• 关于 机内控制干什么用的 的搜索结果

问题

【精品问答】python必备面试干货

问问小秘 2019-12-01 21:53:38 1125 浏览量 回答数 2

问题

如何设计一个高并发系统?【Java问答学堂】45期

剑曼红尘 2020-06-28 20:53:14 10 浏览量 回答数 1

回答

没有简易算法,只有坐着慢慢算,算不死你。。。。。。哈哈哈1.除锈工程定额适用于什么工程。定额适用于金属表面的手工、动力工具、干喷射除锈及化学除锈工程。 手工除锈指操作人员利用钢丝刷、铁砂布、破布等对锈蚀的构件进行除锈处理。动力工具除锈指操作人员利用电动工具、钢丝刷、砂轮片、破布进行除锈处理。喷射除锈指操作人员利用鼓风机、除锈喷砂机、空气压缩机、轴流风机对锈蚀器具进行除锈处理。化学除锈指操作人员利用化学反应原理对锈蚀构件进行除锈处理。 2.哪些除锈已综合考虑在定额内?各种管件、阀件及设备上人孔、管口凸凹部分的除锈已综合考虑在定额内。 3.喷射除锈按Sa2.5级标准确定,当变更级别标准时,其人工、材料和机械应如何计算?喷射除锈按Sa2.5级标准确定。若变更级别标准,如按Sa3级则人工、材料、机械乘以系数1.1,按Sa2级或Sal级则人工、材料、机械乘以系数0.9。 4.手工、动力工具除锈可分为哪几种?区分标准是什么?手工、动力工具除锈分轻、中、重三种,区分标准为: 轻锈:部分氧化皮开始破裂脱落,红锈开始发生。 中锈:部分氧化皮破裂脱落,呈堆粉状,除锈后用肉眼能见到腐蚀小凹点。 重锈:大部分氧化皮脱落,呈片状锈层或凸起的锈斑,除锈后出现麻点或麻坑。 5.喷射除锈标准有哪几级?喷射除锈标准: Sa3级:除净金属表面上油脂、氧化皮、锈蚀产物等一切杂物,呈现均一的金属本色,并有一定的粗糙度。 Sa2.5级:完全除去金属表面的油脂、氧化皮、锈蚀产物等一切杂物,可见阴影条纹、斑痕等残留物不得超过单位面积的5%。 Sa2级:除去金属表面上的油脂、锈皮、松疏氧化皮、浮锈等杂物,允许有紧附的氧化皮。 6.什么是微锈?发生微锈时执行什么定额?定额不包括除微锈(标准:氧化皮完全紧附,仅有少量锈点),发生时执行轻锈定额乘以系数0.2。 7.因施工需要发生的二次除锈,应如何处理?因施工需要发生的二次除锈,应另行计算。 8.各种除锈有何优缺点?各种除锈的优缺点分别为: (1)手工除锈施工方法简单,可以在小构件和复杂外形构件上处理,比较经济,但工作效率低,大面积施工困难,除锈不彻底,氧化皮不易去除。 (2)风动工具除锈工作效率和质量均高于手工除锈,而且施工费用不太高,但劳动条件差,不适用于大面积除锈。 (3)干法喷砂除锈工作效率高,除锈效果好,比较彻底,但劳动条件差,粉尘量大,施工费用较高。 (4)湿法喷涂除锈粉尘少,工作条件比干法喷砂好,但工作效率比干喷砂低,处理后表面容易出现红锈,施工费用较高。 9.如何计算设备、管道除锈、刷油工程量?(1)设备简体、管道表面积计算公式:。 S=πDL (1—1) 式中 π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、人孔、管口凹凸部分,不再另外计算。 10.如何计算设备、管道防腐蚀工程量?(I)设备筒体、管道表面积计算公式为: S=πDL (1—2) 式中 π——圆周率,取3.14; D——设备简体、管道直径(m); L——设备筒体、管道高或延长米(m)。 (2)设备上的人孔、管口所占面积不另计算,同时在计算设备表面积时也不扣除。其工程量计算方法见下例。 11.什么是阀们、弯头和法兰。如何计算其防腐蚀工程量。 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°, 180°弯头也称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积: S=πD×2.5DKN (1-3) 式中 D——直径; K一一系数,取1.05; N——阀门个数。 (2)弯头表面积: S=πD×1.5DK×2π/B×N (1-4) 式中 D——直径; K——系数,取1.05 N——弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积: S=πD×1.5DKN (1-5) 式中 D——直径; K——系数,取1.05; N——法兰个数。 (4)设备和管道法兰翻边防腐蚀工程量计算式。 S=π(D+A)A (1-6) 式中D——直径; A——法兰翻边宽。 12.如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式: V=π(D+1.033δ)X1.033δL (1-7) S=π(D+2.18δ+0.0082)L (1-8) 式中 V——绝热层体积; S——绝热层面积; D——直径; 1.033、2.1——调整系数; d——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: 1)单管伴热或双管伴热(管径相同,夹角小于900时): D`=D1+D2+(10~20mm) 式中 D`——伴热管道综合值; D1——主管道直径; D2——伴热管道直径; (10~20mm)——主管道与伴热管道之间的间隙。 2) 双管伴热(管径相同,夹角大于90°时): D`=D1+1.5D2+(10~20mm) (1-10) 3) 双管伴热(管径不同,夹角小于90°时): D`=D1+1.5D2+(10~20mm) (1—1) 式中 D`——伴热管道综合值; D1——主管道直径。 将上述D`计算结果分别代人公式(1—7)、(1—8)计算出伴热管道的绝热层、防潮层和保护层工程量。 (3)设备封头绝热、防潮和保护层工程量计算式: V=[(D+1.033δ)/2]2π×1.033δ×1.6N (1-12) S=[(D+2.1δ)/2] 2π×1.6N (1-13) 13.什么是绝热工程?绝热工程是将绝热材料用人工或机械方法捆绑、缠绕或浇注、喷镀在设备、管道、金属结构或其他物体表面上以达到绝热效果的施工全过程。 14.刷油工程和防腐蚀工程中设备、管道,一般金属结构、管廊钢和H型钢分别以什么为计量单位?刷油工程和防腐蚀工程中设备、管道以“m2”为计量单位。一般金属结构和管廊钢结构以“kg”为计量单位;H型钢制结构(包括大于400mm以上的型钢)以“10 m2”为计量单位。 15.如何计算设备、管道内壁防腐蚀工程量?计算设备、管道内壁防腐蚀工程量时,当壁厚大于等于10mm时,按其内径计算;当壁厚小于10mm时,按其外径计算。 16.为什么喷射除锈在变更级别标准时,其人工、材料和机械应乘以相关系数?一般除锈的下一步就是涂层,涂层的基层处理要求与涂料的品种、建筑构件的材料和重要性有关。例如,富锌类涂料对金属基层除锈的要求比较高,带锈底漆可以在不彻底除锈的基层上涂装,湿固化型涂料对基层或环境要求一定的湿度,重要的、高耸的钢结构或处于严重腐蚀条件下的钢结构的基层除锈要求较高等。在确定涂料方案时,应包括对基层处理的要求。实际问题实际分析,尽量减少不必要的浪费,当除锈级别较高时,人工、材料、机械费用为了定量处理乘以一个系数1.1,反之,当除锈级别不够高时,可乘以系数0.9。 17.如何计算人工除锈工程量? 人工除锈时,管道和金属结构应区分锈蚀不同等级;设备区分锈蚀不同等级和直径大小;管道和设备均以“10 m2”为单位计算;金属结构以质量“100kg”为单位计算。 18.如何计算砂轮机除锈工程量?砂轮机除锈,即半机械化除锈。金属面区分锈蚀等级以“10 m2”计算。 19.如何计算喷砂除锈工程量?工程量计算: (1)设备区分直径大小,按内壁,外壁划分子项目,以“10 m2”为单位计算。 (2)管道按内、外壁划分子项目,以“10 m2”为单位计算。 (3)金属结构按其质量,以“100kg”为单位计算。 (4)气柜有分喷石英砂和喷河砂之分,分别按水槽壁板、水槽底板、中罩板、金属结构划分子目,除金属结构按质量以“100kg”为单位计算外,其余均按面积以“10m2”为单位计算。 20.如何计算化学除锈工程量?化学除锈,又称酸洗除锈。金属表面分为一般和特殊两种,分别以10m2为单位计算。 21.钢筋除锈有哪些方法?什么情况下应降级使用或剔除不用?钢筋的表面应洁净。油渍、漆污和用锤敲击时能剥落的浮皮、铁锈等应在使用前清除干净。在焊接前,焊点处的水锈应清除干净。 钢筋的除锈,一般可通过以下两种方法:一是在钢筋冷拉或钢丝调直过程中除锈,对大量钢筋的除锈较为经济省力;二是用机械方法除锈,如采用电动除锈机除锈,对钢筋的局部除锈较为方便。此外,还可采用手工除锈(用钢丝刷、砂盘)、喷砂和酸洗除锈等。 电动除锈机,如图1—3所示。该机的圆盘钢丝刷有成品供应,也可用废钢丝蝇头拆开编成,其直径为20~30cm、厚度为5~ 15cm、转速为1000r/min左右,电动机功率为1.0~1.5kw。为了减少除锈时灰尘飞扬,应装设排尘罩和排尘管道。

游客886 2019-12-02 01:21:41 0 浏览量 回答数 0

Java学习路线 26门免费课程

排名第一的编程语言,从事云计算、大数据开发工作必备

回答

Re0M带宽包年包月ECS支持带宽升级 Re:0M带宽包年包月ECS支持带宽升级   能给个免费的公网IP么 ------------------------- Re0M带宽包年包月ECS支持带宽升级   有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么   谁有方法,共享一下吧 ------------------------- Re0M带宽包年包月ECS支持带宽升级   有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么   谁有方法,共享一下吧 ------------------------- Re0M带宽包年包月ECS支持带宽升级 过去10个月,ECS本身没有任何变化,I/O一如既往的渣。数据盘还是不能降级,ECS与带宽还没分离,主机还是默认暴露在公网。控制台改了几次也没什么新鲜东西,越改越难用。唯一值得欣慰的应该就是快照功能了。ACE内侧2年了吧。除了把CDN和SLB商业化,你们貌似也没干什么。 ------------------------- Re0M带宽包年包月ECS支持带宽升级 1)0M带宽升级:0M带宽包年包月ECS可以选择公网带宽进行升级,升级成功后需要控制台重启服务器才能生效。 2)已有带宽降级到0M:含公网带宽包年包月ECS支持变配到0M带宽,且在该实例生存期内用户该实例的IP地址会保留,后续再次升级带宽后仍将 3) ECS购买官网带宽默认仍然是1M,用户可以根据需要选择0-200M的带宽。 ------------------------- Re0M带宽包年包月ECS支持带宽升级 我也来支持一下 ------------------------- Re0M带宽包年包月ECS支持带宽升级 好东西,收藏

xuchaoqi 2019-12-01 23:43:05 0 浏览量 回答数 0

回答

Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么   怎么弄个免费的IP呢 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么??? ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么   ???? ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么   谁有方法,共享一下吧 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 为什么ECS免费体验不含公网IP?【解决方法】      有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么   谁有方法,共享一下吧 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】   有免费的公网IP么   怎么弄个免费的IP呢   有IP后 流量要钱么   谁有方法,共享一下吧 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 过去10个月,ECS本身没有任何变化,I/O一如既往的渣。数据盘还是不能降级,ECS与带宽还没分离,主机还是默认暴露在公网。控制台改了几次也没什么新鲜东西,越改越难用。唯一值得欣慰的应该就是快照功能了。ACE内侧2年了吧。除了把CDN和SLB商业化,你们貌似也没干什么。 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 1)0M带宽升级:0M带宽包年包月ECS可以选择公网带宽进行升级,升级成功后需要控制台重启服务器才能生效。 2)已有带宽降级到0M:含公网带宽包年包月ECS支持变配到0M带宽,且在该实例生存期内用户该实例的IP地址会保留,后续再次升级带宽后仍将 3) ECS购买官网带宽默认仍然是1M,用户可以根据需要选择0-200M的带宽。 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 不知道美国主机和香港哪个速度快 ------------------------- Re为什么ECS免费体验不含公网IP?【解决方法】 好东西,收藏

