• 关于

    机内控制会出现哪些问题

    的搜索结果

问题

业务实时监控服务 ARMS使用常见问题有哪些?

猫饭先生 2019-12-01 21:24:35 1143 浏览量 回答数 0

问题

为什么你的云厂商可能会换IP,开发者如何避免被影响?

趁我还年轻 2019-12-01 21:13:24 3658 浏览量 回答数 2

问题

Hystrix 是什么?【Java问答学堂】60期

剑曼红尘 2020-07-20 12:49:25 2 浏览量 回答数 1

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

【精品问答】python必备面试干货

问问小秘 2019-12-01 21:53:38 1125 浏览量 回答数 2

回答

Kafka 是目前主流的分布式消息引擎及流处理平台,经常用做企业的消息总线、实时数据管道,本文挑选了 Kafka 的几个核心话题,帮助大家快速掌握 Kafka,包括: Kafka 体系架构 Kafka 消息发送机制 Kafka 副本机制 Kafka 控制器 Kafka Rebalance 机制 因为涉及内容较多,本文尽量做到深入浅出,全面的介绍 Kafka 原理及核心组件,不怕你不懂 Kafka。 1. Kafka 快速入门 Kafka 是一个分布式消息引擎与流处理平台,经常用做企业的消息总线、实时数据管道,有的还把它当做存储系统来使用。早期 Kafka 的定位是一个高吞吐的分布式消息系统,目前则演变成了一个成熟的分布式消息引擎,以及流处理平台。 1.1 Kafka 体系架构 Kafka 的设计遵循生产者消费者模式,生产者发送消息到 broker 中某一个 topic 的具体分区里,消费者从一个或多个分区中拉取数据进行消费。拓扑图如下: 目前,Kafka 依靠 Zookeeper 做分布式协调服务,负责存储和管理 Kafka 集群中的元数据信息,包括集群中的 broker 信息、topic 信息、topic 的分区与副本信息等。 ** 1.2 Kafka 术语** 这里整理了 Kafka 的一些关键术语: Producer:生产者,消息产生和发送端。 Broker:Kafka 实例,多个 broker 组成一个 Kafka 集群,通常一台机器部署一个 Kafka 实例,一个实例挂了不影响其他实例。 Consumer:消费者,拉取消息进行消费。 一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组,一条消息只能被消费组中一个 Consumer 消费。 Topic:主题,服务端消息的逻辑存储单元。一个 topic 通常包含若干个 Partition 分区。 Partition:topic 的分区,分布式存储在各个 broker 中, 实现发布与订阅的负载均衡。若干个分区可以被若干个 Consumer 同时消费,达到消费者高吞吐量。一个分区拥有多个副本(Replica),这是Kafka在可靠性和可用性方面的设计,后面会重点介绍。 message:消息,或称日志消息,是 Kafka 服务端实际存储的数据,每一条消息都由一个 key、一个 value 以及消息时间戳 timestamp 组成。 offset:偏移量,分区中的消息位置,由 Kafka 自身维护,Consumer 消费时也要保存一份 offset 以维护消费过的消息位置。 1.3 Kafka 作用与特点 Kafka 主要起到削峰填谷(缓冲)、系统解构以及冗余的作用,主要特点有: 高吞吐、低延时:这是 Kafka 显著的特点,Kafka 能够达到百万级的消息吞吐量,延迟可达毫秒级; 持久化存储:Kafka 的消息最终持久化保存在磁盘之上,提供了顺序读写以保证性能,并且通过 Kafka 的副本机制提高了数据可靠性。 分布式可扩展:Kafka 的数据是分布式存储在不同 broker 节点的,以 topic 组织数据并且按 partition 进行分布式存储,整体的扩展性都非常好。 高容错性:集群中任意一个 broker 节点宕机,Kafka 仍能对外提供服务。 2. Kafka 消息发送机制 Kafka 生产端发送消息的机制非常重要,这也是 Kafka 高吞吐的基础,生产端的基本流程如下图所示: 主要有以下方面的设计: 2.1 异步发送 Kafka 自从 0.8.2 版本就引入了新版本 Producer API,新版 Producer 完全是采用异步方式发送消息。生产端构建的 ProducerRecord 先是经过 keySerializer、valueSerializer 序列化后,再是经过 Partition 分区器处理,决定消息落到 topic 具体某个分区中,最后把消息发送到客户端的消息缓冲池 accumulator 中,交由一个叫作 Sender 的线程发送到 broker 端。 这里缓冲池 accumulator 的最大大小由参数 buffer.memory 控制,默认是 32M,当生产消息的速度过快导致 buffer 满了的时候,将阻塞 max.block.ms 时间,超时抛异常,所以 buffer 的大小可以根据实际的业务情况进行适当调整。 2.2 批量发送 发送到缓冲 buffer 中消息将会被分为一个一个的 batch,分批次的发送到 broker 端,批次大小由参数 batch.size 控制,默认16KB。这就意味着正常情况下消息会攒够 16KB 时才会批量发送到 broker 端,所以一般减小 batch 大小有利于降低消息延时,增加 batch 大小有利于提升吞吐量。 那么生成端消息是不是必须要达到一个 batch 大小时,才会批量发送到服务端呢?答案是否定的,Kafka 生产端提供了另一个重要参数 linger.ms,该参数控制了 batch 最大的空闲时间,超过该时间的 batch 也会被发送到 broker 端。 2.3 消息重试 此外,Kafka 生产端支持重试机制,对于某些原因导致消息发送失败的,比如网络抖动,开启重试后 Producer 会尝试再次发送消息。该功能由参数 retries 控制,参数含义代表重试次数,默认值为 0 表示不重试,建议设置大于 0 比如 3。 3. Kafka 副本机制 前面提及了 Kafka 分区副本(Replica)的概念,副本机制也称 Replication 机制是 Kafka 实现高可靠、高可用的基础。Kafka 中有 leader 和 follower 两类副本。 3.1 Kafka 副本作用 Kafka 默认只会给分区设置一个副本,由 broker 端参数 default.replication.factor 控制,默认值为 1,通常我们会修改该默认值,或者命令行创建 topic 时指定 replication-factor 参数,生产建议设置 3 副本。副本作用主要有两方面: 消息冗余存储,提高 Kafka 数据的可靠性; 提高 Kafka 服务的可用性,follower 副本能够在 leader 副本挂掉或者 broker 宕机的时候参与 leader 选举,继续对外提供读写服务。 3.2 关于读写分离 这里要说明的是 Kafka 并不支持读写分区,生产消费端所有的读写请求都是由 leader 副本处理的,follower 副本的主要工作就是从 leader 副本处异步拉取消息,进行消息数据的同步,并不对外提供读写服务。 Kafka 之所以这样设计,主要是为了保证读写一致性,因为副本同步是一个异步的过程,如果当 follower 副本还没完全和 leader 同步时,从 follower 副本读取数据可能会读不到最新的消息。 3.3 ISR 副本集合 Kafka 为了维护分区副本的同步,引入 ISR(In-Sync Replicas)副本集合的概念,ISR 是分区中正在与 leader 副本进行同步的 replica 列表,且必定包含 leader 副本。 ISR 列表是持久化在 Zookeeper 中的,任何在 ISR 列表中的副本都有资格参与 leader 选举。 ISR 列表是动态变化的,并不是所有的分区副本都在 ISR 列表中,哪些副本会被包含在 ISR 列表中呢?副本被包含在 ISR 列表中的条件是由参数 replica.lag.time.max.ms 控制的,参数含义是副本同步落后于 leader 的最大时间间隔,默认10s,意思就是说如果某一 follower 副本中的消息比 leader 延时超过10s,就会被从 ISR 中排除。Kafka 之所以这样设计,主要是为了减少消息丢失,只有与 leader 副本进行实时同步的 follower 副本才有资格参与 leader 选举,这里指相对实时。 3.4 Unclean leader 选举 既然 ISR 是动态变化的,所以 ISR 列表就有为空的时候,ISR 为空说明 leader 副本也“挂掉”了,此时 Kafka 就要重新选举出新的 leader。但 ISR 为空,怎么进行 leader 选举呢? Kafka 把不在 ISR 列表中的存活副本称为“非同步副本”,这些副本中的消息远远落后于 leader,如果选举这种副本作为 leader 的话就可能造成数据丢失。Kafka broker 端提供了一个参数 unclean.leader.election.enable,用于控制是否允许非同步副本参与 leader 选举;如果开启,则当 ISR 为空时就会从这些副本中选举新的 leader,这个过程称为 Unclean leader 选举。 前面也提及了,如果开启 Unclean leader 选举,可能会造成数据丢失,但保证了始终有一个 leader 副本对外提供服务;如果禁用 Unclean leader 选举,就会避免数据丢失,但这时分区就会不可用。这就是典型的 CAP 理论,即一个系统不可能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)中的两个。所以在这个问题上,Kafka 赋予了我们选择 C 或 A 的权利。 我们可以根据实际的业务场景选择是否开启 Unclean leader选举,这里建议关闭 Unclean leader 选举,因为通常数据的一致性要比可用性重要的多。 4. Kafka 控制器 控制器(Controller)是 Kafka 的核心组件,它的主要作用是在 Zookeeper 的帮助下管理和协调整个 Kafka 集群。集群中任意一个 broker 都能充当控制器的角色,但在运行过程中,只能有一个 broker 成为控制器。 这里先介绍下 Zookeeper,因为控制器的产生依赖于 Zookeeper 的 ZNode 模型和 Watcher 机制。Zookeeper 的数据模型是类似 Unix 操作系统的 ZNode Tree 即 ZNode 树,ZNode 是 Zookeeper 中的数据节点,是 Zookeeper 存储数据的最小单元,每个 ZNode 可以保存数据,也可以挂载子节点,根节点是 /。基本的拓扑图如下: Zookeeper 有两类 ZNode 节点,分别是持久性节点和临时节点。持久性节点是指客户端与 Zookeeper 断开会话后,该节点依旧存在,直到执行删除操作才会清除节点。临时节点的生命周期是和客户端的会话绑定在一起,客户端与 Zookeeper 断开会话后,临时节点就会被自动删除。 Watcher 机制是 Zookeeper 非常重要的特性,它可以在 ZNode 节点上绑定监听事件,比如可以监听节点数据变更、节点删除、子节点状态变更等事件,通过这个事件机制,可以基于 ZooKeeper 实现分布式锁、集群管理等功能。 4.1 控制器选举 当集群中的任意 broker 启动时,都会尝试去 Zookeeper 中创建 /controller 节点,第一个成功创建 /controller 节点的 broker 则会被指定为控制器,其他 broker 则会监听该节点的变化。当运行中的控制器突然宕机或意外终止时,其他 broker 能够快速地感知到,然后再次尝试创建 /controller 节点,创建成功的 broker 会成为新的控制器。 4.2 控制器功能 前面我们也说了,控制器主要作用是管理和协调 Kafka 集群,那么 Kafka 控制器都做了哪些事情呢,具体如下: 主题管理:创建、删除 topic,以及增加 topic 分区等操作都是由控制器执行。 分区重分配:执行 Kafka 的 reassign 脚本对 topic 分区重分配的操作,也是由控制器实现。 Preferred leader 选举:这里有一个概念叫 Preferred replica 即优先副本,表示的是分配副本中的第一个副本。Preferred leader 选举就是指 Kafka 在某些情况下出现 leader 负载不均衡时,会选择 preferred 副本作为新 leader 的一种方案。这也是控制器的职责范围。 集群成员管理:控制器能够监控新 broker 的增加,broker 的主动关闭与被动宕机,进而做其他工作。这里也是利用前面所说的 Zookeeper 的 ZNode 模型和 Watcher 机制,控制器会监听 Zookeeper 中 /brokers/ids 下临时节点的变化。 数据服务:控制器上保存了最全的集群元数据信息,其他所有 broker 会定期接收控制器发来的元数据更新请求,从而更新其内存中的缓存数据。 从上面内容我们大概知道,控制器可以说是 Kafka 的心脏,管理和协调着整个 Kafka 集群,因此控制器自身的性能和稳定性就变得至关重要。 社区在这方面做了大量工作,特别是在 0.11 版本中对控制器进行了重构,其中最大的改进把控制器内部多线程的设计改成了单线程加事件队列的方案,消除了多线程的资源消耗和线程安全问题,另外一个改进是把之前同步操作 Zookeeper 改为了异步操作,消除了 Zookeeper 端的性能瓶颈,大大提升了控制器的稳定性。 5. Kafka 消费端 Rebalance 机制 前面介绍消费者术语时,提到了消费组的概念,一个 topic 可以让若干个消费者进行消费,若干个消费者组成一个 Consumer Group 即消费组 ,一条消息只能被消费组中的一个消费者进行消费。我们用下图表示Kafka的消费模型。 5.1 Rebalance 概念 就 Kafka 消费端而言,有一个难以避免的问题就是消费者的重平衡即 Rebalance。Rebalance 是让一个消费组的所有消费者就如何消费订阅 topic 的所有分区达成共识的过程,在 Rebalance 过程中,所有 Consumer 实例都会停止消费,等待 Rebalance 的完成。因为要停止消费等待重平衡完成,因此 Rebalance 会严重影响消费端的 TPS,是应当尽量避免的。 5.2 Rebalance 发生条件 关于何时会发生 Rebalance,总结起来有三种情况: 消费组的消费者成员数量发生变化 消费主题的数量发生变化 消费主题的分区数量发生变化 其中后两种情况一般是计划内的,比如为了提高消息吞吐量增加 topic 分区数,这些情况一般是不可避免的,后面我们会重点讨论如何避免因为组内消费者成员数发生变化导致的 Rebalance。 5.3 Kafka 协调器 在介绍如何避免 Rebalance 问题之前,先来认识下 Kafka 的协调器 Coordinator,和之前 Kafka 控制器类似,Coordinator 也是 Kafka 的核心组件。 主要有两类 Kafka 协调器: 组协调器(Group Coordinator) 消费者协调器(Consumer Coordinator) Kafka 为了更好的实现消费组成员管理、位移管理,以及 Rebalance 等,broker 服务端引入了组协调器(Group Coordinator),消费端引入了消费者协调器(Consumer Coordinator)。每个 broker 启动的时候,都会创建一个 GroupCoordinator 实例,负责消费组注册、消费者成员记录、offset 等元数据操作,这里也可以看出每个 broker 都有自己的 Coordinator 组件。另外,每个 Consumer 实例化时,同时会创建一个 ConsumerCoordinator 实例,负责消费组下各个消费者和服务端组协调器之前的通信。可以用下图表示协调器原理: 客户端的消费者协调器 Consumer Coordinator 和服务端的组协调器 Group Coordinator 会通过心跳不断保持通信。 5.4 如何避免消费组 Rebalance 接下来我们讨论下如何避免组内消费者成员发生变化导致的 Rebalance。组内成员发生变化无非就两种情况,一种是有新的消费者加入,通常是我们为了提高消费速度增加了消费者数量,比如增加了消费线程或者多部署了一份消费程序,这种情况可以认为是正常的;另一种是有消费者退出,这种情况多是和我们消费端代码有关,是我们要重点避免的。 正常情况下,每个消费者都会定期向组协调器 Group Coordinator 发送心跳,表明自己还在存活,如果消费者不能及时的发送心跳,组协调器会认为该消费者已经“死”了,就会导致消费者离组引发 Rebalance 问题。这里涉及两个消费端参数:session.timeout.ms 和 heartbeat.interval.ms,含义分别是组协调器认为消费组存活的期限,和消费者发送心跳的时间间隔,其中 heartbeat.interval.ms 默认值是3s,session.timeout.ms 在 0.10.1 版本之前默认 30s,之后默认 10s。另外,0.10.1 版本还有两个值得注意的地方: 从该版本开始,Kafka 维护了单独的心跳线程,之前版本中 Kafka 是使用业务主线程发送的心跳。 增加了一个重要的参数 max.poll.interval.ms,表示 Consumer 两次调用 poll 方法拉取数据的最大时间间隔,默认值 5min,对于那些忙于业务逻辑处理导致超过 max.poll.interval.ms 时间的消费者将会离开消费组,此时将发生一次 Rebalance。 此外,如果 Consumer 端频繁 FullGC 也可能会导致消费端长时间停顿,从而引发 Rebalance。因此,我们总结如何避免消费组 Rebalance 问题,主要从以下几方面入手: 合理配置 session.timeout.ms 和 heartbeat.interval.ms,建议 0.10.1 之前适当调大 session 超时时间尽量规避 Rebalance。 根据实际业务调整 max.poll.interval.ms,通常建议调大避免 Rebalance,但注意 0.10.1 版本之前没有该参数。 监控消费端的 GC 情况,避免由于频繁 FullGC 导致线程长时间停顿引发 Rebalance。 合理调整以上参数,可以减少生产环境中 Rebalance 发生的几率,提升 Consumer 端的 TPS 和稳定性。 6.总结 本文总结了 Kafka 体系架构、Kafka 消息发送机制、副本机制,Kafka 控制器、消费端 Rebalance 机制等各方面核心原理,通过本文的介绍,相信你已经对 Kafka 的内核知识有了一定的掌握,更多的 Kafka 原理实践后面有时间再介绍。

