• 关于

    远程批处理可以做什么

    的搜索结果

问题

SSH 无法远程登录问题的处理思路是什么

boxti 2019-12-01 22:00:30 1833 浏览量 回答数 0

问题

2亿人在用的钉钉在家办公指南

珍宝珠 2020-02-10 10:20:44 326 浏览量 回答数 0

回答

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。   大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。   在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。   大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。   在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。   大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。   导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。   大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。   统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。   大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。   整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。   大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。   当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。   目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。   在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。   在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。   在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。   在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。   在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。 答案来源于网络

养狐狸的猫 2019-12-02 02:15:59 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

说明: 1、测试版本无需登录,运行后直接进入主界面,但是首次运行会提示用户配置参数; 2、根据提示,点击左上角菜单“设置——系统设置”,按照界面要求,逐项完成本地监测路径的设置,远程OSS节点选择、AccessKey设置,获取对应的Bucket列表,设置路径(此处路径可以为空)等,完成本地文件夹和远程OSS的绑定; 3、根据提示,点击左上角菜单“设置——加载配置”,以使刚做的配置生效; 4、然后点击菜单下面的toolBar(不好意思,这里未做图片,大家先凑合用吧),第一个按钮是启动文件监测,第二个按钮是暂停文件监测; ——到这里,你就可以实现本地文件夹到远程OSS的文件同步了; 其它的功能,比如同步策略、设置线程数、同步成功后是否删除本地等等,同时Sync4oss附带了几个方便用户在服务器端做批量操作的小功能,比如“批量上传本地文件夹”、“批量修改HTTP头参数”、“批量复制或移动Object”等,请您体验也帮测试; ------------------------- 回 4楼(eblis) 的帖子 你好,FTP云工具经大量用户测试挺稳定的,日均上传数万都没问题的; 您遇到的问题能否联系我们详细描述?帮您解决问题! http://www.ftp4oss.com/ 首页右下角有联系方式; 或者您提供您的联系方式,我们会安排人员协助你排查问题的。 ------------------------- 回 5楼(eblis) 的帖子 你好,获取Bucket列表的时候失败,请查一下是否被360拦截了?? 360对各种软件连接OSS的连接基本都会拦截,需要你设置为白名单即可; ------------------------- 回 8楼(荆楚小霸王) 的帖子 你好,请问您这里的异常是指什么呢?能否联系我们详细描述一下,我们会努力解决的! Sync4oss灵活性比较高,相关说明近期会编制出来,供大家参考! ------------------------- 回 10楼(荆楚小霸王) 的帖子 您好,您提到的主界面的正常运行是需要您先完成系统配置,具体的就是完成本地目录和远端OSS的绑定,之后才能正常工作的; 另外,您提到的上传10G的图片是没有问题的,和你的服务器带宽关系不是很大,因为除了公网上传外,您还可以设置为内网上传,10G图片小菜一碟! ------------------------- 这个得顶上去~~~ ------------------------- 回 15楼(冲你的风) 的帖子 你好,该问题已经解决,请你重新下载程序测试,有问题联系我们客服继续反馈。 ------------------------- 回 16楼(sheyingtg) 的帖子 该问题需要你正确输入OSS的AccessKey的ID和Secret,以获取Bucket列表~~~ 使用上有问题的,请多测试几次或者联系我们的技术客服,谢谢支持! ------------------------- 回 17楼(ijijni) 的帖子 理论上,Sync4oss这个同步或镜像工具是可以满足你的要求; 但是,还需要根据你的实际情况分析; 同步你的网站到OSS这个没问题; 而你的网站直接从OSS读取相关文件,只要你的网站支持即可~~~ ------------------------- 回 18楼(sheyingtg) 的帖子 用户您好,我们的技术客服反馈过来,和您配合查找过问题,你每次批量上传图片,我们的Sync4oss同步工具都能准确的监测到,并且也确实实时同步工作了,但是您的网站编辑器每次总会占用若干图片,导致我们程序读取失败; 本次我们改进这块的逻辑,您再试试能否解决你的这个问题,你可以随时和我们客服保持联系~~~  多谢支持! ------------------------- 回 23楼(有事请留言) 的帖子 嗯嗯,我们抓紧进度,感谢支持! ------------------------- 目前正在小范围进行核心同步功能的内测,内测结束后将尽快发布正式版本,敬请期待,谢谢大家支持! ------------------------- 11月29日,Linux版本的Sync4oss程序内测版本发布(标准C的程序,理论上兼容所有的Linux操作系统);Linux系统需要安装Curl; ------------------------- 回 28楼(碧血微剑) 的帖子 目前是测试版,我们会在过期之前,提前发布正式版本,我们还会维持很长一段时间免费的;即使以后可能收费的话也都是几十块钱的价位; ------------------------- 回 29楼(脑门王) 的帖子 文件过滤的功能在当前测试版未实现,计划在正式版本里面会提供,敬请期待; ------------------------- 回 33楼(兜里有糖哦) 的帖子 关闭putty之类的远程控制软件的时候,发现Sync4oss工具就停止了    这个时候,您需要把当前运行的Sync4oss工具的程序挂起,并转为后台运行即可;    方法一、简要方法挂起程序转后台运行: 通过以下4个步骤 1、ctrl+z    //挂起当前任务 2、jobs -l    //查看当前任务的编号 3、bg  %n   //将编号为n的任务转后台运行 4、disown -h %1   这样就可以后台运行,可以关闭putty工具了 方法二、利用功能强大的Linux远程工具Screen的虚拟终端(可以支持后台运行,还可以再次调用查看程序运行情况): 方法三、Linux系统的远程桌面; ------------------------- 回 35楼(兜里有糖哦) 的帖子 Windows和Linux两类操作系统都能支持~~~ ------------------------- 回 38楼(遨游美食) 的帖子 你好,可以联系我们的技术客服详细了解一下你的问题,看看是哪里出现了不兼容,以便解决; 目前对于Linux和Windows两个版本的软件,都在若干个正式运行的网站中运行,稳定性没问题; ------------------------- 回 39楼(碧血微剑) 的帖子 sync4oss 的程序正常,请你检查一下是不是论坛帖子的最新版本 也可以联系我们的技术客服配合你检查一下问题所在,以便解决; ------------------------- 回 42楼(秦皇) 的帖子 你好,请确认你的配置是否正确,查看的OSS路径是否正确; 如果还有问题,请联系我们的技术客服协助你配置; 多谢支持! ------------------------- 回 43楼(abua) 的帖子 你好,是误报不是病毒,只要是从我们发布在阿里云的帖子下载或者由我们工作人员发送的软件,即请放心使用! 对于我们现已发布的几款Windows平台下的软件,目前采用的保护手段就是用“Sixxpack24”做了加壳处理(因为C#的程序不加壳的话太容易被反编译了),我们在2014年1月份登陆云市场的时候也已经对杀毒软件误报的事做了论坛发帖说明、在软件包里面也有杀软误报说明,希望广大用户的理解,当然随着我们经验的积累,我们也正计划采用其它方法来取代备受诟病的“ Sixxpack24 ”加壳。 这个是2014年1月4日发布在阿里云论坛的一个安全提示说明: http://bbs.aliyun.com/read/150244.html 这个是2014年1月6日发布在阿里云论坛的一个安全处理说明: http://bbs.aliyun.com/read/150306.html Sixxpack的说明:百度或Google搜索Sixxpack可以看到该软件是一种加壳保护程序,而非病毒;由于加壳后部分杀毒软件无法脱壳而直接把采用类似加壳技术的软件全部判断为潜在威胁并拦截; 感谢理解与支持! ------------------------- 回 48楼(秦皇) 的帖子 你好,该版本已过试用期了,请你用最新版本的可执行程序覆盖即可(配置文件不覆盖,免去重新配置); 相关解决方案在用户内测群里都提供了~~ 多谢支持!

