• 关于

    正常响应方式出问题什么情况

    的搜索结果

问题

url 发送请求乱码解决。 400 请求报错 

kun坤 2020-05-28 16:04:50 5 浏览量 回答数 1

问题

性能测试:软件测试的重中之重

云效平台 2019-12-01 21:45:09 5839 浏览量 回答数 1

问题

如何从用户的角度来测试Web应用软件

技术小菜鸟 2019-12-01 21:41:25 3176 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

为什么对基础设施的监控变得如此重要?

忆远0711 2019-12-01 21:46:44 8511 浏览量 回答数 1

问题

快速黑洞是解决大流量DDoS攻击下“躺枪”情况发生的有效手段

洛欢 2019-12-01 20:54:34 9959 浏览量 回答数 5

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

问题

使用HTTPDNS时该如何API访问

猫饭先生 2019-12-01 21:51:27 1353 浏览量 回答数 0

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

问题

如何保证缓存与数据库的双写一致性?【Java问答】38期

剑曼红尘 2020-06-16 12:58:57 36 浏览量 回答数 1

问题

方法追踪有哪几种?

猫饭先生 2019-12-01 21:03:55 875 浏览量 回答数 0

问题

程序员报错行为大赏-配置报错

问问小秘 2020-06-11 13:18:25 6 浏览量 回答数 1

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

问题

小试用,大学问菜鸟也要知道如何去试用之云服务器测评

universitylife 2019-12-01 21:15:34 33359 浏览量 回答数 19

问题

小试用,大学问菜鸟也要知道如何去试用之云服务器测评

universitylife 2019-12-01 21:31:33 15660 浏览量 回答数 10

问题

性能测试技术怎么进行?