xuchaoqi 2019-12-01 23:54:40 0 浏览量 回答数 0

问题

【Java学习全家桶】1460道Java热门问题,阿里百位技术专家答疑解惑

管理贝贝 2019-12-01 20:07:15 27612 浏览量 回答数 19

回答

. 在编写一个类时,如果该类中的代码可能运行与多线程环境下,就要考虑同步问题了。 会同时被多个线程访问的资源,就是竞争资源,也称为竞争条件。对于多线程共享的资源我们必须进行同步,以避免一个线程的改动被另一个线程所覆盖。 synchronized 关键字有两种作用域: 1> 某个对象实例内,synchronized aMethod(){}关键字可以防止多个线程访问对象的synchronized方法(如果一个对象有多个synchronized方法,只要一个线程访问了其中的一个synchronized方法,其它线程不能同时访问这个对象中任何一个synchronized方法)。这时,不同的对象实例的synchronized方法是不相干扰的。也就是说,其它线程照样可以同时访问相同类的另一个对象实例中的synchronized方法. 2> 是某个类的范围,synchronized static aStaticMethod{}防止多个线程同时访问这个类中的synchronized static 方法。它可以对类的所有对象实例起作用。 synchronized关键字是不能继承的,也就是说,基类的方法synchronized f(){} 在继承类中并不自动是synchronized f(){},而是变成了f(){}。继承类需要你显式的指定它的某个方法为synchronized方法; Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。      一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。      二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。      三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。      四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部   分的访问都被暂时阻塞。      五、以上规则对其它对象锁同样适用. 2. synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块。   synchronized 方法:通过在方法声明中加入 synchronized关键字来声明 synchronized 方法。如:   synchronized void accessVal(int newVal);   synchronized 方法控制对类成员变量的访问:每个类实例对应一把锁,每个 synchronized 方法都必须获得调用该方法的类实例的锁方能 执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行 状态。这种机制确保了同一时刻对于每一个类实例,其所有声明为 synchronized 的成员函数中至多只有一个处于可执行状态(因为至多只有 一个能够获得该类实例对应的锁),从而有效避免了类成员变量的访问冲突(只要所有可能访问类成员变量的方法均被声明为 synchronized) 。  在 Java 中,不光是类实例,每一个类也对应一把锁,这样我们也可将类的静态成员函数声明为 synchronized ,以控制其对类的静态成 员变量的访问。  synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率,典型地,若将线程类的方法 run() 声明为 synchronized ,由于在线程的整个生命期内它一直在运行,因此将导致它对本类任何 synchronized 方法的调用都永远不会成功。当然我们可 以通过将访问类成员变量的代码放到专门的方法中,将其声明为 synchronized ,并在主方法中调用来解决这一问题,但是 Java 为我们提供 了更好的解决办法,那就是 synchronized 块。   synchronized 块:通过 synchronized关键字来声明synchronized 块。语法如下:  synchronized(syncObject) {   //允许访问控制的代码  }  synchronized 块是这样一个代码块,其中的代码必须获得对象 syncObject (如前所述,可以是类实例或类)的锁方能执行,具体机 制同前所述。由于可以针对任意代码块,且可任意指定上锁的对象,故灵活性较高。  对synchronized(this)的一些理解 一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线 程必须等待当前线程执行完这个代码块以后才能执行该代码块。  二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized (this)同步代码块。  三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this) 同步代码块的访问将被阻塞。  四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个 object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。  五、以上规则对其它对象锁同样适用 3.打个比方:一个object就像一个大房子,大门永远打开。房子里有 很多房间(也就是方法)。 这些房间有上锁的(synchronized方法), 和不上锁之分(普通方法)。房门口放着一把钥匙(key),这把钥匙可以打开所有上锁的房间。 另外我把所有想调用该对象方法的线程比喻成想进入这房子某个 房间的人。所有的东西就这么多了,下面我们看看这些东西之间如何作用的。 在此我们先来明确一下我们的前提条件。该对象至少有一个synchronized方法,否则这个key还有啥意义。当然也就不会有我们的这个主题了。 一个人想进入某间上了锁的房间,他来到房子门口,看见钥匙在那儿(说明暂时还没有其他人要使用上锁的 房间)。于是他走上去拿到了钥匙 ,并且按照自己 的计划使用那些房间。注意一点,他每次使用完一次上锁的房间后会马上把钥匙还回去。即使他要连续使用两间上锁的房间, 中间他也要把钥匙还回去,再取回来。 因此,普通情况下钥匙的使用原则是:“随用随借,用完即还。” 这时其他人可以不受限制的使用那些不上锁的房间,一个人用一间可以,两个人用一间也可以,没限制。但是如果当某个人想要进入上锁的房 间,他就要跑到大门口去看看了。有钥匙当然拿了就走,没有的话,就只能等了。 要是很多人在等这把钥匙,等钥匙还回来以后,谁会优先得到钥匙?Not guaranteed。象前面例子里那个想连续使用两个上锁房间的家伙,他 中间还钥匙的时候如果还有其他人在等钥匙,那么没有任何保证这家伙能再次拿到。 (JAVA规范在很多地方都明确说明不保证,象 Thread.sleep()休息后多久会返回运行,相同优先权的线程那个首先被执行,当要访问对象的锁被 释放后处于等待池的多个线程哪个会优先得 到,等等。我想最终的决定权是在JVM,之所以不保证,就是因为JVM在做出上述决定的时候,绝不是简简单单根据 一个条件来做出判断,而是 根据很多条。而由于判断条件太多,如果说出来可能会影响JAVA的推广,也可能是因为知识产权保护的原因吧。SUN给了个不保证 就混过去了 。无可厚非。但我相信这些不确定,并非完全不确定。因为计算机这东西本身就是按指令运行的。即使看起来很随机的现象,其实都是有规律 可寻。学过 计算机的都知道,计算机里随机数的学名是伪随机数,是人运用一定的方法写出来的,看上去随机罢了。另外,或许是因为要想弄 的确定太费事,也没多大意义,所 以不确定就不确定了吧。) 再来看看同步代码块。和同步方法有小小的不同。 1.从尺寸上讲,同步代码块比同步方法小。你可以把同步代码块看成是没上锁房间里的一块用带锁的屏风隔开的空间。 2.同步代码块还可以人为的指定获得某个其它对象的key。就像是指定用哪一把钥匙才能开这个屏风的锁,你可以用本房的钥匙;你也可以指定 用另一个房子的钥匙才能开,这样的话,你要跑到另一栋房子那儿把那个钥匙拿来,并用那个房子的钥匙来打开这个房子的带锁的屏风。          记住你获得的那另一栋房子的钥匙,并不影响其他人进入那栋房子没有锁的房间。          为什么要使用同步代码块呢?我想应该是这样的:首先对程序来讲同步的部分很影响运行效率,而一个方法通常是先创建一些局部变 量,再对这些变量做一些 操作,如运算,显示等等;而同步所覆盖的代码越多,对效率的影响就越严重。因此我们通常尽量缩小其影响范围。 如何做?同步代码块。我们只把一个方法中该同 步的地方同步,比如运算。          另外,同步代码块可以指定钥匙这一特点有个额外的好处,是可以在一定时期内霸占某个对象的key。还记得前面说过普通情况下钥 匙的使用原则吗。现在不是普通情况了。你所取得的那把钥匙不是永远不还,而是在退出同步代码块时才还。           还用前面那个想连续用两个上锁房间的家伙打比方。怎样才能在用完一间以后,继续使用另一间呢。用同步代码块吧。先创建另外 一个线程,做一个同步代码 块,把那个代码块的锁指向这个房子的钥匙。然后启动那个线程。只要你能在进入那个代码块时抓到这房子的钥匙 ,你就可以一直保留到退出那个代码块。也就是说 你甚至可以对本房内所有上锁的房间遍历,甚至再sleep(10601000),而房门口却还有 1000个线程在等这把钥匙呢。很过瘾吧。           在此对sleep()方法和钥匙的关联性讲一下。一个线程在拿到key后,且没有完成同步的内容时,如果被强制sleep()了,那key还一 直在 它那儿。直到它再次运行,做完所有同步内容,才会归还key。记住,那家伙只是干活干累了,去休息一下,他并没干完他要干的事。为 了避免别人进入那个房间 把里面搞的一团糟,即使在睡觉的时候他也要把那唯一的钥匙戴在身上。           最后,也许有人会问,为什么要一把钥匙通开,而不是一个钥匙一个门呢?我想这纯粹是因为复杂性问题。一个钥匙一个门当然更 安全,但是会牵扯好多问题。钥匙 的产生,保管,获得,归还等等。其复杂性有可能随同步方法的增加呈几何级数增加,严重影响效率。这也 算是一个权衡的问题吧。为了增加一点点安全性,导致效 率大大降低,是多么不可取啊。 synchronized的一个简单例子 public class TextThread { public static void main(String[] args) {    TxtThread tt = new TxtThread();    new Thread(tt).start();    new Thread(tt).start();    new Thread(tt).start();    new Thread(tt).start(); } } class TxtThread implements Runnable { int num = 100; String str = new String(); public void run() {    synchronized (str) {     while (num > 0) {      try {       Thread.sleep(1);      } catch (Exception e) {       e.getMessage();      }      System.out.println(Thread.currentThread().getName()        + "this is " + num--);     }    } } } 上面的例子中为了制造一个时间差,也就是出错的机会,使用了Thread.sleep(10) Java对多线程的支持与同步机制深受大家的喜爱,似乎看起来使用了synchronized关键字就可以轻松地解决多线程共享数据同步问题。到底如 何?――还得对synchronized关键字的作用进行深入了解才可定论。 总的说来,synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分类, synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。 在进一步阐述之前,我们需要明确几点: A.无论synchronized关键字加在方法上还是对象上,它取得的锁都是对象,而不是把一段代码或函数当作锁――而且同步方法很可能还会被其 他线程的对象访问。 B.每个对象只有一个锁(lock)与之相关联。 C.实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。 接着来讨论synchronized用到不同地方对代码产生的影响: 假设P1、P2是同一个类的不同对象,这个类中定义了以下几种情况的同步块或同步方法,P1、P2就都可以调用它们。 1. 把synchronized当作函数修饰符时,示例代码如下: Public synchronized void methodAAA() { //…. } 这也就是同步方法,那这时synchronized锁定的是哪个对象呢?它锁定的是调用这个同步方法对象。也就是说,当一个对象P1在不同的线程中 执行这个同步方法时,它们之间会形成互斥,达到同步的效果。但是这个对象所属的Class所产生的另一对象P2却可以任意调用这个被加了 synchronized关键字的方法。 上边的示例代码等同于如下代码: public void methodAAA() { synchronized (this)      // (1) {        //….. } } (1)处的this指的是什么呢?它指的就是调用这个方法的对象,如P1。可见同步方法实质是将synchronized作用于object reference。――那个 拿到了P1对象锁的线程,才可以调用P1的同步方法,而对P2而言,P1这个锁与它毫不相干,程序也可能在这种情形下摆脱同步机制的控制,造 成数据混乱:( 2.同步块,示例代码如下: public void method3(SomeObject so) {     synchronized(so)     {        //…..     } } 这时,锁就是so这个对象,谁拿到这个锁谁就可以运行它所控制的那段代码。当有一个明确的对象作为锁时,就可以这样写程序,但当没有明 确的对象作为锁,只是想让一段代码同步时,可以创建一个特殊的instance变量(它得是一个对象)来充当锁: class Foo implements Runnable {         private byte[] lock = new byte[0]; // 特殊的instance变量         Public void methodA()         {            synchronized(lock) { //… }         }         //….. } 注:零长度的byte数组对象创建起来将比任何对象都经济――查看编译后的字节码:生成零长度的byte[]对象只需3条操作码,而Object lock = new Object()则需要7行操作码。 3.将synchronized作用于static 函数,示例代码如下: Class Foo {     public synchronized static void methodAAA()   // 同步的static 函数     {         //….     }     public void methodBBB()     {        synchronized(Foo.class)   // class literal(类名称字面常量)     } }    代码中的methodBBB()方法是把class literal作为锁的情况,它和同步的static函数产生的效果是一样的,取得的锁很特别,是当前调用这 个方法的对象所属的类(Class,而不再是由这个Class产生的某个具体对象了)。 记得在《Effective Java》一书中看到过将 Foo.class和 P1.getClass()用于作同步锁还不一样,不能用P1.getClass()来达到锁这个Class的 目的。P1指的是由Foo类产生的对象。 可以推断:如果一个类中定义了一个synchronized的static函数A,也定义了一个synchronized 的instance函数B,那么这个类的同一对象Obj 在多线程中分别访问A和B两个方法时,不会构成同步,因为它们的锁都不一样。A方法的锁是Obj这个对象,而B的锁是Obj所属的那个Class。 小结如下: 搞清楚synchronized锁定的是哪个对象,就能帮助我们设计更安全的多线程程序。 还有一些技巧可以让我们对共享资源的同步访问更加安全: 1. 定义private 的instance变量+它的 get方法,而不要定义public/protected的instance变量。如果将变量定义为public,对象在外界可以 绕过同步方法的控制而直接取得它,并改动它。这也是JavaBean的标准实现方式之一。 2. 如果instance变量是一个对象,如数组或ArrayList什么的,那上述方法仍然不安全,因为当外界对象通过get方法拿到这个instance对象 的引用后,又将其指向另一个对象,那么这个private变量也就变了,岂不是很危险。 这个时候就需要将get方法也加上synchronized同步,并 且,只返回这个private对象的clone()――这样,调用端得到的就是对象副本的引用了 作者:hanwei_java 来源:CSDN 原文:https://blog.csdn.net/hanwei_java/article/details/79738614 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:50:26 0 浏览量 回答数 0