ftp4oss 2019-12-02 00:18:20 0 浏览量 回答数 0

回答

原版英文链接:点击这里 作者 | Md Kamaruzzaman 译者 | 无明 策划 | 小智 基础设施:条条道路通云端 对于云厂商来说,2019 年是硕果累累的一年。不仅初创公司在使用云计算,那些很注重安全的“保守派”公司(如政府机构、医疗保健机构、银行、保险公司,甚至是美国五角大楼)也在迁移到云端。这种趋势在 2020 年将会继续,大大小小的公司都将(或者至少有计划)迁移到云端。Gartner 公司最近发布了一个数字: 如果你是一个还在考虑要不要迁移到云端的决策者,不妨重新审视一下你的策略。如果你是一个独立开发者,并且还没使用过云基础设施,那么完全可以在 2020 年尝试一下。很多大型的云厂商(如亚马逊、微软、谷歌)都提供了免费的体验机会。谷歌在这方面做得特别大方,它提供了价值 300 美元的一年免费服务。 策划注:阿里、腾讯、华为等国内云厂商同样有免费云服务试用产品。 云平台:亚马逊领头,其他跟上 作为第一大云厂商,亚马逊在 2019 年可谓风生水起。凭借其丰富的产品组合,亚马逊将把它的优势延续到 2020 年。Canalys 发布的 2019 年第三季度报告指出,大型云厂商(AWS、Azure、GCP)占据 56% 的市场份额,其中 AWS 独享 32.6%。 其他云厂商也在努力缩短与 AWS 之间的差距。微软把主要目标转向了大型企业。最近,微软打败了亚马逊,从美国五角大楼拿到了一个 100 亿美元的大单子。这个单子将提升 Azure 的声誉,同时削弱 AWS 的士气。 谷歌一直在推动 CNCF,实现云计算运维的标准化。谷歌的长期目标是让云迁移变得更容易,方便企业从 AWS 迁移到 GCP。IBM 之前斥资 360 亿美元收购了 RedHat,也想要在云计算市场占有一席之地。 在亚太地区,阿里云市场规模超过了 AWS、Azure 的总和,全球排名第三。中国国内腾讯云等企业的增长势头也十分迅猛。 2020 年将出现更多的并购。当然,很多初创公司将会带来新的想法和创新,例如多云服务。因为竞争激烈,这些公司只能从降价和推出更多的创新产品来获取利润。 容器化:Kubernetes 将会更酷 在容器编排领域,虽然一度出现了“三足鼎立”(Kubernetes、Docker Swarm 和 Mesos),但 Kubernetes 最终脱颖而出,成为绝对的赢家。云是一个分布式系统,而 Kubernetes 是它的 OS(分布式的 Linux)。2019 年北美 KubeCon+CloudNativeCon 大会的参会者达到了 12000 名,比 2018 年增长了 50%。以下是过去 4 年参会人数的增长情况。 在 2020 年,Kubernetes 不仅不会后退,只会变得越来越强,你完全可以把赌注压在 Kubernetes 身上。另外值得一提的是,Migrantis 最近收购了 Docker Enterprise,不过收购数额不详。 几年前,人们张口闭口说的都是 Docker,而现在换成了 Kubernetes。Docker 在它的全盛时期未能盈利,反而在优势渐退几年之后才尝试变现。这再次说明,在现代技术世界,时机就是一切。 软件架构:微服务将成为主流 谷歌趋势表明,微服务架构范式在 2019 年持续增长了一整年。 随着软件行业整体逐步迁移到云端,微服务也将成为占主导地位的架构范式。微服务架构崛起的一个主要原因是它与云原生完美契合,可以实现快速的软件开发。我在之前的一篇博文中解释了微服务架构的基本原则及其优势和劣势。 https://towardsdatascience.com/microservice-architecture-a-brief-overview-and-why-you-should-use-it-in-your-next-project-a17b6e19adfd 我假设现在也存在一种回归到单体架构的趋势,因为在很多情况下,微服务架构有点过头了,而且做好微服务架构设计其实很难。微服务架构有哪些好的实践?在之前的另一篇博文中,我也给出了一些大概,希望对读者有用。 https://towardsdatascience.com/effective-microservices-10-best-practices-c6e4ba0c6ee2 编程语言(整体):Python 将吞噬世界 机器学习、数据分析、数据处理、Web 开发、企业软件开发,甚至是拼接黑洞照片,Python 的影子无处不在。 在著名的编程语言排行榜网站 TIOBE 上,Python 位居最流行编程语言第三位,仅次于 Java 和 C 语言。 更有意思的是,在 2019 年,Python 的流行度翻了一番(从 5% 到 10%)。 Python 的崛起将在 2020 年延续,并缩短与 Java 和 C 语言之间的差距。另一门无所不在的编程语言 JavaScript 正面临下行的风险。为什么 Python 的势头会如此强劲?因为它的入手门槛低,有一个优秀的社区在支持,并受到数据科学家和新生代开发者的喜爱。 编程语言(企业方面):Java 将占主导 之前的 TIOBE 网站截图显示,Java 仍然是一门占主导地位的编程语言,并将在 2020 年继续保持这种地位。JVM 是 Java 的基石,其他编程语言(如 Kotlin、Scala、Clojure、Groovy)也将 JVM 作为运行时。最近,Oracle 修改了 JVM 的许可协议。 新的许可协议意味着使用 Java、Kotlin、Scala 或其他 JVM 编程语言的公司需要向 Oracle 支付大额费用。所幸的是,OpenJDK 让 JVM 继续免费。另外,还有其他一些公司为 JVM 提供企业支持。 因为体积和速度方面的问题,基于 JVM 的编程语言并不适合用在今天的无服务器环境中。Oracle 正在推动 GraalVM 计划,旨在让 Java 变得更加敏捷和快速,让它更适合用在无服务器环境中。因为除了 Java,没有其他编程语言可以提供企业级的稳定性和可靠性,所以 Java 将在 2020 年继续占主导地位。 企业版 Java:Spring 继续发力 曾几何时,在企业开发领域,Spring 和 JavaEE 之间存在着白热化的竞争。但因为 Oracle 在 JavaEE 方面没有作为,在竞争中惨败,这导致了“MicroProfile”计划的形成,并最终促成了 JakartaEE。 虽然所有的政策和活动都是围绕 JavaEE 展开,但 Spring 事实上已经赢得了这场企业 JVM 之争。2020 年,Spring 将成为 JVM 生态系统的头牌。 有两个正在进展中的项目,它们旨在减小 Java 的体积,让它更适合用在无服务器环境中。 其中一个是 Micronaut(https://micronaut.io/)。 另一个是 Quarkus(https://quarkus.io/)。 这两个项目都使用了 GraalVM,它们在 2020 年将会得到 Java 社区更多的关注。 编程语言:后起之秀的突破 2000 年代,编程语言的发展出现了停滞。大多数人认为没有必要再去开发新的编程语言,Java、C 语言、C++、JavaScript 和 Python 已经可以满足所有的需求。但是,谷歌的 Go 语言为新编程语言大门打开了一扇大门。在过去十年出现了很多有趣的编程语言,比如 Rust、Swift、Kotlin、TypeScript。导致这种情况的一个主要原因是已有的编程语言无法充分利用硬件优势(例如多核、更快的网络、云)。另一个原因是现代编程语言更加关注开发者经济,即实现更快速更容易的开发。在 Stackoverflow 提供的一份开发者报告中,排名靠前的现代编程语言如下所示(Rust 连续 4 年名列第一)。 在之前的一篇博文中,我深入探讨了现代编程语言,对比 Rust 和 Go 语言,并说明了为什么现在是采用这些语言的好时机。 https://towardsdatascience.com/back-to-the-metal-top-3-programming-language-to-develop-big-data-frameworks-in-2019-69a44a36a842 最近,微软宣布他们在探索使用 Rust 来开发更安全的软件。 亚马逊最近也宣布要赞助 Rust。 谷歌宣布将 Kotlin 作为 Android 官方开发语言,所以,在 JVM 领域,Kotlin 成了 Java 的主要竞争对手。 Angular 使用 TypeScript 代替 JavaScript,将其作为主要的编程语言,其他 JavaScript 框架(如 React 和 Vue)也开始为 TypeScript 提供更多的支持。 这种趋势将在 2020 年延续下去,很多巨头公司将会深入了解新一代编程语言(如 Rust、Swift、TypeScript、Kotlin),它们会站出来公开表示支持。 Web:JavaScript 继续占主导地位 曾几何时,JavaScript 并不被认为是一门强大的编程语言。在当时,前端内容主要通过后端框架在服务器端进行渲染。2014 年,AngularJS 的出现改变了这种局面。从那个时候开始,更多的 JavaScript 框架开始涌现(Angular 2+、React、Vue、Meteor),JavaScript 已然成为主流的 Web 开发语言。随着 JavaScript 框架不断创新以及微服务架构的崛起,JavaScript 框架在 2020 年将继续主导前端开发。 JavaScript 框架:React 闪耀 虽然 React 是在 AngularJS 之后出现的,但在过去十年对 Web 开发产生了巨大的影响,这也让 Facebook 在与 Google+ 的竞争中打了一场胜战。React 为前端开发带来了一些新的想法,比如事件溯源、虚拟 DOM、单向数据绑定、基于组件的开发,等等。它对开发者社区产生了重大影响,以至于谷歌放弃了 AngularJS,并借鉴 React 的想法推出了彻底重写的 Angular 2+。React 是目前为止最为流行的 JavaScript 框架,下图显示了相关的 NPM 下载统计信息。 为了获得更好的并发和用户体验,Facebook 宣布完全重写 React 的核心算法,推出了 React-Fiber 项目。 2020 年,React 仍然是你开发新项目的首选 Web 框架。其他框架(如 Angular/Angular 2+ 或 Vue)呢?Angular 仍然是一个不错的 Web 开发框架,特别适合企业开发。我敢肯定谷歌在未来几年会在 Angular 上加大投入。Vue 是另一个非常流行的 Web 框架,由中国的巨头公司阿里巴巴提供支持。