猫饭先生 2019-12-01 21:26:08 1341 浏览量 回答数 0

回答

2014年12月第2周 1)SLB植入cookie和SLB重写cookie有什么区别? cookie植入,表示直接由SLB系统来分配和管理对客户端进行的cookie植入操作,用户在进行配置时 需要指定会话保持的超时时间; cookie重写,表示SLB系统会根据用户自定义cookie名称来分配和管理对客户端进行的cookie植入操 作,便于用户识别和区分自定义的cookie名称 http://help.aliyun.com/doc/view/13510025.html?spm=0.0.0.0.vwbsGF 2)SLB有没有对外提供API接口,因为我想做到用程序自动去控制SLB的操作? SLB api您可以参考http://help.aliyun.com/view/13621674.html? spm=5176.7114037.1996646101.1.9RoTFM&pos=1 3)使用slb怎么实现数据的单向同步和双向同步? 单向同步可以使用rsync,双向同步的话rsync需要借用别的服务来实现,如unison+inotify。 4)slb的vip是否可以实现远程登录? slb 的vip无法实现远程登录。 5)slb的带宽是所有后端ECS服务器的带宽总和吗? 不是,使您购买的slb实例带宽。 6)slb健康检查机制是什么? 用户开启健康检查功能后,当后端某个ECS健康检查出现问题时会将请求转发到其他健康检查正常的 ECS上,而当该ECS恢复正常运行时,SLB会将其自动恢复到对外或对内的服务中。 针对7层(HTTP协议)服务,SLB系统的健康检查机制为:默认通过SLB的后端系统来向该ECS应用服务 器配置的缺省首页发起http head请求(缺省通过在服务监听配置中指定的后端ECS端口进行访问), 返回200 OK后将视为后端ECS运行正常,否则视为后端ECS运行异常。如果用户用来进行健康检查的页 面并不是应用服务器的缺省首页,那么需要用户指定相应的URI。如果用户对http head请求限定了 host字段的参数,那么需要用户指定相应的URL。用户也可以通过设定健康检查的频率、健康阈值和 不健康阈值来更好的控制健康检查功能。 针对4层(TCP协议)服务,SLB系统的健康检查机制为:默认通过在服务监听配置中指定的后端ECS端 口发起访问请求,如果端口访问正常则视为后端ECS运行正常,否则视为后端ECS运行异常。 当用户后端ECS健康检查异常后,SLB系统会将该ECS的转发权重设置为0,从而确保新的连接不会再被 转发到该ECS上,而已经建立的连接的请求却不会被直接断掉。 针对可能引起健康检查异常的排查思路点击这里查看。 关于健康检查的参数配置,提供如下参考建议: 响应超时时间:5秒 健康检查间隔:2秒 不健康阈值:3 健康阈值:3 7)权重设置为0怎么办? 权重为0的服务器将无法提供服务。 8)健康检查异常的排查思路? 参考http://help.aliyun.com/doc/view/13510029.html?spm=0.0.0.0.Oa9Ezv ------------------------- 12月份第3周1)轮询与最小连接数方式的区别是什么?当前SLB支持轮询和最小连接数2种模式的转发规则。“轮询模式”会将外部和内部的访问请求依序分发给后端ECS进行处理,而“最小连接数模式”会将外部和内部的访问请求分发给当前连接数最小的一台后端ECS进行处理。2)SLB支持redis的主备?目前我们的SLB不支持主备模式(冷备),只支持"轮询"和"最小连接数"两种负载模式。关于SLB的原理您可以参阅如下博文:http://blog.aliyun.com/149 基于ECS的redis搭建,您可以参阅论坛中其它用户的分享案例:http://bbs.aliyun.com/read/161389.html3)负载均衡的多台服务器之间文件会不会自动同步?slb是不会自动同步的,需要您自行配置。4)四层和七层检查的区别是什么?如果是4层(TCP)配置,健康检查只是简单的TCP握手,不会真正去访问您的业务。但对于7层(HTTP)配置,会发HTTP请求(类似于正常访问),并根据返回状态码判断服务状态(2XX表示服务正常)。5)我有多个slb,之前一个slb由于被攻击被黑洞给屏蔽了外部请求,是否可以在slb 并屏蔽后 能够自动将请求分发到另外的slb?由于攻击导致屏蔽外部请求的话,slb没有自动切换的方法的。6)目前slb是否可以设置黑名单?暂不支持。7)我的slb实例控制台显示是停止,为什么?需要给监听的端口设置带宽才能正常。  8)我使用了 SLB那么ESC 需要购买带宽吗?不需要的。但如需要管理ECS,则可购买少些的带宽如1M来管理。9)slb变更计费方式需要多久才能生效?变更和计费将在第二日零点后生效。10)私网SLB的使用,是如何收费的呢?私网slb是不收取费用的。 ------------------------- 12月第4周1)最近用slb后打开网页老出现503 和504错误?一般都是从ECS获取站点信息等异常导致的。您首先先确保源站都可以正常的访问。2)slb检查时突然发现SLB监听错误,怎么回事?配置的健康检查的域名为空,检查的路径是/index.html,目前查看服务器中只有站点c绑定了空主机头,且站点目录下有index.html,而此站点是停止状态,现已帮您启用,查看服务器的健康检查状态已经正常。3)我想使用slb搭建一个负载均衡,后端使用windows服务器,想咨询一下后端服务器是否需要进行什么特别配置呢?另外使用了slb后,后端还能否得到用户的真实IP地址呢,要不要进行什么特殊配置才可以得到后端用户的真实IP。后端服务器的操作系统和web环境最好保持一致,硬件配置上没有什么特别的,4层tcp是可以直接获得前端用户访问的真实地址的,7层http需要在后端web服务端设置一下,参考http://help.aliyun.com/view/13502961.html?spm=5176.7114037.1996646101.1.oRpnOM&pos=14)slb支持https吗?slb您可以通过TCP协议配置443端口的方式来实现,但是安全证书需要保存在您的后端ECS上。5)健康检查后续是否提供多个域名?健康检查只支持一个域名。6)我想关闭负载均衡的健康检查,请问如何配置?4层tcp是无法关闭健康检查的,7层http可以在控制台关闭。健康检查是不会消耗您服务器的资源的,因为slb都是通过内网ip来进行健康检查。7)如何在BLS上 限制单个IP 禁止访问 我的网站呢?SLB暂时不支持设置屏蔽用户端IP。 ------------------------- Re:Re负载均衡SLB常见咨询问题(持续连载) 引用第2楼517449116于2014-12-17 15:54发表的 Re负载均衡SLB常见咨询问题(持续连载) : 如果开启健康检查,健康检查异常的话,是不是就不会给这个异常的ECS分发? [url=http://bbs.aliyun.com/job.php?action=topost&tid=188736&pid=596806][/url] 异常的话不会在分发。 ------------------------- 2015年1月第1周1)有2台ECS起名叫A和B做SLB,A权重设的100 B权重设的0.请问.当A死机时,SLB是否会转到权重是0的B上?如果有一台设置为0,永远都不会有请求转发到此服务器上,即使权重100的宕机也不会转发到0权重的。2)会话保持的选择?开启会话保持功能后,SLB会把来自同一客户端的访问请求分发到同一台后端ECS上进行处理。针对7层(HTTP协议)服务,SLB系统是基于cookie的会话保持。针对4层(TCP协议)服务,SLB系统是基于IP地址的会话保持。3)用nagios或zabbix监控网络带宽,是否可以监控 slb的流量?nagios或zabbix,cacti是要要被监控端安装snmp或者相关agent ,slb不支持安装这些,所以无法通过这条监控软件进行监控。您可以在slb的控制台里面进行查看流量等相关信息。4)用了负载均衡后升级带宽,是不是只用在负载上面升级就可以了,ECS是不是不用在升级了?SLB与后端服务器是经过内网通信,所以如果业务量增加,您对SLB的带宽调整就行,不需要对服务器ECS进行带宽的升级。 ------------------------- 2015年1月第2周 1)SLB到期之后,会对SLB有关联的云主机怎么处理?云主机还没到期的前提下  我想把网站域名解析到SLB上 如果SLB到期了 会影响到我的网站服务么? 云服务器是不会有什么影响的,会自动又变成单独的云服务器可以供您使用的。但是如果您的域名是解析到SLB上,那么会影响到您的站点访问的。服务器上不会有其他的问题感谢您的支持。 2)当SLB 状态为停止的时候 还计算费用吗?停止后公网slb会收取实例费用。SLB价格总览参考:http://help.aliyun.com/view/11108234_13502923.html?spm=0.0.0.0.kBLsVA 3)做了SLB负载均衡,四层和7层负载均衡是否都走slb带宽? 都走slb带宽。 4)我想 移除 slb下的ecs(用作其他用途),请问在移除的时候是否会影响被负载到这台 ecs上的服务的使用 ,也是说slb这是是怎么处理的? 您可以将要移除的主机的权重更改为0 ,这样默认就不会在分发到权重为0的主机上,这个时候您可以移除该主机。但要确保您的另外一台服务器可以承受所有的访问。 5)SLB实例如何释放? 您需要登录管理控制台点击负载均衡。查询您之前创建的实例在哪个节点下,然后释放您的实例。 6)SLB按照小时的带宽计费, 是否需要每小时调整?比如我可否按照一个比较高的上限, 比如3G,然后每个小时按照该小时的峰值进行独立计费呢?   在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。http://help.aliyun.com/view/13502923.html?spm=5176.7114037.1996646101.3.67L5dm&pos=2;SLB目前最大带宽是1000Mbps 7)SLB可以限制每个ip的访问频率吗?(工单1F684MN)slb不支持这样配置的。 8)为什么我设置SLB健康检查间隔为5S,但却每秒都有很多请求?因为用于健康检查的服务ip不止一个,每秒中都会有不同的内网ip进行健康检查,健康检查是通过内网方式,不会消耗您后端服务器的资源,您可以将健康检查间隔阈值跳大些,这样监测频率会降低很多。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年1月第3周) 2015年1月第3周 1.发现很多100.97.0.0/16 的ip段扫描,给我服务器带来很大压力,怎么办? 100.97.0.0/16 是我们slb的健康检查服务ip段,如果给服务器带来较大压力,请调整健康检查的设置;健康检查的话 1)调低检查频率 2)设置检查静态文件,而不是默认首页或者动态文件 3)设置一个不记录日志的virtualhost,专门用于健康检查。 