问题

使用Docker容器的十大误区

ghostcloud 2019-12-01 21:10:44 7758 浏览量 回答数 1

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 34170 浏览量 回答数 10

问题

【精品问答】python技术1000问(1)

问问小秘 2019-12-01 21:57:48 448528 浏览量 回答数 11

回答

引用来自“AiryLinus”的评论 1. 装 PHP 的时候记得装 PDO 扩展和 PDO_PGSQL 扩展,在安装  drupal, wordpress, phpbb 的时候选择使用 PDO_PGSQL 驱动。 2. 单独装 phppgadmin 就下载 php 代码包,自己新建 nginx 虚拟主机或者放到 web 根目录下面的某个子目录。 多谢6楼,终于得到一个答案! 同时多谢大家的捧场和建议,这次本人就要钻牛角尖,所以决定 postgresql 一条路走到黑了 ^^; 另外,我一边作环境一边把过程记录下来,我觉得对本身是大有益处的。或者过后在把整理出来的内容发给大家,希望对同道们有些帮助 ###### PHP+MySQL是黄金搭档,不喜欢Oracle,你可以用MariaDB或者Percona Server。 另外WordPress默认只支持MySQL数据库,还有国内很多PHP程序也都使用MySQL的,比如Discuz!  编译过PHP你就知道,PHP现在都是在内置MySQL数据库驱动mysqlnd,数据库连接和操作性能更好,另外还针对MySQL开发了mysqli扩展,提供一系列MySQL操作函数,从phpMyAdmin也可以看到PHP对MySQL的控制能力。另外MySQL管理程序HeidiSQL、MySQL-Front、MySQL Workbench都很不错,不输于PGAdmin3。 ######用nativecat吧,如果没安装桌面的话,安装 PGAdmin3干嘛,既然在虚拟机,可以在物理机安装PGAdmin3或者nativecat,ssh登录啊######哦,原来是劝我改行啊! 不过暂时还不想改呀... ###### PHP除了MySQL外,对其他数据库支持都不好。 这里说的不好,指得一个是数据库扩展的功能和性能上的跟进(比如PHP针对MySQL驱动做了特殊优化,对其他数据库则没有),其他数据库在PHP里都是二等公民;其次是PHP不支持连接池,对Pg、Oracle等进程型数据库来说是不能接受的;最后,也是最重要的,社区支持。你几乎找不到PHP和其他数据库配合使用的代码和项目、讨论等,比如你要找JAVA和Oracle,MySQL,H2,Sqlite等搭配,.NET和MSSQL,MySQL等搭配的文章,烂大街,但你找PHP,只能找到PHP+MySQL的文章或软件。遇到问题基本也是孤军奋战。 所以说,虽然理论上PHP支持各种数据库,但现实是,PHP只能搭配MySQL。 说完PHP,再说PG。PG在日本和对日外包中用的多,国内很少很少。 ######如果不允许盗版,PG就会多起来的了, MySQL有它水土不服的领域。######PHP内置SQLite3数据库和MySQL数据库驱动,当然连接其他数据库也完全可以,使用PDO也很方便:http://us.php.net/manual/zh/refs.database.php###### 果断 MySQL,还用说吗?! 你想学 php,就专注在上面,不要搞七搞八的。 ###### 1. 装 PHP 的时候记得装 PDO 扩展和 PDO_PGSQL 扩展,在安装 drupal, wordpress, phpbb 的时候选择使用 PDO_PGSQL 驱动。 2. 单独装 phppgadmin 就下载 php 代码包,自己新建 nginx 虚拟主机或者放到 web 根目录下面的某个子目录。 ######支持楼主######呵呵,推荐mysql这种垃圾的也不知道是什么心理

kun坤 2020-06-04 11:20:25 0 浏览量 回答数 0

问题

云服务器ECS【问答合集】

马铭芳 2019-12-01 20:19:32 18617 浏览量 回答数 6

问题

大数据时代——数据存储技术百问

yq传送门 2019-12-01 20:27:42 31965 浏览量 回答数 35

问题

云服务器ECS【问答合集】

游客886 2019-12-01 21:30:13 1366 浏览量 回答数 0

回答

怎么 没人来呀 @中山野鬼###### 1、如果想去掉while(true),可以考虑通知实现; 2、关于自动重连的问题,可以考虑重发送逻辑中抽离出来,采用心跳检测完成; 3、另外发送速率统计部分也应该抽离出来。 4、上多通道要考虑资源使用可控。 5、实在不行按照业务拆分成多模块,用redis 或mq类的扩展一下架构设计; ######回复 @OS小小小 : map =(Map)JSONObject.parse(SendMsgCMPP2ThredPoolByDB.ZhangYi.take()); 换成take,阻塞线程,试试。######回复 @OS小小小 : 1、通知只是告知队列里有新的数据需要处理了; 5、内存队列换成redis队列 实现成本增加,但是可扩展性增加;######1、通知实现的话 ,岂不是 无法保证 最少发送么,又会陷入另一个问题中 是吗? 或者是我的想法不对么? 2、嗯,这一块可以这样做。谢谢你 3、速率统计这里 我目前想不到怎么抽离、既可以控制到位,又可以保证不影响。。。 5、redis 是有的 但是 redis的队列的话 跟我这个 没啥区别吧,可能速度更快一点。######while(true) 里面 没数据最起码要休眠啊,不停死循环操作,又没有休眠cpu不高才怪######回复 @OS小小小 : 休眠是必须的,只是前面有数据进来,可以用wait notify 的思路通知,思路就是这样,CountDownLatch 之类多线程通讯也可以实现有数据来就能立即处理的功能######嗯,目前在测试 排除没有数据的情况,所以这一块没有去让他休眠,后面会加进去。 就针对于目前这种情况,有啥好办法吗###### 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) ######这才是对的做法######嗯,这思路可以。谢谢哈###### 引用来自“K袁”的评论 我的思路是:一个主线程,多个任务子线程。 主线程有一层while(true),这个循环是不断的扫描LinkedBlockingQueue是否有数据,有则交个任务子线程(也就是你这里定义的线程池)处理,而不是像你这样每个子任务线程都有一个while(true) 正确做法. 还有就是 LinkedBlockingQueue 本身阻塞的,while(true)没问题,主要在于不需要每个发送线程都去block######while(true)不加休眠就会这样###### java 的线程数量大致要和cpu数量一致,并不是越多越快,线程调度是很消耗时间的。要用好多线程,就需要设计出好的多线程业务模型,不恰当的sleep和block是性能的噩梦。利用好LinkedBlockingQueue,队列空闲时读队列的线程会释放cpu。利用消息触发后续线程工作,就没必要使用while(true)来不停的扫描。 ######@蓝水晶飞机 看到你要比牛逼,我就没有兴趣跟你说话了######回复 @不日小鸡 : 我就是装逼怎么啦,特么的装逼装出样子来的,起码也比你牛逼啊。######回复 @蓝水晶飞机 : 你说这话不能掩盖你没有回复我的问题又来回复我导致装逼失败的事实。 那你不是楼主你回复我干什么,还不是回答我的问题。 不要装逼了好么,装多就成傻逼了######回复 @不日小鸡 : 此贴楼主不是你,装什么逼。######回复 @王斌_ : 这些我都知道,我的意思是你这样回复可能会误导其他看帖子的人或者新手,让他们以为线程数就等于CPU数###### 引用来自“OS小小小”的评论 怎么 没人来呀 @中山野鬼 抬举我了。c++ 我还敢对不知深浅的人说,“权当我不懂”,java真心只是学过,没有实际工程上的经验。哈。而且我是c的思维,面对c适合的应用开发,是反对使用线程的。基本思维是,执行模块的生命周期不以任务为决定,同类的执行模块,可根据物理硬核数量,形成对应独立多个进程,但绝对不会同类的任务独立对应多个线程。哈。所以java这类面向线程的设计,没办法参与讨论。设计应用目标不同,系统组织策略自然有异。 唯一的建议是:永远不要依赖工具,特别是所谓的垃圾资源处理回收机制,无论它做的再好,一旦你依赖,必然你的代码,在不久的将来会因为系统设计规模的变大,而变的垃圾。哈。 听不懂的随便喷,希望听懂的,能记得这个观点,这不是我一个人的观点。 ######给100万像素做插值运算进行染色特效,请问单线程怎么做比多线程快?###### @乌龟壳 : 几种方法都可以,第一是按照计算步骤,每个进程处理一个步骤,然后切换共享空间(这没有数据传递逻辑上的额外开销),就是流水思维。第二个是block的思维,同样的几个进程负责相同计算,但负责不同片区。同时存在另一类的进程是对前期并发处理完的工作进行边界处理。 你这个例子体现不出进程和线程的差异的。 如果非要考虑进程和线程在片内cache的差异,如果没记错(错了大家纠正哈),进程之间的共享是在二级缓存之间吧。即便线程能做到一级缓存之间的共享,但对于这种大批量像素的计算,用进程仍然是使用 dma,将数据成块载入一级缓存区域进行处理,而这个载入工作和计算工作是同步的。不会有额外太多的延迟。 你举的这个例子,还真好是我以前的老本行。再说了。像素计算,如今都用专用计算处理器了吧。还用x86或arm来处理,不累死啊。哈。 而且这种东西java不适合,同样的处理器,用c写,基本可以比java快1到2倍。因为c可以直接根据硬件特性和计算逻辑特点有效调度底层硬件驱动方式。而java即便你用了底层优化的官方库,仍然不能保证硬件与计算目标特性的高度整合。 ######回复 @中山野鬼 : 简单来说,你的多个进程处理结果进行汇总的时候,是不是要做内存复制操作?如果是多线程天然就不用,多进程用系统的共享内存机制也不用,问题是既然用了共享内存,和多线程就没区别了。######回复 @乌龟壳 : 两回事哦。共享空间是独立的,而线程如果我没记错,全局变量,包括文件内的(静态变量)是共享的。不同线程共享同一个进程内的变量嘛。这些和业务逻辑相关的东西,每个线程又是独立一套业务逻辑,针对c语言,这样去设计,不是没事找事嘛。面向对象语言,这块都帮你处理好了,自然没有关系。######既然有共享空间了,那你所说的进程和线程实际就是一回事了。###### @乌龟壳   ,数据分两种,一种和算法或处理相关的。一种是待处理的数据。 前者,不应该共享,后者属于数据加工流程,必然存在数据传递或流动,最低成本的传递/流动方式就是共享内存,交替使用权限的思路。 但这仅仅针对待加工的数据和辅助信息,而不针对程序本身。 进程不会搞混乱这些东西特别是(待加工数据的辅助信息),而线程,就各种乱吧。哈。 进程之间,虽然用共享空间,但它本质是数据传递/流动,当你采用多机(物理机器)并发处理时,进程移动到另外一个物理主机,则共享空间就是不能选择的传递/流动方式了。但线程就没有这些概念。 ######回复 @中山野鬼 : 是啊,java天然就不是像C一样对汇编的包装。######@乌龟壳 面向企业级的各种业务,java这些没问题的。而且更有优势,面向计算设备特性的设计开发,就不行了。哈。######回复 @中山野鬼 : 也算各有场景吧,java同样可以多进程可以分布式来降低多线程的风险。java也可以静态编译成目标机器码。总之事在人为。######回复 @乌龟壳 : 高手,啥都可以,低手,依赖这些,就是各种想当然。哈哈。######回复 @中山野鬼 : 那针对java的垃圾回收,这个东西是可以调节它算法的,不算依赖工具吧,哈。不然依赖C语言语法也算依赖工具咯。哈。;-p