如果你已经在使用 Angular 或 Vue,就没必要再迁移到 React 了。 App 开发:原生应用 在移动 App 开发方面,有关混合应用开发的炒作有所消停。混合开发提供了更快的开发速度,因为只需要一个开发团队,而不是多个。但原生应用提供了更好的用户体验和性能。另外,混合应用需要经过调整才能使用一些高级特性。对于企业来说,原生应用仍然是首选的解决方案,这种趋势将在 2020 年延续。Airbnb 在一篇博文中非常详细地说明了为什么他们要放弃混合应用开发平台 React Native。 https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a 尽管 Facebook 尝试改进 React Native,谷歌也非常努力地推动混合 App 开发平台 Flutter,但它们仍然只适合用于原型、POC、MVP 或轻量级应用的开发。所以,原生应用在 2020 年仍将继续占主导地位。 在原生应用开发方面,谷歌和苹果分别将 Kotlin 和 Swift 作为各自平台主要的编程语言。谷歌最近再次重申了对 Kotlin 的支持,这对于 Kotlin 用户来说无疑是个好消息。 混合应用开发:React Native 在很多情况下,混合应用是个不错的选择。在这方面也有很多选择:Xamarin、Inoic、React Native 和 Flutter。Facebook 基于成熟的 React 框架推出了 React Native。就像 React 在 Web 框架领域占据主导地位一样,React Native 在混合应用领域也占据着主导地位,如下图所示。 React Native 和 React 有共同的基因,都提供了高度的代码重用性以及“一次开发,到处运行”的能力。React Native 的另一个优势是 Facebook 本身也用它来开发移动应用。谷歌在这个领域起步较晚,但在去年,谷歌的混合应用开发框架 Flutter 获得了不少关注。Flutter 提供了更好的性能,但需要使用另一门不是那么流行的编程语言 Dart。React Native 在 2020 年将继续占主导地位。 API:REST 将占主导地位 REST 是 API 领域事实上的标准,被广泛用在基于 API 的服务间通信上。当然,除了 REST,我们还有其他选择,比如来自谷歌的 gRPC 和来自 Facebook 的 GraphQL。 它们提供了不同的能力。谷歌开发的 gRPC 作为远程过程调用(如 SOAP)的化身,使用 Protobuf 代替 JSON 作为消息格式。Facebook 开发的 GraphQL 作为一个集成层,避免频繁的 REST 调用。gRPC 和 GraphQL 都在各自的领域取得了成功。2020 年,REST 仍然是占主导地位的 API 技术,而 GraphQL 和 gRPC 将作为补充技术。 人工智能:Tensorflow 2.0 将占主导地位 谷歌和 Facebook 也是深度学习 / 神经网络领域的主要玩家。谷歌基于深度学习框架 Theano 推出了 TensorFlow,它很快就成为深度学习 / 神经网络的主要开发库。谷歌还推出了特别设计的 GPU(TPU)来加速 TensorFlow 的计算。 Facebook 在深度学习领域也不甘落后,他们拥有世界上最大的图像和视频数据集合。Facebook 基于另一个深度学习库 Torch 推出了深度学习库 PyTorch。TensorFlow 和 PyTorch 之间有一些区别,前者使用的是静态图进行计算,而 PyTorch 使用的是动态图。使用动态图的好处是可以在运行时纠正自己。另外,PyTorch 对 Python 支持更好,而 Python 是数据科学领域的一门主要编程语言。 随着 PyTorch 变得越来越流行,谷歌也赶紧在 2019 年 10 月推出了 TensorFlow 2.0,也使用了动态图,对 Python 的支持也更好。 2020 年,TensorFlow 2.0 和 PyTorch 将齐头并进。考虑到 TensorFlow 拥有更大的社区,我估计 TensorFlow 2.0 将成为占主导地位的深度学习库。 数据库:SQL是王者,分布式SQL是王后 在炒作 NoSQL 的日子里,人们嘲笑 SQL,还指出了 SQL 的种种不足。有很多文章说 NoSQL 有多么的好,并将要取代 SQL。但等到炒作的潮水褪去,人们很快就意识到,我们的世界不能没有 SQL。以下是最流行的数据库的排名。 可以看到,SQL 数据库占据了前四名。SQL 之所以占主导地位,是因为它提供了 ACID 事务保证,而 ACID 是业务系统最潜在的需求。NoSQL 数据库提供了横向伸缩能力,但代价是不提供 ACID 保证。 互联网公司一直在寻找“大师级数据库”,也就是既能提供 ACID 保证又能像 NoSQL 那样可横向伸缩的数据库。目前有两个解决方案可以部分满足对“大师级数据库”的要求,一个是亚马逊的 Aurora,一个是谷歌的 Spanner。Aurora 提供了几乎所有的 SQL 功能,但不支持横向写伸缩,而 Spanner 提供了横向写伸缩能力,但对 SQL 支持得不好。 2020 年,但愿这两个数据库能够越走越近,或者有人会带来一个“分布式 SQL”数据库。如果真有人做到了,那一定要给他颁发图灵奖。 数据湖:MinIO 将要崛起 现代数据平台非常的复杂。企业一般都会有支持 ACID 事务的 OLTP 数据库(SQL),也会有用于数据分析的 OLAP 数据库(NoSQL)。除此之外,它们还有其他各种数据存储系统,比如用于搜索的 Solr、ElasticSearch,用于计算的 Spark。企业基于数据库构建自己的数据平台,将 OLTP 数据库的数据拷贝到数据湖中。各种类型的数据应用程序(比如 OLAP、搜索)将数据湖作为它们的事实来源。 HDFS 原本是事实上的数据湖,直到亚马逊推出了对象存储 S3。S3 可伸缩,价格便宜,很快就成为很多公司事实上的数据湖。使用 S3 唯一的问题是数据平台被紧紧地绑定在亚马逊的 AWS 云平台上。虽然微软 Azure 推出了 Blob Storage,谷歌也有类似的对象存储,但都不是 S3 的对手。 对于很多公司来说,MinIO 或许是它们的救星。MinIO 是一个开源的对象存储,与 S3 兼容,提供了企业级的支持,并专门为云原生环境而构建,提供了与云无关的数据湖。 微软在 Azure Marketplace 是这么描述 MinIO 的:“为 Azure Blog Storage 服务提供与亚马逊 S3 API 兼容的数据访问”。如果谷歌 GCP 和其他云厂商也提供 MinIO,那么我们将会向多云迈出一大步。 大数据批处理:Spark 将继续闪耀 现如今,企业通常需要基于大规模数据执行计算,所以需要分布式的批处理作业。Hadoop 的 Map-Reduce 是第一个分布式批处理平台,后来 Spark 取代了 Hadoop 的地位,成为真正的批处理之王。Spark 是怎样提供了比 Hadoop 更好的性能的?我之前写了另一篇文章,对现代数据平台进行了深入分析。 https://towardsdatascience.com/programming-language-that-rules-the-data-intensive-big-data-fast-data-frameworks-6cd7d5f754b0 Spark 解决了 Hadoop Map-Reduce 的痛点,它将所有东西放在内存中,而不是在完成每一个昂贵的操作之后把数据保存在存储系统中。尽管 Spark 重度使用 CPU 和 JVM 来执行批处理作业,但这并不妨碍它成为 2020 年批处理框架之王。我希望有人能够使用 Rust 开发出一个更加高效的批处理框架,取代 Spark,并为企业省下大量的云资源费用。 大数据流式处理:Flink 是未来 几年前,实现实时的流式处理几乎是不可能的事情。一些微批次处理框架(比如 Spark Streaming)可以提供“几近”实时的流式处理能力。不过,Flink 改变了这一状况,它提供了实时的流式处理能力。 2019 年之前,Flink 未能得到足够的关注,因为它无法撼动 Spark。直到 2019 年 1 月份,中国巨头公司阿里巴巴收购了 Data Artisan(Flink 背后的公司)。 在 2020 年,企业如果想要进行实时流式处理,Flink 应该是不二之选。不过,跟 Spark 一样,Flink 同样重度依赖 CPU 和 JVM,并且需要使用大量的云资源。 字节码:WebAssembly将被广泛采用 我从 JavaScript 作者 Brandon Eich 的一次访谈中知道了 WebAssembly 这个东西。现代 JavaScript(ES5 之后的版本)是一门优秀的编程语言,但与其他编程语言一样,都有自己的局限性。最大的局限性是 JavaScript 引擎在执行 JavaScript 时需要读取、解析和处理“抽象语法树”。另一个问题是 JavaScript 的单线程模型无法充分利用现代硬件(如多核 CPU 或 GPU)。正因为这些原因,很多计算密集型的应用程序(如游戏、3D 图像)无法运行在浏览器中。 一些公司(由 Mozilla 带领)开发了 WebAssembly,一种底层字节码格式,让任何一门编程语言都可以在浏览器中运行。目前发布的 WebAssembly 版本可以支持 C++、Rust 等。 WebAssembly 让计算密集型应用程序(比如游戏和 AutoCAD)可以在浏览器中运行。不过,WebAssembly 的目标不仅限于此,它还要让应用程序可以在浏览器之外运行。WebAssembly 可以被用在以下这些“浏览器外”的场景中。 移动设备上的混合原生应用。没有冷启动问题的无服务器计算。在服务器端执行不受信任的代码。 我预测,2020 年将是 WebAssembly 取得突破的一年,很多巨头公司(包括云厂商)和社区将会拥抱 WebAssembly。 代码:低代码 / 无代码将更进一步 快速的数字化和工业 4.0 革命意味着软件开发者的供需缺口巨大。由于缺乏开发人员,很多企业无法实现它们的想法。为了降低进入软件开发的门槛,可以尝试无代码(No Code)或低代码(Low Code)软件开发,也就是所谓的 LCNC(Low-Code No-Code)。它已经在 2019 年取得了一些成功。 LCNC 的目标是让没有编程经验的人也能开发软件,只要他们想要实现自己的想法。 虽然我对在正式环境中使用 LCNC 框架仍然心存疑虑,但它为其他公司奠定了良好的基础,像亚马逊和谷歌这样的公司可以基于这个基础构建出有用的产品,就像 AWS Lambda 的蓬勃发展是以谷歌 App Engine 为基础。 2020 年,LCNC 将会获得更多关注。