2)SLB里的带宽 和后面对应服务器的带宽有什么关联关系?比如SLB我设置了带宽为10M, 但是我后 面2台服务器购买的带宽都只有2M, 这种情况带宽以哪个为准? 如果您设置的是常规7层slb负载均衡,那么网站访问所使用的带宽,都将通过slb而不需要消耗云服 务器的带宽,但是云服务器本身的系统更新,以及您更新网站等等也是需要带宽的,因此您保留2M 即可。 3)采用流量计费方式的话带宽是否没有限制? SLB按流量计费最大的带宽是1G。 4)请问我如何获得一个外网SLB期所对应的内网IP呢?比如现在我有一个外网SLB下挂了一个ECS, 而ECS的iptables里我想做一些配置,针对来自于这个SLB的请求做一个判断,我需要知道这个外网 SLB的内网IP。 目前SLB与后端通过如下地址段进行交互: 10.158.0.0/16 10.159.0.0/16 100.97.0.0/16 您可以针对上述地址段做相关配置。 5)如何确保SLB后端的多台ECS之间的数据同步呢? 目前,有很多类似的工具可以实现服务器之间的数据同步,比如:rsync。具体使用及选择,还请通 过其他途径获得更多的介绍资料及指导信息。您也可以将您的ECS配置成无状态的应用服务器,而数 据和文件统一存放在RDS和OSS服务上。 ------------------------- 2015年1月第4周1.为什么我的SLB实例突然消失了?请检查您的SLB服务是否设置了自动释放时间导致。2.我想关掉负载均衡,怎么操作?您直接登录到阿里云管理控制台——slb负载均衡——实例中查询创建的slb服务,后方有“释放”的按钮,您直接释放即可。3. 我现在有两个阿里账号里面都有ECS,我能不能在一个slb里面配置不同阿里云账户下的ECS?目前只能将同一账户下的服务器添加到SLB中,无法跨账户添加。4.ECS做负载均衡需要用户做额外的配置吗?可以参考http://help.aliyun.com/knowledge_detail.htm?knowledgeId=5973987。5. 云服务器上做数据库负载均衡如何实现,需要购买什么产品 ?文件服务器能否做负载均衡,比如10台文件服务器,包括读写这种的  ?1)数据库集群,用slb理论上是可以做的,但是如果您需要集群级别的数据库,建议使用我们的RDS。2)文件服务器也可以负载均衡,使用slb在均衡,保持会话,但是有一个问题是后端文件同步的,需要您自行同步,如 rsync。6.看SLB的说明是支持ddos的防护的,请问下,SLB的防护的峰值是多少,超过峰值黑洞时间是多少?这个与slb所在地区有关,和ecs的防御阀值是一样的,黑洞时间也是2.5小时。7. slb第七层是基于haproxy还是nginx还是tengine实现的?使用tengine实现的。8.7层和4层 SLB的超时时间是多少?7层超时时间是60s,4层超时时间是900s。9.负载均衡健康检查请求数量太多,怎么回事?因为slb前端机器是一组机器,所以健康检查请求较多,请您不要担心,集群内的每台服务都会对您的健康按照您设定的频率去做健康检查:您可以按照上述方法去优化您的健康检查项,看似请求量很大,但是对您资源消耗很少的,有2个建议给您:1)扩大健康检查的频率2)将检查页面配置为静态页面。这样请求消耗的资源会节省。10. SLB配置中的最小连接数是基于什么样判断?SLB会自动判断 当前ECS 的established 来判断是否转发。 ------------------------- 2015年2月第1周1)我想了解下SLB按流量计费是不是每小时需要扣0.02元?按量付费,国内节点配置费用是按照0.02/小时。流量单独计费。按带宽计费:采取按小时计费,以日结算(运行未满一日,按照当日实际使用小时数*当日开通的最高带宽的天价格/24)。如果您使用SLB实例的时间不足一小时,按一小时收费。2)请问健康检查发的什么请求? head 还是 get?head请求。3)SLB最大连接数如何来设置?目前暂不支持设置最大连接数限制。4)SLB 后端有两个服务器HA1和HA2,为什么我将HA1的权重设置成0,SLB的健康检查就有告警呢?slb四层的话,只要权重设置为0,那么健康检查就是显示异常。 ------------------------- 2015年2月第3周1)负载均衡SLB的实例防攻击防御是多少?我们有云盾的防御黑洞策略,比如以杭州节点的slb,其最高防御的流量阈值为5G,当最大流量超过5G,您的slb vip则会被加入到黑洞中,触发黑洞会使ecs或者slb正常使用中断2.5小时,这个您可以通过云盾管理控制台查看到这个说明。2) 我其他机房的服务器能添加到你们的负载均衡SLB中吗?不可以的,slb使用的是内网和后端的ECS互联,无法直接添加非阿里云主机的服务器,且slb后端的ecs需要使用同一节点的主机。3)负载均衡服务支持的最大负载均衡实例数目多少?总体峰值可支持每秒新建链接数大约多少?SLB对于后端服务器的数目是没有限制的。对于总体峰值每秒新建连接数是没有限制的。但是因为SLB前端是云盾服务,所以最大值取决于云盾中您配置的请求数。您可以查看云盾看到具体的值。4)SLB按量计费为什么需要设置带宽峰值?如果不设置带宽峰值,遇到攻击等情况,可能流量打的非常高的,带宽流量峰值您可以在slb控制台设置。5)在SLB控制面板看到的流入流量,要比后端服务器的eth0的income流量小很多, 请问slb的流入流量是否应该等于后端服务器的内网网卡入流量吗?不等于的,后端的eth0包括了slb的流量,还有其他的流量,包括ecs直接的内网通信等。slb只做转发,不处理请求的,slb通过内网转发到ecs。6)SLB中的月账单 是指我们拥有所有的 SLB 实例的计费呢,还是单独的某个 SLB 的计费?月账单是指您不同类型产品,截止当前日期内月内消费计费额度的,是所有SLB产品的。您也可以通过账单明细进行查询具体信息的。 ------------------------- 2014年2月第4周1)10.159.63.55,这个内网ip,总是恶意访问我们网站?SLB系统除了会通过系统服务器的内网IP将来自外部的访问请求转到后端ECS上之外,还会对ECS进行健康检查(前提是您已经开启了这一功能)和对您的SLB服务进行可用性监控,这些访问的来源都是由SLB系统发起的,具体包含的IP地址段是:杭州、青岛、北京、深圳节点SLB系统IP地址段:10.159.0.0/16,10.158.0.0/16和100.97.0.0/16,为了确保您对外服务的可用性,请确保对上述地址的访问配置放行规则。2)slb计费方式变更需要多久,业务会受到影响么?变更计费方式与变更配置说明1、支持用户在按使用流量和按公网带宽2种计费方式间切换;2、支持按固定带宽方式计费的用户灵活变更带宽配置;3、在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效;比如:用户在今天5月5日的10:00提交了变更计费方式,那么该变配申请将在明天5月6日00:00后生效。4、按固定带宽方式计费变更带宽配置即时生效,带宽计费取自然日内用户开通的最高带宽。5、对客户业务不会造成影响;3)负载均衡能将我的外部非阿里云服务器和ECS服务器放到一块?目前负载均衡SLB仅支持阿里云ECS,无法支持外部非阿里云服务器。4)slb是否有连接数限制,需要大量终端一直与平台保持长连接,阿里云能提多少长连接?SLB没有并发连接数限制的,slb是转发请求不做处理,实际连接数还要跟您后端的处理能力有关。 ------------------------- 2015年3月第1周1)调整权重会对SLB已经有的正常连接有影响吗?目前调整权重会对调整权重的这台主机已有的连接产生影响,会有连接卡主,卡住时间由健康检查配置的时间决定。2)slb是否支持UDP协议?目前SLB暂不支持UDP协议。3)现在TCP四层负载均衡的出口带宽受ECS机器的出口带宽限制吗?slb和ECS之间走的是内网流量,带宽是不受限制的。4)如果没有外网ip, 是否可以用slb的4层转发 ?没有带宽4层SLB也是可以使用的。 ------------------------- Re:负载均衡SLB常见咨询问题(持续连载至2015年3月第1周) 2015年3月第2周 1)SLB变更计费方式并支付成功后无法添加配置? SLB在一个自然日内,限制用户变更计费方式的次数为1次,变更计费方式将在第二日零点后生效查看您今天变更过一 次计费方式,开始时间:2015-03-09 00:00:00。原按使用流量计费,在2015-03-09 00:00:00后变更为按固定带宽计 费,带宽峰值: 2Mbps。同时在您新的计费方式生效之前,您是无法对该SLB进行修改配置的。 2)我的账户怎么欠费¥7.88,这是怎么回事? 查看您有使用负载均衡slb业务,在slb产品的账单欠费,请您登陆用户中心-消费记录-账单明细中查看 记录。 3)如何屏蔽健康检查探测的日志记录? 关闭或者屏蔽对test.php访问日志的方式: 在站点配置文件中添加内容: location ~ /test.php { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 注: 1、对test.php的location必须要放置在对php|php5处理前,否则会因为先被进行全局匹配导致无法生效。 2、还可以用另一种方案实现: a、在后端服务器中单独为用于健康检查的页面建立一个站点; b、关闭这个站点的日志记录: location ~ .*\.(php|php5)?$ { access_log off; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; include fastcgi.conf; } 3、如果检查页面是其他格式,比如test.html,可以采用如下方式进行屏蔽: location ~ /test.html { access_log off; } 4.我想问下SLB的固定带宽,10M是不是上行和下行最大都能达到10M? 固定带宽指的是下行带宽最大达到10M,上行带宽没有限制。上行带宽指的是SLB的入流量(上行),就是进入SLB的 流量。带宽指的是SLB的出流量(下行),就是SLB对外发生给客户端的流量。 5.一般配置SLB的时候有个权重0到100,是如何选择数值的? 权重需要您根据后端机器的配置进行选择比如AB两台机器性能一致就分别设置50,这样请求就会在这两台机器上轮询 ,不同权重决定请求分发的分配。 ------------------------- 2015年3月第3周1)公网的SLB和ECS之间的流量是否收费?不收费。2) 想做SLB+两台ECS,附件OSS,程序Discuz。但是不知道如何实现?slb要求后端的两台ecs数据是一致的,为了保持数据的一致性,建议共享存数和数据,静态文件放置到oss里,数据库文件走自己搭建的主从或者,连接同一台rds。3)按流量计算是否需要设置峰值?按流量计费不需要设置峰值的。4)如何建一个子帐号来管理负载均衡SLB?子账户无法管理负载均衡服务。