剑曼红尘 2020-04-16 18:15:45 0 浏览量 回答数 0

回答

在primary-secondary 类型的协议中,副本被分为两大类,其中有且仅有一个副本作为primary 副本, 除primary 以外的副本都作为secondary 副本。维护primary 副本的节点作为中心节点,中心节点负 责维护数据的更新、并发控制、协调副本的一致性。 Primary-secondary 类型的协议一般要解决四大类问题:数据更新流程、数据读取方式、Primary 副本的确定和切换、数据同步(reconcile)。 数据更新基本流程 1. 数据更新都由primary 节点协调完成。 2. 外部节点将更新操作发给primary 节点 3. primary 节点进行并发控制即确定并发更新操作的先后顺序 4. primary 节点将更新操作发送给secondary 节点 5. primary 根据secondary 节点的完成情况决定更新是否成功并将结果返回外部节点 在工程实践中,如果由primary 直接同时发送给其他N 个副本发送数据,则每个 secondary 的更新吞吐受限于primary 总的出口网络带宽,最大为primary 网络出口带宽的1/N。为了 解决这个问题,有些系统(例如,GFS),使用接力的方式同步数据,即primary 将更新发送给第一 个secondary 副本,第一个secondary 副本发送给第二secondary 副本,依次类推。 数据读取方式 数据读取方式也与一致性高度相关。如果只需要最终一致性,则读取任何副本都可以满足需求。如果需要会 话一致性,则可以为副本设置版本号,每次更新后递增版本号,用户读取副本时验证版本号,从而 保证用户读到的数据在会话范围内单调递增。使用primary-secondary 比较困难的是实现强一致性。 由于数据的更新流程都是由primary 控制的,primary 副本上的数据一定是最新的,所以 如果始终只读primary 副本的数据,可以实现强一致性。如果只读primary 副本,则secondary 副本 将不提供读服务。实践中,如果副本不与机器绑定,而是按照数据段为单位维护副本,仅有primary 副本提供读服务在很多场景下并不会造出机器资源浪费。 将副本分散到集群中个,假设primary 也是随机的确定的,那么每台机器 上都有一些数据的primary 副本,也有另一些数据段的secondary 副本。从而某台服务器实际都提供 读写服务。 - 由primary 控制节点secondary 节点的可用性。当primary 更新某个secondary 副本不成功 时,primary 将该secondary 副本标记为不可用,从而用户不再读取该不可用的副本。不可用的 secondary 副本可以继续尝试与primary 同步数据,当与primary 完成数据同步后,primary 可以副本 标记为可用。这种方式使得所有的可用的副本,无论是primary 还是secondary 都是可读的,且在一 个确定的时间内,某secondary 副本要么更新到与primary 一致的最新状态,要么被标记为不可用, 从而符合较高的一致性要求。这种方式依赖于一个中心元数据管理系统,用于记录哪些副本可用, 哪些副本不可用。某种意义上,该方式通过降低系统的可用性来提高系统的一致性。 primary 副本的确定与切换 在primary-secondary 类型的协议中,另一个核心的问题是如何确定primary 副本,尤其是在原 primary 副本所在机器出现宕机等异常时,需要有某种机制切换primary 副本,使得某个secondary 副本成为新的primary 副本。 通常的,在primary-secondary 类型的分布式系统中,哪个副本是primary 这一信息都属于元信 息,由专门的元数据服务器维护。执行更新操作时,首先查询元数据服务器获取副本的primary 信 息,从而进一步执行数据更新流程。 由于分布式系统中可靠的发现节点异常是需要一定的探测时间的,这样的探测时间通常是10 秒级别,这也意味着一旦primary 异常,最多需要10 秒级别的 发现时间,系统才能开始primary 的切换,在这10 秒时间内,由于没有primary,系统不能提供更 新服务,如果系统只能读primary 副本,则这段时间内甚至不能提供读服务。从这里可以看到, primary-backup 类副本协议的最大缺点就是由于primary 切换带来的一定的停服务时间。 数据同步 不一致的secondary 副本需要与primary 进行同步(reconcile)。 通常不一致的形式有三种:一、由于网络分化等异常,secondary 上的数据落后于primary 上的 数据。二、在某些协议下,secondary 上的数据有可能是脏数据,需要被丢弃。所谓脏数据是由于 primary 副本没有进行某一更新操作,而secondary 副本上反而进行的多余的修改操作,从而造成 secondary 副本数据错误。三、secondary 是一个新增加的副本,完全没有数据,需要从其他副本上 拷贝数据。 对于第一种secondary 数据落后的情况,常见的同步方式是回放primary 上的操作日志(通常是 redo 日志),从而追上primary 的更新进度。对于脏数据的情况, 较好的做法是设计的分布式协议不产生脏数据。如果协议一定有产生脏数据的可能,则也应该使得 产生脏数据的概率降到非常低得情况,从而一旦发生脏数据的情况可以简单的直接丢弃有脏数据的 副本,这样相当于副本没有数据。另外,也可以设计一些基于undo 日志的方式从而可以删除脏数据。 如果secondary 副本完全没有数据,则常见的做法是直接拷贝primary 副本的数据,这种方法往往比 回放日志追更新进度的方法快很多。但拷贝数据时primary 副本需要能够继续提供更新服务,这就 要求primary 副本支持快照(snapshot)功能。即对某一刻的副本数据形成快照,然后拷贝快照,拷贝 完成后使用回放日志的方式追快照形成后的更新操作。