茶什i 2019-12-26 11:57:03 0 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

ECS磁盘 我想在ECS 跨服务器进行数据拷贝,有没有知道实现方法的? Linux系统服务器重启或初始化系统之后,再登录服务器执行df -h查看磁盘挂载,发现数据不见了。这是为什么?能不能找回来? 重启服务器后发现/alidata目录所有数据丢失。怎么才能找回来呢? ECS Linux扩容格式化磁盘提示magic number in super-block while trying to open /dev/xvdb1 ? Linux 实例初始化系统盘后,怎样才能重新挂载数据盘? 如何在ECS 利用快照创建磁盘实现无损扩容数据盘? ECS云服务器磁盘FAQ云服务器磁盘I/O速度是多少? Linux 购买了数据盘,但是系统中看不到怎么办? ECS系统盘和数据盘二次分区FAQ,系统盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,数据盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,划分了多个分区的磁盘,做快照时是针对该分区的,还是针对磁盘的? ECS系统盘和数据盘二次分区FAQ,磁盘二次分区有哪些注意事项? ECS系统盘和数据盘二次分区FAQ,数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区? 什么是可用区? 怎么根据服务器应用需求选择可用区? 按量付费云盘和云盘有什么区别? 按量付费云盘和普通云盘的性能和数据安全性一样吗,磁盘性能会有提升吗? 可以使用用户快照创建按量付费云盘吗? 什么是挂载点? 一块按量付费云盘可以挂载到多个 ECS 实例上吗? 一台 ECS 实例能同时挂载多少块按量付费云盘吗? 按量付费云盘能够挂载到包年包月和按量付费 ECS 实例上吗? 为什么挂载按量付费云盘时找不到我想挂载的 ECS 实例? 购买按量付费云盘后,挂载到目标 ECS 实例的挂载点是否还需要执行磁盘挂载操作? 我已经操作过续费变配,在续费变配期内是否还能将普通云盘转为按量付费云盘? ECS快照 为什么我的按量付费云盘没有自动快照了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 卸载按量付费云盘时,我的磁盘会丢数据吗? 我能够卸载系统盘吗? 什么是独立云磁盘? 什么是可用区? 独立云磁盘跟现在的磁盘有什么区别? 服务器应用与可用区选择的选择关系是怎么样的? 独立云磁盘怎么收费? 独立云磁盘能够挂载到包年包月实例上吗? 独立云磁盘和普通云磁盘的磁盘性能和数据安全性一样吗,磁盘性能会有提升吗? 我的包年包月实例上不需要的磁盘能不能卸载? 为什么我的独立云磁盘和我的实例一起释放了? 为什么独立云磁盘挂载时找不到我想挂载的实例? 为什么我在本实例列表中选择独立云磁盘挂载时找不到我想要挂载的磁盘? 我删除磁盘的时候,快照会被保留吗? 为什么我的独立云磁盘没有自动快照了? 为什么我不能购买独立云磁盘? 一台实例能挂载多少块独立云磁盘? 卸载独立云磁盘时,我的磁盘会丢数据吗? 我的系统盘能够卸载吗? 什么是设备名? 为什么我在控制台上找不到重置磁盘,更换操作系统,回滚快照的操作了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 为什么我的数据盘不能选择临时磁盘 独立云磁盘服务器的应用场景有哪些? 可以使用用户快照创建独立云磁盘吗? 独立云磁盘购买后挂载到目标实例的挂载点后,是否还需要执行磁盘挂载操作? 本地SSD盘“本地”是指? 本地SSD盘适合的用户场景有哪些? SSD盘相对之前的普通云盘性能提升多少,是否可以提供具体参数? 本地SSD盘是否支持在原ECS上进行添加或者将原云磁盘更换成本地SSD盘? 本地SSD盘购买后是否支持升级? SSD 云盘具备怎样的 I/O 性能? SSD云盘的数据可靠性是怎样的? SSD 云盘适合的应用场景有哪些? SSD 云盘相对普通云盘性能提升多少?是否可以提供具体参数? I/O 优化是什么概念?能将存量的 ECS 实例升级为 I/O 优化的实例吗? 是否支持将原普通云盘更换成 SSD 云盘? 如何购买 SSD 云盘,I/O 优化的实例及 SSD 云盘的价格是多少? 为什么 I/O 优化的实例有时启动比较耗时? 有些自定义镜像不支持创建 I/O 优化的实例,我该如何操作? 购买SSD云盘后是否支持升级? 使用了 I/O 优化实例和 SSD 云盘之后,Linux 系统在分区挂载的时候报错。 为什么我用 fio 测试性能时,会导致实例宕机? 云盘参数和性能测试工具及方法有推荐的吗? 我想扩容系统盘,求详细步骤! 所有块存储都支持系统盘扩容吗?有地域限制吗? 包年包月和按量付费的ECS实例都支持系统盘扩容吗? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费?系统盘扩容是否需要停机操作? 系统盘扩容上线后,系统盘的容量范围多少? 哪些镜像支持系统盘扩容? 云服务器续费变配后,不支持更换系统盘时指定系统盘容量? 系统盘扩容之后是否支持再缩容? 扩容系统盘应注意的问题? 回滚磁盘报错,进行快照回滚的时候,出现如下错误提示: 执行回滚磁盘需要停止实例,并确保当前磁盘没有创建中的快照和没有更换过操作系统。 这是什么原因? 普通云盘和SSD云盘添加挂载信息时有哪些要注意的事项? 申请公测资格 什么是共享块存储? 共享块存储适用于哪些行业和业务场景? 为什么需要共享块存储? 如何正确使用共享块存储? 我能跨地域挂载共享块存储吗? 共享块存储产品规格有哪些? 我想知道阿里云产品的售卖模式和公测范围! 公测购买入口是哪,求链接! 有没有谁分享下共享块存储性能测试命令? 数据盘挂载问题导致数据无法访问,我要怎么排查问题? 我要怎样才能在Linux和Windows主机之间挂载ntfs格式云盘? 为什么ECS实例里文件系统和快照空间大小不一致?在ECS实例内删除文件后再打快照,发现快照容量并没有变小。 ECS实例如何优化快照使用成本? 在ECS实例里什么是快照商业化? 在ECS实例里,快照商业化后过渡优惠期是什么时候? 在ECS实例里,快照商业化的用户范围包括有哪些? 在ECS实例里,如果我已经开通了 OSS,快照会自动存到我的 OSS Bucket 吗?是否需要重新再创建一个 Bucket 来存储快照? 已经购买了 OSS 预付费存储包,同时在使用快照和 OSS 服务,那么存储包会优先抵扣哪个产品? 快照商业化之后,我希望继续使用,需要购买哪个产品,云盘还是对象存储OSS资源包? 快照商业化的收费模式是怎样的? 快照费用的计算方法是怎样的? 快照收费后,不停止自动快照是否就开始收取费用? 快照要收费了,之前的快照要被删除吗? 如果不想付费,之前的快照能继续使用吗? 快照收费后,之前创建的手动快照和自动快照都会收费吗? 快照收费前停止快照策略,需手动删除历史快照吗?正式收费后会直接删除我的历史快照吗? 快照收费以后,账户欠费对快照有什么影响? 如果账号欠费,有关联关系(创建过磁盘或者镜像)的快照,在欠费15天之后是否会被删除? 快照服务和块存储服务的关系,在收费方面的关系是什么? 快照容量是如何计算的,是等于磁盘大小吗? ECS实例内删除文件会减少空间占用吗? 为什么快照容量大于文件系统内看到的数据量? 参考快照增量说明,如中间快照被删除,后面的快照能否使用? 如何开通快照服务? 快照和镜像的关系? 如何在保留关联实例和磁盘的情况下,删除快照跟镜像,快照、实例、镜像之间的关系? 快照和块存储、OSS对象存储是什么关系? 一块云盘能否设置多个快照策略? 快照 2.0 服务包括哪些内容? 快照有什么用途? 快照 2.0 服务支持的云盘类型? 快照数量有什么限制? 快照保留时长怎样? 打快照对块存储 I/O 性能有多少影响? 快照怎么收费? 老的自动快照策略什么时候不可用? 老的快照策略产生的快照什么时候删除? 自动快照功能细节有哪些? 用户的自定义快照和自动快照有冲突吗? 我能保留其中想要的自动快照而让系统不删除吗? 如果一个自动快照被引用(用户创建自定义镜像或者磁盘),会导致自动快照策略执行失败吗? 我如果什么都没有设置,自动快照会启动吗? 自动快照能够删除吗? 自动快照具体在什么时间创建能看到吗? 我如何区分哪些快照是自动快照和用户快照? 更换系统盘、云服务器 ECS 到期后或手动释放磁盘时,自动快照会不会释放? 未随磁盘释放和更换系统盘释放的自动快照会一直保留吗? 云服务器 ECS 到期后或手动释放磁盘时,手工快照会不会释放? 我能单独制定某几块磁盘执行或取消自动快照吗? 云服务器 ECS 有没有自动备份? 磁盘无快照是否能够回滚或数据恢复? 快照回滚能否单独回滚某个分区或部分数据? 系统盘快照回滚是否会影响数据盘? 更换系统后,快照能否回滚? 在回滚快照前,有哪些注意事项? 怎样使ECS回滚快照后同步数据? 如何通过API配置定时自定义快照? 超出预付费存储包的流量,会怎么收费? ECS镜像 Aliyun Linux 17.01 特性有哪些,有说明文档吗? 云市场镜像有哪些功能? 镜像能带来哪些便利? 目前镜像支持哪些服务器环境和应用场景? 镜像是否安全? 选择了镜像后能更换吗? 镜像安装使用过程中出问题了怎么办? Docker私有镜像库是什么? 自定义镜像如何查看数据盘? 自定义镜像,如何卸载和删除 disk table 里的数据? 如何确认已经卸载数据盘,并可以新建自定义镜像? ECS 实例释放后,自定义镜像是否还存在? ECS 实例释放后,快照是否还存在? 用于创建自定义镜像的云服务器 ECS 实例到期或释放数据后,创建的自定义镜像是否受影响?使用自定义镜像开通的云服务器 ECS 实例是否受影响? 使用自定义镜像创建的 ECS 实例是否可以更换操作系统?更换系统后原来的自定义镜像是否还可以使用? 更换系统盘时另选操作系统,是否可以使用自定义镜像? 已创建的自定义镜像,是否可以用于更换另一台云服务器 ECS 的系统盘数据? 是否可以升级自定义镜像开通的云服务器 ECS 的 CPU、内存、带宽、硬盘等? 是否可以跨地域使用自定义镜像? 