qilu 2019-12-02 01:15:34 0 浏览量 回答数 0

回答

Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 上午笔误,应该是近一年来,只有今年2月、3月稳定一些,没有出现这种情况。其余时候,都有这种磁盘IO不稳定的情况。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 阿里云这台服务器,IP地址头是 42.121.19.*,期间还迁移过两次,都是因为磁盘IO问题进行的迁移,迁移后还是差不多。 去年迁移一次,今年4月20日又迁移一次。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 官方?官方在忙着做促销呢,人家“小云有约”,忙着与未来的客户约会呢。 老客户反正已经诳进来了,一时半会儿也跑不掉。 技术问题解决起来多麻烦,还是忙着收钱来得爽。 真是给阿里云这个磁盘IO不稳定的情况给气死了! ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 谢谢vpsmm的建议,如果实在不行,就换台云主机试试吧。折腾啊~~ ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 上面大家的分析都挺有道理的,希望阿里云官方正视这个问题,早日解决。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 情况肯定属实的,博客园(cnblogs)影响比较大吧,我看博客园官网也说遇到阿里云好几次这样的问题,还是没有解决。这个与阿里云底层架构、用户数量有关。 只要google一下“阿里云 磁盘IO”,自然可发现大量的这方面的反馈。 另外,能否推荐一款比较好用的Windows平台下的磁盘IO监测软件?我现在是自己做的程序,IO异常时就发短信。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 刚才10:03的时候又遇到一次20秒磁盘IO不能访问的情况,很郁闷~ ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 10:35:42,又遇到连续20秒,磁盘IO无法访问的情况。 ------------------------- 回18楼gdliwt的帖子 这个比喻不太恰当,客户使用阿里云的云主机,磁盘IO的稳定性是最基本的。我前面都说过了,你说磁盘IO速度慢,2MB/s的蜗牛速度我都能接受,这种彻底连续20秒无法访问,就太不应该了。这样不稳定,你让客户怎么用? ------------------------- 回21楼云迷的帖子 是的,就如同你所说,一般这种几十秒没有响应的情况,多数客户都是忍了。这个情况太普遍了,阿里云应该正视及解决。 我实在是忍无可忍才在这里发帖。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 11:03:45,又出现连续20秒无法访问磁盘的情况,这是今天出现的第四次了。 今天的简单汇总,5月8日,连续20秒无法访问磁盘的时间点(截止目前,出现4次): 09:25:38 10:30:50 10:35:42 11:03:45 ------------------------- ReRe阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 引用第25楼temp2012于2013-05-08 11:08发表的 Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 : 11:03:45,又出现连续20秒无法访问磁盘的情况,这是今天出现的第四次了。 今天的简单汇总,5月8日,连续20秒无法访问磁盘的时间点(截止目前,出现4次): 09:25:38 10:30:50 10:35:42 ....... 上面的10:30:50,应该是10:03:50 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 我这个是应用服务器,不是网站。整体磁盘读写低于1MB/s,网络带宽低于300KB/s 这个要求很低,但就这样,阿里云的磁盘IO如此不稳定,也达不到。 其实就如同上面 “云迷”的回复,网站一样存在这个问题,只不过一般网站主没有感觉到这种几十秒的“卡死”,但网站的最终客户其实会感觉网站不稳定,只不过一般会不反馈给网站主而已。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 没有使用数据库 ------------------------- 回30楼joycean.zhu的帖子 是的,以前出问题时,提交工单,但阿里云的技术支持根本就不承认有问题。因为提交工单时,没有出现“卡死”的现象(过一段时间偶尔又会出现)。 ------------------------- 回33楼gdliwt的帖子 已经迁移了两次了,没有用,迁移后还是有类似的问题。 这个需要阿里云从根本上来解决,如果迁移有效果,我也不再这里发帖了。 ------------------------- 回35楼水元素的帖子 没有什么特别的,程序正常跑着,偶尔就卡死了。 你可自己做个小程序监控磁盘IO,自然可发现这种现象,每天都要出现几次,很常见。只不过因为磁盘卡死时间一般在几十秒内(我是监控到20秒没有响应就报警),所以很多用户没有发现而已。 ------------------------- 回39楼gdliwt的帖子 这个是自己开发的,而且是专门针对我服务器中应用进行监控的。 ------------------------- 回39楼gdliwt的帖子 这个是针对自己的应用开发的。其实你可做个小程序,程序中设一个定时器,每秒向一个文件中写入例如1024字节(1KB),如果连续20秒都无法写入,则报警(例如发送邮件出去,或记录到内存,等IO正常时则可写入日志文件)。即可可发现阿里云磁盘卡死时,连续20秒都无法向一个文件写入哪怕是仅仅1KB的数据。 ------------------------- 回45楼放牛娃的帖子 谢谢你的建议,不过: 1、已经迁移过两次了,这种情况还是会出现,一样不稳定; 2、出现不稳定状况时,是彻底“卡死”,连续20秒内根本就无法读写磁盘,因此无论如何降低磁盘IO都无法解决。前面已说过,我都磁盘IO速度要求根本就不高,只是希望稳定。 3、这个服务器是应用服务器,涉及到的是直接的二进制文件读写,估计还不太适合采用RDS方式。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 今天又出现了两次,连续20秒磁盘无响应。 13:07:57一次; 14:54:13又出现一次。 ------------------------- 回49楼云迷的帖子 其实出现这种情况时,是整个硬盘IO短暂时间内(例如几秒,或20秒)根本无响应,所以特别让人恼火。 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 磁盘又卡住了!15:09:54秒! ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 下面大家来看看40个字节(仅仅能是40个字节)的写入速度吧: 下面的0毫秒是正常的,因为毕竟只有40字节。但磁盘IO出现问题时,40字节需要将近3秒才能写入完毕,你说说,这个怎么用?? 2013-5-20 15:11:05    上一次写入耗时:    0    毫秒 2013-5-20 15:11:06    上一次写入耗时:    0    毫秒 2013-5-20 15:11:07    上一次写入耗时:    0    毫秒 2013-5-20 15:11:08    上一次写入耗时:    0    毫秒 2013-5-20 15:11:09    上一次写入耗时:    0    毫秒 2013-5-20 15:11:10    上一次写入耗时:    0    毫秒 2013-5-20 15:11:14    上一次写入耗时:    2781    毫秒 2013-5-20 15:11:15    上一次写入耗时:    0    毫秒 2013-5-20 15:11:16    上一次写入耗时:    0    毫秒 2013-5-20 15:11:17    上一次写入耗时:    0    毫秒 2013-5-20 15:11:18    上一次写入耗时:    0    毫秒 2013-5-20 15:11:19    上一次写入耗时:    0    毫秒 2013-5-20 15:11:20    上一次写入耗时:    0    毫秒 2013-5-20 15:11:23    上一次写入耗时:    1563    毫秒 2013-5-20 15:11:24    上一次写入耗时:    0    毫秒 2013-5-20 15:11:25    上一次写入耗时:    0    毫秒 2013-5-20 15:11:26    上一次写入耗时:    0    毫秒 2013-5-20 15:11:27    上一次写入耗时:    610    毫秒 2013-5-20 15:11:28    上一次写入耗时:    0    毫秒 2013-5-20 15:11:29    上一次写入耗时:    0    毫秒 2013-5-20 15:11:30    上一次写入耗时:    0    毫秒 2013-5-20 15:11:31    上一次写入耗时:    0    毫秒 2013-5-20 15:11:32    上一次写入耗时:    0    毫秒 2013-5-20 15:11:33    上一次写入耗时:    0    毫秒 2013-5-20 15:11:34    上一次写入耗时:    0    毫秒 2013-5-20 15:11:35    上一次写入耗时:    0    毫秒 2013-5-20 15:11:36    上一次写入耗时:    0    毫秒 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 今天09:00,硬盘又卡住了。 40个字节,仅仅40个字节,写入速度慢到什么程度????40字节写入需要几秒钟,这个就是硬盘IO彻底卡住了,你说正常的程序哪怕只是需要写入1KB字节,那还不得几十秒,这几十秒就是彻底卡住了,根本无响应。 这个还怎么使用??? 2013-5-21 9:05:49    上一次写入耗时:    0    毫秒 2013-5-21 9:05:50    上一次写入耗时:    0    毫秒 2013-5-21 9:05:51    上一次写入耗时:    0    毫秒 2013-5-21 9:05:52    上一次写入耗时:    0    毫秒 2013-5-21 9:05:53    上一次写入耗时:    0    毫秒 2013-5-21 9:05:54    上一次写入耗时:    0    毫秒 2013-5-21 9:05:55    上一次写入耗时:    0    毫秒 2013-5-21 9:05:56    上一次写入耗时:    0    毫秒 2013-5-21 9:05:57    上一次写入耗时:    0    毫秒 2013-5-21 9:05:58    上一次写入耗时:    0    毫秒 2013-5-21 9:05:59    上一次写入耗时:    0    毫秒 2013-5-21 9:06:00    上一次写入耗时:    0    毫秒 2013-5-21 9:06:02    上一次写入耗时:    875    毫秒 2013-5-21 9:06:03    上一次写入耗时:    0    毫秒 2013-5-21 9:06:04    上一次写入耗时:    0    毫秒 2013-5-21 9:06:05    上一次写入耗时:    0    毫秒 2013-5-21 9:06:06    上一次写入耗时:    0    毫秒 2013-5-21 9:06:07    上一次写入耗时:    0    毫秒 2013-5-21 9:06:08    上一次写入耗时:    78    毫秒 2013-5-21 9:06:09    上一次写入耗时:    0    毫秒 2013-5-21 9:06:12    上一次写入耗时:    2109    毫秒 2013-5-21 9:06:13    上一次写入耗时:    0    毫秒 2013-5-21 9:06:19    上一次写入耗时:    4953    毫秒 2013-5-21 9:06:20    上一次写入耗时:    0    毫秒 2013-5-21 9:06:22    上一次写入耗时:    1125    毫秒 2013-5-21 9:06:24    上一次写入耗时:    219    毫秒 2013-5-21 9:06:25    上一次写入耗时:    234    毫秒 2013-5-21 9:06:26    上一次写入耗时:    0    毫秒 2013-5-21 9:06:29    上一次写入耗时:    1891    毫秒 2013-5-21 9:06:30    上一次写入耗时:    0    毫秒 2013-5-21 9:06:31    上一次写入耗时:    0    毫秒 2013-5-21 9:06:33    上一次写入耗时:    1141    毫秒 2013-5-21 9:06:34    上一次写入耗时:    0    毫秒 2013-5-21 9:06:35    上一次写入耗时:    0    毫秒 2013-5-21 9:06:36    上一次写入耗时:    0    毫秒 2013-5-21 9:06:37    上一次写入耗时:    0    毫秒 2013-5-21 9:06:39    上一次写入耗时:    937    毫秒 2013-5-21 9:06:41    上一次写入耗时:    1032    毫秒 2013-5-21 9:06:42    上一次写入耗时:    0    毫秒 2013-5-21 9:06:44    上一次写入耗时:    1422    毫秒 2013-5-21 9:06:45    上一次写入耗时:    0    毫秒 2013-5-21 9:06:46    上一次写入耗时:    0    毫秒 2013-5-21 9:06:47    上一次写入耗时:    0    毫秒 2013-5-21 9:06:48    上一次写入耗时:    0    毫秒 2013-5-21 9:06:49    上一次写入耗时:    0    毫秒 2013-5-21 9:06:50    上一次写入耗时:    0    毫秒 2013-5-21 9:06:51    上一次写入耗时:    0    毫秒 ------------------------- Re阿里云的磁盘IO不是慢,而是太不稳定了!实在无法忍受 看看截图,这就是阿里云的磁盘IO,不稳定的程度如此之严重。