kun坤 2020-05-31 13:04:51 0 浏览量 回答数 0

问题

Java技术1000问(3)【精品问答】

问问小秘 2020-06-02 14:27:10 42 浏览量 回答数 1

回答

前言 这期我想写很久了,但是因为时间的原因一直拖到了现在,我以为一两天就写完了,结果从构思到整理资料,再到写出来用了差不多一周的时间吧。 你们也知道丙丙一直都是创作鬼才来的,所以我肯定不会一本正经的写,我想了好几个切入点,最后决定用一个完整的电商系统作为切入点,带着大家看看,我们需要学些啥,我甚至还收集配套视频和资料,暖男石锤啊,这期是呕心沥血之作,不要白嫖了。 正文 在写这个文章之前,我花了点时间,自己臆想了一个电商系统,基本上算是麻雀虽小五脏俱全,我今天就用它开刀,一步步剖析,我会讲一下我们可能会接触的技术栈可能不全,但是够用,最后给个学习路线。 Tip:请多欣赏一会,每个点看一下,看看什么地方是你接触过的,什么技术栈是你不太熟悉的,我觉得还算是比较全的,有什么建议也可以留言给我。 不知道大家都看了一下没,现在我们就要庖丁解牛了,我从上到下依次分析。 前端 你可能会会好奇,你不是讲后端学习路线嘛,为啥还有前端的部分,我只能告诉你,傻瓜,肤浅。 我们可不能闭门造车,谁告诉你后端就不学点前端了? 前端现在很多也了解后端的技术栈的,你想我们去一个网站,最先接触的,最先看到的是啥? 没错就是前端,在大学你要是找不到专门的前端同学,去做系统肯定也要自己顶一下前端的,那我觉得最基本的技术栈得熟悉和了解吧,丙丙现在也是偶尔会开发一下我们的管理系统主要是VUE和React。 在这里我列举了我目前觉得比较简单和我们后端可以了解的技术栈,都是比较基础的。 作为一名后端了解部分前端知识还是很有必要的,在以后开发的时候,公司有前端那能帮助你前后端联调更顺畅,如果没前端你自己也能顶一下简单的页面。 HTML、CSS、JS、Ajax我觉得是必须掌握的点,看着简单其实深究或者去操作的话还是有很多东西的,其他作为扩展有兴趣可以了解,反正入门简单,只是精通很难很难。 在这一层不光有这些还有Http协议和Servlet,request、response、cookie、session这些也会伴随你整个技术生涯,理解他们对后面的你肯定有不少好处。 Tip:我这里最后删除了JSP相关的技术,我个人觉得没必要学了,很多公司除了老项目之外,新项目都不会使用那些技术了。 前端在我看来比后端难,技术迭代比较快,知识好像也没特定的体系,所以面试大厂的前端很多朋友都说难,不是技术多难,而是知识多且复杂,找不到一个完整的体系,相比之下后端明朗很多,我后面就开始讲后端了。 网关层: 互联网发展到现在,涌现了很多互联网公司,技术更新迭代了很多个版本,从早期的单机时代,到现在超大规模的互联网时代,几亿人参与的春运,几千亿成交规模的双十一,无数互联网前辈的造就了现在互联网的辉煌。 微服务,分布式,负载均衡等我们经常提到的这些名词都是这些技术在场景背后支撑。 单机顶不住,我们就多找点服务器,但是怎么将流量均匀的打到这些服务器上呢? 负载均衡,LVS 我们机器都是IP访问的,那怎么通过我们申请的域名去请求到服务器呢? DNS 大家刷的抖音,B站,快手等等视频服务商,是怎么保证同时为全国的用户提供快速的体验? CDN 我们这么多系统和服务,还有这么多中间件的调度怎么去管理调度等等? zk 这么多的服务器,怎么对外统一访问呢,就可能需要知道反向代理的服务器。 Nginx 这一层做了反向负载、服务路由、服务治理、流量管理、安全隔离、服务容错等等都做了,大家公司的内外网隔离也是这一层做的。 我之前还接触过一些比较有意思的项目,所有对外的接口都是加密的,几十个服务会经过网关解密,找到真的路由再去请求。 这一层的知识点其实也不少,你往后面学会发现分布式事务,分布式锁,还有很多中间件都离不开zk这一层,我们继续往下看。 服务层: 这一层有点东西了,算是整个框架的核心,如果你跟我帅丙一样以后都是从事后端开发的话,我们基本上整个技术生涯,大部分时间都在跟这一层的技术栈打交道了,各种琳琅满目的中间件,计算机基础知识,Linux操作,算法数据结构,架构框架,研发工具等等。 我想在看这个文章的各位,计算机基础肯定都是学过的吧,如果大学的时候没好好学,我觉得还是有必要再看看的。 为什么我们网页能保证安全可靠的传输,你可能会了解到HTTP,TCP协议,什么三次握手,四次挥手。 还有进程、线程、协程,什么内存屏障,指令乱序,分支预测,CPU亲和性等等,在之后的编程生涯,如果你能掌握这些东西,会让你在遇到很多问题的时候瞬间get到点,而不是像个无头苍蝇一样乱撞(然而丙丙还做得不够)。 了解这些计算机知识后,你就需要接触编程语言了,大学的C语言基础会让你学什么语言入门都会快点,我选择了面向对象的JAVA,但是也不知道为啥现在还没对象。 JAVA的基础也一样重要,面向对象(包括类、对象、方法、继承、封装、抽象、 多态、消息解析等),常见API,数据结构,集合框架,设计模式(包括创建型、结构型、行为型),多线程和并发,I/O流,Stream,网络编程你都需要了解。 代码会写了,你就要开始学习一些能帮助你把系统变得更加规范的框架,SSM可以会让你的开发更加便捷,结构层次更加分明。 写代码的时候你会发现你大学用的Eclipse在公司看不到了,你跟大家一样去用了IDEA,第一天这是什么玩意,一周后,真香,但是这玩意收费有点贵,那免费的VSCode真的就是不错的选择了。 代码写的时候你会接触代码的仓库管理工具maven、Gradle,提交代码的时候会去写项目版本管理工具Git。 代码提交之后,发布之后你会发现很多东西需要自己去服务器亲自排查,那Linux的知识点就可以在里面灵活运用了,查看进程,查看文件,各种Vim操作等等。 系统的优化很多地方没优化的空间了,你可能会尝试从算法,或者优化数据结构去优化,你看到了HashMap的源码,想去了解红黑树,然后在算法网上看到了二叉树搜索树和各种常见的算法问题,刷多了,你也能总结出精华所在,什么贪心,分治,动态规划等。 这么多个服务,你发现HTTP请求已经开始有点不满足你的需求了,你想开发更便捷,像访问本地服务一样访问远程服务,所以我们去了解了Dubbo,Spring cloud。 了解Dubbo的过程中,你发现了RPC的精华所在,所以你去接触到了高性能的NIO框架,Netty。 代码写好了,服务也能通信了,但是你发现你的代码链路好长,都耦合在一起了,所以你接触了消息队列,这种异步的处理方式,真香。 他还可以帮你在突发流量的时候用队列做缓冲,但是你发现分布式的情况,事务就不好管理了,你就了解到了分布式事务,什么两段式,三段式,TCC,XA,阿里云的全局事务服务GTS等等。 分布式事务的时候你会想去了解RocketMQ,因为他自带了分布式事务的解决方案,大数据的场景你又看到了Kafka。 我上面提到过zk,像Dubbo、Kafka等中间件都是用它做注册中心的,所以很多技术栈最后都组成了一个知识体系,你先了解了体系中的每一员,你才能把它们联系起来。 服务的交互都从进程内通信变成了远程通信,所以性能必然会受到一些影响。 此外由于很多不确定性的因素,例如网络拥塞、Server 端服务器宕机、挖掘机铲断机房光纤等等,需要许多额外的功能和措施才能保证微服务流畅稳定的工作。 **Spring Cloud **中就有 Hystrix 熔断器、Ribbon客户端负载均衡器、Eureka注册中心等等都是用来解决这些问题的微服务组件。 你感觉学习得差不多了,你发现各大论坛博客出现了一些前沿技术,比如容器化,你可能就会去了解容器化的知识,像**Docker,Kubernetes(K8s)**等。 微服务之所以能够快速发展,很重要的一个原因就是:容器化技术的发展和容器管理系统的成熟。 这一层的东西呢其实远远不止这些的,我不过多赘述,写多了像个劝退师一样,但是大家也不用慌,大部分的技术都是慢慢接触了,工作中慢慢去了解,去深入的。 好啦我们继续沿着图往下看,那再往下是啥呢? 数据层: 数据库可能是整个系统中最值钱的部分了,在我码文字的前一天,刚好发生了微盟程序员删库跑路的操作,删库跑路其实是我们在网上最常用的笑话,没想到还是照进了现实。 这里也提一点点吧,36小时的故障,其实在互联网公司应该是个笑话了吧,权限控制没做好类似rm -rf 、fdisk、drop等等这样的高危命令是可以实时拦截掉的,备份,全量备份,增量备份,延迟备份,异地容灾全部都考虑一下应该也不至于这样,一家上市公司还是有点点不应该。 数据库基本的事务隔离级别,索引,SQL,主被同步,读写分离等都可能是你学的时候要了解到的。 上面我们提到了安全,不要把鸡蛋放一个篮子的道理大家应该都知道,那分库的意义就很明显了,然后你会发现时间久了表的数据大了,就会想到去接触分表,什么TDDL、Sharding-JDBC、DRDS这些插件都会接触到。 你发现流量大的时候,或者热点数据打到数据库还是有点顶不住,压力太大了,那非关系型数据库就进场了,Redis当然是首选,但是MongoDB、memcache也有各自的应用场景。 Redis使用后,真香,真快,但是你会开始担心最开始提到的安全问题,这玩意快是因为在内存中操作,那断点了数据丢了怎么办?你就开始阅读官方文档,了解RDB,AOF这些持久化机制,线上用的时候还会遇到缓存雪崩击穿、穿透等等问题。 单机不满足你就用了,他的集群模式,用了集群可能也担心集群的健康状态,所以就得去了解哨兵,他的主从同步,时间久了Key多了,就得了解内存淘汰机制…… 他的大容量存储有问题,你可能需要去了解Pika…. 其实远远没完,每个的点我都点到为止,但是其实要深究每个点都要学很久,我们接着往下看。 实时/离线/大数据 等你把几种关系型非关系型数据库的知识点,整理清楚后,你会发现数据还是大啊,而且数据的场景越来越多多样化了,那大数据的各种中间件你就得了解了。 你会发现很多场景,不需要实时的数据,比如你查你的支付宝去年的,上个月的账单,这些都是不会变化的数据,没必要实时,那你可能会接触像ODPS这样的中间件去做数据的离线分析。 然后你可能会接触Hadoop系列相关的东西,比如于Hadoop(HDFS)的一个数据仓库工具Hive,是建立在 Hadoop 文件系统之上的分布式面向列的数据库HBase 。 写多的场景,适合做一些简单查询,用他们又有点大材小用,那Cassandra就再合适不过了。 离线的数据分析没办法满足一些实时的常见,类似风控,那Flink你也得略知一二,他的窗口思想还是很有意思。 数据接触完了,计算引擎Spark你是不是也不能放过…… 搜索引擎: 传统关系型数据库和NoSQL非关系型数据都没办法解决一些问题,比如我们在百度,淘宝搜索东西的时候,往往都是几个关键字在一起一起搜索东西的,在数据库除非把几次的结果做交集,不然很难去实现。 那全文检索引擎就诞生了,解决了搜索的问题,你得思考怎么把数据库的东西实时同步到ES中去,那你可能会思考到logstash去定时跑脚本同步,又或者去接触伪装成一台MySQL从服务的Canal,他会去订阅MySQL主服务的binlog,然后自己解析了去操作Es中的数据。 这些都搞定了,那可视化的后台查询又怎么解决呢?Kibana,他他是一个可视化的平台,甚至对Es集群的健康管理都做了可视化,很多公司的日志查询系统都是用它做的。 学习路线 看了这么久你是不是发现,帅丙只是一直在介绍每个层级的技术栈,并没说到具体的一个路线,那是因为我想让大家先有个认知或者说是扫盲吧,我一样用脑图的方式汇总一下吧,如果图片被平台二压了。 资料/学习网站 Tip:本来这一栏有很多我准备的资料的,但是都是外链,或者不合适的分享方式,博客的运营小姐姐提醒了我,所以大家去公众号回复【路线】好了。 絮叨 如果你想去一家不错的公司,但是目前的硬实力又不到,我觉得还是有必要去努力一下的,技术能力的高低能决定你走多远,平台的高低,能决定你的高度。 如果你通过努力成功进入到了心仪的公司,一定不要懈怠放松,职场成长和新技术学习一样,不进则退。 丙丙发现在工作中发现我身边的人真的就是实力越强的越努力,最高级的自律,享受孤独(周末的歪哥)。 总结 我提到的技术栈你想全部了解,我觉得初步了解可能几个月就够了,这里的了解仅限于你知道它,知道他是干嘛的,知道怎么去使用它,并不是说深入了解他的底层原理,了解他的常见问题,熟悉问题的解决方案等等。 你想做到后者,基本上只能靠时间上的日积月累,或者不断的去尝试积累经验,也没什么速成的东西,欲速则不达大家也是知道的。 技术这条路,说实话很枯燥,很辛苦,但是待遇也会高于其他一些基础岗位。 所实话我大学学这个就是为了兴趣,我从小对电子,对计算机都比较热爱,但是现在打磨得,现在就是为了钱吧,是不是很现实?若家境殷实,谁愿颠沛流离。 但是至少丙丙因为做软件,改变了家庭的窘境,自己日子也向小康一步步迈过去。 说做程序员改变了我和我家人的一生可能夸张了,但是我总有一种下班辈子会因为我选择走这条路而改变的错觉。 我是敖丙,一个在互联网苟且偷生的工具人。 创作不易,本期硬核,不想被白嫖,各位的「三连」就是丙丙创作的最大动力,我们下次见! 本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。 该回答来自:敖丙