包年包月云服务器 ECS 的自定义镜像,是否可以用于开通按量付费的云服务器 ECS? ECS Windows企业版和标准版区别 什么情况下需要复制镜像? 可以复制哪些镜像? 当前有哪些支持镜像复制功能的地域? 复制一个镜像大概需要多久? 复制镜像怎么收费的? 在复制镜像过程中,源镜像和目标镜像有什么限制? 怎么复制我的云账号的镜像资源到其他云账号的其他地域? 复制镜像有镜像容量限制吗? 如何购买镜像市场镜像? 按次购买的镜像的使用期限是多久? 镜像市场的镜像支持退款吗? 镜像市场商业化后,还有免费的镜像市场镜像吗? 在杭州买了一个镜像市场的镜像,能否在北京创建ECS实例或者更换系统盘? ECS实例使用镜像市场的镜像,升级和续费ECS实例,需要为镜像继续付费吗? ECS实例使用镜像市场的镜像,实例释放后,继续购买ECS实例还可以免费使用该镜像吗? 使用镜像市场镜像创建ECS实例,该实例创建一个自定义镜像,使用该自定义镜像创建ECS实例需要为该镜像付费吗? 来源于镜像市场的镜像复制到其他地域创建ECS实例,是否需要为该镜像付费? 如果把来源于镜像市场的自定义镜像共享给其他账号(B)创建ECS实例,账号B是否需要为该镜像付费? 如果使用镜像市场的镜像或者来源于镜像市场的镜像进行更换系统盘,需要付费吗? ECS实例正在使用镜像市场的镜像,进行重置系统盘需要收费吗? 怎么调用ECS API,使用镜像市场镜像或者来源镜像市场的自定义镜像或者共享镜像,创建ECS实例和更换系统盘? 如果没有购买镜像市场的镜像或者来源于镜像市场的镜像,在调用ECS API 使用该镜像创建ECS实例和更换系统盘,会报错吗? 我的ESS是自动创建机器的,并且量是不固定,设置最小值为10台,最大值为100台,那么使用镜像市场的镜像如何保证我的的需求实例能正常弹出来? 镜像市场的镜像是否支持批量购买? 如果之前使用的镜像市场的镜像,已不存在该商品(如:jxsc000010、jxsc000019),怎能保证已经设置的弹性伸缩组的机器的正常弹出? 1个product code能否支持不同region的镜像? 我买了100 product code同样值的镜像,是否可以支持在所有的地域可用? 为什么有的ECS云服务器无法选择Windows操作系统? 操作系统是否要收费? 我能否自己安装或者升级操作系统? 服务器的登录用户名密码是什么? 能否更换或升级操作系统? 操作系统是否有图形界面? 如何选择操作系统? 操作系统自带 FTP 上传吗? 每个用户最多可以获得多少个共享镜像? 每个镜像最多可以共享给多少个用户? 使用共享镜像是否占用我的镜像名额? 使用共享镜像创建实例的时候存不存在地域限制? 我曾把自己账号中的某个自定义镜像共享给其他账号,现在我可以删除这个镜像吗 我把某个自定义镜像(M)的共享账号(A)给删除了,会有什么影响? 使用共享镜像创建实例存在什么样的风险? 我把自定义镜像共享给其他账号,存在什么风险? 我能把别人共享给我的镜像再共享给他人吗? 我把镜像共享给他人,还能使用该镜像创建实例吗? ECS Windows服务器桌面分辨率过高导致VNC花屏处理方法通过 管理终端 进入服务器后,把 Windows 服务器桌面分辨率设置过高,确定后,WebVNC 出现花屏。 ECS创建自定义镜像创建服务器为何需要注释挂载项 勾选"IO优化实例"选项导致购买ECS实例时无法选择云市场镜像 如何为 Linux 服务器安装 GRUB 历史Linux镜像的问题修复方案 如何处理 CentOS DNS 解析超时? 什么是镜像市场的包年包月和按周付费镜像? 预付费镜像能与哪种 ECS 实例搭配使用? 怎么购买预付费镜像?可以单独购买吗? 预付费镜像怎么付费? 预付费镜像到期了就不能用了吗?怎么继续使用? 购买预付费镜像后,如果我不想再使用这个镜像,能要求退款吗? 退款时,费用怎么结算? 预付费镜像能转换为按量付费镜像吗? 预付费镜像与其它镜像之间能互换吗?更换后费用怎么计算? 在哪里查看并管理我购买的预付费镜像? 使用预付费镜像制作的自定义镜像会收费吗?预付费镜像过期对于自定义镜像有什么影响? ECS 实例操作系统选择说明 阿里云支持哪些 SUSE 版本? SUSE 操作系统提供哪些服务支持? ECS安全组 如何检查 TCP 80 端口是否正常工作? 什么是安全组? 为什么在购买 ECS 实例的时候选择安全组? 安全组配置错误会造成哪些影响? 专有网络实例设置安全组规则时为什么不能设置公网规则? 创建 ECS 实例时我还没创建安全组怎么办? 为什么无法访问 25 端口? 为什么我的安全组里自动添加了很多规则? 为什么有些安全组规则的优先级是 110? 为什么我在安全组里放行了 TCP 80 端口,还是无法访问 80 端口? ECS安全组被添加内网ip地址了,是怎么回事? 能说明下ECS安全组中规则的优先级执行匹配顺序吗? ECS实例安全组默认的公网规则被删除导致无法ping通,ECS 服务器无法ping通,排查防火墙、网卡IP配置无误,回滚系统后仍然无法ping通。 我刚购买了ECS实例,如何选择及配置安全组? 没有添加默认安全组访问规则-导致通过API创建的ECS实例断网,要怎么恢复? 使用ECS安全组工具撤销之前账号间互通的操作 ECS网络 带宽与上传、下载速度峰值的有什么关系? 弹性公网IP在哪里可以查看流量和带宽监控信息? 我用的是ECS Ubuntu系统,要怎么单独禁用和启动内外网卡? ECS 实例子网划分和掩码是什么? ECS 实例网络带宽是否独享? 带宽单线还是双线,电信还是网通? 5 Mbps 带宽怎么理解? 带宽的价格是多少? 不同地域的 ECS 实例之间的内网是通的吗? 为何新建的 ECS 实例就有 200 Kbps 左右入网流量? 我的 ECS 实例经常能在 Web 日志中看到大量的恶意 IP 访问我的网站,疑有刷流量和恶意访问的嫌疑,询问云盾是否有屏蔽 IP 的功能? 包月ECS新购时是否可以选择带宽按照使用流量计费? 包月ECS带宽按流量计费是如何计费的? 目前使用的固定带宽计费,是否可以转换为带宽按流量计费? 是否可以随时调整流量带宽峰值? 续费变更配置时(比如到期时间为2015年3月31日,续费一个月到4月30日),如果将包月ECS按固定带宽计费改成按流量付费计费,操作以后在未生效前(3月31日前),是否还可以升级带宽? 续费变更配置时候将包月ECS带宽按流量计费改成按固定带宽计费,为什么我的带宽服务停掉了? 如果账号没有足够余额,欠费怎么办?ECS实例也会停掉吗? 带宽流量欠费是否有短信通知? 当带宽按照流量计费欠费时,是否可以对实例进行升级 CPU、内存操作? 欠费充值后带宽是自动恢复的吗? 包月带宽转流量计费后,流量价格是多少? ECS 服务器出现了异地登录怎么办? 爱哪里可以查看云服务器 ECS 公网流量统计总和? 我的ECS 实例对外 DDoS 攻击导致被锁定了,要如何处理 ? 什么是云服务器 ECS 的入网带宽和出网带宽? ECS云服务器如何禁用公网IP? ECS 实例停止(关机)后按量付费带宽仍产生流量,ECS 实例在控制台上状态为已停止,但按量付费的带宽每小时仍会产生不小的费用,且此时 ECS 实例正在遭受攻击,云盾控制台中 DDoS 防护中 ECS 的状态为清洗中。 访问ECS服务器的网站提示“由于你访问的URL可能对网站造成安全威胁,您的访问被阻断”,这是什么原因? 服务器黑洞是什么?求科普! 如果想确认该服务器的IP信息和地理位置,要在哪里去查询? 我想知道客户端本地到ECS服务器是不是丢包,要怎么测试? 内网和公共 NTP 服务器是什么?它们两个有什么区别 我能 ping 通但端口不通,这是端口的问题吗? 如何通过防火墙策略限制对外扫描行为? 我想用手机移动端网络路由跟踪探测,可以吗? 云监控中的ECS带宽和ECS控制台中看到的带宽不一致是什么原因? 云服务器ECS三张网卡有什么区别? Ubuntu系统ECS使用“如何通过防火墙策略限制对外扫描行为”脚本之后出现无法远程、数据库连接不上。 什么业务场景需要在专有网络(VPC)类型ECS购买PublicIP? 怎么购买专有网络(VPC)类型分配 PublicIP 的 ECS? 专有网络(VPC)类型 ECS 的 PublicIP 和 EIP 的区别? 专有网络(VPC)类型ECS的 PublicIP 的可以升级带宽吗? 专有网络(VPC)类型ECS的 PublicIP 可以解绑吗? 如果购买网络(VPC)类型 ECS 的时候,没有分配公网 IP,该怎么才能分配一个公网 IP? 怎么查询专有网络(VPC)类型 ECS 的 PublicIP 的监控数据? 怎么查询专有网络(VPC)类型ECS的按流量付费的 PublicIP 的账单? 专有网络和经典网络的 PublicIP 异同? 专有网络(VPC)类型 ECS 购买 PublicIP 的付费方式? ECS API 如何通过 API / SDK 实现不同账号 ECS 实例的内网通信? ECS API绑定公网IP报错:The IP is already in use分析 ECS API修改实例带宽不能指定时间范围吗? 所在可用区不支持相应磁盘类型-导致ECS API创建实例报错 用ECS API创建实例的时候,返回如下错误信息: "Code": "InvalidDataDiskCategory.NotSupported" 如何创建有公网 IP 的 ECS 实例? 通过API或SDK查询安全组规则无法显示所有的规则,这是怎么回事? 如何通过OpenAPI创建ECS实例的流程状态描述? 数据传输服务DTS实时同步功能,我想只同步表结构,要怎么做? 如何获取控制台RequestId? 阿里云中国站部分地域实例什么时候降价? ECS Linux 实例怎么设置 Locale 变量? 克隆ECS服务器的方法 其它国家和地区是否都可以提供经典网络和专有网络的类型呢?网络类型是否可以变更呢? 各个地域的网络覆盖范围是什么呢? 其他相关问题 不同地域的实例,价格一样吗? 如果我使用其它国家和地区的实例搭建了一个网站,我的用户将通过域名访问网站,这个域名需要 ICP 备案吗? 为什么有些实例规格只能在中国大陆地域购买,而在其它国家和地区无法购买? 可否将中国大陆地域的实例迁移到其它国家和地区呢? 如何在其它国家和地区部署 ECS 实例? 我要买其它国家和地区的实例,需要单独申请一个国际站账号吗? ——更多ECS相关问题—— · ECS故障处理百问合集