temp2012 2019-12-02 01:11:59 0 浏览量 回答数 0

问题

【阿里云产品公测】简单日志服务SLS使用评测含教程

mr_wid 2019-12-01 21:08:11 36639 浏览量 回答数 20

回答

更换服务器~100个是单服务器最大的负荷了你用的是镶嵌式的,要选择服务器机组的那种~刀片式服务器~然后oracl数据库支持分开安装。同步处理~ 你肯定买的是架式服务器~######装ORACLE服务器是刀片式的,6核至强 24G的内存 应该不是服务器瓶颈######oracl装在独立的一台服务器上的话,只支持小形企业和地、市级企业运行 你说的情况,可以理解你的数据量非常庞大,,有可能是省、国家级的数据量了~~ 让你单位给你单独开个服务器房间,更换服务器机柜然后购买刀片式服务器做服务器阵列机组~######数据量倒不会太大,一天1G不到,问题是很多存储过程的逻辑很复杂,一条线程调用存储过程,要等待很久才会返回,直接导致工作线程速度很慢,数据进入速度太快,工作异常状态频繁出现。######必须要实时的存入数据库吗?不能先缓存到服务器,然后让服务器慢慢去处理吗?或者直接将数据记入日志,然后sqlload?######回复 @xinzaibing : 我想到一个蛋疼的方式:数据写文件,文件内容定期入库,程序定期读取数据库计算的结果缓存到内存中。不知道你具体需求,瞎琢磨一个。######回复 @asdfsx : 公司领导一致认为内存不可靠,断电、程序异常什么的...存在内存的数据就没了...真是蛋疼啊######回复 @xinzaibing : 如果数据量不大的话,还有一个方案就是都保存在内存里,然后定时把内存里的结果同步到数据库里。数据库的逻辑挪到程序里..........这个方案比较累啊。另外就是缓存可以加个优先级高低的判断。######目前要求是必须要实时入库,采取写日志文件的方法也可以。 这些数据有一个特点,在某一个时刻会有一个突然出现的峰值,然后又慢慢变少,但是这个时间是不固定的,由于只实用了一条双缓冲队列,所有需要紧急处理的数据和非紧急处理的数据都在队列里,而如果遇到非紧急数据,处理了很长的时间,就直接导致后面的紧急数据失效了...或者导致嵌入式程序判断服务端未收到数据,进而采取重发,导致一条队列里有非常多重复的数据。######我可能会使用数据写入日志文件,然后定时将日志入库的办法操作######大概意思可能是多线程对数据库表的操作导致数据表锁定,性能损失在内耗上了。。那数据表采用行级锁呢?(这样会增大系统开销)我是菜鸟,求教  ######回复 @xinzaibing : 这个应该是属于最初的设计问题,hohoho######回复 @asdfsx : 目前我也在往这方面考虑,如果数据分类处理。那就得大改结构了...唉######回复 @xinzaibing : 建议根据上传的不同数据进行不同的处理,不要一股脑的都放在缓存中,如果是心跳的话,应该立即响应,如果是要处理的数据的话,才需要进行缓存等待处理######ORACLE默认就是行级锁的应该.. 主要是数据的写入速度远远小于数据上传的速度,导致了缓存溢出,紧急数据不能得到及时处理,大量数据出现超时失效,无法对嵌入式的采集器程序作出及时的心跳相应和其他回复(因为都在队列中,无法处理,无心跳的话嵌入式采集器会误认为服务器断线)。最终导致单台服务器接入数据的嵌入式设备的数量太少,不满足需求。######去年刚毕业,由于公司小,一个人搞后台,压力太大啊...大家指指招呗~ @中山野鬼######今天到图书馆看了一本书《让Orcale跑的更快点》,上面说可以从如下几个方面优化: 数据库方面:建适当的索引,固定长度;查询条件比较尽量简化;不同的表放在不同的磁盘里…… 服务层:增大缓存,(有没有数据库连接池不知道你能用上不) 软件层:对Java使用PaperStatement 囫囵吞枣就记得这么多了。。。哭~~######非常感谢...我去看看这本书 :)######我不清楚你的数据采集的内容是什么。不过看的出,对实时性要求高。换我,基本上就一个思路。 1、做个前段服务器,什么事情都不干,只进行数据的压缩。然后所有数据库和计算操作,放到后端。 至于并发,你这种 1W=100台服务器的方式治标不治本。######@中山野鬼 是说对数据进行预处理,提取有效内容?还是就是zip?######回复 @asdfsx : 不一样的。而是数据压缩。采样数据中间,信息密度不会太大的。######老鬼的思路有点像我说的那个数据写日志文件,或者内存缓存定时入库...........都被否定了啊######@xinzaibing 还有一个建议,上传的数据加一个验证,如果上传的数据已经插入缓存,就不要再次插入了。无脑插入插到崩也不是什么好主意啊######回复 @asdfsx : 要回复的,要处理成功后才回复,存库失败或者某些异常导致服务端崩溃重启,就不进行回复,客户端会持续地进行重发,重发到一定次数后,存本地,等恢复正常后发送存本地的数据