kun坤 2020-04-24 15:30:53 0 浏览量 回答数 0

问题

如何设计一个高并发系统?【Java问答学堂】45期

剑曼红尘 2020-06-28 20:53:14 10 浏览量 回答数 1

问题

你需要的是持续的服务改进

sunny夏筱 2019-12-01 21:41:32 7450 浏览量 回答数 3

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 37578 浏览量 回答数 11

回答

ECS磁盘 我想在ECS 跨服务器进行数据拷贝,有没有知道实现方法的? Linux系统服务器重启或初始化系统之后,再登录服务器执行df -h查看磁盘挂载,发现数据不见了。这是为什么?能不能找回来? 重启服务器后发现/alidata目录所有数据丢失。怎么才能找回来呢? ECS Linux扩容格式化磁盘提示magic number in super-block while trying to open /dev/xvdb1 ? Linux 实例初始化系统盘后,怎样才能重新挂载数据盘? 如何在ECS 利用快照创建磁盘实现无损扩容数据盘? ECS云服务器磁盘FAQ云服务器磁盘I/O速度是多少? Linux 购买了数据盘,但是系统中看不到怎么办? ECS系统盘和数据盘二次分区FAQ,系统盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,数据盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,划分了多个分区的磁盘,做快照时是针对该分区的,还是针对磁盘的? ECS系统盘和数据盘二次分区FAQ,磁盘二次分区有哪些注意事项? ECS系统盘和数据盘二次分区FAQ,数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区? 什么是可用区? 怎么根据服务器应用需求选择可用区? 按量付费云盘和云盘有什么区别? 按量付费云盘和普通云盘的性能和数据安全性一样吗,磁盘性能会有提升吗? 可以使用用户快照创建按量付费云盘吗? 什么是挂载点? 一块按量付费云盘可以挂载到多个 ECS 实例上吗? 一台 ECS 实例能同时挂载多少块按量付费云盘吗? 按量付费云盘能够挂载到包年包月和按量付费 ECS 实例上吗? 为什么挂载按量付费云盘时找不到我想挂载的 ECS 实例? 购买按量付费云盘后,挂载到目标 ECS 实例的挂载点是否还需要执行磁盘挂载操作? 我已经操作过续费变配,在续费变配期内是否还能将普通云盘转为按量付费云盘? ECS快照 为什么我的按量付费云盘没有自动快照了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 卸载按量付费云盘时,我的磁盘会丢数据吗? 我能够卸载系统盘吗? 什么是独立云磁盘? 什么是可用区? 独立云磁盘跟现在的磁盘有什么区别? 服务器应用与可用区选择的选择关系是怎么样的? 独立云磁盘怎么收费? 独立云磁盘能够挂载到包年包月实例上吗? 独立云磁盘和普通云磁盘的磁盘性能和数据安全性一样吗,磁盘性能会有提升吗? 我的包年包月实例上不需要的磁盘能不能卸载? 为什么我的独立云磁盘和我的实例一起释放了? 为什么独立云磁盘挂载时找不到我想挂载的实例? 为什么我在本实例列表中选择独立云磁盘挂载时找不到我想要挂载的磁盘? 我删除磁盘的时候,快照会被保留吗? 为什么我的独立云磁盘没有自动快照了? 为什么我不能购买独立云磁盘? 一台实例能挂载多少块独立云磁盘? 卸载独立云磁盘时,我的磁盘会丢数据吗? 我的系统盘能够卸载吗? 什么是设备名? 为什么我在控制台上找不到重置磁盘,更换操作系统,回滚快照的操作了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 为什么我的数据盘不能选择临时磁盘 独立云磁盘服务器的应用场景有哪些? 可以使用用户快照创建独立云磁盘吗? 独立云磁盘购买后挂载到目标实例的挂载点后,是否还需要执行磁盘挂载操作? 本地SSD盘“本地”是指? 本地SSD盘适合的用户场景有哪些? SSD盘相对之前的普通云盘性能提升多少,是否可以提供具体参数? 本地SSD盘是否支持在原ECS上进行添加或者将原云磁盘更换成本地SSD盘? 本地SSD盘购买后是否支持升级? SSD 云盘具备怎样的 I/O 性能? SSD云盘的数据可靠性是怎样的? SSD 云盘适合的应用场景有哪些? SSD 云盘相对普通云盘性能提升多少?是否可以提供具体参数? I/O 优化是什么概念?能将存量的 ECS 实例升级为 I/O 优化的实例吗? 是否支持将原普通云盘更换成 SSD 云盘? 如何购买 SSD 云盘,I/O 优化的实例及 SSD 云盘的价格是多少? 为什么 I/O 优化的实例有时启动比较耗时? 有些自定义镜像不支持创建 I/O 优化的实例,我该如何操作? 购买SSD云盘后是否支持升级? 使用了 I/O 优化实例和 SSD 云盘之后,Linux 系统在分区挂载的时候报错。 为什么我用 fio 测试性能时,会导致实例宕机? 云盘参数和性能测试工具及方法有推荐的吗? 我想扩容系统盘,求详细步骤! 所有块存储都支持系统盘扩容吗?有地域限制吗? 包年包月和按量付费的ECS实例都支持系统盘扩容吗? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费?系统盘扩容是否需要停机操作? 系统盘扩容上线后,系统盘的容量范围多少? 哪些镜像支持系统盘扩容? 云服务器续费变配后,不支持更换系统盘时指定系统盘容量? 系统盘扩容之后是否支持再缩容? 扩容系统盘应注意的问题? 回滚磁盘报错,进行快照回滚的时候,出现如下错误提示: 执行回滚磁盘需要停止实例,并确保当前磁盘没有创建中的快照和没有更换过操作系统。 这是什么原因? 普通云盘和SSD云盘添加挂载信息时有哪些要注意的事项? 申请公测资格 什么是共享块存储? 共享块存储适用于哪些行业和业务场景? 为什么需要共享块存储? 如何正确使用共享块存储? 我能跨地域挂载共享块存储吗? 共享块存储产品规格有哪些? 我想知道阿里云产品的售卖模式和公测范围! 公测购买入口是哪,求链接! 有没有谁分享下共享块存储性能测试命令? 数据盘挂载问题导致数据无法访问,我要怎么排查问题? 我要怎样才能在Linux和Windows主机之间挂载ntfs格式云盘? 为什么ECS实例里文件系统和快照空间大小不一致?在ECS实例内删除文件后再打快照,发现快照容量并没有变小。 ECS实例如何优化快照使用成本? 在ECS实例里什么是快照商业化? 在ECS实例里,快照商业化后过渡优惠期是什么时候? 在ECS实例里,快照商业化的用户范围包括有哪些? 在ECS实例里,如果我已经开通了 OSS,快照会自动存到我的 OSS Bucket 吗?是否需要重新再创建一个 Bucket 来存储快照? 已经购买了 OSS 预付费存储包,同时在使用快照和 OSS 服务,那么存储包会优先抵扣哪个产品? 快照商业化之后,我希望继续使用,需要购买哪个产品,云盘还是对象存储OSS资源包? 快照商业化的收费模式是怎样的? 快照费用的计算方法是怎样的? 快照收费后,不停止自动快照是否就开始收取费用? 快照要收费了,之前的快照要被删除吗? 如果不想付费,之前的快照能继续使用吗? 快照收费后,之前创建的手动快照和自动快照都会收费吗? 快照收费前停止快照策略,需手动删除历史快照吗?正式收费后会直接删除我的历史快照吗? 快照收费以后,账户欠费对快照有什么影响? 如果账号欠费,有关联关系(创建过磁盘或者镜像)的快照,在欠费15天之后是否会被删除? 快照服务和块存储服务的关系,在收费方面的关系是什么? 快照容量是如何计算的,是等于磁盘大小吗? ECS实例内删除文件会减少空间占用吗? 为什么快照容量大于文件系统内看到的数据量? 参考快照增量说明,如中间快照被删除,后面的快照能否使用? 如何开通快照服务? 快照和镜像的关系? 如何在保留关联实例和磁盘的情况下,删除快照跟镜像,快照、实例、镜像之间的关系? 快照和块存储、OSS对象存储是什么关系? 一块云盘能否设置多个快照策略? 快照 2.0 服务包括哪些内容? 快照有什么用途? 快照 2.0 服务支持的云盘类型? 快照数量有什么限制? 快照保留时长怎样? 打快照对块存储 I/O 性能有多少影响? 快照怎么收费? 老的自动快照策略什么时候不可用? 老的快照策略产生的快照什么时候删除? 自动快照功能细节有哪些? 用户的自定义快照和自动快照有冲突吗? 我能保留其中想要的自动快照而让系统不删除吗? 如果一个自动快照被引用(用户创建自定义镜像或者磁盘),会导致自动快照策略执行失败吗? 我如果什么都没有设置,自动快照会启动吗? 自动快照能够删除吗? 自动快照具体在什么时间创建能看到吗? 我如何区分哪些快照是自动快照和用户快照? 更换系统盘、云服务器 ECS 到期后或手动释放磁盘时,自动快照会不会释放? 未随磁盘释放和更换系统盘释放的自动快照会一直保留吗? 云服务器 ECS 到期后或手动释放磁盘时,手工快照会不会释放? 我能单独制定某几块磁盘执行或取消自动快照吗? 云服务器 ECS 有没有自动备份? 磁盘无快照是否能够回滚或数据恢复? 快照回滚能否单独回滚某个分区或部分数据? 系统盘快照回滚是否会影响数据盘? 更换系统后,快照能否回滚? 在回滚快照前,有哪些注意事项? 怎样使ECS回滚快照后同步数据? 如何通过API配置定时自定义快照? 超出预付费存储包的流量,会怎么收费? ECS镜像 Aliyun Linux 17.01 特性有哪些,有说明文档吗? 云市场镜像有哪些功能? 镜像能带来哪些便利? 目前镜像支持哪些服务器环境和应用场景? 镜像是否安全? 选择了镜像后能更换吗? 镜像安装使用过程中出问题了怎么办? Docker私有镜像库是什么? 自定义镜像如何查看数据盘? 自定义镜像,如何卸载和删除 disk table 里的数据? 如何确认已经卸载数据盘,并可以新建自定义镜像? ECS 实例释放后,自定义镜像是否还存在? ECS 实例释放后,快照是否还存在? 用于创建自定义镜像的云服务器 ECS 实例到期或释放数据后,创建的自定义镜像是否受影响?使用自定义镜像开通的云服务器 ECS 实例是否受影响? 使用自定义镜像创建的 ECS 实例是否可以更换操作系统?更换系统后原来的自定义镜像是否还可以使用? 更换系统盘时另选操作系统,是否可以使用自定义镜像? 已创建的自定义镜像,是否可以用于更换另一台云服务器 ECS 的系统盘数据? 