事实上的数据湖。使用 S3 唯一的问题是数据平台被紧紧地绑定在亚马逊的 AWS 云平台上。虽然微软 Azure 推出了 Blob Storage,谷歌也有类似的对象存储,但都不是 S3 的对手。 对于很多公司来说,MinIO 或许是它们的救星。MinIO 是一个开源的对象存储,与 S3 兼容,提供了企业级的支持,并专门为云原生环境而构建,提供了与云无关的数据湖。 微软在 Azure Marketplace 是这么描述 MinIO 的:“为 Azure Blog Storage 服务提供与亚马逊 S3 API 兼容的数据访问”。如果谷歌 GCP 和其他云厂商也提供 MinIO,那么我们将会向多云迈出一大步。 大数据批处理:Spark 将继续闪耀 现如今,企业通常需要基于大规模数据执行计算,所以需要分布式的批处理作业。Hadoop 的 Map-Reduce 是第一个分布式批处理平台,后来 Spark 取代了 Hadoop 的地位,成为真正的批处理之王。Spark 是怎样提供了比 Hadoop 更好的性能的?我之前写了另一篇文章,对现代数据平台进行了深入分析。 https://towardsdatascience.com/programming-language-that-rules-the-data-intensive-big-data-fast-data-frameworks-6cd7d5f754b0 Spark 解决了 Hadoop Map-Reduce 的痛点,它将所有东西放在内存中,而不是在完成每一个昂贵的操作之后把数据保存在存储系统中。尽管 Spark 重度使用 CPU 和 JVM 来执行批处理作业,但这并不妨碍它成为 2020 年批处理框架之王。我希望有人能够使用 Rust 开发出一个更加高效的批处理框架,取代 Spark,并为企业省下大量的云资源费用。 大数据流式处理:Flink 是未来 几年前,实现实时的流式处理几乎是不可能的事情。一些微批次处理框架(比如 Spark Streaming)可以提供“几近”实时的流式处理能力。不过,Flink 改变了这一状况,它提供了实时的流式处理能力。 2019 年之前,Flink 未能得到足够的关注,因为它无法撼动 Spark。直到 2019 年 1 月份,中国巨头公司阿里巴巴收购了 Data Artisan(Flink 背后的公司)。 在 2020 年,企业如果想要进行实时流式处理,Flink 应该是不二之选。不过,跟 Spark 一样,Flink 同样重度依赖 CPU 和 JVM,并且需要使用大量的云资源。 字节码:WebAssembly将被广泛采用 我从 JavaScript 作者 Brandon Eich 的一次访谈中知道了 WebAssembly 这个东西。现代 JavaScript(ES5 之后的版本)是一门优秀的编程语言,但与其他编程语言一样,都有自己的局限性。最大的局限性是 JavaScript 引擎在执行 JavaScript 时需要读取、解析和处理“抽象语法树”。另一个问题是 JavaScript 的单线程模型无法充分利用现代硬件(如多核 CPU 或 GPU)。正因为这些原因,很多计算密集型的应用程序(如游戏、3D 图像)无法运行在浏览器中。 一些公司(由 Mozilla 带领)开发了 WebAssembly,一种底层字节码格式,让任何一门编程语言都可以在浏览器中运行。目前发布的 WebAssembly 版本可以支持 C++、Rust 等。 WebAssembly 让计算密集型应用程序(比如游戏和 AutoCAD)可以在浏览器中运行。不过,WebAssembly 的目标不仅限于此,它还要让应用程序可以在浏览器之外运行。WebAssembly 可以被用在以下这些“浏览器外”的场景中。 移动设备上的混合原生应用。没有冷启动问题的无服务器计算。在服务器端执行不受信任的代码。 我预测,2020 年将是 WebAssembly 取得突破的一年,很多巨头公司(包括云厂商)和社区将会拥抱 WebAssembly。 代码:低代码 / 无代码将更进一步 快速的数字化和工业 4.0 革命意味着软件开发者的供需缺口巨大。由于缺乏开发人员,很多企业无法实现它们的想法。为了降低进入软件开发的门槛,可以尝试无代码(No Code)或低代码(Low Code)软件开发,也就是所谓的 LCNC(Low-Code No-Code)。它已经在 2019 年取得了一些成功。 LCNC 的目标是让没有编程经验的人也能开发软件,只要他们想要实现自己的想法。 虽然我对在正式环境中使用 LCNC 框架仍然心存疑虑,但它为其他公司奠定了良好的基础,像亚马逊和谷歌这样的公司可以基于这个基础构建出有用的产品,就像 AWS Lambda 的蓬勃发展是以谷歌 App Engine 为基础。 2020 年,LCNC 将会获得更多关注。

茶什i 2019-12-26 11:57:03 0 浏览量 回答数 0

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0

问题

点晴模切ERP软件对模切行业管理的影响

clicksun 2019-12-01 20:11:17 1792 浏览量 回答数 2

问题

什么是Logtail?

轩墨 2019-12-01 21:51:42 1799 浏览量 回答数 0

问题

点晴模切ERP软件对模切行业管理的影响

clicksun 2019-12-01 21:58:54 2521 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站