剑曼红尘 2020-03-06 11:35:37 0 浏览量 回答数 0

回答

首先“缓存”Cache这个东西是干什么的,我们应该先有些基本的了解。要是不太明白的可以看看网上的解释:http://baike.baidu.com/view/907.htm 简单讲,阿里云OCS提供的功能就是提供对热点数据的高速访问。在使用OCS之前(或者在使用任何一种缓存服务之前),我们都应该明白关于缓存的这么几点: 缓存里的数据不是持久化保存的,也就是说它像是电脑里的内存,而不像硬盘;我们不能指望OCS里的数据一直保存不丢失。如果你真的需要存储持久化的数据,也许你应该出门左转找阿里云OSS(开发存储服务); 缓存里存的应该是“热点”数据。遵循常常出现的“20-80法则”,通常程序应用中都有一定比例的数据常常被请求访问,这就是所谓的热点数据,OCS正是为这种数据设计存在的。假定我们的程序中有100个数据,每次访问这些数据的概率完全是均匀分布的1/100,那么使用缓存的效果就不会太好,因为这其中不存在热点数据。 数据逐出。我们可以决定哪些数据是热点数据被放到缓存当中,但是如果我们的缓存容量不够大,这些热点数据中某些最近较少被用到的数据还是会被“挤出去”,这种行为叫做数据逐出。如果想减少出现这种情况,我们可以购买更高容量的OCS。 -------------------------         在开始使用之前,关于阿里云OCS,我们还需要知道以下这些事: 阿里云OCS仅支持阿里云内网访问,不支持公网访问。也就是说,我们用办公室或者家里的电脑(都属于公网)是无法连上阿里云OCS的。为什么会这样呢?因为缓存服务的根本目标是要提供低延迟的高速访问,而从公网电脑来连接OCS服务器的场景下,公网的网络环境是不可控的,可能出现延迟很高甚至断连接的情况,这使得缓存服务无法保证“高速、低延迟”的基本特性,所以阿里云OCS是不支持公网直接访问的。如果觉得高延迟的情况对于我们的应用也能接受,那么我们应该去选择阿里云其他的产品(比如OSS开放存储服务),而不应该选择OCS缓存服务。 阿里云OCS需要与ECS(阿里云服务器)配合使用,而且只能与本地区节点的ECS连通。这一点与上一条相关。OCS只能从阿里云内网访问,也就是说我们只能从阿里云ECS上才能访问并使用OCS服务。所以我们在官网购买OCS的时候,会看到提示信息说需要至少有一台ECS才能买OCS。另外,阿里云ECS是分地区节点的,比如北京、杭州、青岛等,我们在购买OCS缓存的时候也要选相应的地区节点。北京的ECS只能访问北京的OCS,而不能访问杭州或青岛的OCS。 阿里云OCS是按购买量收费的,而不是按使用量收费。这点需要提醒新同学们注意,在我们购买了OCS缓存之后,计费就已经开始了,即使我们还没有真正使用缓存。也就是说,我们买了1G的OCS缓存后,即使目前使用量为0,系统也会按照1G的标准来计费。所以我们在购买OCS的时候,要选取适合我们业务数据需要的缓存档位。当然了,阿里云OCS也提供在线升降缓存容量的功能。也就是说,如果我们在使用了一段时间之后,发现购买的OCS缓存不够用了(或者缓存使用量太低),我们可以在线的对已有的OCS实例进行升档(或者降档),而OCS缓存服务不会被中断。 阿里云OCS对于存贮的对象大小是有限制的。缓存通常对其内部存储的数据尺寸是有限制的,阿里云OCS也一样。目前OCS支持存储的数据对象的上限是1,000,000Byte。如果要存的值超过这个限制,我们应该考虑把数据压缩,或从逻辑上分成不同键存储的几个值。 ------------------------- 现在我们开始在阿里云官网上购买OCS实例  http://buy.aliyun.com/ocs  首先我们需要已经有了一台阿里云ECS,否则我们无法在这个页面成功购买OCS。购买的第一步,我们先要确定选择买哪个地区的OCS;这个很重要,如上面所说,如果我们的ECS是属于北京,而我们在这里购买了杭州的OCS,那么这两者是无法配合协同工作的。所以,在购买OCS的时候一定要选择应用服务器ECS所在地区的OCS。下一步是要选择OCS缓存容量。我们要购买多大的缓存,这个取决于我们对自身业务应用中热点数据总量大小的判断。如果一时难以准确判断数据量,也不用担心:我们可以先买一个大致容量的OCS(比如1GB),随后在使用过程中,通过OCS控制台提供的监控功能,我们可以了解到目前OCS缓存的使用量等数据,然后可以自主的调整所需的缓存量,购买更大的缓存(比如升到5GB)或者减少已购的缓存量(比如降到512MB),阿里云会根据我们选择的新配置来调整对应的收费。此外在选择缓存容量的时候,要知道不同容量的缓存档位对应着不同的性能配额,具体来说包括两个指标:吞吐量带宽与每秒请求处理数(QPS)。比如以现在的配额标准,1GB的OCS缓存对应5MB/sec的吞吐量带宽和3000次/sec的请求处理峰值。当我们使用OCS的时候,如果数据量传输的带宽超过了5MB/s, 或者每秒的请求数超过了3000次,都会触发性能配额控制机制,导致某些请求无法返回正常结果。在确定了地区和缓存容量之后,我们就可以直接下单购买OCS了。 ------------------------- 在成功购买OCS之后,我们的联系邮箱和手机都会收到OCS创建成功的通知,里面会包括OCS的实例ID和初始密码(关于密码的用处后面会讲到)。我们现在登录OCS控制台, http://ocs.console.aliyun.com/ 就可以看到已经购买到的OCS实例列表。在列表页面上对应OCS实例的后面点击“管理”,就可以进入该OCS实例的详情页,看到更多的详细信息。 ------------------------- 我们现在已经有了一个OCS缓存实例,现在是时候试玩OCS了。要使用OCS就要写一点程序代码,不过不用担心,我们在这里采用“Happy-Path”的方法,从最简单的操作开始,让新上手的菜鸟们能马上就有一个能调用OCS缓存服务的程序。OCS提供缓存服务,它并不要求我们的程序是哪种语言来写的。我们这里先以Java程序为例,写一个最简单的“Hello World”。(其他编程语言的例子,我们随后附上。)第一步,登录你的阿里云ECS服务器,在上面安装Java JDK和你常用的IDE(比如Eclipse)。一定要记得我们之前说过的,只有在阿里云内网的ECS服务器上,才能访问我们的OCS实例。所以,用家里或是公司的电脑执行下面的代码示例是看不到结果的。 Java JDK和Eclipse都很容易从网上找到下载,比如 http://download.eclipse.org/ 或者 http://www.onlinedown.net/soft/32289.htm 第二步,在把Java开发环境准备好了之后,下载第一个代码示例(Sample-Code-1第三步,在Eclipse里面打开刚下载的OcsSample1.java,我们要根据自己的OCS实例信息修改几个地方。        我们每个人买到的OCS实例的ID都是不重复的,其对应的阿里云内网地址也是独一无二的,这些信息都在OCS控制台上显示出来。我们在同自己的OCS实例建立连接的时候,需要根据这些信息修改OcsSample1.java中的对应地方。         public static void main(String[] args) {                                        final String host = "b2fd2f89f49f11e3.m.cnqdalicm9pub001.ocs.aliyuncs.com"; //控制台上的“内网地址”                   final String port ="11211";       //默认端口 11211,不用改                   final String username = "b2fd2f89f49f11e3"; //控制台上的“访问账号”                   final String password = "my_password"; //邮件或短信中提供的“密码”                   …… …… ……       信息修改完毕,我们可以运行自己的程序了。运行main函数,我们会在Eclipse下面的console窗口看到下面这样的结果(请忽略可能出现的红色INFO调试信息): OCS Sample CodeSet操作完成!Get操作: Open Cache Service,  from www.Aliyun.com     OK,搞定!我们已经成功的连接上了阿里云的OCS并且调用缓存服务成功,就这么简单。-------------------------我们已经成功运行了第一个调用阿里云OCS缓存服务的Sample程序OcsSample1.java,现在我们看看这个程序里都做了什么。                                  …… …… ……                            System.out.println("OCS Sample Code");                                                        //向OCS中存一个key为"ocs"的数据,便于后面验证读取数据,                             //这个数据对应的value是字符串 Open Cache Service,  from www.Aliyun.com                            OperationFuture future = cache.set("ocs", 1000," Open Cache Service,  from www.Aliyun.com");                            //向OCS中存若干个数据,随后可以在OCS控制台监控上看到统计信息                            for(int i=0;i<100;i++){                                String key="key-"+i;                                String value="value-"+i;                                 //执行set操作,向缓存中存数据                                cache.set(key, 1000, value);                            }                             System.out.println("Set操作完成!");                             future.get();  //  确保之前(cache.set())操作已经结束                         //执行get操作,从缓存中读数据,读取key为"ocs"的数据                            System.out.println("Get操作:"+cache.get("ocs"));                            …… …… …… 从这些代码中可以看出: 1. 我们在建立与OCS缓存服务器的连接后,先是向缓存中存(set)了一个“key-value”(键值对)形式的数据,这个数据的key是字符串“ocs”,其对应的value也是字符串;2. 接着我们继续向缓存中存(set)了100个其他简单的“key-value”数据。3. 最后我们进行功能验证。根据之前给定的key,从缓存中获取(get)其对应的value:也就是输入字符串“ocs”,缓存给我们返回value对应的字符串。 以上的步骤中,1与3是相对应的,我们只有先向缓存中set了某个数据,后面才能从缓存中get到这个数据。步骤2中程序向缓存set了100个数据,是为了从另一个方面进行验证。我们回到阿里云OCS控制台,打开“实例详情”页,在“实例监控”的部分点击刷新,会看到其中一些监控项的值已经发生了变化(注:监控信息的刷新可能存在数秒的延迟), 其中的“Key的个数”已经变成了101,也就是说我们程序已经成功地向OCS缓存中存放了101个数据。