问问小秘 2020-01-02 15:49:17 0 浏览量 回答数 0

问题

HBase最佳实践-读性能优化策略

pandacats 2019-12-20 21:02:08 0 浏览量 回答数 0

回答

【丁宁-清华大学-阿里达摩院自然语言技术实习体验】 作者简介:丁宁,清华大学计算机科学与技术系2年级博士生,研究方向为自然语言处理、信息抽取、语言表示学习等,在ACL、EMNLP、AAAI、IJCAI等发表多篇文章,作为研究型实习生在阿里达摩院实习半年+。 实习体会 很幸运能来到阿里巴巴进行实习!组里的氛围特别好,同事和师兄师姐都非常专业、友善、亲切。无论是科研上还是工作生活上的任 何问题,都能得到慷慨的帮助。在这里,我认识了一批学术和生活上的榜样(我的主管每天都吃健康餐,而我牛肉汤泡饼),结交了志同道合的朋友(排队喝牛肉汤回来写论文的日子),见识到了IT同学的认真负责(远程帮我调试打印机,周末修电脑),见过了马云老师,也亲身经历了一次双十一奋战。阿里的科研积淀和文化氛围都让我感到收获颇丰,感谢阿里巴巴提供研究型实习生这一高水平项目,也期待更多的同学可以加入研究型实习生的大家庭。 科研心得& 工作宣传 今年在阿里巴巴所做的跨领域分词工作被ACL 2020高分接收,其中meta review说“well-written, well-motivated with strong results, sure accept”。其实这句话可以很好地总结评判科研论文好坏的标准,实际上或许现阶段的科研也并没有什么秘密,动机明确、方法得当、实验充分,就可以形成一篇不错的科研论文。当然了,如果想做出让领域内眼前一亮的工作,可能就需要一些灵光一闪了。 具体到我们的工作上来,跨领域任务往往面临目标领域精标注数据缺失的问题,具体到分词任务上来说,这种数据缺失往往会导致OOV和词的分布差异问题。本文通过弱监督启发式算法来进行远程标注,并引入对抗学习来进行降噪。本文的实验中以newswire (新闻语料)作为源领域,在5个不同的目标领域数据上都取得了较好的效果。 这个工作或许有助于我们真正的往跨领域的两个通用问题上去设计了相关的解决办法。论文名字:《Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation》,具体可以查看达摩院的官方宣传~:ACL 2020有哪些值得关注的论文? - 阿里巴巴达摩院的回答 - 知乎https://www.zhihu.com/question/385259014/answer/1190808208 另外,也宣传一下作为co-author的另一篇ACL 2020论文,是实习生同事周洁(上海交大研究生)的工作,瞄准多层级文本分类任务,设计层级敏感编码器将多层结构作为有向图建模,并且实现了一个串行和并行的版本,论文名字:Hierarchy-Aware Global Model for Hierarchical Text Classification。 还有另一个实习生同事张浩宇(国防科大博士生)在IJCAI 2020的工作,使用noisy learning的方法去进行远程监督entity typing降噪,方法非常优雅,论文名字:Learning with Noise: Improving Distantly-Supervised Fine-grained Entity Typing via Automatic Relabeling。 【杜志浩-哈尔滨工业大学-我在达摩院作实习研究僧的那些事儿】 经韩老师介绍,2019年7月,有幸进入阿里巴巴达摩院成为一名实习研究僧。如今也已半年有余,期间发生的事情仍然历历在目。从初出茅庐的不安,到积极融入的快乐,再到宠辱不惊的泰然,一路走来收获良多! 初出茅庐 其实,刚到达摩院语音算法组时,我的内心充满了不安。这种不安来自于初出茅庐的不自信,不知自己能否胜任这份工作,为公司带来效益。同时,也来自于环境转变的不适应,换了一个全新的环境,对公司内的工作方式、待人接物都不甚了解。 但是,在算法组师兄师姐的帮助下,我的这些不安很快就烟消云散了。为了能够使我尽快熟悉工作内容、了解工作方式,雷鸣师兄坚持每周四晚上为实习生开组会,拉着仕良哥、智颖等很多小伙伴一起讨论算法思路和实验中遇到的问题。我想他们应该都挺忙的吧,但还是牺牲自己休息的时间来参加组会。 刚来的那段时间,除了“雷老师,xxx麻烦审批通过一下”以外,我说的最多的恐怕就是“xx姐/哥,xxx在哪”。由于对很多事情都不了解,比如服务器怎么申请啊,oss怎么弄啊,我总是要麻烦逍北姐、遥仙哥等目之所及的小伙伴。他们一边在忙自己的工作一边还不厌其烦的告诉我,为我提供了莫大的帮助。 积极融入 在算法组这段时间,让我印象最为深刻的一句话就是“我们做事情都很直接,有什么问题,就带着方案提出来”。以前,总是被教育和鼓励发现问题,在阿里,找到问题只是完成了第一步,还需要再提出一个切实可行的解决方案。期间发生的一段小插曲让我现在依然记忆犹新。  为了准备910,语音测试组的小伙伴每天都在紧张的进行测试。其中一项是对语音实时转录及翻译软件的稳定性测试。由于已经进入应用阶段,不能在直接将数据送入到模型中,需要将语音播放出来,再由软件录音进行测试。播放的内容是马老师的演讲,对于坐在旁边的小伙伴来说既是一件好事,也是一件坏事。由于马老师的演讲实在太引人入胜了,每次他们进行测试时,我们都无法专心工作,最终只能……。 咳咳,我心想,这么下去也不是事儿啊,梦想要有,生活也得继续啊,得想想办法解决一下这个问题。我尝试了各种办法,但似乎都无法绕过功放这个问题。最终功夫不负有心人,找到了一款虚拟声卡的软件,能够将一个应用程序的音频输出直接作为另一个应用程序的输入。在熟悉过这个软件的使用方式后,我找到测试组的组长,向他提出了我现在的处境和解决方案。他告诉我,他也知道这样会打扰到周边的人,但是之前也没有太好的办法,感谢我提出的解决方案。 虽然这只是实习期间的一段小插曲,但是我依然印象深刻。通过这件事,我践行了带着方案提问题,这一阿里人所特有的工作方式,让我感觉自己正在逐渐融入到这个集体当中。 宠辱不惊 经过几个月“死去”又“活来”的做实验、写论文,我跟雷鸣师兄合作的语音增强相关工作投稿到了ICASSP 2020。这是语音信号处理领域的顶级会议,在来阿里之前,我也投稿过一次,但不幸被拒。为了准备这篇文章,雷鸣师兄跟我保持着很高互动,了解实验进度,适时的进行指导。此外,还有仕良哥帮助我进行语音畸变的评估。 2020年1月25日这一天,是我国的传统节日,春节,同时也是ICASSP出结果的日子。在得知结果前,我的内心非常忐忑。但当得知接收的喜讯时,我反而没有想象中那么兴奋,没有想象中那么高兴。我的第一反应是看看审稿人的意见,看看我专家们对我文章的看法,还有哪些不足和需要改进的地方。 我想宠辱不惊的心态应该是我在阿里的一个重要收获吧,不以物喜不以己悲。尽力做好自己该做的事儿,结果自然水到渠成。 再说两句 在阿里的这段实习使我受益匪浅。这里有乐于助人、善解人意的师兄师姐,也有认真负责、要求严格的主管Leader;有弹性自由的工作时间,也有肝到深夜的满腔热情;有最新最热的研究成果,也有成熟稳定的应用软件。这里不像实验室的象牙塔,关注技术的同时,也更关注技术如何落地、如何应用到生活中去,最终如何造福亿万用户。 韩鹏-KAUST-青春没有我之阿里巴巴天猫精灵争夺赛被迫写的研究心得 竞选宣言: 在阿里实习摸了几个月的鱼,最开心的就是又吃到了祖国的美食,虽然杭州的食物实在是太清淡了,但总比我在沙特每天吃水煮青菜不放盐要好很多。在阿里的这几个月,让我看淡了很多,发现生命里比较重要的就是长在自己脑袋上的头发,不能太年轻就失去他们。女网红我是感觉自己这辈子没机会了,毕竟流量明星也不是靠推荐算法能捧红的,也就希望能够得到这次500块钱的天猫精灵,请大家pick我。 研究心得: 多抱大腿 为了凑足300字的内心情感白描: 这个世界实在是太无聊了,尤其疫情导致的只能居家办公,我已经憋得快精神失常了,虽然平时也不是那么正常。希望这个世界早日恢复原来的美好,我还打算去越南胡志明市的日式KTV感受一下女仆装呢,希望疫情不会让这些服务业倒闭呢吧。 