kun坤 2020-06-09 11:56:38 0 浏览量 回答数 0

问题

【阿里云产品公测】以开发者角度看ACE服务『ACE应用构建指南』

mr_wid 2019-12-01 21:10:06 20092 浏览量 回答数 6

问题

【archsummit 回顾】阿里云章文嵩:构建大型云计算平台分布式技术的实践

云课堂 2019-12-01 21:03:36 14448 浏览量 回答数 9

回答

Rewin2003r2如何开放1433端口 如何打开1433端口 打开网络连接属性--高级--设置--例外--添加端口(输入端口号) windows203+sql   server   2000无法打开1433端口   1.如果你是win2003,那么一定要安装sql的补丁sp3a   检查你的SQL有没有打补丁,没有的话要打上补丁,检查的方法是在查询分析器中运行:   select   @@version   如果出来的版本号是8.00.760以下,则表明你未安装sp3的补丁,要装上.   SQL补丁下载:   全部补丁的位置   http://www.microsoft.com/downloads/details.aspx?displaylang=zh-cn&FamilyID=9032f608-160a-4537-a2b6-4cb265b80766   注意下载后,执行的时候是解压,要在解压后的目录中执行setup.bat才是真正的安装   2.SQL   Server连接中的四个最常见错误:   一. "SQL   Server   不存在或访问被拒绝 "   这个是最复杂的,错误发生的原因比较多,需要检查的方面也比较多.   一般说来,有以下几种可能性:   1,SQL   Server名称或IP地址拼写有误   2,服务器端网络配置有误   3,客户端网络配置有误   要解决这个问题,我们一般要遵循以下的步骤来一步步找出导致错误的原因.   =============   首先,检查网络物理连接   =============   ping   <服务器IP地址/服务器名称>   如果   ping   <服务器IP地址>   不成功,说明物理连接有问题,这时候要检查硬件设备,如网卡,HUB,路由器等.   还有一种可能是由于客户端和服务器之间安装有防火墙软件造成的,比如   ISA   Server.防火墙软件可能会屏蔽对   ping,telnet   等的响应   因此在检查连接问题的时候,我们要先把防火墙软件暂时关闭,或者打开所有被封闭的端口.   如果ping   <服务器IP地址>   成功而,ping   <服务器名称>   失败   则说明名字解析有问题,这时候要检查   DNS   服务是否正常.   有时候客户端和服务器不在同一个局域网里面,这时候很可能无法直接使用服务器名称来标识该服务器,这时候我们可以使用HOSTS文件来进行名字解析,   具体的方法是:   1.使用记事本打开HOSTS文件(一般情况下位于C:\WINNT\system32\drivers\etc).   添加一条IP地址与服务器名称的对应记录,如:   172.168.10.24   myserver   2.或在   SQL   Server   的客户端网络实用工具里面进行配置,后面会有详细说明.   =============   其次,使用   telnet   命令检查SQL   Server服务器工作状态   =============   telnet   <服务器IP地址>   1433   如果命令执行成功,可以看到屏幕一闪之后光标在左上角不停闪动,这说明   SQL   Server   服务器工作正常,并且正在监听1433端口的   TCP/IP   连接   如果命令返回 "无法打开连接 "的错误信息,则说明服务器端没有启动   SQL   Server   服务,   也可能服务器端没启用   TCP/IP   协议,或者服务器端没有在   SQL   Server   默认的端口1433上监听.   =============接着,我们要到服务器上检查服务器端的网络配置,检查是否启用了命名管道.是否启用了   TCP/IP   协议等等   =============   可以利用   SQL   Server   自带的服务器网络使用工具来进行检查.   点击:程序   --   Microsoft   SQL   Server   --   服务器网络使用工具   打开该工具后,在 "常规 "中可以看到服务器启用了哪些协议.   一般而言,我们启用命名管道以及   TCP/IP   协议.   点中   TCP/IP   协议,选择 "属性 ",我们可以来检查   SQK   Server   服务默认端口的设置   一般而言,我们使用   SQL   Server   默认的1433端口.如果选中 "隐藏服务器 ",则意味着客户端无法通过枚举服务器来看到这台服务器,起到了保护的作用,但不影响连接.   =============   接下来我们要到客户端检查客户端的网络配置   =============   我们同样可以利用   SQL   Server   自带的客户端网络使用工具来进行检查,   所不同的是这次是在客户端来运行这个工具.   点击:程序   --   Microsoft   SQL   Server   --   客户端网络使用工具   打开该工具后,在 "常规 "项中,可以看到客户端启用了哪些协议.   一般而言,我们同样需要启用命名管道以及   TCP/IP   协议.   点击   TCP/IP   协议,选择 "属性 ",可以检查客户端默认连接端口的设置,该端口必须与服务器一致.   单击 "别名 "选项卡,还可以为服务器配置别名.服务器的别名是用来连接的名称,   连接参数中的服务器是真正的服务器名称,两者可以相同或不同.别名的设置与使用HOSTS文件有相似之处.   通过以上几个方面的检查,基本上可以排除第一种错误.   -----------------------------------------------------------------------------   二. "无法连接到服务器,用户xxx登陆失败 "   该错误产生的原因是由于SQL   Server使用了 "仅   Windows "的身份验证方式,   因此用户无法使用SQL   Server的登录帐户(如   sa   )进行连接.解决方法如下所示:   1.在服务器端使用企业管理器,并且选择 "使用   Windows   身份验证 "连接上   SQL   Server   在企业管理器中   --右键你的服务器实例(就是那个有绿色图标的)   --编辑SQL   Server注册属性   --选择 "使用windows身份验证 "   2.展开 "SQL   Server组 ",鼠标右键点击SQL   Server服务器的名称,选择 "属性 ",再选择 "安全性 "选项卡   3.在 "身份验证 "下,选择 "SQL   Server和   Windows   ".   4.重新启动SQL   Server服务.   在以上解决方法中,如果在第   1   步中使用 "使用   Windows   身份验证 "连接   SQL   Server   失败,   那就通过修改注册表来解决此问题:   1.点击 "开始 "- "运行 ",输入regedit,回车进入注册表编辑器   2.依次展开注册表项,浏览到以下注册表键:   [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\MSSQLServer]   3.在屏幕右方找到名称 "LoginMode ",双击编辑双字节值   4.将原值从1改为2,点击 "确定 "   5.关闭注册表编辑器   6.重新启动SQL   Server服务.   此时,用户可以成功地使用sa在企业管理器中新建SQL   Server注册,   但是仍然无法使用Windows身份验证模式来连接SQL   Server.   这是因为在   SQL   Server   中有两个缺省的登录帐户:   BUILTIN\Administrators   <机器名> \Administrator   被删除.   要恢复这两个帐户,可以使用以下的方法:   1.打开企业管理器,展开服务器组,然后展开服务器   2.展开 "安全性 ",右击 "登录 ",然后单击 "新建登录 "   3.在 "名称 "框中,输入   BUILTIN\Administrators   4.在 "服务器角色 "选项卡中,选择 "System   Administrators "   5.点击 "确定 "退出   6.使用同样方法添加   <机器名> \Administrator   登录.   说明:   以下注册表键:   HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\MSSQLServer\LoginMode   的值决定了SQL   Server将采取何种身份验证模式.   1.表示使用 "Windows   身份验证 "模式   2.表示使用混合模式(Windows   身份验证和   SQL   Server   身份验证).   -----------------------------------------------------------------------------   三.提示连接超时   如果遇到第三个错误,一般而言表示客户端已经找到了这台服务器,并且可以进行连接,   不过是由于连接的时间大于允许的时间而导致出错.   这种情况一般会发生在当用户在Internet上运行企业管理器来注册另外一台同样在Internet上的服务器,   并且是慢速连接时,有可能会导致以上的超时错误.有些情况下,由于局域网的网络问题,也会导致这样的错误.   要解决这样的错误,可以修改客户端的连接超时设置.   默认情况下,通过企业管理器注册另外一台SQL   Server的超时设置是   4   秒,   而查询分析器是   15   秒(这也是为什么在企业管理器里发生错误的可能性比较大的原因).   具体步骤为:   企业管理器中的设置:   1.在企业管理器中,选择菜单上的 "工具 ",再选择 "选项 "   2.在弹出的 "SQL   Server企业管理器属性 "窗口中,点击 "高级 "选项卡   3.在 "连接设置 "下的 "登录超时(秒) "右边的框中输入一个比较大的数字,如   20.   查询分析器中的设置:   工具   --   选项   --   连接   --   将登录超时设置为一个较大的数字   ---------------------------------------------------------------------------------   四.大部分机都用Tcp/ip才能成功,有次我发现用Named   Pipes才可以?   回复人:   leimin(黄山光明顶)   这是因为在WINDOWS   2000以后的操作系统中,MS为解决SQL   SERVER的安全问题将TCP/IP配置   为SQLSERVER的默认连接协议,你可以在CLIENT   NETWORK   UTILITY中看到TCP/IP和NAME   PIPE   的顺序。   你也可以在:   [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SuperSocketNetLib]   "ProtocolOrder "=hex(7):74,00,63,00,70,00,00,00,00,00   看到默认的协议。   2.怎么在程序中更改Named   Pipes   ,   Tcp/ip   ,其sql语句怎么写?   你可以在上面提到的注册表的位置修改:   CLIENT端:   [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\SuperSocketNetLib]   "ProtocolOrder "=hex(7):74,00,63,00,70,00,00,00,00,00   SERVER端:   [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\MSSQLServer\SuperSocketNetLib]   "ProtocolOrder "=hex(7):74,00,63,00,70,00,00,00,00,00   SQL中,连接的配置就这两个方面   SQL   Server服务器--开始--程序--Microsoft   SQL   Server   --服务器网络实用工具   --启用   WinSock代理   --代理地址:(sqlserver服务器IP)   --代理端口--1433   ---确定   客户端   开始--程序--Microsoft   SQL   Server--客户端网络实用工具   --别名--添加   --网络库选择 "tcp/ip "--服务器别名输入SQL服务器名   --连接参数--服务器名称中输入SQL服务器ip地址   --如果你修改了SQL的端口,取消选择 "动态决定端口 ",并输入对应的端口号   也有人说:打SQL   的sp3补丁后就自动打开了