唐翰 2019-12-01 23:27:50 0 浏览量 回答数 0

问题

第6篇 指针数组字符串(下):报错

kun坤 2020-06-08 11:01:44 4 浏览量 回答数 1

回答

Re我和iDBCloud登录数据库的故事 11到13年做DBA的时候,最早接触的是iDB,我的理解之所以叫iDB应该是表达我的数据库的含义吧,估计我还是上学的时候就已经有了,目前iDB已经迭代到3.0,明年初会发布4.0,从DBA视角上看iDB就是可以review业务SQL,自动执行线上DDL,业务数据提取的申请和审批,WEB上的数据查询,最近做产品经理后才有机会系统的审视iDB(一个包含研发支撑、安全管控的企业级数据库管理产品),支撑了淘宝、天猫、支付宝(现在叫蚂蚁金服)的研发流程,保障了每年的双十一,但iDB Cloud与iDB不是一个产品,iDB是企业版的数据库管理产品,iDB Cloud则定位于个人版数据管理,相比企业中的流程约束,iDB Cloud更期望给大家提供在约束下的易用性最大化的灵活数据管理服务! ------------------------- Re我和iDBCloud登录数据库的故事 这个月实例信息-实时性能UI改版发布,新版看起来还是比较舒服的!这个我在5元RDS大促时买的,没有跑业务,所以指标都是0,哈哈 实时性能的原型取自阿里DBA团队的传奇(朱旭)之手:orzdba,貌似很久之前已经开源,谷歌下便知! 翻出之前做DBA使用orzdba观察测试机器压测的截图,orzdba是用perl写的,检查项还是蛮多的,比如io吞吐量、rt、主机的load、swap、innodb row、innodb状态,这些是iDB Cloud没有的功能,iDB Cloud通过用户登录账号访问数据库,只能拿到MySQL进程内存中的状态信息,没有权限拿到主机指标,不过innodb相关信息是可以拿到的,但是考虑一般只有DBA才会关注这些细节,所以没开放,不知道大家还会关注什么指标?有没有办法拿到主机的指标? ------------------------- 回5楼ringtail的帖子 刷新页面,类似关闭并重新打开,啥都没了,这个应该是正常的行为,话说为什么要刷新呢,我记得首页性能指标每5分钟自动刷新,即使点击页面上提供的刷新是没啥事的,而实时性能是每4秒更新一行的,还有什么场景要刷洗整个页面是我没想到的吗? ------------------------- 回7楼ringtail的帖子 目前据我所知,真心还做不到刷新不丢iDB Cloud已经打开的选项卡、sql语句和执行结果什么的,现在只能在刷新时加一个“导航确认”,减少手痒式误刷新,哈哈 ------------------------- Re我和iDBCloud登录数据库的故事 翻工单时,发现有人关心使用iDB Cloud是否会收取流量费,我也没搞清楚,于是问了几个同事,终于把场景基本覆盖了,最终结论: 只要你不把你的RDS实例切换成外网(公网)模式的同时再导出或查询数据就不会收取流量费! 由于那几个工单已经关闭,我就在这里回复下大家,希望那几个朋友能看到 ------------------------- 回9楼yzsind的帖子 一定不会辜负领导的期望,努力工作,争取升职加薪,当上总经理,出任ceo,迎娶白富美,想想还有点小激动 ------------------------- 回10楼佩恩六道的帖子 可能文字不好理解整体的流量计费情况,中午用我那小学的美术细胞,完成了一副“巨作”! ------------------------- Re我和iDBCloud登录数据库的故事 刚才看到一个工单(iDB Cloud点击登录无效),这个工单已经处理完毕,但我觉得可以把售后同学的方法和大家分享下! 以后遇到点击登录无效、登录后菜单栏点击无效、页面展示不全,很可能是浏览器兼容设置的问题! 浏览器兼容设置的问题: 1.检查浏览器是否安装了AdBlockPlus(火狐浏览器的一个扩展),用火狐浏览器的用户遇到类似问题要注意这一点 2.IE浏览器的话就调整下兼容性模式(http://jingyan.baidu.com/article/fcb5aff791bb47edaa4a7115.html ),并进入开发者模式再测试下IDB Cloud 如果上述2招还是解决不了,记得留言给我! ------------------------- Re我和iDBCloud登录数据库的故事 今天看工单时发现有个朋友反馈,包含mediumblob类型字段的表在做导出后,导出文件中没有mediumblob类型字段! 其实导出时默认是不会导出BLOB类型字段,但是在导出-高级选项中是可以选择导出BLOB,但是BLOB字段只能以16进制格式导出,试想一个WORD文档或者一首歌曲,16进制导出后,没啥意义! BOLB字段支持WEB界面上传和下载,是原文件呀,哈哈! ------------------------- Re我和iDBCloud登录数据库的故事 未来几天休假,去考驾照 ------------------------- Re我和iDBCloud登录数据库的故事 看工单和论坛中,有用户会抱怨产品不好用,然后就消失了,真的好可惜! 作为产品经理是很想倾听这些抱怨背后的真实想法,期待可以直接对话,无论是功能缺失,还是操作不便,哪怕是使用上的一种感觉或产品散发的味道不对都可以,不求需求,只求对话! ------------------------- Re我和iDBCloud登录数据库的故事 感谢你的关注和支持! 产品说到底不是产品经理个人的,也不是哪个企业的,而是用户的产品,水能载舟亦能覆舟,产品经理和企业只不过在帮用户把需求实现而已,所以我们会一直坚持下去,坚持和用户一起把iDB Cloud做得更好 ------------------------- Re我和iDBCloud登录数据库的故事 最近几天公司感冒发烧的同学很多,我也是坚持了好几天才沦陷的,这是在我记忆中来杭州4年第一次发烧,看来20多年在东北积累的体质终于被消耗殆尽,不过意外收获是在高烧间隔清醒之际对最近自己的所作所为反倒有了一些悔悟,有些是工作上,有些是做人上 ------------------------- 回24楼zhouzhenxing的帖子 可以的,iDB Cloud对RDS公网和私网模式都是支持的! 你可以在RDS控制台-账号管理中 新建你的数据库账号,然后还是在RDS控制台的右上角,点击“登录数据库”就可以进入iDB Cloud了,建议你先自己试着玩玩,有困惑的话我们一同讨论 ------------------------- 回24楼zhouzhenxing的帖子 iDB Cloud在官网上有2个手册,写的比较官方,可能对你用处不大,我其实不太喜欢写什么手册,如果一个产品做的体验不好,只能靠手册来弥补还是有点low,不过我已经在想如何不low了,还是那句话 有困惑的话我们一同讨论 http://help.aliyun.com/doc/view/13526530.html?spm=0.0.0.0.6W7Qx1 http://help.aliyun.com/view/11108238_13861850.html?spm=5176.7224961.1997285473.4.Irtizv ------------------------- Re我和iDBCloud登录数据库的故事 都说在产品上做加法容易,做减法难,我理解无论产品功能还是工作上,给予总会得到别人的喜欢,而要求或收回时会得到对方的负面情绪,因此趋利避害,尽量不做减法,但有时候很难避免,这就要想想为什么要做减法? 多数都是之前错误选择,做了过多的加法,因为普通的加法很好做,人们往往会趋之如骛,但是真正、正确的加法是要在拒绝几十到上百种选择基础上的最终选择,将复杂解决方案以极简形式展现出来,而不是解决方案和功能的堆积,所以未经严格挑选的加法对产品是有害的,工作也一样,不要贸然接受新工作,保证核心精力投入到核心工作上,摊子铺得太大,一定会遇到心力瓶颈,而心力一旦枯竭,再强的脑力也无法施展,任何一项工作都是以大量心力付出为前提,脑力提升我找到了一些办法,心力提升却一筹莫展,所以只好专注,要不全心投入,要不置身事外,今后功能和工作都要适时做做减法了! ------------------------- Re我和iDBCloud登录数据库的故事 今天有个同事转给我一个工单,说从深圳云管理系统界面的iDB Cloud上看到库是utf8,而后端开发人员说库是gbk的,我查看了工单中截图附件(RDS控制台-参数设置),虽然从工单中无法完全断定用户遇到的问题,我还是大胆猜测下: 我看到截图上的character_set_server参数,首先character_set_server是RDS唯一开放的关于字符集的参数,但其实这个参数与用户在iDB Cloud上看到数据是否乱码没有关系,character_set_server其实就是默认的内部操作字符集,只有当字段->表->库都没有设置CHARACTER SET,才会使用character_set_server作为对应字段-表-库的默认字符集! 透露一个秘诀(传男也传女): (1)让你的字段-表-库的字符集都是utf8; (2)在iDB Cloud-命令窗口执行set names utf8;#会将character_set_client、character_set_connection和character_set_results都设置成utf8 只要让(1)和(2)字符集保持一致(utf8、gbk、latin1等),乱码就搞定了! 不清楚为什么截图会变成上面这样!把在iDB Cloud-命令窗口上执行的命令和结果也粘下 mysql>set names gbk; 执行成功,花费 7.59 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | gbk                              | | character_set_connection | gbk                              | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | gbk                              | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.51 ms. mysql>set names utf8; 执行成功,花费 7.32 ms. mysql>show  variables like '%char%'; +--------------------------+----------------------------------+ | Variable_name            | Value                            | +--------------------------+----------------------------------+ | character_set_client     | utf8                             | | character_set_connection | utf8                             | | character_set_database   | gbk                              | | character_set_filesystem | binary                           | | character_set_results    | utf8                             | | character_set_server     | gbk                              | | character_set_system     | utf8                             | | character_sets_dir       | /u01/mysql/share/mysql/charsets/ | +--------------------------+----------------------------------+ 共返回 8 行记录,花费 10.32 ms. ------------------------- Re我和iDBCloud登录数据库的故事 你的专属BUG: 发现时间 资深用户 专属BUG 2015-02-03 23:06 啊啊啊啊8  实例信息-实时性能-参数说明-【delete】 表示InnoDB存储引擎表的写入(删除)记录行数 ------------------------- Re我和iDBCloud登录数据库的故事 用户“夫子然”反馈说iDB Cloud感觉没phpMyAdmin方便! 非常感谢这个用户的反馈,我先谈下我的理解,每个人使用产品都有一些固定的用例(use case),我无法承诺针对任何人的任何用例,都做到最短操作路径(方便),这个用户抛出的问题也是我一直在思考的,虽然无法100%,但是我们可以覆盖主流用例,只要绝大多数的常规操作室是方便的,少数非经常用的操作路径长点,应该能接受吧,我们已经在行动! 今天iDB Cloud发布了2.0.2,一个主要变化就是在左侧对象列表上增加了“列”和“索引”,正是我们分析数据看到在众多数据库对象中表的操作是最频繁的,而在表的操作中“列“和”索引“是最频繁的,这个版本将对“列”和“索引”的操作前置,缩短了主流用例路径,与用户“夫子然”的建议不谋而合,这只是开始,只要我们深挖,与功能和体验死磕,终有一天会让大家说iDB Cloud比phpMyAdmin方便! ------------------------- 回31楼sqlserverdba的帖子 非常感谢! 有你们作为后盾,有用户支持,才有iDB Cloud的现在和未来! ------------------------- 消失了几天,终于把科目三和科目四搞定了,昨天终于拿到驾照了之前在【17楼】总结了科目二的一些体会,今天也分享下科目三的一点点感受! 考试前几天,教练说是智能考(据说智能考比较简单,通过率很高),结果就留出考前2天练车时间,结果阴差阳错的换成了人工考(貌似是我们车是4个大老爷们,听教练说他一年最多抽到2次人工考就算多的啦,对此我只能呵呵),现在的问题就来了,4个人2天练车时间,一个人半天,那就从早到晚的练呗,我先简单描述下整个过程! 1.心态(1)从开始练车到考试通过,心情没有特别大的起伏,不过考前失眠还是有的,哈哈(2)另外三个人,有的信心满满,有的吊儿郎当,有的不言不语,我应该也属于不言不语那种 2.练习(1)4个人轮流练,虽然一天下来很累,但还能挺住,开的时好时坏,不过总体上在变好(2)开车的时候几乎意识不到什么的,关键是在后座自己去琢磨,回忆自己错在哪里,为什么会错 3.考试(1)考试单上说7:00考试,结果在寒风中等了1个小时,终于盼来了考官,一共5辆车考试,我们是第二辆车(2)第一辆车是2男2女,2女都挂,当时我们第二辆车是被要求跟在第一辆车后面的,所以看的一清二楚,比如连续3次手刹未放下导致起步失败、4档走转弯到对向车道等(3)接下来到我们了,4男0女,结果挂了2男(信心满满和吊儿郎当) 上面只是简单介绍了科目三过程,下面才是干货! 每年都有成千上万的人拿到驾照,我不认为自己牛,只是把我个人的应对方法和背后的原因拿出来分享下!练车其实就是教练的心智模型-翻译-语言-反译-我们的心智模型,让我们知道在什么情况做什么动作,预测路况,只要我们关于开车拥有了自己的心智模,开车就变成了一种本能,就像一旦学会了骑自行车,很难失去这种技能,在练车之前,我们是有自己关于开车的心智模型的,正所谓没吃过猪肉也见过猪跑,但是我们想想自己关于开车的心智模型是正确的吗?显然不是,不信你就试试去开车吧,抛开被交警抓之外,我想应该也能开起来,至于开的好不好,会不会一直开得好,我说不准,但是绝大多数人一定是开不好的,所以我们报驾校,除了硬性法律规定,驾校教练的确交会了很多东西,虽然很多是应试的技巧,这里就顺便说下这些技巧,技巧具体内容每家教练都会教的,而我想说的技巧其实就是“语言”,通过教练的“心智模型”-翻译出来的“语言”,接下来我们要做什么,“反译”将教练开车技巧的“语言”理解,首先你要虚心去接受,然后再去观察或运用,根据反馈把坏的放弃,把好的保留以便修正自己关于开车的“心智模型”,而“心智模型”最快速的形成方式就是亲身体验,所以一定要实战、要开车,还要经常开车,不断改进关于开车的“心智模型”,拿3个案例具体说下吧!【吊儿郎当】这两天都是下午才过来练车,开车时教练说一句话,他有十句等着,其中五句是解释自己为什么要这么做,另外五句是在问如果这种情况应该怎么做,如果那种情况怎么做,总是在关注自己想象中的场景,而不关注自己正在体验的场景,所以学来学去还是最初始的关于开车的“心智模型”,失败在“反译”这一步,认为只要听过就会了,结果被考官判直接挂掉并不予补考机会 【信心满满】与我们一直练车,对教练的话言听计从,而且也理解了,如果是上学时的考试或科目三智能考试一定没问题,但是面对人工考,评判是由交警而不是电脑,结果转向时没有观察后视镜,被考官迫停在路中间后开始补考,然后还是转向时没有观察后视镜,在路中间起步,之前学的技巧中没有应对的方法,结果还是挂了,教练也很惋惜,如果说他的失败,败于没有改进自己关于开车的“心智模型”,其实“反译”他做的很好,但是在运用、观察和反馈分析上做的不好,“心智模型”不是统一的标准,一定是个性化的,一定是自己认为是好的反馈、行为积累起来的,也只有“心智模型”才能在任何情况下帮助你做出判断,判断效果就取决于“心智模型”是否成熟,成熟的“心智模型”可以让在紧张、突发等情况下依然做出正确的判断,因为那是一种本能 【我】总说别人不好之处,也谈谈我自己,自然这些都是我事后分析总结的,练车过程中可没有感受到,我做的事情也很简单,就是“反译”和改进我的“心智模型”,“反译”,教练说什么,我就听什么,开车时来不及想,就在后座时在脑中模拟上演之前的场景并不断上演我不断修正的剧本,比如我的离合器总是抬的很快,经常熄火,特别是在路况复杂、指令突然时根本来不及思考如何应对,只能靠本能的时候,往往还是会快速抬离合器,因为我的“心智模型”中就是这么认为的,你可以说是离合器太低、座位太靠后,这些都是理由,如果是理由,那就去解决吧!我是这样做的,强制自己将抬离合器的动作拆成3步,即使不开车时也经常练习,慢慢的就变成了“心智模型”的一部分,自然在任何场景下都不会再出现离合器抬快熄火的情况了,这只是一个细节,其他细节也是类似,慢慢我的“心智模型”就建立起来了,开车技巧是很有用的,关键是你要理解这些技巧是要解决什么问题,你要解决相同问题时的做法是否相同,如果有不同之处是否正确,要去不断验证,如果是正确的,就改进到你的“心智模型”吧! PD不光光是要把产品做好,我认为一个好PD应该能让整个世界变得更好! ------------------------- Re我和iDBCloud登录数据库的故事 近期iDB Cloud将更名:DMS DMS (data management service) 数据管理服务 iDB Cloud从RDS起步,目前已经覆盖包括RDS、ADS、TAE,未来2个月还会覆盖万网和DRDS,同时ECS也开始兼容,“DMS”请各位新老用户,继续支持! ------------------------- Re我和iDBCloud登录数据库的故事 1.使用HTTPS iDB Cloud这个4月份中旬版本就会支持HTTPS,敬请期待! 2.设置账号是否允许登录iDB 3.31 会发布一个版本,这版本其中一个功能就是授权登录,允许实例owner设置该实例是否允许别人访问,允许谁可以访问 有如此心犀相通的用户,夫复何求!!! 还有什么建议? ------------------------- 回38楼pillowsky的帖子 好的,我先逐条对照分析下 ------------------------- Re我和iDBCloud登录数据库的故事 RDS数据库?RDS控制台-账号管理,检查下账号对不对,不行就重置密码 ------------------------- Re我和iDBCloud登录数据库的故事 3.31 DMS(原iDB Cloud) 在RDS上新版本发布! 【实例授权】 DMS for MySQL 2.1发布! 【会话统计】 DMS for SQL Server 2.0发布! 【E-R图】 【对象列表】 ------------------------- Re我和iDBCloud登录数据库的故事 你是想听客服回复?算了,我还是从DMS PD 看RDS的视角来分享下吧! RDS是一个数据库,在数据库之外包装了一些东西,帮用户做了备份恢复、HA、监控等,回到你提到的账号,root账号在MySQL里是权限最大的,也是风险最大的,为了保证RDS这些备份恢复、HA能7*24小时为你服务,所以就不能让你的账号去影响到这些组件,不然你一个误操作把实例关闭了怎么办,但是我承认目前RDS在控制台上提供的账号的确限制比较死,所以在RDS上你是无法获取root账号的,话说你要root权限做什么,你说的数据库创建在RDS控制台上提供功能了 ------------------------- 回46楼苗教授的帖子 客气了,也不知道能不能帮上你! 如果从外看RDS的使用的话,可以在RDS控制台上去管理RDS实例(用用就熟悉了),或者直接调用OPEN API来完成实例管理操作,然后针对RDS实例中数据管理,就可以登录DMS,有几个常用链接发你看看,有问题可以在这里继续探讨! DMS: http://idb.rds.aliyun.com/ DMS 功能介绍: http://docs.aliyun.com/#/rds/getting-started/database-manage&login-database OPEN API: http://docs.aliyun.com/?spm=5176.383715.9.5.1LioEO#/rds/open-api/abstract RDS控制台: https://rds.console.aliyun.com/console/index#/