是否可以升级自定义镜像开通的云服务器 ECS 的 CPU、内存、带宽、硬盘等? 是否可以跨地域使用自定义镜像? 包年包月云服务器 ECS 的自定义镜像,是否可以用于开通按量付费的云服务器 ECS? ECS Windows企业版和标准版区别 什么情况下需要复制镜像? 可以复制哪些镜像? 当前有哪些支持镜像复制功能的地域? 复制一个镜像大概需要多久? 复制镜像怎么收费的? 在复制镜像过程中,源镜像和目标镜像有什么限制? 怎么复制我的云账号的镜像资源到其他云账号的其他地域? 复制镜像有镜像容量限制吗? 如何购买镜像市场镜像? 按次购买的镜像的使用期限是多久? 镜像市场的镜像支持退款吗? 镜像市场商业化后,还有免费的镜像市场镜像吗? 在杭州买了一个镜像市场的镜像,能否在北京创建ECS实例或者更换系统盘? ECS实例使用镜像市场的镜像,升级和续费ECS实例,需要为镜像继续付费吗? ECS实例使用镜像市场的镜像,实例释放后,继续购买ECS实例还可以免费使用该镜像吗? 使用镜像市场镜像创建ECS实例,该实例创建一个自定义镜像,使用该自定义镜像创建ECS实例需要为该镜像付费吗? 来源于镜像市场的镜像复制到其他地域创建ECS实例,是否需要为该镜像付费? 如果把来源于镜像市场的自定义镜像共享给其他账号(B)创建ECS实例,账号B是否需要为该镜像付费? 如果使用镜像市场的镜像或者来源于镜像市场的镜像进行更换系统盘,需要付费吗? ECS实例正在使用镜像市场的镜像,进行重置系统盘需要收费吗? 怎么调用ECS API,使用镜像市场镜像或者来源镜像市场的自定义镜像或者共享镜像,创建ECS实例和更换系统盘? 如果没有购买镜像市场的镜像或者来源于镜像市场的镜像,在调用ECS API 使用该镜像创建ECS实例和更换系统盘,会报错吗? 我的ESS是自动创建机器的,并且量是不固定,设置最小值为10台,最大值为100台,那么使用镜像市场的镜像如何保证我的的需求实例能正常弹出来? 镜像市场的镜像是否支持批量购买? 如果之前使用的镜像市场的镜像,已不存在该商品(如:jxsc000010、jxsc000019),怎能保证已经设置的弹性伸缩组的机器的正常弹出? 1个product code能否支持不同region的镜像? 我买了100 product code同样值的镜像,是否可以支持在所有的地域可用? 为什么有的ECS云服务器无法选择Windows操作系统? 操作系统是否要收费? 我能否自己安装或者升级操作系统? 服务器的登录用户名密码是什么? 能否更换或升级操作系统? 操作系统是否有图形界面? 如何选择操作系统? 操作系统自带 FTP 上传吗? 每个用户最多可以获得多少个共享镜像? 每个镜像最多可以共享给多少个用户? 使用共享镜像是否占用我的镜像名额? 使用共享镜像创建实例的时候存不存在地域限制? 我曾把自己账号中的某个自定义镜像共享给其他账号,现在我可以删除这个镜像吗 我把某个自定义镜像(M)的共享账号(A)给删除了,会有什么影响? 使用共享镜像创建实例存在什么样的风险? 我把自定义镜像共享给其他账号,存在什么风险? 我能把别人共享给我的镜像再共享给他人吗? 我把镜像共享给他人,还能使用该镜像创建实例吗? ECS Windows服务器桌面分辨率过高导致VNC花屏处理方法通过 管理终端 进入服务器后,把 Windows 服务器桌面分辨率设置过高,确定后,WebVNC 出现花屏。 ECS创建自定义镜像创建服务器为何需要注释挂载项 勾选"IO优化实例"选项导致购买ECS实例时无法选择云市场镜像 如何为 Linux 服务器安装 GRUB 历史Linux镜像的问题修复方案 如何处理 CentOS DNS 解析超时? 什么是镜像市场的包年包月和按周付费镜像? 预付费镜像能与哪种 ECS 实例搭配使用? 怎么购买预付费镜像?可以单独购买吗? 预付费镜像怎么付费? 预付费镜像到期了就不能用了吗?怎么继续使用? 购买预付费镜像后,如果我不想再使用这个镜像,能要求退款吗? 退款时,费用怎么结算? 预付费镜像能转换为按量付费镜像吗? 预付费镜像与其它镜像之间能互换吗?更换后费用怎么计算? 在哪里查看并管理我购买的预付费镜像? 使用预付费镜像制作的自定义镜像会收费吗?预付费镜像过期对于自定义镜像有什么影响? ECS 实例操作系统选择说明 阿里云支持哪些 SUSE 版本? SUSE 操作系统提供哪些服务支持? ECS安全组 如何检查 TCP 80 端口是否正常工作? 什么是安全组? 为什么在购买 ECS 实例的时候选择安全组? 安全组配置错误会造成哪些影响? 专有网络实例设置安全组规则时为什么不能设置公网规则? 创建 ECS 实例时我还没创建安全组怎么办? 为什么无法访问 25 端口? 为什么我的安全组里自动添加了很多规则? 为什么有些安全组规则的优先级是 110? 为什么我在安全组里放行了 TCP 80 端口,还是无法访问 80 端口? ECS安全组被添加内网ip地址了,是怎么回事? 能说明下ECS安全组中规则的优先级执行匹配顺序吗? ECS实例安全组默认的公网规则被删除导致无法ping通,ECS 服务器无法ping通,排查防火墙、网卡IP配置无误,回滚系统后仍然无法ping通。 我刚购买了ECS实例,如何选择及配置安全组? 没有添加默认安全组访问规则-导致通过API创建的ECS实例断网,要怎么恢复? 使用ECS安全组工具撤销之前账号间互通的操作 ECS网络 带宽与上传、下载速度峰值的有什么关系? 弹性公网IP在哪里可以查看流量和带宽监控信息? 我用的是ECS Ubuntu系统,要怎么单独禁用和启动内外网卡? ECS 实例子网划分和掩码是什么? ECS 实例网络带宽是否独享? 带宽单线还是双线,电信还是网通? 5 Mbps 带宽怎么理解? 带宽的价格是多少? 不同地域的 ECS 实例之间的内网是通的吗? 为何新建的 ECS 实例就有 200 Kbps 左右入网流量? 我的 ECS 实例经常能在 Web 日志中看到大量的恶意 IP 访问我的网站,疑有刷流量和恶意访问的嫌疑,询问云盾是否有屏蔽 IP 的功能? 包月ECS新购时是否可以选择带宽按照使用流量计费? 包月ECS带宽按流量计费是如何计费的? 目前使用的固定带宽计费,是否可以转换为带宽按流量计费? 是否可以随时调整流量带宽峰值? 续费变更配置时(比如到期时间为2015年3月31日,续费一个月到4月30日),如果将包月ECS按固定带宽计费改成按流量付费计费,操作以后在未生效前(3月31日前),是否还可以升级带宽? 续费变更配置时候将包月ECS带宽按流量计费改成按固定带宽计费,为什么我的带宽服务停掉了? 如果账号没有足够余额,欠费怎么办?ECS实例也会停掉吗? 带宽流量欠费是否有短信通知? 当带宽按照流量计费欠费时,是否可以对实例进行升级 CPU、内存操作? 欠费充值后带宽是自动恢复的吗? 包月带宽转流量计费后,流量价格是多少? ECS 服务器出现了异地登录怎么办? 爱哪里可以查看云服务器 ECS 公网流量统计总和? 我的ECS 实例对外 DDoS 攻击导致被锁定了,要如何处理 ? 什么是云服务器 ECS 的入网带宽和出网带宽? ECS云服务器如何禁用公网IP? ECS 实例停止(关机)后按量付费带宽仍产生流量,ECS 实例在控制台上状态为已停止,但按量付费的带宽每小时仍会产生不小的费用,且此时 ECS 实例正在遭受攻击,云盾控制台中 DDoS 防护中 ECS 的状态为清洗中。 访问ECS服务器的网站提示“由于你访问的URL可能对网站造成安全威胁,您的访问被阻断”,这是什么原因? 服务器黑洞是什么?求科普! 如果想确认该服务器的IP信息和地理位置,要在哪里去查询? 我想知道客户端本地到ECS服务器是不是丢包,要怎么测试? 内网和公共 NTP 服务器是什么?它们两个有什么区别 我能 ping 通但端口不通,这是端口的问题吗? 如何通过防火墙策略限制对外扫描行为? 我想用手机移动端网络路由跟踪探测,可以吗? 云监控中的ECS带宽和ECS控制台中看到的带宽不一致是什么原因? 云服务器ECS三张网卡有什么区别? Ubuntu系统ECS使用“如何通过防火墙策略限制对外扫描行为”脚本之后出现无法远程、数据库连接不上。 什么业务场景需要在专有网络(VPC)类型ECS购买PublicIP? 怎么购买专有网络(VPC)类型分配 PublicIP 的 ECS? 专有网络(VPC)类型 ECS 的 PublicIP 和 EIP 的区别? 专有网络(VPC)类型ECS的 PublicIP 的可以升级带宽吗? 专有网络(VPC)类型ECS的 PublicIP 可以解绑吗? 如果购买网络(VPC)类型 ECS 的时候,没有分配公网 IP,该怎么才能分配一个公网 IP? 怎么查询专有网络(VPC)类型 ECS 的 PublicIP 的监控数据? 怎么查询专有网络(VPC)类型ECS的按流量付费的 PublicIP 的账单? 专有网络和经典网络的 PublicIP 异同? 专有网络(VPC)类型 ECS 购买 PublicIP 的付费方式? ECS API 如何通过 API / SDK 实现不同账号 ECS 实例的内网通信? ECS API绑定公网IP报错:The IP is already in use分析 ECS API修改实例带宽不能指定时间范围吗? 所在可用区不支持相应磁盘类型-导致ECS API创建实例报错 用ECS API创建实例的时候,返回如下错误信息: "Code": "InvalidDataDiskCategory.NotSupported" 如何创建有公网 IP 的 ECS 实例? 通过API或SDK查询安全组规则无法显示所有的规则,这是怎么回事? 如何通过OpenAPI创建ECS实例的流程状态描述? 数据传输服务DTS实时同步功能,我想只同步表结构,要怎么做? 如何获取控制台RequestId? 阿里云中国站部分地域实例什么时候降价? ECS Linux 实例怎么设置 Locale 变量? 克隆ECS服务器的方法 其它国家和地区是否都可以提供经典网络和专有网络的类型呢?网络类型是否可以变更呢? 各个地域的网络覆盖范围是什么呢? 其他相关问题 不同地域的实例,价格一样吗? 如果我使用其它国家和地区的实例搭建了一个网站,我的用户将通过域名访问网站,这个域名需要 ICP 备案吗? 为什么有些实例规格只能在中国大陆地域购买,而在其它国家和地区无法购买? 可否将中国大陆地域的实例迁移到其它国家和地区呢? 如何在其它国家和地区部署 ECS 实例? 我要买其它国家和地区的实例,需要单独申请一个国际站账号吗? ——更多ECS相关问题—— · ECS故障处理百问合集