居然还不够300字,感觉生命浪费在写文字上要比大保健上还是好一些的,希望这些文字能够启发你,虽然我感觉也并没有什么意义,而人活着的意义又是什么呢? 【韩镕罄-南加州大学- 阿里研究型实习生体验】 简介: 经过两年研究时间,找到了学校的教职,也找到了老婆,感谢阿里~ 2018年八月来阿里做研究型实习生,本人在南加州大学商学院读Operations Management 的Ph.D. 块两年时间做了几篇 field experiment paper, 感觉阿里有太多好玩有趣的商业问题可以讨论直接研究。 通过和阿里的合作顺利找到UIUC 伊利诺伊大学香槟分校的常任轨教职。 更神奇的是,在实习期间,随便刷个阿里妹儿的相亲帖, 加个微信 聊一聊 发现和自己一天生日。 就是你了!现在已经结婚快半年! 三十而立,一切静好,感谢阿里! 【马腾-清华大学- 阿里巴巴RI项目心得】 我与阿里之缘 在2019年的夏天,后来成为我主管的文侑来到清华进行交流,当时的我刚刚完成了一个学术项目的研究,正在寻求于之后的研究方向。恰好在交流会上碰见了文侑,经过一番交流之后吗,了解到操作系统团队是阿里 RDMA 技术的先行者和推广者,这正是我计划之后想要研究的方向,于是便一拍即合。由于我之前所研究的领域刚好符合是阿里目前正在做的一些项目,所以文侑提供了一个可以在阿里实习的机会。 在通过了多轮面试之后,我终于成功的入职了操作系统内核组作为学术型实习生。从2018年九月初入职至今,将近两年的时间,我也逐渐地适应了在阿里的生活,松弛有度而又充满欢乐。在这里我也结识了许多要好的朋友,并且,通过公司组织的各种聚会和团建的活动,让我解释了许多有着共同语言爱好的伙伴,大家给与了我这个新人很多的帮助和照顾,使我也渐渐地融入了这个有爱的团队。 在阿里的学术成果 在阿里实习期间,在同事们的帮助下,我顺利地完成了两个与我所在实验室合作的学术项目,并且这两个项目也幸运的产出了两篇高质量的论文,分别发表在了不同领域的高水平会议当中。 其中,第一篇论文发表在第21届Cluster会议,与2019年在美国阿尔伯克基召开。Cluster 是高性能计算方向计算机系统领域的主要会议,这个工作提出并实现了统一高效的 RDMA 消息中间件,解决了 RDMA 在实际生产过程中的一些关键可靠性和可用性问题,例如:极简的接口抽象,必要的上层消息确认机制,中间件辅助流控配合 DCQCN,结合生产系统的诊断机制等等,目前该技术已经被广泛应用在阿里巴巴基础云产品中(包括:数据库,分布式存储等)。另外一个工作则发表在了第25届 ASPLOS会议。ASPLOS 是操作系统,体系结构和编程语言三个方向综合的计算机系统领域顶级会议。这篇论文是和我所在的清华高性能所合作完成的,文章中第一次提出了利用RDMA将数据中心的NVM做disaggregation, 实现了高效的框架,同时证明了这种新架构的可行性。 在阿里的感想 阿里巴巴操作系统团队是一直致力于建立和完善系统领域工业界和学术界的纽带,并且在持续实践工业界和学术界之间的问题分享和工作互动,他们希望通过这些分析和互动能够更好地促进中国在世界计算机系统领域的整体发展和创新。作为操作系统团队中的一员,我深切了解到了先进技术对于企业发展的重要性,在实习的过程中,同我所在的实验室进行合作,我更是深深感受到只有通过学术与工业相辅相成,才能够真正让企业发展先进技术。另外一方面,经过一段时间的实习,我对所在的操作系统团队和阿里技术部门的工作有了更深入的了解,我对自己也有了进一步的规划,计划在毕业之后能够入职阿里,通过我的努力,继续在追逐技术之路上奋斗着。 【亓家鑫-新加坡南洋理工大学- 阿里云实习心得】 非常荣幸我们的研究工作*《Two causal principles for improving visual dialog》*获得了同行的认可,并收录在CVPR 2020会议中。在此要特别感谢我的教授,MReaL实验室成员以及阿里城市大脑实验室师兄师姐一直以来的支持和帮助。比起论文本身的内容,我更希望跟大家分享一年来做研究的心得和感悟,虽然目前我仍然是一个萌新,不过我希望通过萌新的角度能带给大家一些研究上的启发。 开始一个研究之前,选择方向很重要。当然,每一个方向都有自己的优缺点,比如新的方向“容易”发文章,可能将其他领域原有的方法引入加一些调整就可以达到比较高的结果。不过如果没有坚实的创新,在同行评议时,可能会受到质疑。一旦没有通过,再转投时可能发现已经落后于其他人。“老“的方向可能会感觉灌水困难,不过因为我没有真正做过经典的方向,所以不太好发表评论。根据观察,在一堆全面而又坚实的研究中找到创新点,对萌新来说确实困难,不过一旦有所突破,肯定会对这个社区产生广泛的影响。作为一个萌新,可能不会自己选择方向或者领域,所以接受导师或者主管的安排成了唯一的选择,不过要相信自己的导师和主管,因为大家都是在帮助你,而且他们经验丰富。只有当自己走完一套研究的流程,并且真正找到自己感兴趣或者觉得可以有所突破的方向,那可能才是真正属于自己的研究的开始。 当选定了方向,开始做研究的时候,清楚的了解所有有关的方法是非常重要的,因为这样可以防止你的idea被存在的方法“抄袭“。其实对一个比较成熟的研究方向来说,简单思考得到的idea一般都会被提出过。不过研究完所有存在方法后,要跳出这些方法,因为阅读他们的方法可能不是来借鉴,更多的是防止撞车,想要真正有创新,在别人的方法上改动往往是不够的,这就要求我们重新审视这个任务甚至数据集的每一个样本。当然目前即使是学术界toy的数据集也有动辄几十万的数据量,看完是不可能的,不过根据自己的思路统计一些数据特征,有时候对研究会产生很大的帮助。当觉得自己已经掌握了这个数据集或者这个任务的时候,应该是跑一些baseline来练习了。 我作为萌新,没有从零开始写,而是找了一个现成的模型开始修改,这样难度会减少很多,不过毕竟是别人的代码,还是有很多不舒服的地方,所以等自己成熟了的时候,有空的时候,一定要从头写一遍。当然我也不知道什么时候有空。当我开始修改baseline的时候,此次的研究旅行就算是上路了,在接受导师的指引的同时也可以自己不断的尝试自己的想法,因为不知道什么是有用的。我作为萌新刚开始的感受是我觉得可能我想的都有用,那一定要去试一下,所以我也建议大家多试一下,说不定真的有用呢,反正电费不花自己的。当一个东西有用的时候,就可以来思考他为什么有用了,当你想好它为什么有用并且通过了广泛的测试,就到了跟大家分享成果的时候。 当然,一个有用的idea背后可能有无数个没用的idea,至于他们为什么没用,我觉得如果实在是有兴趣,可以研究一下,但是有时候会花大量的时间。举一个实际的例子,我在去年做visual dialog比赛,大概四月份就发现了一个有用的方法,之后也顺利的拿到了第一并且在此基础上进行探究和扩展发表了自己的成果。不过同时,当时有一个效果降低的操作一直困扰着我,直到六个月以后,当然这六个月中还做了其他的事情,我才发现了它真正的原因,并且最终变成了我文章中的一句话。举这个例子的目的是,研究没有效果的idea会对研究有所帮助,不过可能会收益较低。 研究成果的发表是一个很重要的过程,它可以给领域内的同行以启发,甚至可以影响本领域之外的人,所以有时候高度总结自己的思想是一件有用的事情。比如我所做的工作我认为进行高度总结之后可以得到一个启发是:对多模态任务来说不一定所有模态都是平等的,对模型来说所存在模态也不一定是影响结果的全部。除了对自己motivation的总结,应用细节以及结果展示也是非常重要的,因为我是萌新,怎样写出一篇文章的经验肯定是不足的,所以在此不再赘述。在发表完文章之后,“售后服务“也是非常重要的一点,这也是我的教授教我的很重要的理念。因为发表的内容不是刊登出来就结束了,而是你对社区贡献的开始,之后做研究可能会发现更好的实现,或者当时的理论没有讲清楚完善,这些都可以补充到自己的代码中,让大家更好的了解你的思路和工作,或许以后还能收获好评。 此外,实验室的成员就是自己研究道路上的引导者和伙伴,会对自己的研究产生各种各样至关重要的影响,大多时候大家都不会吝惜跟你讨论分享自己的观点,有时还会亲自帮助你解决问题,所以要记得经常参加团建和小集体聚会。