佩恩六道 2019-12-02 01:21:37 0 浏览量 回答数 0

回答

能力地图,让你的小程序拥有灵魂 开放能力,是支付宝开放平台为满足开发者不同的业务需求,将支付宝的一些功能 以接口(API)的形式开放出来;开发者通过这些开放的接口与支付宝服务端(也 有部分是支付宝客户端)进行交互,实现业务逻辑。 举个例子,假设你是老王,你开发的小程序是用来卖瓜的。那你要让你的用户在你 的小程序内花钱买你的瓜,这样你就要接入“小程序支付”能力;你要在小程序内 营销你的瓜,那么就录个带货的视频吧,那么就要使用“小程序视频播放”能力。 总之,你需要贴合你的小程业务需求,不断地“武装”你的小程序。而开放能力也 是你的“军火库”,为你提供源源不断的业务支持。 目前,小程序提供如下的开放能力,这些能力构成了一张“能力地图”。根据这张 地图,你的小程序可以走出自己的路。 随着业务的不断发展,“能力地图”的版图会越来越大,为开发者提供更多福利。 点击进入 能力中心 PC 端;或扫码收藏 能力中心 小程序,随时关注能力动态; 分享能力更方便。 能力实战 本章将重点介绍“获取会员基础信息”和“模板消息”的接入。 缘起:获取会员基础信息 盛夏的图书馆总是学生们避暑的热门景点,对软件学院的大二学生小宝♂️来说也 不例外。窗外的知了没完没了的絮叨着,小宝双手赌气似的敲打着键盘,指尖生了 魔法似的溜出一行行代码。刚写完一整段的小明将面前的冰咖啡一饮而尽,顺势将 脑袋抬起来,盯着浅黄色的天花板发呆。正兀自发呆着,精神恍惚小宝被一股淡淡 的茉莉花香拉回了图书馆,循着香味,他将脑袋慢慢地低下。四目相对,香味的源 头♀️也正好奇地盯着他...... 问:所以,小宝要如何主动又不失礼貌,深入而不猥琐地了解关于她的一切呢? 答:通过小程序“获取会员基础信息”能力,在用户授权后,开发者可以获取用户 头像图片、昵称、性别、国家、所在省份、所在市区等信息。 本题干的案例和场景仅为课堂效果定制,纯属虚构,请勿作死模仿。对于恶意获取 用户信息或者其他不合理使用等情况,支付宝开放平台有权永久收回该小程序的接 口权限。 代码千万条,用户第一条。接入不规范,老师两行泪。 105 产品介绍 获取会员基础信息是支付宝会员开放服务之一,在获得用户授权后,允许开发者获 取 头像、昵称、性别、国家码、所在省份、所在市区 等信息。本功能免费,同学 们可以放心使用(别问落地价,因为爱情无价)。 当然,小程序还有 获取会员手机 号 (https://opendocs.alipay.com/mini/introduce/getphonenumber) 的开 放能力,因该功能涉及用户的手机号隐私,且仅开放给有一定资质的企业账户,故 在本章不作接入介绍。(小宝哭晕在厕所......) 用户端示例 用户在登录小程序后,在需要用户授权基础信息的场景(如首次登录,或者授权其 他关联账号登录等),系统出现弹窗让用户确认,用户同意授权后,即可通过接口 获取用户的基础信息。 注意: 通过用户信息授权方式获取用户基础信息是只一种快捷的填写方式。开发过程中, 需要对用户拒绝的情况做充分的考虑与应对方案,如引导用户手动填写或上传。 缘生:模板消息 因为请对面的女生帮忙一起测试“获取会员基础信息”的缘故,小宝无意间得到了 对面女生的昵称和头像。 “原来你叫小美啊,你的支付宝头像是莫奈的《日出》吗?你喜欢画画?” “对呀,我是设计学院的,平时喜欢画画。看不出你个程序员还知道莫奈啊。” “我也很喜欢印象派。但我觉得你更适合莫奈的另外一幅画。” “哦,什么画呀?” “《睡莲》” 问:看得出小宝已经词穷了,再聊下去就很尴尬了,看得出小宝也是个害羞人。请 问小宝要如何进一步拉近关系,约小美出去自习和玩耍呢 ? 答:通过小程序“模板消息”能力,开发者可通过消息高效触达用户,通知用户当 前行为的结果及状态等;同时可在消息中配置跳转小程序指定页面地址,当用户查 看消息时,在消息中点击 进入小程序查看 返回小程序,进入开发者配置的小程序 指定页面。目前仅支持文本消息。 本题干的案例和场景仅为课堂效果定制,纯属虚构,请勿作死模仿。支付宝开放平 台对于模板消息的发送频率和内容均有一定限制。对于恶意发送违规定模板消息的 行为,支付宝会有一定的惩罚策略,详细注意事项可以参考 模板消息准入条件。 代码千万条,用户第一条。接入不规范,老师两行泪。 产品介绍 模板消息有两类:交易类 和 表单类,暂不支持自定义标题等信息。支付类的模 板消息需要依赖用户支付产生的交易号 tradeNo, 因此本章节不重点阐述,好奇 宝宝请前往本章结尾的“拓展阅读”查看。 自己不开店,没有交易号(tradeNo)的小宝别无选择,只能选择表单类模板消 息。 表单类:当用户在小程序内发生过提交表单行为,开发者可以调用接口发送表单类 的模板消息,此时必须要传入 form_id 。开发者获取 formId 或 tradeNo 后, 可在 7 天内向用户推送有限条数的模板消息( 1 次提交表单可下发 3 条,不 限制模板数);超期后 formId 或 tradeNo 将失效,无法推送消息。 本功能免费,同学们可以放心使用(别问落地价,因为爱情无价)。 用户端示例 108 假设小宝在发送模板消息发送成功后,小美可以在支付宝 APP 首页的“服务提 醒”处查看消息,如下图所示。 快速接入 DEMO 支付宝开放平台还为开发者提供了模板消息 DEMO,开发者可以参 考 https://opendocs.alipay.com/mini/quick-example/template-message 文档进 行体验和实现快速接入。 拓展阅读 除了用 formId 发送模板消息外,支付宝开放平台还支持用 tradeNo 发送模板 消息,那如何获取 tradeNo 呢? tradeNo :当用户完成支付行为时,可以获取 tradeNo(即支付交易号) 用于 发送交易类模板消息,如 小程序支付 中的 alipay.trade.create 或 资金授权 以及 当面付 中的 alipay.trade.pay 接口。消息类型为支付类型的只能通过 tradeNo 发送。 上述几个功能的对接文档在此列出,感兴趣的同学可以课后查看哦。需要注意的 是,目前这几大功能仅对企业支付宝账号开放;个人账号暂时无法完成对接。  小程序支付:https://opendocs.alipay.com/mini/introduce/pay  当面付:https://opendocs.alipay.com/open/194/105072/  资金授权:https://opendocs.alipay.com/mini/introduce/pre-authorization 109 缘遂:小程序二维码 “现在到处都是二维码,逼死强迫症哦。忍不住想扫扫看,哈哈哈。” “我这边也有个码,你扫了试试?” “什么二维码啊,这么神秘。扫开了还加载这么久。” “......” “啊,谢谢你。” 夕阳照在小美的脸上,越发得红了。 产品介绍 概述 使用本能力可生成小程序二维码,商户可将生成后的小程序二维码在线上线下进行 贴码推广,更便捷地推广小程序。 产品特色 每个小程序都有一个默认的小程序二维码,目标地址是 小程序首页。  创建 20 个以内小程序二维码。在 开发中心 > 小程序应用 > 我的小程序 中点击已创建 的小程序名称,进入小程序详情页面,左侧目录栏中选择 码管理 > 小程序码。  创建超过 20 个小程序二维码。通过调用二维码接口 alipay.open.app.qrcode.create 实现,一个小程序可通过使用该二维码接口获取无限个带参数的二维码。 页面地址获取方式 小程序页面地址可通过开发者工具在代码中的 app.json 中的 onShow 和 onLaunch 中获取。 110 使用说明 支付宝扫描二维码将按以下匹配规则控制跳转:  页面地址:指定小程序中能访问的路径地址,默认为小程序的首页地址。  启动参数:小程序启动时候需要带入的参数,可以为空。启动参数可以通过 options.query 获取,格式为 key1=value1&key2=value2。 示例代码 准备获取启动参数中 x 的值。 App({ onLaunch(options) { my.alert({content: '启动参数:'+JSON.stringify(options.query.x),}); console.log('query', options.query); console.log('App Launch', options); }, onShow() { console.log('App Show') }, onHide() { console.log('App Hide') }, globalData: { hasLogin: false } }) 输入参数 页面地址:page/component/component-pages/view/view 启动参数:x=1&y=2 示例效果: 111 准入条件 小程序开发者均可使用。 计费模式 不收费。 API 列表 接口名称 描述 alipay.open.app.qrcode.create 小程序生成推广二维码接口 快速接入 DEMO 支付宝开放平台还为开发者提供了小程序二维码 DEMO,开发者可以参考 快速示 例 文档进行体验和实现快速接入。 内容来源:https://developer.aliyun.com/article/756818?spm=a2c6h.12873581.0.dArticle756818.26162b70Su1GZy&groupCode=tech_library