superwoman 2019-12-01 23:46:04 0 浏览量 回答数 0

回答

92题 一般来说,建立INDEX有以下益处:提高查询效率;建立唯一索引以保证数据的唯一性;设计INDEX避免排序。 缺点,INDEX的维护有以下开销:叶节点的‘分裂’消耗;INSERT、DELETE和UPDATE操作在INDEX上的维护开销;有存储要求;其他日常维护的消耗:对恢复的影响,重组的影响。 需要建立索引的情况:为了建立分区数据库的PATITION INDEX必须建立; 为了保证数据约束性需要而建立的INDEX必须建立; 为了提高查询效率,则考虑建立(是否建立要考虑相关性能及维护开销); 考虑在使用UNION,DISTINCT,GROUP BY,ORDER BY等字句的列上加索引。 91题 作用:加快查询速度。原则:(1) 如果某属性或属性组经常出现在查询条件中,考虑为该属性或属性组建立索引;(2) 如果某个属性常作为最大值和最小值等聚集函数的参数,考虑为该属性建立索引;(3) 如果某属性经常出现在连接操作的连接条件中,考虑为该属性或属性组建立索引。 90题 快照Snapshot是一个文件系统在特定时间里的镜像,对于在线实时数据备份非常有用。快照对于拥有不能停止的应用或具有常打开文件的文件系统的备份非常重要。对于只能提供一个非常短的备份时间而言,快照能保证系统的完整性。 89题 游标用于定位结果集的行,通过判断全局变量@@FETCH_STATUS可以判断是否到了最后,通常此变量不等于0表示出错或到了最后。 88题 事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。 87题 MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。具体原因为:MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。 86题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 85题 存储过程是一组Transact-SQL语句,在一次编译后可以执行多次。因为不必重新编译Transact-SQL语句,所以执行存储过程可以提高性能。触发器是一种特殊类型的存储过程,不由用户直接调用。创建触发器时会对其进行定义,以便在对特定表或列作特定类型的数据修改时执行。 84题 存储过程是用户定义的一系列SQL语句的集合,涉及特定表或其它对象的任务,用户可以调用存储过程,而函数通常是数据库已定义的方法,它接收参数并返回某种类型的值并且不涉及特定用户表。 83题 减少表连接,减少复杂 SQL,拆分成简单SQL。减少排序:非必要不排序,利用索引排序,减少参与排序的记录数。尽量避免 select *。尽量用 join 代替子查询。尽量少使用 or,使用 in 或者 union(union all) 代替。尽量用 union all 代替 union。尽量早的将无用数据过滤:选择更优的索引,先分页再Join…。避免类型转换:索引失效。优先优化高并发的 SQL,而不是执行频率低某些“大”SQL。从全局出发优化,而不是片面调整。尽可能对每一条SQL进行 explain。 82题 如果条件中有or,即使其中有条件带索引也不会使用(要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引)。对于多列索引,不是使用的第一部分,则不会使用索引。like查询是以%开头。如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引。如果mysql估计使用全表扫描要比使用索引快,则不使用索引。例如,使用<>、not in 、not exist,对于这三种情况大多数情况下认为结果集很大,MySQL就有可能不使用索引。 81题 主键不能重复,不能为空,唯一键不能重复,可以为空。建立主键的目的是让外键来引用。一个表最多只有一个主键,但可以有很多唯一键。 80题 空值('')是不占用空间的,判断空字符用=''或者<>''来进行处理。NULL值是未知的,且占用空间,不走索引;判断 NULL 用 IS NULL 或者 is not null ,SQL 语句函数中可以使用 ifnull ()函数来进行处理。无法比较 NULL 和 0;它们是不等价的。无法使用比较运算符来测试 NULL 值,比如 =, <, 或者 <>。NULL 值可以使用 <=> 符号进行比较,该符号与等号作用相似,但对NULL有意义。进行 count ()统计某列的记录数的时候,如果采用的 NULL 值,会被系统自动忽略掉,但是空值是统计到其中。 79题 HEAP表是访问数据速度最快的MySQL表,他使用保存在内存中的散列索引。一旦服务器重启,所有heap表数据丢失。BLOB或TEXT字段是不允许的。只能使用比较运算符=,<,>,=>,= <。HEAP表不支持AUTO_INCREMENT。索引不可为NULL。 78题 如果想输入字符为十六进制数字,可以输入带有单引号的十六进制数字和前缀(X),或者只用(Ox)前缀输入十六进制数字。如果表达式上下文是字符串,则十六进制数字串将自动转换为字符串。 77题 Mysql服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。 76题 在缺省模式下,MYSQL是autocommit模式的,所有的数据库更新操作都会即时提交,所以在缺省情况下,mysql是不支持事务的。但是如果你的MYSQL表类型是使用InnoDB Tables 或 BDB tables的话,你的MYSQL就可以使用事务处理,使用SET AUTOCOMMIT=0就可以使MYSQL允许在非autocommit模式,在非autocommit模式下,你必须使用COMMIT来提交你的更改,或者用ROLLBACK来回滚你的更改。 75题 它会停止递增,任何进一步的插入都将产生错误,因为密钥已被使用。 74题 创建索引的时候尽量使用唯一性大的列来创建索引,由于使用b+tree做为索引,以innodb为例,一个树节点的大小由“innodb_page_size”,为了减少树的高度,同时让一个节点能存放更多的值,索引列尽量在整数类型上创建,如果必须使用字符类型,也应该使用长度较少的字符类型。 73题 当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下: 限定数据的范围: 务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内。读/写分离: 经典的数据库拆分方案,主库负责写,从库负责读。垂直分区: 根据数据库里面数据表的相关性进行拆分。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。水平分区: 保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。水平拆分可以支撑非常大的数据量。 72题 乐观锁失败后会抛出ObjectOptimisticLockingFailureException,那么我们就针对这块考虑一下重试,自定义一个注解,用于做切面。针对注解进行切面,设置最大重试次数n,然后超过n次后就不再重试。 71题 一致性非锁定读讲的是一条记录被加了X锁其他事务仍然可以读而不被阻塞,是通过innodb的行多版本实现的,行多版本并不是实际存储多个版本记录而是通过undo实现(undo日志用来记录数据修改前的版本,回滚时会用到,用来保证事务的原子性)。一致性锁定读讲的是我可以通过SELECT语句显式地给一条记录加X锁从而保证特定应用场景下的数据一致性。 70题 数据库引擎:尤其是mysql数据库只有是InnoDB引擎的时候事物才能生效。 show engines 查看数据库默认引擎;SHOW TABLE STATUS from 数据库名字 where Name='表名' 如下;SHOW TABLE STATUS from rrz where Name='rrz_cust';修改表的引擎alter table table_name engine=innodb。 69题 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);哈希索引也不支持多列联合索引的最左匹配规则;B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 68题 decimal精度比float高,数据处理比float简单,一般优先考虑,但float存储的数据范围大,所以范围大的数据就只能用它了,但要注意一些处理细节,因为不精确可能会与自己想的不一致,也常有关于float 出错的问题。 67题 datetime、timestamp精确度都是秒,datetime与时区无关,存储的范围广(1001-9999),timestamp与时区有关,存储的范围小(1970-2038)。 66题 Char使用固定长度的空间进行存储,char(4)存储4个字符,根据编码方式的不同占用不同的字节,gbk编码方式,不论是中文还是英文,每个字符占用2个字节的空间,utf8编码方式,每个字符占用3个字节的空间。Varchar保存可变长度的字符串,使用额外的一个或两个字节存储字符串长度,varchar(10),除了需要存储10个字符,还需要1个字节存储长度信息(10),超过255的长度需要2个字节来存储。char和varchar后面如果有空格,char会自动去掉空格后存储,varchar虽然不会去掉空格,但在进行字符串比较时,会去掉空格进行比较。Varbinary保存变长的字符串,后面不会补\0。 65题 首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。 64题 建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合。如果需要建立联合索引的话,还需要考虑联合索引中的顺序。此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力。这些都和实际的表结构以及查询方式有关。 63题 存储过程是一些预编译的SQL语句。1、更加直白的理解:存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能(对单表或多表的增删改查),然后再给这个代码块取一个名字,在用到这个功能的时候调用他就行了。2、存储过程是一个预编译的代码块,执行效率比较高,一个存储过程替代大量T_SQL语句 ,可以降低网络通信量,提高通信速率,可以一定程度上确保数据安全。 62题 密码散列、盐、用户身份证号等固定长度的字符串应该使用char而不是varchar来存储,这样可以节省空间且提高检索效率。 61题 推荐使用自增ID,不要使用UUID。因为在InnoDB存储引擎中,主键索引是作为聚簇索引存在的,也就是说,主键索引的B+树叶子节点上存储了主键索引以及全部的数据(按照顺序),如果主键索引是自增ID,那么只需要不断向后排列即可,如果是UUID,由于到来的ID与原来的大小不确定,会造成非常多的数据插入,数据移动,然后导致产生很多的内存碎片,进而造成插入性能的下降。总之,在数据量大一些的情况下,用自增主键性能会好一些。 60题 char是一个定长字段,假如申请了char(10)的空间,那么无论实际存储多少内容。该字段都占用10个字符,而varchar是变长的,也就是说申请的只是最大长度,占用的空间为实际字符长度+1,最后一个字符存储使用了多长的空间。在检索效率上来讲,char > varchar,因此在使用中,如果确定某个字段的值的长度,可以使用char,否则应该尽量使用varchar。例如存储用户MD5加密后的密码,则应该使用char。 59题 一. read uncommitted(读取未提交数据) 即便是事务没有commit,但是我们仍然能读到未提交的数据,这是所有隔离级别中最低的一种。 二. read committed(可以读取其他事务提交的数据)---大多数数据库默认的隔离级别 当前会话只能读取到其他事务提交的数据,未提交的数据读不到。 三. repeatable read(可重读)---MySQL默认的隔离级别 当前会话可以重复读,就是每次读取的结果集都相同,而不管其他事务有没有提交。 四. serializable(串行化) 其他会话对该表的写操作将被挂起。可以看到,这是隔离级别中最严格的,但是这样做势必对性能造成影响。所以在实际的选用上,我们要根据当前具体的情况选用合适的。 58题 B+树的高度一般为2-4层,所以查找记录时最多只需要2-4次IO,相对二叉平衡树已经大大降低了。范围查找时,能通过叶子节点的指针获取数据。例如查找大于等于3的数据,当在叶子节点中查到3时,通过3的尾指针便能获取所有数据,而不需要再像二叉树一样再获取到3的父节点。 57题 因为事务在修改页时,要先记 undo,在记 undo 之前要记 undo 的 redo, 然后修改数据页,再记数据页修改的 redo。 Redo(里面包括 undo 的修改) 一定要比数据页先持久化到磁盘。 当事务需要回滚时,因为有 undo,可以把数据页回滚到前镜像的状态,崩溃恢复时,如果 redo log 中事务没有对应的 commit 记录,那么需要用 undo把该事务的修改回滚到事务开始之前。 如果有 commit 记录,就用 redo 前滚到该事务完成时并提交掉。 56题 redo log是物理日志,记录的是"在某个数据页上做了什么修改"。 binlog是逻辑日志,记录的是这个语句的原始逻辑,比如"给ID=2这一行的c字段加1"。 redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。 redo log是循环写的,空间固定会用完:binlog 是可以追加写入的。"追加写"是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。 最开始 MySQL 里并没有 InnoDB 引擎,MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog日志只能用于归档。而InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统,也就是 redo log 来实现 crash-safe 能力。 55题 重做日志(redo log)      作用:确保事务的持久性,防止在发生故障,脏页未写入磁盘。重启数据库会进行redo log执行重做,达到事务一致性。 