问问小秘 2020-01-02 15:49:17 0 浏览量 回答数 0

问题

企业运营对DevOps的「傲慢与偏见」

忆远0711 2019-12-01 21:32:29 9823 浏览量 回答数 0

回答

在开始谈我对架构本质的理解之前,先谈谈对今天技术沙龙主题的个人见解,千万级规模的网站感觉数量级是非常大的,对这个数量级我们战略上 要重 视 它 , 战术上又 要 藐 视 它。先举个例子感受一下千万级到底是什么数量级?现在很流行的优步(Uber),从媒体公布的信息看,它每天接单量平均在百万左右, 假如每天有10个小时的服务时间,平均QPS只有30左右。对于一个后台服务器,单机的平均QPS可以到达800-1000,单独看写的业务量很简单 。为什么我们又不能说轻视它?第一,我们看它的数据存储,每天一百万的话,一年数据量的规模是多少?其次,刚才说的订单量,每一个订单要推送给附近的司机、司机要并发抢单,后面业务场景的访问量往往是前者的上百倍,轻松就超过上亿级别了。 今天我想从架构的本质谈起之后,希望大家理解在做一些建构设计的时候,它的出发点以及它解决的问题是什么。 架构,刚开始的解释是我从知乎上看到的。什么是架构?有人讲, 说架构并不是一 个很 悬 乎的 东西 , 实际 上就是一个架子 , 放一些 业务 和算法,跟我们的生活中的晾衣架很像。更抽象一点,说架构其 实 是 对 我 们 重复性业务 的抽象和我 们 未来 业务 拓展的前瞻,强调过去的经验和你对整个行业的预见。 我们要想做一个架构的话需要哪些能力?我觉得最重要的是架构师一个最重要的能力就是你要有 战 略分解能力。这个怎么来看呢: 第一,你必须要有抽象的能力,抽象的能力最基本就是去重,去重在整个架构中体现在方方面面,从定义一个函数,到定义一个类,到提供的一个服务,以及模板,背后都是要去重提高可复用率。 第二, 分类能力。做软件需要做对象的解耦,要定义对象的属性和方法,做分布式系统的时候要做服务的拆分和模块化,要定义服务的接口和规范。 第三, 算法(性能),它的价值体现在提升系统的性能,所有性能的提升,最终都会落到CPU,内存,IO和网络这4大块上。 这一页PPT举了一些例子来更深入的理解常见技术背后的架构理念。 第一个例子,在分布式系统我们会做 MySQL分 库 分表,我们要从不同的库和表中读取数据,这样的抽象最直观就是使用模板,因为绝大多数SQL语义是相同的,除了路由到哪个库哪个表,如果不使用Proxy中间件,模板就是性价比最高的方法。 第二看一下加速网络的CDN,它是做速度方面的性能提升,刚才我们也提到从CPU、内存、IO、网络四个方面来考虑,CDN本质上一个是做网络智能调度优化,另一个是多级缓存优化。 第三个看一下服务化,刚才已经提到了,各个大网站转型过程中一定会做服务化,其实它就是做抽象和做服务的拆分。第四个看一下消息队列,本质上还是做分类,只不过不是两个边际清晰的类,而是把两个边际不清晰的子系统通过队列解构并且异步化。新浪微博整体架构是什么样的 接下我们看一下微博整体架构,到一定量级的系统整个架构都会变成三层,客户端包括WEB、安卓和IOS,这里就不说了。接着还都会有一个接口层, 有三个主要作用: 第一个作用,要做 安全隔离,因为前端节点都是直接和用户交互,需要防范各种恶意攻击; 第二个还充当着一个 流量控制的作用,大家知道,在2014年春节的时候,微信红包,每分钟8亿多次的请求,其实真正到它后台的请求量,只有十万左右的数量级(这里的数据可能不准),剩余的流量在接口层就被挡住了; 第三,我们看对 PC 端和移 动 端的需求不一样的,所以我们可以进行拆分。接口层之后是后台,可以看到微博后台有三大块: 一个是 平台服 务, 第二, 搜索, 第三, 大数据。到了后台的各种服务其实都是处理的数据。 像平台的业务部门,做的就是 数据存储和读 取,对搜索来说做的是 数据的 检 索,对大数据来说是做的数据的 挖掘。微博其实和淘宝是很类似 微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。 从 LAMP 的架构到面向服 务 的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停, 这是我们常说的 在 飞 机上 换 引擎的 问题。前两天我有一个朋友问我,说他在内部推行服务化的时候,把一个模块服务化做完了,其他部门就是不接。我建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。 第二,就是可 以做无状 态 服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。 第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。 大型网站的系统架构是如何演变的 我们通过通过数据看一下它的挑战,PV是在10亿级别,QPS在百万,数据量在千亿级别。我们可用性,就是SLA要求4个9,接口响应最多不能超过150毫秒,线上所有的故障必须得在5分钟内解决完。如果说5分钟没处理呢?那会影响你年终的绩效考核。2015年微博DAU已经过亿。我们系统有上百个微服务,每周会有两次的常规上线和不限次数的紧急上线。我们的挑战都一样,就是数据量,bigger and bigger,用户体验是faster and faster,业务是more and more。互联网业务更多是产品体验驱动, 技 术 在 产 品 体验上最有效的贡献 , 就是你的性能 越来越好 。 每次降低加载一个页面的时间,都可以间接的降低这个页面上用户的流失率。微博的技术挑战和正交分解法解析架构 下面看一下 第三代的 架构 图 以及 我 们 怎么用正交分解法 阐 述。 我们可以看到我们从两个维度,横轴和纵轴可以看到。 一个 维 度 是 水平的 分层 拆分,第二从垂直的维度会做拆分。水平的维度从接口层、到服务层到数据存储层。垂直怎么拆分,会用业务架构、技术架构、监控平台、服务治理等等来处理。我相信到第二代的时候很多架构已经有了业务架构和技术架构的拆分。我们看一下, 接口层有feed、用户关系、通讯接口;服务层,SOA里有基层服务、原子服务和组合服务,在微博我们只有原子服务和组合服务。原子服务不依赖于任何其他服务,组合服务由几个原子服务和自己的业务逻辑构建而成 ,资源层负责海量数据的存储(后面例子会详细讲)。技 术框架解决 独立于 业务 的海量高并发场景下的技术难题,由众多的技术组件共同构建而成 。在接口层,微博使用JERSY框架,帮助你做参数的解析,参数的验证,序列化和反序列化;资源层,主要是缓存、DB相关的各类组件,比如Cache组件和对象库组件。监 控平台和服 务 治理 , 完成系统服务的像素级监控,对分布式系统做提前诊断、预警以及治理。包含了SLA规则的制定、服务监控、服务调用链监控、流量监控、错误异常监控、线上灰度发布上线系统、线上扩容缩容调度系统等。 下面我们讲一下常见的设计原则。 第一个,首先是系统架构三个利器: 一个, 我 们 RPC 服 务组 件 (这里不讲了), 第二个,我们 消息中 间 件 。消息中间件起的作用:可以把两个模块之间的交互异步化,其次可以把不均匀请求流量输出为匀速的输出流量,所以说消息中间件 异步化 解耦 和流量削峰的利器。 第三个是配置管理,它是 代码级灰度发布以及 保障系统降级的利器。 第二个 , 无状态 , 接口 层 最重要的就是无状 态。我们在电商网站购物,在这个过程中很多情况下是有状态的,比如我浏览了哪些商品,为什么大家又常说接口层是无状态的,其实我们把状态从接口层剥离到了数据层。像用户在电商网站购物,选了几件商品,到了哪一步,接口无状态后,状态要么放在缓存中,要么放在数据库中, 其 实 它并不是没有状 态 , 只是在 这 个 过 程中我 们 要把一些有状 态 的 东 西抽离出来 到了数据层。 第三个, 数据 层 比服 务层 更需要 设计,这是一条非常重要的经验。对于服务层来说,可以拿PHP写,明天你可以拿JAVA来写,但是如果你的数据结构开始设计不合理,将来数据结构的改变会花费你数倍的代价,老的数据格式向新的数据格式迁移会让你痛不欲生,既有工作量上的,又有数据迁移跨越的时间周期,有一些甚至需要半年以上。 第四,物理结构与逻辑结构的映射,上一张图看到两个维度切成十二个区间,每个区间代表一个技术领域,这个可以看做我们的逻辑结构。另外,不论后台还是应用层的开发团队,一般都会分几个垂直的业务组加上一个基础技术架构组,这就是从物理组织架构到逻辑的技术架构的完美的映射,精细化团队分工,有利于提高沟通协作的效率 。 第五, www .sanhao.com 的访问过程,我们这个架构图里没有涉及到的,举个例子,比如当你在浏览器输入www.sanhao网址的时候,这个请求在接口层之前发生了什么?首先会查看你本机DNS以及DNS服务,查找域名对应的IP地址,然后发送HTTP请求过去。这个请求首先会到前端的VIP地址(公网服务IP地址),VIP之后还要经过负载均衡器(Nginx服务器),之后才到你的应用接口层。在接口层之前发生了这么多事,可能有用户报一个问题的时候,你通过在接口层查日志根本发现不了问题,原因就是问题可能发生在到达接口层之前了。 第六,我们说分布式系统,它最终的瓶颈会落在哪里呢?前端时间有一个网友跟我讨论的时候,说他们的系统遇到了一个瓶颈, 查遍了CPU,内存,网络,存储,都没有问题。我说你再查一遍,因为最终你不论用上千台服务器还是上万台服务器,最终系统出瓶颈的一定会落在某一台机(可能是叶子节点也可能是核心的节点),一定落在CPU、内存、存储和网络上,最后查出来问题出在一台服务器的网卡带宽上。微博多级双机房缓存架构 接下来我们看一下微博的Feed多级缓存。我们做业务的时候,经常很少做业务分析,技术大会上的分享又都偏向技术架构。其实大家更多的日常工作是需要花费更多时间在业务优化上。这张图是统计微博的信息流前几页的访问比例,像前三页占了97%,在做缓存设计的时候,我们最多只存最近的M条数据。 这里强调的就是做系统设计 要基于用 户 的 场 景 , 越细致越好 。举了一个例子,大家都会用电商,电商在双十一会做全国范围内的活动,他们做设计的时候也会考虑场景的,一个就是购物车,我曾经跟相关开发讨论过,购物车是在双十一之前用户的访问量非常大,就是不停地往里加商品。在真正到双十一那天他不会往购物车加东西了,但是他会频繁的浏览购物车。针对这个场景,活动之前重点设计优化购物车的写场景, 活动开始后优化购物车的读场景。 你看到的微博是由哪些部分聚合而成的呢?最右边的是Feed,就是微博所有关注的人,他们的微博所组成的。微博我们会按照时间顺序把所有关注人的顺序做一个排序。随着业务的发展,除了跟时间序相关的微博还有非时间序的微博,就是会有广告的要求,增加一些广告,还有粉丝头条,就是拿钱买的,热门微博,都会插在其中。分发控制,就是说和一些推荐相关的,我推荐一些相关的好友的微博,我推荐一些你可能没有读过的微博,我推荐一些其他类型的微博。 当然对非时序的微博和分发控制微博,实际会起多个并行的程序来读取,最后同步做统一的聚合。这里稍微分享一下, 从SNS社交领域来看,国内现在做的比较好的三个信息流: 微博 是 基于弱关系的媒体信息流 ; 朋友圈是基于 强 关系的信息流 ; 另外一个做的比 较 好的就是今日 头 条 , 它并不是基于关系来构建信息流 , 而是基于 兴趣和相关性的个性化推荐 信息流 。 信息流的聚合,体现在很多很多的产品之中,除了SNS,电商里也有信息流的聚合的影子。比如搜索一个商品后出来的列表页,它的信息流基本由几部分组成:第一,打广告的;第二个,做一些推荐,热门的商品,其次,才是关键字相关的搜索结果。 信息流 开始的时候 很 简单 , 但是到后期会 发现 , 你的 这 个流 如何做控制分发 , 非常复杂, 微博在最近一两年一直在做 这样 的工作。刚才我们是从业务上分析,那么技术上怎么解决高并发,高性能的问题?微博访问量很大的时候,底层存储是用MySQL数据库,当然也会有其他的。对于查询请求量大的时候,大家知道一定有缓存,可以复用可重用的计算结果。可以看到,发一条微博,我有很多粉丝,他们都会来看我发的内容,所以 微博是最适合使用 缓 存 的系统,微博的读写比例基本在几十比一。微博使用了 双 层缓 存,上面是L1,每个L1上都是一组(包含4-6台机器),左边的框相当于一个机房,右边又是一个机房。在这个系统中L1缓存所起的作用是什么? 首先,L1 缓 存增加整个系 统 的 QPS, 其次 以低成本灵活扩容的方式 增加 系统 的 带宽 。想象一个极端场景,只有一篇博文,但是它的访问量无限增长,其实我们不需要影响L2缓存,因为它的内容存储的量小,但它就是访问量大。这种场景下,你就需要使用L1来扩容提升QPS和带宽瓶颈。另外一个场景,就是L2级缓存发生作用,比如我有一千万个用户,去访问的是一百万个用户的微博 ,这个时候,他不只是说你的吞吐量和访问带宽,就是你要缓存的博文的内容也很多了,这个时候你要考虑缓存的容量, 第二 级缓 存更多的是从容量上来 规划,保证请求以较小的比例 穿透到 后端的 数据 库 中 ,根据你的用户模型你可以估出来,到底有百分之多少的请求不能穿透到DB, 评估这个容量之后,才能更好的评估DB需要多少库,需要承担多大的访问的压力。另外,我们看双机房的话,左边一个,右边一个。 两个机房是互 为 主 备 , 或者互 为热备 。如果两个用户在不同地域,他们访问两个不同机房的时候,假设用户从IDC1过来,因为就近原理,他会访问L1,没有的话才会跑到Master,当在IDC1没找到的时候才会跑到IDC2来找。同时有用户从IDC2访问,也会有请求从L1和Master返回或者到IDC1去查找。 IDC1 和 IDC2 ,两个机房都有全量的用户数据,同时在线提供服务,但是缓存查询又遵循最近访问原理。还有哪些多级缓存的例子呢?CDN是典型的多级缓存。CDN在国内各个地区做了很多节点,比如在杭州市部署一个节点时,在机房里肯定不止一台机器,那么对于一个地区来说,只有几台服务器到源站回源,其他节点都到这几台服务器回源即可,这么看CDN至少也有两级。Local Cache+ 分布式 缓 存,这也是常见的一种策略。有一种场景,分布式缓存并不适用, 比如 单 点 资 源 的爆发性峰值流量,这个时候使用Local Cache + 分布式缓存,Local Cache 在 应用 服 务 器 上用很小的 内存资源 挡住少量的 极端峰值流量,长尾的流量仍然访问分布式缓存,这样的Hybrid缓存架构通过复用众多的应用服务器节点,降低了系统的整体成本。 我们来看一下 Feed 的存 储 架构,微博的博文主要存在MySQL中。首先来看内容表,这个比较简单,每条内容一个索引,每天建一张表,其次看索引表,一共建了两级索引。首先想象一下用户场景,大部分用户刷微博的时候,看的是他关注所有人的微博,然后按时间来排序。仔细分析发现在这个场景下, 跟一个用户的自己的相关性很小了。所以在一级索引的时候会先根据关注的用户,取他们的前条微博ID,然后聚合排序。我们在做哈希(分库分表)的时候,同时考虑了按照UID哈希和按照时间维度。很业务和时间相关性很高的,今天的热点新闻,明天就没热度了,数据的冷热非常明显,这种场景就需要按照时间维度做分表,首先冷热数据做了分离(可以对冷热数据采用不同的存储方案来降低成本),其次, 很容止控制我数据库表的爆炸。像微博如果只按照用户维度区分,那么这个用户所有数据都在一张表里,这张表就是无限增长的,时间长了查询会越来越慢。二级索引,是我们里面一个比较特殊的场景,就是我要快速找到这个人所要发布的某一时段的微博时,通过二级索引快速定位。 分布式服务追踪系统 分布式追踪服务系统,当系统到千万级以后的时候,越来越庞杂,所解决的问题更偏向稳定性,性能和监控。刚才说用户只要有一个请求过来,你可以依赖你的服务RPC1、RPC2,你会发现RPC2又依赖RPC3、RPC4。分布式服务的时候一个痛点,就是说一个请求从用户过来之后,在后台不同的机器之间不停的调用并返回。 当你发现一个问题的时候,这些日志落在不同的机器上,你也不知道问题到底出在哪儿,各个服务之间互相隔离,互相之间没有建立关联。所以导致排查问题基本没有任何手段,就是出了问题没法儿解决。 我们要解决的问题,我们刚才说日志互相隔离,我们就要把它建立联系。建立联系我们就有一个请求ID,然后结合RPC框架, 服务治理功能。假设请求从客户端过来,其中包含一个ID 101,到服务A时仍然带有ID 101,然后调用RPC1的时候也会标识这是101 ,所以需要 一个唯一的 请求 ID 标识 递归迭代的传递到每一个 相关 节点。第二个,你做的时候,你不能说每个地方都加,对业务系统来说需要一个框架来完成这个工作, 这 个框架要 对业务 系 统 是最低侵入原 则 , 用 JAVA 的 话 就可以用 AOP,要做到零侵入的原则,就是对所有相关的中间件打点,从接口层组件(HTTP Client、HTTP Server)至到服务层组件(RPC Client、RPC Server),还有数据访问中间件的,这样业务系统只需要少量的配置信息就可以实现全链路监控 。为什么要用日志?服务化以后,每个服务可以用不同的开发语言, 考虑多种开发语言的兼容性 , 内部定 义标 准化的日志 是唯一且有效的办法。最后,如何构建基于GPS导航的路况监控?我们刚才讲分布式服务追踪。分布式服务追踪能解决的问题, 如果 单一用 户发现问题 后 , 可以通 过请 求 ID 快速找到 发 生 问题 的 节 点在什么,但是并没有解决如何发现问题。我们看现实中比较容易理解的道路监控,每辆车有GPS定位,我想看北京哪儿拥堵的时候,怎么做? 第一个 , 你肯定要知道每个 车 在什么位置,它走到哪儿了。其实可以说每个车上只要有一个标识,加上每一次流动的信息,就可以看到每个车流的位置和方向。 其次如何做 监 控和 报 警,我们怎么能了解道路的流量状况和负载,并及时报警。我们要定义这条街道多宽多高,单位时间可以通行多少辆车,这就是道路的容量。有了道路容量,再有道路的实时流量,我们就可以基于实习路况做预警? 对应于 分布式系 统 的话如何构建? 第一 , 你要 定义 每个服 务节 点它的 SLA A 是多少 ?SLA可以从系统的CPU占用率、内存占用率、磁盘占用率、QPS请求数等来定义,相当于定义系统的容量。 第二个 , 统计 线 上 动态 的流量,你要知道服务的平均QPS、最低QPS和最大QPS,有了流量和容量,就可以对系统做全面的监控和报警。 刚才讲的是理论,实际情况肯定比这个复杂。微博在春节的时候做许多活动,必须保障系统稳定,理论上你只要定义容量和流量就可以。但实际远远不行,为什么?有技术的因素,有人为的因素,因为不同的开发定义的流量和容量指标有主观性,很难全局量化标准,所以真正流量来了以后,你预先评估的系统瓶颈往往不正确。实际中我们在春节前主要采取了三个措施:第一,最简单的就是有降 级 的 预 案,流量超过系统容量后,先把哪些功能砍掉,需要有明确的优先级 。第二个, 线上全链路压测,就是把现在的流量放大到我们平常流量的五倍甚至十倍(比如下线一半的服务器,缩容而不是扩容),看看系统瓶颈最先发生在哪里。我们之前有一些例子,推测系统数据库会先出现瓶颈,但是实测发现是前端的程序先遇到瓶颈。第三,搭建在线 Docker 集群 , 所有业务共享备用的 Docker集群资源,这样可以极大的避免每个业务都预留资源,但是实际上流量没有增长造成的浪费。 总结 接下来说的是如何不停的学习和提升,这里以Java语言为例,首先, 一定要 理解 JAVA;第二步,JAVA完了以后,一定要 理 解 JVM;其次,还要 理解 操作系统;再次还是要了解一下 Design Pattern,这将告诉你怎么把过去的经验抽象沉淀供将来借鉴;还要学习 TCP/IP、 分布式系 统、数据结构和算法。