不过也不能太依赖别人,每当遇到问题的时候,特别是技术性的问题,还是依靠自己解决的好,毕竟未来总会离开实验室,离开乐于帮助你的人。最后,保护好自己的头发,还是要早睡早起,调不出来的bug熬夜也调不出来,不work的idea可能真的不work,没有人保证炼出来的一定是金子,不要过分影响正常的作息,毕竟这不是百米赛跑,也不能算是马拉松,而是长久的起码好几年以上要坚持的事业。不过我作为萌新才刚刚起步,依然没有体会到最艰难的时刻,不过做好心理准备还是应该的,该来的总是会来的。最后的最后希望这些浅显的经验总结能够给大家带来一点儿帮助,谢谢大家的阅读。 【田冰川-南京大学- 在阿里网络团队实习两年是一种怎样的体验?】 简介: 大家好!我是田冰川,南京大学2016级直博生,导师为田臣老师,研究方向为计算机网络。2018年6月,我以研究型实习生的身份入职阿里巴巴基础设施事业部网络研究团队,实习期间主要从事网络验证相关的研究工作,即通过形式化方法与灰度测试,来降低网络变更中的潜在风险。 2018年既是网络研究团队刚刚组建的一年,也是研究型实习生在阿里刚刚起步的一年。这年春天,经我导师田臣老师介绍,我参加了研究型实习生面试,加入了网络研究团队。 来到团队后,我参加的第一个研究项目是“金睛”,用以保障复杂ACL变更的正确性。ACL即访问控制列表,网络中的ACL决定着流量的连通性。网络架构演化有时会伴随着对ACL的迁移,如何保证迁移前后网络连通性是等价的,是困扰架构与运营部门的一大难题,而金睛项目则是为该问题而生。项目落地以来,金睛系统多次在骨干网ACL迁移中对变更方案进行了验证,并逐渐扩展至对边缘网络的验证。相关论文发表于SIGCOMM 2019主会,我在会场进行了20余分钟的演讲,与我们团队的另一篇文章HPCC共同成为阿里集团在网络领域top1学术会议主会中的首次亮相。 时间总是过的很快。转眼间,我来阿里已经两年了,自金睛之后,又陆续参与了多个研究课题。在阿里的时间越久,就越能切身体会到学术界研究与工业界研究的不同。在阿里实习以来,我接触到的所有研究课题,都不是凭空“想”出来的空中楼阁,更不是靠别人论文“启发”出来的二手课题,而是源自于真实业务的现阶段瓶颈与下一阶段发展趋势——这一点是高校科研很难做到的。 这两年间,我对科研这件事的心态也发生了进一步的变化。2017年,来到阿里之前,我的论文达到了学校博士毕业的最低要求,相当于没有了毕业之忧,对科研的心态从“先拿到博士学位再说”,变成了“想要做出点什么,不想让自己的博士5年就这么水过去”;在来到阿里,接触到工业界的前沿课题之后,我对科研的心态再一次发生了转变,变成“因为认可一件事的价值,所以想要去做好”——这已经成为一种内在的驱动力,让我在认真工作的同时,享受研究带来的乐趣。 如果一切顺利的话,我将于2021年6月博士毕业。能在阿里巴巴度过专属实习生的“三年醇”,想必也是人生中的一大成就了! 【吴秉哲-北京大学- 吴师傅的博士研究课题:大数据时代的数据隐私研究方向初探】 加上本科的时间,不知不觉已经在燕园里面呆了八年了,明年不出意外应该就会离开学校去业界工作。准备最近以文章的形式梳理一下博士几年的研究以及生活的心路历程。由于内容比较分散,所以决定分为几个不同的部分。这次推送封面图片是16年骑行到加乌拉山口遥看喜马拉雅山脉的图片,而我在阿里的花名是风远,意为远处的风。希望多年之后,还有一颗少年的心,投入每天永不变。这次借着阿里内部一个活动的机会,写了今天的这篇稿子,为大家介绍一下我的thesis topic。 已经在蚂蚁实习了一年了,一年时光匆匆而过,而在蚂蚁金服度过的这段时光带给了我很多研究以及生活中的体验,这一年里学到的经验也将伴随着我之后的研究之路。 我本科四年是在数院度过,在研究生阶段决定转换方向到计算机系。博士的前两年一直在跌跌撞撞地寻找自己的研究方向,尝试过很多方向均以失败告终。终于在第三年的时候,误打误撞开始研究起机器学习的隐私保护问题并找到了很多灵感,开始沉淀了一些基本的研究工作。有一天我从一个朋友那里听到了她关于金服这边隐私保护机器学习的团队介绍,当时我就决定要到业界的前沿去看一看隐私保护的真实业界需求。在此之前,我已经在谷歌,IBM等公司有过多段实习的经历,但是在蚂蚁这一次实习经历,是与我自己研究方向最接近,也是时间最长的一次。借着这次约稿的机会,以此文简单总结一下自己过去两年在这一方向的研究。 隐私保护与共享学习 目前随着各种机器学习算法在集团的业务落地,许多隐私泄露与数据滥用的风险相继而来。 尤其是在蚂蚁金服这样一个拥有很多支付数据的企业,数据安全以及隐私保护的重要性更是不言而喻。站在商业合作的角度,如何实现不同公司或者部门之间的数据共享学习也是我所在的团队现在攻坚的一个问题。在这样一个研究背景下,我来到了蚂蚁金服的共享智能团队,开始和师兄师姐们从不同的维度对上述问题展开了深入的研究。 共享学习这样一个概念听起来很美好,但是实际落地起来却困难重重,需要考虑到上层软件算法的设计以及底层系统和硬件的优化,才有可能真正在实际的业务中兼顾效率和隐私保护强度。共享智能团队在这一方向上有着得天独厚的优势。一是领先的业务场景,在国际同行好多还停留在学术研究阶段时,我们团队已经和国内多家银行有了合作。另一个则是技术沉淀的领先。因为金服自身业务的特殊性,我们团队很早就开始了隐私保护机器学习和共享学习的布局,包括很多原始的技术沉淀,强大的工程团队以及学术预研团队。这些积累也使得我们能够很快地摸清最新的一些研究成果并能将其吸入到我们自己的系统当中。 我自己关于隐私保护机器学习的研究主要是围绕着三个层面展开,分别是理论,算法设计,以及系统和硬件优化。在理论层面,我主要针对现有的各种机器学习算法,建立相应的隐私泄露分析框架,比如我们在之前的工作中,针对一种常用的贝叶斯学习的算法根据雷尼差分隐私建立了隐私泄露的定量分析框架,我们进一步使用我们的框架和已有的一些泛化误差上界做了联系,从而能从多个角度去解释该算法的隐私泄露原因。在算法设计层面,我们针对各种已有的新兴算法以及场景,比如图神经网络,推荐系统建立了相应的共享学习算法,并利用我们的理论框架,对这些算法的隐私保护强度做了定量的评估。除开上层的理论和算法设计,底层的系统和硬件的优化同样是非常重要的一环。 在我们团队,我们主打基于硬件可信执行环境 (TEE)的机器学习serving系统,我针对我们当前这套服务系统,结合神经网络计算的一些特点,定制了该系统的一系列优化措施大大提升了整个系统的吞吐量。我也将其中一些措施注册了专利,并在前几天得到了内部的专利授权。除开上述介绍的学术研究方面的成果,我也参与了IEEE共享学习标准的制定会议,这也使得我从标准制定者的角度去更深地思考如何使用技术在未来社会中实现隐私与效率的兼顾。 总之,我自己很感谢能成为共享智能团队的一员,我在这里学到的最宝贵的经验就是详细地从上到下了解了这样一个大团队的合作与分工,学习他们是如何一步步从最初的需求分析,算法设计,到最后真正的业务落地。也很高兴和各位共享智能的同事度过自己博士生涯中很重要的一年。也非常感谢我的博士导师对我研究的无条件支持。回看博士这一路的艰辛,也是感慨万千。有点像自己之前高原骑行的经历,经历了爬到坡顶的缺氧与无力,终在转角处遇见了骑行途中最美的雪山风光。

游客bnlxddh3fwntw 2020-05-19 16:05:51 0 浏览量 回答数 0

问题

应用 AXIS 开始 Web 服务之旅:报错

kun坤 2020-06-08 11:01:46 3 浏览量 回答数 1

问题

词汇表是什么样的?(S-V)

轩墨 2019-12-01 22:06:08 2089 浏览量 回答数 0

问题

ECS-CentOS  /etc/fstab格式简介

ethnicity 2019-12-01 21:03:38 10993 浏览量 回答数 1

问题

程序员报错QA大分享(1)

问问小秘 2020-06-18 15:46:14 8 浏览量 回答数 1
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站