回滚日志(undo log)  作用:保证数据的原子性,保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读。 二进 制日志(binlog)    作用:用于主从复制,实现主从同步;用于数据库的基于时间点的还原。 错误日志(errorlog) 作用:Mysql本身启动,停止,运行期间发生的错误信息。 慢查询日志(slow query log)  作用:记录执行时间过长的sql,时间阈值可以配置,只记录执行成功。 一般查询日志(general log)    作用:记录数据库的操作明细,默认关闭,开启后会降低数据库性能 。 中继日志(relay log) 作用:用于数据库主从同步,将主库发来的bin log保存在本地,然后从库进行回放。 54题 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 死锁: 是指两个或两个以上的进程在执行过程中。因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。 死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。 那么对应的解决死锁问题的关键就是:让不同的session加锁有次序。死锁的解决办法:1.查出的线程杀死。2.设置锁的超时时间。3.指定获取锁的顺序。 53题 当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性(脏读,不可重复读,幻读等),可能产生死锁。 乐观锁:乐观锁不是数据库自带的,需要我们自己去实现。 悲观锁:在进行每次操作时都要通过获取锁才能进行对相同数据的操作。 共享锁:加了共享锁的数据对象可以被其他事务读取,但不能修改。 排他锁:当数据对象被加上排它锁时,一个事务必须得到锁才能对该数据对象进行访问,一直到事务结束锁才被释放。 行锁:就是给某一条记录加上锁。 52题 Mysql是关系型数据库,MongoDB是非关系型数据库,数据存储结构的不同。 51题 关系型数据库优点:1.保持数据的一致性(事务处理)。 2.由于以标准化为前提,数据更新的开销很小。 3. 可以进行Join等复杂查询。 缺点:1、为了维护一致性所付出的巨大代价就是其读写性能比较差。 2、固定的表结构。 3、高并发读写需求。 4、海量数据的高效率读写。 非关系型数据库优点:1、无需经过sql层的解析,读写性能很高。 2、基于键值对,数据没有耦合性,容易扩展。 3、存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,而关系型数据库则只支持基础类型。 缺点:1、不提供sql支持,学习和使用成本较高。 2、无事务处理,附加功能bi和报表等支持也不好。 redis与mongoDB的区别: 性能:TPS方面redis要大于mongodb。 可操作性:mongodb支持丰富的数据表达,索引,redis较少的网络IO次数。 可用性:MongoDB优于Redis。 一致性:redis事务支持比较弱,mongoDB不支持事务。 数据分析:mongoDB内置了数据分析的功能(mapreduce)。 应用场景:redis数据量较小的更性能操作和运算上,MongoDB主要解决海量数据的访问效率问题。 50题 如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。 49题 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。 48题 除了缓存服务器自带的缓存失效策略之外(Redis默认的有6种策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种: 1.定时去清理过期的缓存; 2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,可以根据应用场景来权衡。 47题 Redis提供了两种方式来作消息队列: 一个是使用生产者消费模式模式:会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听 。另一个就是发布订阅者模式:也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。 46题 Redis的数据结构列表(list)可以实现延时队列,可以通过队列和栈来实现。blpop/brpop来替换lpop/rpop,blpop/brpop阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。Redis的有序集合(zset)可以用于实现延时队列,消息作为value,时间作为score。Zrem 命令用于移除有序集中的一个或多个成员,不存在的成员将被忽略。当 key 存在但不是有序集类型时,返回一个错误。 45题 1.热点数据缓存:因为Redis 访问速度块、支持的数据类型比较丰富。 2.限时业务:expire 命令设置 key 的生存时间,到时间后自动删除 key。 3.计数器:incrby 命令可以实现原子性的递增。 4.排行榜:借助 SortedSet 进行热点数据的排序。 5.分布式锁:利用 Redis 的 setnx 命令进行。 6.队列机制:有 list push 和 list pop 这样的命令。 44题 一致哈希 是一种特殊的哈希算法。在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量。然而在传统的哈希表中,添加或删除一个槽位的几乎需要对所有关键字进行重新映射。 43题 RDB的优点:适合做冷备份;读写服务影响小,reids可以保持高性能;重启和恢复redis进程,更加快速。RDB的缺点:宕机会丢失最近5分钟的数据;文件特别大时可能会暂停数毫秒,或者甚至数秒。 AOF的优点:每个一秒执行fsync操作,最多丢失1秒钟的数据;以append-only模式写入,没有任何磁盘寻址的开销;文件过大时,不会影响客户端读写;适合做灾难性的误删除的紧急恢复。AOF的缺点:AOF日志文件比RDB数据快照文件更大,支持写QPS比RDB支持的写QPS低;比RDB脆弱,容易有bug。 42题 对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。Redis的操作之所以是原子性的,是因为Redis是单线程的。而在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的,可以用incr或者使用Redis的事务,或者使用Redis+Lua的方式实现。对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 41题 (1)twemproxy,使用方式简单(相对redis只需修改连接端口),对旧项目扩展的首选。(2)codis,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在节点数改变情况下,旧节点数据可恢复到新hash节点。(3)redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。(4)在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key进行hash计算,然后去对应的redis实例操作数据。这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的代替算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。 40题 (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 39题 比如订单管理,热数据:3个月内的订单数据,查询实时性较高;温数据:3个月 ~ 12个月前的订单数据,查询频率不高;冷数据:1年前的订单数据,几乎不会查询,只有偶尔的查询需求。热数据使用mysql进行存储,需要分库分表;温数据可以存储在ES中,利用搜索引擎的特性基本上也可以做到比较快的查询;冷数据可以存放到Hive中。从存储形式来说,一般情况冷数据存储在磁带、光盘,热数据一般存放在SSD中,存取速度快,而温数据可以存放在7200转的硬盘。 38题 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 37题 分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。显然进程内缓存违背了这一原则。 36题 更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个 jvm 内部队列中。一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。 35题 redis分布式锁加锁过程:通过setnx向特定的key写入一个随机值,并同时设置失效时间,写值成功既加锁成功;redis分布式锁解锁过程:匹配随机值,删除redis上的特点key数据,要保证获取数据、判断一致以及删除数据三个操作是原子的,为保证原子性一般使用lua脚本实现;在此基础上进一步优化的话,考虑使用心跳检测对锁的有效期进行续期,同时基于redis的发布订阅优雅的实现阻塞式加锁。 34题 volatile-lru:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。 volatile-ttl:当内存不足以容纳写入数据时,从已设置过期时间的数据集中挑选将要过期的数据淘汰。 volatile-random:当内存不足以容纳写入数据时,从已设置过期时间的数据集中任意选择数据淘汰。 allkeys-lru:当内存不足以容纳写入数据时,从数据集中挑选最近最少使用的数据淘汰。 allkeys-random:当内存不足以容纳写入数据时,从数据集中任意选择数据淘汰。 noeviction:禁止驱逐数据,当内存使用达到阈值的时候,所有引起申请内存的命令会报错。 33题 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 32题 缓存击穿,一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。如何避免:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。 31题 缓存雪崩,是指在某一个时间段,缓存集中过期失效。大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。而缓存服务器某个节点宕机或断网,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。如何避免:1.redis高可用,搭建redis集群。2.限流降级,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。3.数据预热,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间。 30题 缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。一些恶意的请求会故意查询不存在的 key,请求量很大,对数据库造成压力,甚至压垮数据库。 如何避免:1:对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该 key 对应的数据 insert 了之后清理缓存。2:对一定不存在的 key 进行过滤。可以把所有的可能存在的 key 放到一个大的 Bitmap 中,查询时通过该 bitmap 过滤。 29题 1.memcached 所有的值均是简单的字符串,redis 作为其替代者,支持更为丰富的数据类型。 2.redis 的速度比 memcached 快很多。 3.redis 可以持久化其数据。 4.Redis支持数据的备份,即master-slave模式的数据备份。 5.Redis采用VM机制。 6.value大小:redis最大可以达到1GB,而memcache只有1MB。 28题 Spring Boot 推荐使用 Java 配置而非 XML 配置,但是 Spring Boot 中也可以使用 XML 配置,通过spring提供的@ImportResource来加载xml配置。例如:@ImportResource({"classpath:some-context.xml","classpath:another-context.xml"}) 27题 Spring像一个大家族,有众多衍生产品例如Spring Boot,Spring Security等等,但他们的基础都是Spring的IOC和AOP,IOC提供了依赖注入的容器,而AOP解决了面向切面的编程,然后在此两者的基础上实现了其他衍生产品的高级功能。Spring MVC是基于Servlet的一个MVC框架,主要解决WEB开发的问题,因为 Spring的配置非常复杂,各种xml,properties处理起来比较繁琐。Spring Boot遵循约定优于配置,极大降低了Spring使用门槛,又有着Spring原本灵活强大的功能。总结:Spring MVC和Spring Boot都属于Spring,Spring MVC是基于Spring的一个MVC框架,而Spring Boot是基于Spring的一套快速开发整合包。 26题 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言)的递归缩写。YAML 的配置文件后缀为 .yml,是一种人类可读的数据序列化语言,可以简单表达清单、散列表,标量等数据形态。它通常用于配置文件,与属性文件相比,YAML文件就更加结构化,而且更少混淆。可以看出YAML具有分层配置数据。 25题 Spring Boot有3种热部署方式: 1.使用springloaded配置pom.xml文件,使用mvn spring-boot:run启动。 2.使用springloaded本地加载启动,配置jvm参数-javaagent:<jar包地址> -noverify。 3.使用devtools工具包,操作简单,但是每次需要重新部署。 用

游客ih62co2qqq5ww 2020-03-27 23:56:48 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站