hiekay 2019-12-02 01:39:25 0 浏览量 回答数 0

回答

《操作系统》课程设计报告课程设计题目:操作系统课程设计 设计时间:2016/1/10一、 课程设计目的与要求需要完成的内容:(1) 安装虚拟机:Vmware、Vmware palyer (free)(推荐)、Virtualbox(推荐)、VMLite、Xen、Virtuozzo、KVM(2) 安装和使用Linux(推荐SUSE)(注意包含内核源码和内核开发工具等)(3) Linux内核源代码配置和重编(4) 找到VFS和一个具体文件系统的源代码(ext3或ext4)(5) 读懂VFS和具体文件系统如何关联(如何体现virtual file switch)(6) 找到具体文件系统的read或write函数,使用printk(使用方法和printf一样)向后台打印文件读写信息。(read或write函数选一个即可)(7) 使用dmesg –c查看后台的输出。可以附加的功能(8) 复制ext3或ext4的源代码(注意与当前使用的文件系统有区别),修改Makefile文件,使用模块编译方式(9) 修改ext3或ext4的源代码,实现新的文件系统。(至少需要修改文件系统的名称,最好能对文件写操作向系统后台打印出信息。)(10) 动态加载和卸载新的文件系统。二、 课程设计内容(1) 安装虚拟机(2) 安装和使用Linux(3) Linux内核源代码配置和重编(4) 提取并动态加载和卸载新的文件系统三、 课程设计设备与环境设备信息:PC 虚拟机:VM11 四、 设计正文(包括分析与设计思路、各模块流程图、带注释的主要算法源码、内核编译过程以及动态模块加载过程等,如有改进或者拓展,请重点用一小节进行说明)(1) 安装虚拟机(2) 安装和使用Linux(推荐SUSE)(注意包含内核源码和内核开发工具等)安装OpenSUSE,并下载相近版本的内核源码 初始内核版本 下载的源代码包 (3) Linux内核源代码配置和重编利用vmtools(虚拟机提供的可以在宿主机和虚拟机之间自由复制文件的工具)将内核源码包复制进虚拟机,解压到/home/a123/linux-3.12.51 *因为分配的磁盘空间比较小,所以没有按照惯例把内核源码放在/usr/src目录下(如果放在这里,会出现空间不足的情况)附:磁盘分配情况/swap(交换分区) 2.4G/(根目录) 11G/home(用户目录) 13G 解压好的内核源码文件在编译前需要稍作修改(6),并且缺乏一个config文件告诉编译器编译哪些功能。Config文件可以用make menuconfig命令生成,但是需要自己选择相应的功能,太过复杂,这里有一个简便的方法因为下载的内核源码是相近的版本,所以可以使用现有版本的config文件,该文件在/boot目录下使用cp /boot/config-3.11.6-4-desktop .config命令将此文件复制过来 注意:应当在内核所在的文件目录下使用此命令复制成功 执行 make menuconfig命令,进入选择界面,直接保存退出即可虽然新版本的Linux可以直接执行make一步完成所有的编译工作,但此次课程设计仍然采用以前的编译的方式 执行 make bzImage命令——编译压缩的内核编译完成 执行 make modules命令——编译模块 执行 make modules_install命令——安装模块 注: 在make menuconfig时我在General setup中把版本号改过 执行 make install命令——安装新内核 Reboot重启 说明内核修改安装完毕,成功(4) 找到VFS和一个具体文件系统的源代码(ext3或ext4)VFS:虚拟文件系统,顾名思义。它为应用程序员提供一层抽象,屏蔽底层各种文件系统的差异。Linux的文件系统采用面向对象的方式设计,这使得Linux的文件系统非常容易扩展,我们可以非常容易将一个新的文件系统添加到Linux中。在此主要对象之一super_block位于中 代码量巨大,此为部分代码Ext4在fs文件夹下的ext4文件夹内 此处打开file.c用vim打开file.c部分代码如下 (5) 读懂VFS和具体文件系统如何关联(如何体现virtual file switch)在(4)中已经提到,VFS是C语言写的一个面向对象的设计,比如我们要调用alloc_inode方法:sb->s_op->alloc_inode(sb)。这里与面向对象语言的差别是,面向对象语言里实例方法可以访问到this,这样就可以访问到自身的所有成员,但是在C里却做不到,所以需要将自身作为参数传入到函数中、图一表示了对文件写操作的调用过程 (6) 找到具体文件系统的read或write函数,使用printk(使用方法和printf一样)向后台打印文件读写信息。(read或write函数选一个即可)因为Linux系统对文件的操作是通过函数调用来实现的,所以在此我修改的是vfs这一层,找到fs,目录下的read_write.c并打开找到do_sync_read函数,在其返回前加入printk语句 (7) 使用dmesg –c查看后台的输出。 (8) 复制ext3或ext4的源代码(注意与当前使用的文件系统有区别),修改Makefile文件,使用模块编译方式 (9) 修改ext3或ext4的源代码,实现新的文件系统。(至少需要修改文件系统的名称,最好能对文件写操作向系统后台打印出信息。) 使其在加载和卸载的时候能够printk到buffer缓冲中(10) 动态加载和卸载新的文件系统。使用insmod语句加载使用lsmod语句加载 加载成功接下来使用dmesg 查看缓冲区内容 成功接下来使用rmmod语句卸载模块 成功五、 课程设计结果及分析课程设计结果:成功分析:Linux文件系统使用了面向对象的设计方法,保证了其对用户的透明,VFS层实现了系统与文件系统的无关性,增加了系统对不同文件系统的兼容性。六、 总结与进一步改进设想总结:1.编译内核的时候,可以使用make XXX –j8这样可以开启多线程编译(我的虚拟机分配的是8核心),加快编译速度2.printk语句我写的是printk(”””DoingRead”);本意是利用printk的优先级,将其输出到用户态的控制台,结果语法错误,并没有输出到控制台改进设想:修改的文件前加上语句,实现对控制台的输出 define KERN_EMERG 0(因为缺少这个宏,导致系统并没有理解我的0是什么意思) 七、 答辩(或汇报)记录(包括问题和答案,每个人不少于3个) 显示内核版本 使用dmesg –c命令 加载新模块 八、 参考文献 鸟哥的Linux私房菜 百度百科:printk概述http://baike.baidu.com/link?url=Kv5e2xb9thGENkIvSQmjpkYb8kbKoNvEhmt2oICTmDAn0wj2YADVf8dsrzBtz2fRt0uwa_3joQ-o40wKwwL68a Linux虚拟文件系统(VFS)http://www.cnblogs.com/yuyijq/archive/2013/02/24/2923855.html LinuxEXT4文件系统分析http://wenku.baidu.com/link?url=Wi-vyrROUIJqRk4eSsuwOwRe0Sf-ydXamWNR0H2HCrN9CPHJg80lXpu0Gi_ZGT-X5yKnknl86ooHdckHhJxybmyBR2szWsPDOV0IPJ6fJXO

杨冬芳 2019-12-02 03:10:35 0 浏览量 回答数 0

问题

H5技术百问——不懂H5你就OUT啦

yq传送门 2019-12-01 20:27:41 42586 浏览量 回答数 47

问题

#技塑人生# Linux系统下使用iftop结合iptables服务解决带宽被恶意请求的问题

qiujin2012 2019-12-01 22:05:33 8971 浏览量 回答数 3

问题

【前沿对话】如何看待国产操作系统UOS?体验如何?

问问小秘 2020-01-17 10:46:49 1108 浏览量 回答数 5

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

问题

Java技术1000问(3)【精品问答】

问问小秘 2020-06-02 14:27:10 42 浏览量 回答数 1

回答

一 、iOS APP 上架流程简介 1. 申请开发者账号 苹果的开发者账号主要分为个人(Individual)、公司(Company)、企业(Enterprise)、高校(University)四种类型,每年资费分别为$99、$99、$299、免费)。一般开发者申请的都是个人或者公司的,企业的开发者账号开发应用不能发布到App Store,只能企业内部使用。这个申请过程一般可能需要一个星期左右。公司和企业的需要邓白氏码,如果邓白氏码未申请,请先申请邓白氏码,这个过程需要一到两个星期。 创建证书、AppID、生成描述文件 通过 Mac 的钥匙串工具,生成证书请求文件,下载证书,这里需要注意的是下载下来的证书只能在请求该证书的电脑上使用,如果想给其他开发者使用需要将已经导入的证书导出为个人信息交换(.p12)格式供他人使用。 AppID 的创建需要用到项目的 Bundle ID,之后便可以创建描述文件了。 在开发者中心的 iTunes Connect 中配置 App 相关信息 在开发者中心里的 iTunes Connect 里的 APP 选项中新建 APP 项目并配置相应的信息(需要各个版本的屏幕截图,运行模拟器,调到最大(command+1)用 command+s 截图,还有就是一个1024*1024的图标,不能有圆角) 使用 Xcode 打包上传 App 将 2 步骤中申请好的证书和描述文件正确配置到 Xcode 中,设置好Xcode 的一些属性: 在Xcode中选择iOS Device(这里不能选择模拟器) 如果应用不支持横屏,请在 General 选项中将 Landscape Left 和 Landscape Right 两项的勾选去掉 查看版本号和构建版本号 将断点、全局断点、僵尸模式等都去掉 设置为 Release 模式 之后便可选择 Xcode->Product->Archive 打包项目,打包完成后选择 Upload to App Store 上传。如果不想使用 Xcode 上传的话,也可以选择 Export 导出 ipa 文件, 需要注意的是在导出时,必须选择 Save for iOS App Store Deployment。然后通过Application Loader 工具上传 ipa 文件。 提交审核 以上步骤完成后,返回 iTunes Connect 上查看自己的 App 信息,在构建版本中选择刚刚上传的 App 版本,此时有可能显示正在处理,这时可能需要等几分钟再回来查看。选择好版本后点击提交以供审核,这时 App 会变成等待审核状态。 后续 后续就是等待苹果的审核人员审核应用了,如果一切顺利的话,这个过程需要一到两个工作日便可完成审核,当然前提是你的应用符合苹果的审核条款。如果审核不通过,请及时根据反馈信息修改应用,再次提交直到符合要求。审核通过后,如果之前选择已经选择好自动发布,便可在 AppStore 上查看和下载应用了。 二 、iOS 上架审核过程常见的坑与解决方法 1. 问题:用户生成内容(UGC)缺少必要的审核 为了防止非法滥用用户生成的内容,从而给用户提供虚假信息、盗取用户的知识产权,社交应用以及应用当中包含用户生成的信息的应用必须包括下述功能: 过滤不良内容 提供举报机制 后台服务可以提供阻止骚扰用户的行为 提供官方联系方式,让用户可以快速联系到开发商 解决方案: 维秀直播 App 提供了用户实时弹幕功能,所以涉及到了 UGC,他们的处理方法是增加关键词过滤,还有通过房管的方式人工审核,处理违规用户。 问题:应用中使用了 IDFA 被拒绝 IDFA 主要被用于广告中区分设备的作用。AppStore 禁止没有使用广告而采集 IDFA 的 App 上架,所以如果 App 本身没有广告的话,使用第三方 SDK 要注意检查是否含有 IDFA 广告模块。 解决方案: 如果应用本身有集成广告的话,只需要在提交审核的时候勾选正确的广告标识符选项即可。 如果应用本身未集成广告,却包含 IDFA 的话。这种情况一般都是集成的第三方 SDK 中包含 IDFA 导致的。首先寻找是否有不包含 IDFA 的 SDK 版本,如果没有的话可以参考 ShareSDK 的解决方法,通过后台配置在审核期间为应用添加广告,审核完成过后将广告展示去掉。 3. 问题:应用不支持 IPv6网络下使用 2016年6月1号起,苹果的审核人员会在 IPv6 网络上审核你的应用,所以如果你的应用程序无法使用 IPv6 协议,可能会被拒绝。 解决方案: 卓易夺宝和乐动听 App 上架过程中就因为 IPv6 的支持原因被拒。他们的解决方案是: 协调后端人员添加对 IPv6 网络的支持。 App 端更新相关的第三方 SDK,比如使用 ASI 或者 AFN 的版本太低,使用最新的 AFN 即可解决问题。 当然这些做完之后最好在Mac 上面搭建 IPv6网络供测试人员进行完测试再重新发布。 4. 问题:第三方登录、支付、分享未安装应用,提示下载被拒 这个问题其实被拒的原因有两种,第一种是未安装应用没有任何提示,这种情况下相当于应用有无效的按钮所以会被拒;第二种是提示下载对应的第三方 App,这也是苹果所不允许的。 解决方案: 最新的第三方登录等相关的 SDK 目前已知的(微信,QQ,微博)都已经对这种情况做了处理,在未安装的情况下会调用 web 进行登录,所以如果测试过程中发现可以成功在 web 上登录的话可以不做处理。以前在没有这种处理机制的情况下需要开发者调用对应接口,先判断是否安装了相应的第三方 APP,如果未安装,需要隐藏按钮,这样便可轻松过审。 问题:虚拟产品未使用应用内支付(IAP)被拒 根据苹果官方最新的审核条款:如果你希望通过付费才可以解锁你的应用当中的一些功能(例如,订阅内容,游戏货币,游戏关卡,获取优质内容,解锁完整版本),你必须使用应用内付费(IAP)。如果这种情况下,应用使用了其他的第三方支付,应用将被拒绝上架。 解决方案: 审核的时候,把相应的虚拟产品隐藏起来,通过后再放出来,此招有风险,可能会受到警告信,甚至被封号,如果用户量小就无所谓了,先把App 搞上架! 审核的时候,走 IAP 的支付方式,审核完成后再通过服务器配置动态切换到支付宝、微信等第三方支付。该法类似于方案1,也存在风险。 学习58同城,让用户去网站购买产品,买了产品的账号到移动端使用功能。 老老实实的使用 IAP 吧。 6. 问题:使用后台定位被拒 关于位置服务苹果的审核条款原文如下: 使用位置服务的应用程序必须提供和位置服务直接相关的功能。使用基于位置的API不允许用于提供紧急服务,或者实现自动控制车辆、飞行器以及其他设备(小型的设备例如小型无人机和玩具例外),远程控制汽车警报系统等。在收集、传输和使用用户的位置数据之前,请确保你已经取得了用户的同意。 如果应用程序使用了后台定位服务,务必在应用当中阐明其目的。并且使用后台定位的话需要提供一个明确的提醒告诉用户这么做会加快电量消耗。 一般应用在这一块被拒的原因有以下几种: 应用根本不需要定位功能。 应用需要定位功能,但是只需要短暂的获取少数的用户的位置,比如美团,新闻类的应用需要获得当前用户的所在城市,却使用了后台定位模式。 应用确实需要使用后台定位,比如打车类软件,但是应用中却没有任何界面展示这些定位数据。 解决方案: 如果你的应用根本不需要定位功能,但是还是在 info.plist 里面添加了 location in the UIBackgroundModes key ,那么在 plist 文件里面移除 UIBackgroundModes key 就可以,这中情况较少,新手小白会犯这种错误。 如果只是简单获取位置不需要使用后台定位,只需要去掉info.plist 的文件中的 UIBackgroundModes 即可。 这种情况比较复杂,推荐的做法是通过表格或者轨迹展示出后台定位的数据,再提交审核的时候告诉苹果那个功能需要后台定位,具体展示后台定位的 数据在那个界面,最后需要 Continued use of GPS running in the background can dramatically decrease battery life加到 App 描述里 面,可以参考滴滴出行的描述,否则也会被拒绝。 7. 问题:info.plist 权限配置被拒 iOS 10 之后如果需要调用相机,蓝牙等设备时,需要在 info.plist 文件中进行相应的配置,否则应用会直接崩溃,在 iOS 10 之前则是无法访问。另外,如果在 info.plist 中调用了配置了权限在应用中却没有使用到也是会被拒的。 解决方案: 一定要注意自己的 App 在使用中用到了哪些权限,不要添加无用的权限,也不要缺少必要的权限。 问题:应用提示更新被拒 应用内不能有任何提示更新应用的字样,且应用的更新只能通过 AppStore。因为苹果对于应用的更新有自己的一套策略,所以禁止应用本身提供更新方式,只要应用内出现。 解决方案: 如果不是很必要的话,尽量将应用内涉及到应用更新的部分去掉。如果真的需要使用应用更新,推荐的方法是应用启动的时候获取下应用在 AppStore 上面的版本号,与自己的版本号进行比较,当自己的版本号小于 AppStore 上面的版本号时,提示更新,否则的话不显示更新相关的内容。 问题:夺宝(抽奖)类应用被拒 根据 AppStore 审核准则 20.4 的规定,抽奖卷或抽奖参与权的购买,不论是透过第三方支付渠道或者余额扣款实现,都不能够在 app 内执行。 解决方案: 卓易夺宝 App 上架过程中遇到的问题,最后的解决方法是在审核过程中,所有的支付行为都跳转到 Safari 浏览器上面进行,审核完成后再使用支付宝等 app 平台支付。 问题:隐私条款问题被拒 在未获得用户事先允许,或未告知用户信息将被如何,在哪里使用的情况下,应用不可以传输用户数据。 解决方案: 《网站服务协议》《隐私条款》这些都不要少,注册时候让用户可勾选。另外注明需要的用户信息用来做什么。 问题:未提供测试账号被拒 如果应用中有需要用到账号或者其他资源的(例如:一个二维码)才能使用的一些功能,但未提供给苹果,可能会被拒绝上架。原因是苹果审核人员无法测试这些功能。 解决方案: 提供一个有效的测试帐号以及登录信息,并提供测试功能必要的的硬件和资源(例如,一个测试用的二维码) 问题:未通过 HTTPS 访问被拒 App Transport Security(ATS) 是 Apple 为增强 iOS App 网络通信安全提出的安全功能,适用于 iOS App 和 App Extension;在启用 ATS 之后,它会强制应用通过 HTTPS(而不是 HTTP )连接网络服务。 WWDC 2016上提出,2016年底或2017年初,具体时间未定。App Store 上架审核加强对 ATS 配置的 review,即强制应用必须通过 HTTPS 连接网络服务,而不是随手将 NSAllowsArbitraryLoads 置为 YES,否则审核不予通过。 解决方案: ATS 的提出,是为了在系统层面保障 iOS APP 网络通信的安全;Apple 只所以加强对 ATS 配置的审核,是为了防止开发者们遇到ATS相关的场景时,只是简单地将 ATS完全关闭(只要没有强制性措施,开发者会这么做);在此基础上,App 审核同样会遵循原则:App Review will require "reasonable justification" for most ATS exceptions。 Apple 官方给出的可以通过审核的声明 demo 如下: 必须使用第三方提供的服务,但是其没有支持 HTTPS; 必须通过域名连接到设备,但该设备不能支持安全连接; 必须展示不同来源的网页内容,但是不能基于 NSAllowsArbitraryLoadsInWebContent 支持的类(UIWebView / WKWebView)实现; 载入加密的媒体资源并且其中不涉及个人信息。 由于 Apple 官方并没有给出 ATS 审核的完整说明,ATS 审核时什么才是合适合理的声明也没有明确的客观定义,以上 demo 描述仅能作为参照。 参考文章: http://www.jianshu.com/p/b1b77d804254 https://github.com/wg689/Solve-App-Store-Review-Problem 22人点赞 iOS 作者:Jon1993 链接:https://www.jianshu.com/p/a992c88087a5 来源:简书

一只刺猬 2020-03-27 10:03:40 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 答案来源网络,供您参考

问问小秘 2019-12-02 02:13:31 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:53 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构, 然后从网络、 资源管理、存储、服务发现、负载均衡、高可用、rolling upgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。 当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解 Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。 1.Kubernetes的一些理念: 用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。 保证系统总是按照用户指定的状态去运行。 不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。 那些需要担心和不需要担心的事情。 更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。 对于Kubernetes的架构,可以参考官方文档。 大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。 看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在 Kubernetes 的未来版本中解决。 2.Kubernetes的主要特性 会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性 -> 由于时间有限,只能简单一些了。 另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。 1)网络 Kubernetes的网络方式主要解决以下几个问题: a. 紧耦合的容器之间通信,通过 Pod 和 localhost 访问解决。 b. Pod之间通信,建立通信子网,比如隧道、路由,Flannel、Open vSwitch、Weave。 c. Pod和Service,以及外部系统和Service的通信,引入Service解决。 Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。 注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖Pod IP;通过Service环境变量或者DNS解决。 2) 服务发现及负载均衡 kube-proxy和DNS, 在v1之前,Service含有字段portalip 和publicIPs, 分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp 通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp, 而在service port 定义列表里,增加了nodePort项,即对应node上映射的服务端口。 DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取Kubernetes API获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain, "tenx.domain"是提前设置的主域名。 注意:kube-proxy 在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service 的endpints 或者 Pods上。Kubernetes官方也在修复这个问题。 3)资源管理 有3 个层次的资源限制方式,分别在Container、Pod、Namespace 层次。Container层次主要利用容器本身的支持,比如Docker 对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。 资源管理模型 -》 简单、通用、准确,并可扩展 目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的scheduler plugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。 4)高可用 主要是指Master节点的 HA方式 官方推荐 利用etcd实现master 选举,从多个Master中得到一个kube-apiserver 保证至少有一个master可用,实现high availability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。 一张图帮助大家理解: 也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver 同一时间只能有一套运行。 5) rolling upgrade RC 在开始的设计就是让rolling upgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。 通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback 当前正在执行的upgrade操作。 同样, Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。 6)存储 大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes 的 Volume就是主要来解决上面两个基础问题的。 Docker 也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。 创建一个带Volume的Pod: spec.volumes 指定这个Pod需要的volume信息 spec.containers.volumeMounts 指定哪些container需要用到这个Volume Kubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。 emptyDir 随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持 RAM-backed filesystemhostPath 类似于Docker的本地Volume 用于访问一些本地资源(比如本地Docker)。 gcePersistentDisk GCE disk - 只有在 Google Cloud Engine 平台上可用。 awsElasticBlockStore 类似于GCE disk 节点必须是 AWS EC2的实例 nfs - 支持网络文件系统。 rbd - Rados Block Device - Ceph secret 用来通过Kubernetes API 向Pod 传递敏感信息,使用 tmpfs (a RAM-backed filesystem) persistentVolumeClaim - 从抽象的PV中申请资源,而无需关心存储的提供方 glusterfs iscsi gitRepo 根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的 :) 7)安全 一些主要原则: 基础设施模块应该通过API server交换数据、修改系统状态,而且只有API server可以访问后端存储(etcd)。 把用户分为不同的角色:Developers/Project Admins/Administrators。 允许Developers定义secrets 对象,并在pod启动时关联到相关容器。 以secret 为例,如果kubelet要去pull 私有镜像,那么Kubernetes支持以下方式: 通过docker login 生成 .dockercfg 文件,进行全局授权。 通过在每个namespace上创建用户的secret对象,在创建Pod时指定 imagePullSecrets 属性(也可以统一设置在serviceAcouunt 上),进行授权。 认证 (Authentication) API server 支持证书、token、和基本信息三种认证方式。 授权 (Authorization) 通过apiserver的安全端口,authorization会应用到所有http的请求上 AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。 8)监控 比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的container metrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。 Kubernetes集群范围内的监控主要由kubelet、heapster和storage backend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。 注意: heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 此答案来源于网络,希望对你有所帮助。

养狐狸的猫 2019-12-02 02:13:33 0 浏览量 回答数 0

回答

在浏览器里输入 [url=file://\\10.2.6.120]\\10.2.6.120[/url] 弹出以下“\\10.2.6.120无法访问。你可能没有权限访问网络资源。请与这台服务器的管理员联系以查明你是否有访问权限。拒绝访问。” 现在公司最喜欢用WIN2000/ xp,但是这个系统本身就带有些系统排斥,因为内网的资源是共享的,所以经常碰到等入不了的问题,系统提示:此工作组的服务器列表无法使用。下面就着手解决.但是首先,我们先来看下网络邻居互相访问的最基本的条件: 1.双方计算机打开,且设置了网络共享资源; 2.双方的计算机添加了 "Microsoft 网络文件和打印共享" 服务; 3.双方都正确设置了网内IP地址,且必须在一个网段中; 4.双方的计算机中都关闭了防火墙,或者防火墙策略中没有阻止网上邻居访问的策略。 5. XP首次使用时在网上邻居的属性里面已经新建一个网络连接进行网络安装向导 6.计算机之间的物理连接正常。在桌面计算机中,每个网卡后面的指示灯是亮的,集线器或交换机是打开的,而且每个客户端连接的指示灯都是亮的,网线的水晶头接触良好。 7.确保所有计算机上都安装了TCP/IP,并且工作正常。 在Windows XP中默认安装了TCP/IP。但是,如果出了网络问题想卸载后重新安装TCP/IP就不容易了:在“本地连接”属性中显示的此连接使用下列项目列表中单击Internet协议(TCP/IP)项,您将发现卸载按钮不可用(被禁用)。 这是因为传输控制协议/Internet协议(TCP/IP)堆栈是Microsoft XP/ 2003的核心组件,不能删除。在这种情况下,如果需要重新安装TCP/IP以使TCP/IP堆栈恢复为原始状态。可以使用NetShell实用程序重置 TCP/IP堆栈,使其恢复到初次安装操作系统时的状态。方法是:在命令提示符后键入以下命令,然后按ENTER键:netsh int ip reset c:\resetlog.txt,其中,Resetlog.txt记录命令结果的日志文件,一定要指定,这里指定了Resetlog.txt日志文件及完整路径。运行此命令的结果与删除并重新安装TCP/IP协议的效果相同。 既然我们现在了解明白了这些条件,就可以着手解决: 第一种可能性就是本身系统系统浏览的正常现象。如微软公司文档中提到的预期的升级行为.详细的可以到这里看: http://support.microsoft.com/kb/304040/ZH-CN/ 还有一点, 在实际的网络运用中,安装Windows XP系统的电脑有时会出现不能与Windows 98、Windows 2000的电脑互相访问的问题,即使是开启Guest账号、安装NetBEUI协议、设置共享文件夹,也不能正常访问,这就属于系统本身浏览的政策现象. 第二种是开了防火墙,在XP中自带的防火墙会导致无法访问网络邻居.可以通过命令net view \\computername 来查看.不论是2000还是XP只要关掉防火墙就可以.同时确保防火墙没有禁止以下端口的通讯:UDP-137、UDP-138、TCP-139、 TCP-445(仅WIN2K及以后的操作系统)。 Windows XP最新的SP2补丁对ICS做了很大的改进,功能更强大了,ICS有了自己的设置项,安装SP2后,默认情况下,启用ICS防火墙,不允许任何外部主动连接,即使是本地的应用程序要访问网络也需要在许可列表中做设置。 但是防火墙阻断正常的网络浏览服务通讯,结果是别人在网上邻居中看不到你的计算机.这时候如果开启了ICS,打开属性,在服务这栏,选择添加,添加服务的对话框共有四个编辑框,最上边是描述服务名称,以便于记忆,从上到下第二个是应用服务的IP地址或名称,输入127.0.0.1表示本机。 下面连个是内外端口号,旁边的tcp/udp标示这个端口是udp连接还是tcp连接。 按照下面的表格输入3个服务 名称 协议 端口 NetBIOS Name Service UDP 137 NetBIOS Datagram Service UDP 138 NetBIOS Session Service TCP 139 PS: 137/UDP -- NetBIOS名称服务器,网络基本输入/输出系统(NetBIOS)名称服务器(NBNS)协议是TCP/IP上的NetBIOS (NetBT)协议族的一部分,它在基于NetBIOS名称访问的网络上提供主机名和地址映射方法。138/UDP -- NetBIOS数据报,NetBIOS数据报是TCP/IP上的NetBIOS (NetBT)协议族的一部分,它用于网络登录和浏览。 139/TCP -- NetBIOS会话服务,NetBIOS会话服务是TCP/IP上的NetBIOS (NetBT)协议族的一部分,它用于服务器消息块(SMB)、文件共享和打印。 第三种是查看Guest用户激活了没有,可以从“控制面板|管理工具|计算机管理|本地用户和组|用户”中找到“Guest”账户,并用鼠标右击打开 “Guest属性”对话框,去除这里的“账户已停用”复选框上的对钩标记 .Windows XP的Guest帐户允许其他人使用你的电脑,但不允许他们访问特定的文件,也不允许他们安装软件。对Windows XP Home Edition计算机或工作组中的Windows XP Professional计算机的所有网络访问都使用来宾帐户。使用net user guest确保为网络访问设置了来宾帐户,如果该帐户是活动的,命令输出中会出现一行类似下面这样的内容:Account active Yes;如果该帐户不是活动的,请使用下面的命令授予来宾帐户网络访问: net user guest /active:yes 或者打开控制面板->用户帐户或者在管理工具->计算机管理->本地用户和组中打开Guest帐户.同时设置为允许Guest(来宾)帐号从网络上访问。 在运行里输入gpedit.msc,弹出组策略管理器,在‘计算机配置-Windows设置-本地策略-用户权利指派’中,有“拒绝从网络访问这台计算机”策略阻止从网络访问这台计算机,如果其中有GUEST帐号,解决办法是删除拒绝访问中的GUEST帐号。 第四种查看协议,IPX,netbeui,TIP/IP协议,选择开启,共享用的是139,445端口. Win2k安装NetBEUI协议. 网上邻居->属性->本地连接->属性---->安装------>协议------->NetBEUI Protocol XP右击网上邻居-属性,选择要共享的网卡。把IP设置在局域网的同一个网段上。在XP中打开 TCP/IP 上的 NetBIOS 开始---->控制面板---->网络和 Internet 连接---->网络连接---->本地连接---->属性---->Internet 协议 (TCP/IP) ---->常规---->高级---->WINS选项---->NetBIOS---->启用 TCP/IP 上的 NetBIOS---->确定[点击2次] 第五种在共享文件夹前加个符号,比如¥,%等 第六种检查Win2000是否存在安全策略限制 开始 -> 运行 -> gpedit.msc -> 计算机配置 -> windows设置 -> 本地策略 -> 用户权利分配 -> 删除"拒绝从网络访问这台计算机"中的guest用户。 XP的主策略安全设置 开 始 -> 运行 -> gpedit.msc -> 计算机配置 -> windows设置 -> 安全设置 ->本地策略 ->用户权利分配 -> 从网络上访问此计算机"属性那里性质Everone或者在"拒绝从网络访问这计算机"属性中删除GUEST 第七种“文件及打印机共享”的限制,允许其他用户访问我的文件点击激活就可以,其他的一些比较少碰到的问题如内部IP地址发生了冲突,甚至包括Hub故障、线路故障等就不说了 第八种启动"计算机浏览器"服务.根据微软的文档工作组中的一台或多台计算机没有启动或已关闭(禁用)"计算机浏览器"服务也会导致访问网络邻居失败.打开就可以了 开始---->我的电脑---->管理---->服务和应用程序---->服务---->在右边的详细信息窗格中,检查"计算机浏览器"服务是否已启动,右击计算机浏览器,然后单击启动 第九种运行网络标识向导. 我的电脑---->属性---->计算机名选项卡----> 网络 ID按钮,开始“网络标识向导”: ---->下一步---->本机是商业网络的一部分,用它连接到其他工作着的计算机---->下一步---->公司使用没有域的网络---->下一步---->输入你的局域网的工作组名---->下一步---->完成 第十种检查RPC、Plug and Play服务已启动,检查相应的系统文件夹的权限,重新注册以下的动态链接库: regsvr32 netshell.dll regsvr32 netcfgx.dll regsvr32 netman.dll 第十一种设置帐号和密码. 由于WinNT内核的操作系统,在访问远程计算机的时候,好像总是首先尝试用本地的当前用户名和密码来尝试,可能造成无法访问,在这里把用户密码添加进去就可以了。 第十二种ping ip ,然后在地址输入栏中输入“192.168.1.8”,单击“确定”。 用搜索计算机的方法访问,计算机更新列表需要时间,搜索计算机可以加快更新列表。点击“网上邻居”右键中的“搜索计算机”,输入计算机名,点击“立即搜索”,就可以看到你要访问的计算机。直接双击右边计算机名就可以打开它了。 用映射驱动器的方法访问,进入DOS方式,输入“NET VIEW \killer”,回车这是查看计算机上有哪些共享文件夹,如D。再输入NET USE Z:\Killer\D将计算机IBM-ZB共享的文件夹D映射为H:盘,在命令提示符下键入“Z:”。你会发现你已经连到目标计算机上了。 如果一个文件共享的时候在文件名前上了符号如¥%隐藏文件,可以在DOS下net share可以看的到。 由于WIN是中断式操作系统,如果对OS不是很熟悉的话会产生误解,相关的网络浏览过程方面的资料. 十三.打开控制面板,在用户一项里打开GUEST用户,再在控制面板,管理工具里,打开计算机管理,在里面选择本地用户和组,再选择用户,在GUEST上点右键,选择属性,这里有两种选择方法一种是需要密码,一种是不需要密码,如果需要密码就把《用户不能更改密码》和《密码永不过期》打上勾,如果不需要密码就直接把上面所有的勾去掉!还有如果需要密码的话,记得在GUEST上点右键,选择所有任务,设置密码!这里就是设置访问权限了,这一切都完毕以后关闭计算机管理,然后再在管理工具里打开本地安全策略,在本地策略里选择《用户权利指派》在用户权利指派里找到《拒绝本地登陆》一项,并把它打开,把里面的 GUEST删除掉,然后再找到《拒绝从网络访问这台计算机》打开,也是同样把GUEST删除掉,再找到《从网络访问此计算机》打开,在里面添加GUEST 项,一切就OK了!如果是在WIN98下访问XP,需要在WIN98的网上邻居属性里添加一个NETBOIS协议! 这样大家就可以在同一个子网里互访了! 十四、解除windows xp的文件共享限制 在安装了windows xp的计算机上,即使网络连接和共享设置正确,使用其他系统的用户仍然无法访问该计算机。默认情况下,windows xp的本地安全设置要求进行网络访问的用户全部采用来宾方式。同时,在windows xp安全策略的用户权利指派中又禁止guest用户通过网络访问系统。这样两条相互矛盾的安全策略导致了网内其他用户无法通过网络访问使用windows xp的计算机。你可采用以下方法解决。 方法一、解除对guest账号的限制 点击“开始→运行”,在“运行”对话框中输入“gpedit.msc”,打开组策略编辑器,依次选择“计算机配置→windows设置→安全设置→本地策略→用户权利指派”,双击“拒绝从网络访问这台计算机”策略,删除里面的“guest”账号。这样其他用户就能够通过guest账号通过网络访问使用 windows xp系统的计算机了。 方法二、更改网络访问模式 打开组策略编辑器,依次选择“计算机配置→windows设置→安全设置→本地策略→安全选项”,双击“网络访问:本地账号的共享和安全模式”策略,将默认设置“仅来宾—本地用户以来宾身份验证”,更改为“经典:本地用户以自己的身份验证”。 现在,当其他用户通过网络访问使用windows xp的计算机时,就可以用自己的“身份”进行登录了。当该策略改变后,文件的共享方式也有所变化,在启用“经典:本地用户以自己的身份验证”方式后,我们可以对同时访问共享文件的用户数量进行限制,并能针对不同用户设置不同的访问权限。 不过我们可能还会遇到另外一个问题,当用户的口令为空时,访问还是会被拒绝。原来在“安全选项”中有一个“账户:使用空白密码的本地账户只允许进行控制台登录”策略默认是启用的,根据windows?xp安全策略中拒绝优先的原则,密码为空的用户通过网络访问windows xp的计算机时便会被禁止。我们只要将这个策略停用即可解决问题。 答案来源网络,供参考,希望对您有帮助

问问小秘 2019-12-02 02:19:31 0 浏览量 回答数 0

问题

迁云工具FAQ

chenchuan 2019-12-01 21:36:31 659 浏览量 回答数 0

问题

安卓与iOS百问,开发者系统指南

yq传送门 2019-12-01 20:14:48 27317 浏览量 回答数 26

问题

大数据时代——数据存储技术百问

yq传送门 2019-12-01 20:27:42 31965 浏览量 回答数 35

问题

【企业IT管理员必读】WanaCrypt0r 2.0和ONION等勒索软件病毒应急处置方案

正禾 2019-12-01 21:59:41 8997 浏览量 回答数 4

问题

Web测试方法

技术小菜鸟 2019-12-01 21:41:32 7022 浏览量 回答数 1

回答

计算机科学与技术专业课程 课程简介 1.数字逻辑电路: “数字逻辑”是计算机专业本科生的一门主要课程,具有自身的理论体系和很强的实践性。它是计算机组成原理的主要先导课程之一,是计算机应用专业关于计算机系统结构方面的主干课程之一。 课程的主要目的是使学生了解和掌握从对数字系统提出要求开始,一直到用集成电路实现所需逻辑功能为止的整个过程的完整知识。内容有数制和编码、布尔代数和逻辑函数、组合逻辑电路的分析和设计,时序逻辑电路的分析和设计,中、大规模集成电路的应用。通过对该课程的学习,可以为计算机组成原理、微型计算机技术、计算机系统结构等课程打下坚实的基础。 2.计算机组成原理: 本课程是计算机系本科生的一门重要专业基础课。在各门硬件课程中占有举足轻重的地位。它的先修课程是《数字逻辑电路》,后继课程有《微机接口技术》、《计算机系统结构》。从课程地位来说,本课程在先修课和后继课中起着承上启下的作用。主要讲解计算机五大部件的组成及工作原理,逻辑设计与实现方法,整机的互连技术,培养学生具有初步的硬件系统分析、设计、开发和使用的能力。具体内容包括:数制与码制、基本逻辑部件、运算方法与运算器、指令系统与寻址方式,中央处理器(CPU)的工作原理及设计方法。存储系统和输入/输出(I/O)系统等。通过该课程的学习,可以使学生较深地掌握单台计算机的组成及工作原理,进一步加深对先修课程的综合理解及灵活应用,为后继课程的学习建立坚实的基础知识。 3.微机接口技术: 本课程是计算机科学与技术专业学生必修的核心课程之一,它的先修课程为数字逻辑、计算机组成原理。本课程对于训练学生掌握硬件接口设计技术,熟悉微处理器和各种接口芯片的硬件设计和软件调试技术都有重要作用,在软件方面要求掌握汇编语言,在硬件方面要掌握中断、DMA、计数器/定时器等设计技术。通过该课程的学习使学生学会微机接口设计的基本方法和技能。 4.计算机系统结构: 计算机系统结构主要是研究高性能计算机组织与结构的课程。主要包括:计算机系统结构的基本概念、指令的流水处理与向量计算机、高性能微处理器技术、并行处理机结构及算法和多处理机技术。结合现代计算机系统结构的新发展,介绍近几年来计算机系统结构所出现的一些新概念和新技术。 5.数据库概论: 数据库已是计算机系本科生不可缺少的专业基础课,它是计算机应用的重要支柱之一。该课程讲授数据库技术的特点,数据库系统的结构,三种典型数据模型及系统(以关系型系统为主)、数据库规范化理论,数据库的设计与管理,以及数据库技术的新进展等。通过本课程学习,掌握基本概念、理论和方法,学会使用数据库管理系统设计和建立数据库的初步能力,为以后实现一个数据库管理系统及进行系统的理论研究打下基础。 6.算法与数据结构: “数据结构”是计算机程序设计的重要理论技术基础,是计算机科学与技术专业的必修课,是计算机学科其它专业课的先修课程。通过学习本课程使学生掌握数据结构的基本逻辑结构和存储结构及其基本算法的设计方法,并在实际应用中能灵活使用。学会分析研究数据对象的特性,选择合适的逻辑结构、存储结构及设计相应的算法。初步掌握算法的时空分析技巧,同时进行程序设计训练。使学生学会应用抽象数据类型概念进行抽象设计。主要内容有:线性表、链表、栈、队列、数组、广义表、树与二叉树、图、查找、排序、内存管理、文件存储管理。 7.离散数学: “离散数学”是计算机科学与技术专业必修课程,其主要内容包括:命题逻辑;一阶命题逻辑;集合、关系与映射;代数系统、布尔代数 ;图论等。这些内容为学习计算机专业课程,如编译原理、数据结构提供重要的理论工具,同时也是计算机应用不可缺少的理论基础。 离散数学主要培养学生对事物的抽象思维能力和逻辑推理能力,为今后处理离散信息,从事计算机软件的开发和设计,以及计算机的其它实际应用打好数学基础。 8.操作系统: 操作系统是现代计算机系统中不可缺少的重要组成部分。它的先修课程是数据结构和计算机基础,在此基础上讲解操作系统的主要内容:CPU管理、存储器管理、作业管理、I/O设备管理和文件管理。这些基本原理告诉人们作为计算机系统中各种资源的管理者和各种活动的组织者、指挥者,操作系统是如何使整个计算机系统有条不率地高效工作,以及它为用户使用计算机系统提供了哪些便利手段。掌握了这些知识,人们就会对计算机系统的总体框架、工作流程和使用方法有了一个全面的认识,就会清楚后续专业课程所述内容在计算机系统中所处的地位和作用,这样不仅便于理解后续课程内容,而且能使人们把计算机的各部分知识有机地联系起来。此外,由于多处理机系统和计算机网络的盛行,本课程中也包含了对多处理机操作系统和网络操作系统的概述,从而使学习者可以跟上计算机技术的发展速度。 9.数据通信与计算机网: 该课程主要介绍网络基本理论和网络最新实用技术,分基础理论、实用技术和新技术三部分进行讲述。主要讲解计算机网络的功能和组成,数据传输,链路控制,多路复用,差错检测,网络体系结构,网络分层协议及局域网、广域网等。要求学生掌握数据通信的基本原理和计算机网络的体系结构,打下坚实的理论基础,培养实际应用的能力,为今后从事计算机网络的科研和设计工作打下基础。 10.高级语言程序设计: 本课程介绍了C与C++的全集。它从语法入手,同时强调程序设计的基本方法,以使学生能在较短的时间内,掌握C语言的结构化程序设计方法与C++语言的面向对象程序设计方法。主要内容有:1、过程初步;2、过程组织和管理;3、C++的数据类型;4、类与对象;5、继承;6、I/O流。 11.软件工程: 软件工程课程是计算机专业的一门主要专业课程,是培养高水平软件研制和开发人员的一门重程。该课程主要介绍软件工程的概念、原理及典型的方法技术,进述软件生存周期各阶段的任务、过程、方法和工具,讨论了软件工程使用的科学管理技术。 12.数据库应用: 通过实践方式使学生进一步掌握数据库知识和技术,掌握C/S(客户/服务)模式下的大型数据库的设计与实现,培养同行间的合作精神,学习应用合作方法。 13.软件编程实践: 主要介绍最新的常规的软件编程平台、工具和方法。本课程面向应用技术和实用技术,培养学生自学新技术的能力,在WINDOWS下的综合编程能力,实际解决问题能力。 14.计算机网络工程: 计算机技术与通信技术相结合导致了计算机网络的产生。计算机网络已成为当今大型信息系统的基础。-------------------------高等数学、大学英语、概率统计、离散数学、电路、模拟电子、数字电子、数据结构、操作系统、编译原理、计算机网络、数据库原理、软件工程、汇编语言、C++程序设计、接口技术、Java、VC++、计算机病毒分析、信息安全、等。 高数学的是微积分,线性代数,概率论与数理统计。英语是大学英语上下。还有就是专业的计算机知识,数据分析,c语言,java,还有计算机的系统分析,各种软件技术,学会写代码,程序等。

琴瑟 2019-12-02 01:22:34 0 浏览量 回答数 0

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站