KaFei 2020-04-27 15:46:58 0 浏览量 回答数 0

问题

关于“建立数据库连接时出错”的解决方法

原不周 2019-12-01 20:58:11 13238 浏览量 回答数 5

回答

首先“缓存”Cache这个东西是干什么的,我们应该先有些基本的了解。要是不太明白的可以看看网上的解释:http://baike.baidu.com/view/907.htm 简单讲,阿里云OCS提供的功能就是提供对热点数据的高速访问。在使用OCS之前(或者在使用任何一种缓存服务之前),我们都应该明白关于缓存的这么几点: 缓存里的数据不是持久化保存的,也就是说它像是电脑里的内存,而不像硬盘;我们不能指望OCS里的数据一直保存不丢失。如果你真的需要存储持久化的数据,也许你应该出门左转找阿里云OSS(开发存储服务); 缓存里存的应该是“热点”数据。遵循常常出现的“20-80法则”,通常程序应用中都有一定比例的数据常常被请求访问,这就是所谓的热点数据,OCS正是为这种数据设计存在的。假定我们的程序中有100个数据,每次访问这些数据的概率完全是均匀分布的1/100,那么使用缓存的效果就不会太好,因为这其中不存在热点数据。 数据逐出。我们可以决定哪些数据是热点数据被放到缓存当中,但是如果我们的缓存容量不够大,这些热点数据中某些最近较少被用到的数据还是会被“挤出去”,这种行为叫做数据逐出。如果想减少出现这种情况,我们可以购买更高容量的OCS。 -------------------------         在开始使用之前,关于阿里云OCS,我们还需要知道以下这些事: 阿里云OCS仅支持阿里云内网访问,不支持公网访问。也就是说,我们用办公室或者家里的电脑(都属于公网)是无法连上阿里云OCS的。为什么会这样呢?因为缓存服务的根本目标是要提供低延迟的高速访问,而从公网电脑来连接OCS服务器的场景下,公网的网络环境是不可控的,可能出现延迟很高甚至断连接的情况,这使得缓存服务无法保证“高速、低延迟”的基本特性,所以阿里云OCS是不支持公网直接访问的。如果觉得高延迟的情况对于我们的应用也能接受,那么我们应该去选择阿里云其他的产品(比如OSS开放存储服务),而不应该选择OCS缓存服务。 阿里云OCS需要与ECS(阿里云服务器)配合使用,而且只能与本地区节点的ECS连通。这一点与上一条相关。OCS只能从阿里云内网访问,也就是说我们只能从阿里云ECS上才能访问并使用OCS服务。所以我们在官网购买OCS的时候,会看到提示信息说需要至少有一台ECS才能买OCS。另外,阿里云ECS是分地区节点的,比如北京、杭州、青岛等,我们在购买OCS缓存的时候也要选相应的地区节点。北京的ECS只能访问北京的OCS,而不能访问杭州或青岛的OCS。 阿里云OCS是按购买量收费的,而不是按使用量收费。这点需要提醒新同学们注意,在我们购买了OCS缓存之后,计费就已经开始了,即使我们还没有真正使用缓存。也就是说,我们买了1G的OCS缓存后,即使目前使用量为0,系统也会按照1G的标准来计费。所以我们在购买OCS的时候,要选取适合我们业务数据需要的缓存档位。当然了,阿里云OCS也提供在线升降缓存容量的功能。也就是说,如果我们在使用了一段时间之后,发现购买的OCS缓存不够用了(或者缓存使用量太低),我们可以在线的对已有的OCS实例进行升档(或者降档),而OCS缓存服务不会被中断。 阿里云OCS对于存贮的对象大小是有限制的。缓存通常对其内部存储的数据尺寸是有限制的,阿里云OCS也一样。目前OCS支持存储的数据对象的上限是1,000,000Byte。如果要存的值超过这个限制,我们应该考虑把数据压缩,或从逻辑上分成不同键存储的几个值。 ------------------------- 现在我们开始在阿里云官网上购买OCS实例  http://buy.aliyun.com/ocs  首先我们需要已经有了一台阿里云ECS,否则我们无法在这个页面成功购买OCS。购买的第一步,我们先要确定选择买哪个地区的OCS;这个很重要,如上面所说,如果我们的ECS是属于北京,而我们在这里购买了杭州的OCS,那么这两者是无法配合协同工作的。所以,在购买OCS的时候一定要选择应用服务器ECS所在地区的OCS。下一步是要选择OCS缓存容量。我们要购买多大的缓存,这个取决于我们对自身业务应用中热点数据总量大小的判断。如果一时难以准确判断数据量,也不用担心:我们可以先买一个大致容量的OCS(比如1GB),随后在使用过程中,通过OCS控制台提供的监控功能,我们可以了解到目前OCS缓存的使用量等数据,然后可以自主的调整所需的缓存量,购买更大的缓存(比如升到5GB)或者减少已购的缓存量(比如降到512MB),阿里云会根据我们选择的新配置来调整对应的收费。此外在选择缓存容量的时候,要知道不同容量的缓存档位对应着不同的性能配额,具体来说包括两个指标:吞吐量带宽与每秒请求处理数(QPS)。比如以现在的配额标准,1GB的OCS缓存对应5MB/sec的吞吐量带宽和3000次/sec的请求处理峰值。当我们使用OCS的时候,如果数据量传输的带宽超过了5MB/s, 或者每秒的请求数超过了3000次,都会触发性能配额控制机制,导致某些请求无法返回正常结果。在确定了地区和缓存容量之后,我们就可以直接下单购买OCS了。 ------------------------- 在成功购买OCS之后,我们的联系邮箱和手机都会收到OCS创建成功的通知,里面会包括OCS的实例ID和初始密码(关于密码的用处后面会讲到)。我们现在登录OCS控制台, http://ocs.console.aliyun.com/ 就可以看到已经购买到的OCS实例列表。在列表页面上对应OCS实例的后面点击“管理”,就可以进入该OCS实例的详情页,看到更多的详细信息。 ------------------------- 我们现在已经有了一个OCS缓存实例,现在是时候试玩OCS了。要使用OCS就要写一点程序代码,不过不用担心,我们在这里采用“Happy-Path”的方法,从最简单的操作开始,让新上手的菜鸟们能马上就有一个能调用OCS缓存服务的程序。OCS提供缓存服务,它并不要求我们的程序是哪种语言来写的。我们这里先以Java程序为例,写一个最简单的“Hello World”。(其他编程语言的例子,我们随后附上。)第一步,登录你的阿里云ECS服务器,在上面安装Java JDK和你常用的IDE(比如Eclipse)。一定要记得我们之前说过的,只有在阿里云内网的ECS服务器上,才能访问我们的OCS实例。所以,用家里或是公司的电脑执行下面的代码示例是看不到结果的。 Java JDK和Eclipse都很容易从网上找到下载,比如 http://download.eclipse.org/ 或者 http://www.onlinedown.net/soft/32289.htm 第二步,在把Java开发环境准备好了之后,下载第一个代码示例(Sample-Code-1第三步,在Eclipse里面打开刚下载的OcsSample1.java,我们要根据自己的OCS实例信息修改几个地方。        我们每个人买到的OCS实例的ID都是不重复的,其对应的阿里云内网地址也是独一无二的,这些信息都在OCS控制台上显示出来。我们在同自己的OCS实例建立连接的时候,需要根据这些信息修改OcsSample1.java中的对应地方。         public static void main(String[] args) {                                        final String host = "b2fd2f89f49f11e3.m.cnqdalicm9pub001.ocs.aliyuncs.com"; //控制台上的“内网地址”                   final String port ="11211";       //默认端口 11211,不用改                   final String username = "b2fd2f89f49f11e3"; //控制台上的“访问账号”                   final String password = "my_password"; //邮件或短信中提供的“密码”                   …… …… ……       信息修改完毕,我们可以运行自己的程序了。运行main函数,我们会在Eclipse下面的console窗口看到下面这样的结果(请忽略可能出现的红色INFO调试信息): OCS Sample CodeSet操作完成!Get操作: Open Cache Service,  from www.Aliyun.com     OK,搞定!我们已经成功的连接上了阿里云的OCS并且调用缓存服务成功,就这么简单。-------------------------我们已经成功运行了第一个调用阿里云OCS缓存服务的Sample程序OcsSample1.java,现在我们看看这个程序里都做了什么。                                  …… …… ……                            System.out.println("OCS Sample Code");                                                        //向OCS中存一个key为"ocs"的数据,便于后面验证读取数据,                             //这个数据对应的value是字符串 Open Cache Service,  from www.Aliyun.com                            OperationFuture future = cache.set("ocs", 1000," Open Cache Service,  from www.Aliyun.com");                            //向OCS中存若干个数据,随后可以在OCS控制台监控上看到统计信息                            for(int i=0;i<100;i++){                                String key="key-"+i;                                String value="value-"+i;                                 //执行set操作,向缓存中存数据                                cache.set(key, 1000, value);                            }                             System.out.println("Set操作完成!");                             future.get();  //  确保之前(cache.set())操作已经结束                         //执行get操作,从缓存中读数据,读取key为"ocs"的数据                            System.out.println("Get操作:"+cache.get("ocs"));                            …… …… …… 从这些代码中可以看出: 1. 我们在建立与OCS缓存服务器的连接后,先是向缓存中存(set)了一个“key-value”(键值对)形式的数据,这个数据的key是字符串“ocs”,其对应的value也是字符串;2. 接着我们继续向缓存中存(set)了100个其他简单的“key-value”数据。3. 最后我们进行功能验证。根据之前给定的key,从缓存中获取(get)其对应的value:也就是输入字符串“ocs”,缓存给我们返回value对应的字符串。 以上的步骤中,1与3是相对应的,我们只有先向缓存中set了某个数据,后面才能从缓存中get到这个数据。步骤2中程序向缓存set了100个数据,是为了从另一个方面进行验证。我们回到阿里云OCS控制台,打开“实例详情”页,在“实例监控”的部分点击刷新,会看到其中一些监控项的值已经发生了变化(注:监控信息的刷新可能存在数秒的延迟), 其中的“Key的个数”已经变成了101,也就是说我们程序已经成功地向OCS缓存中存放了101个数据。-------------------------在写下一篇技术贴之前,列一些OCS用户在入门时问到的问题,方便其他刚认识OCS的同学:Question:买了1G的OCS,那就相当于这个1G是专门缓存用的,与ECS服务器的内存没关系是吧~Answer:是的,OCS的缓存容量与您ECS的内存容量是没关系的。Question:OCS 外网测试,怎么连接?有没有外网连接地址哦?Answer:OCS是不能从外网访问的。参照上面的文章。Question:我之前那个OCS可以正常使用,但现在换了一个OCS就不行了,怎么回事?Answer:经核实您的主机是属于杭州节点的,而现在这个OCS是青岛节点的,不同地域之间的产品内网不互通。Question:在设置一个value时,如果指定过期时间为0,会永久保留吗?Answer:指定过期时间为0,OCS就认为此数据不根据过期时间发生淘汰;但是,此数据仍有可能基于LRU被其他数据淘汰,或者由内存清理造成丢失 ,因此不能认为这个value会永久保留。 Question:对OCS的访问是否需要负载均衡? Answer:不需要。对访问请求的负载均衡都是在OCS服务器端来进行的,用户直接使用缓存服务即可,不用考虑负载均衡的事情。 Question:OCS是否会主动关闭闲置的连接? 如果会,请问连接闲置多久会被关闭?Answer:OCS不会主动关闭闲置的用户连接。但是用户的环境如果使用了SLB,则需要参考SLB连接关闭时间。Question:如何设置数据在OCS缓存中的过期时间 ?Answer:关于设置缓存数据的过期时间,可以参考Memcached官方说明: https://code.google.com/p/memcached/wiki/NewCommands An expiration time, in seconds. Can be up to 30 days. After 30 days, is treated as a unix timestamp of an exact date. 翻译过来就是:0~2592000表示从当前时刻算起的时间长度(以秒计算,最长2592000即30天);大于2592000表示UNIX时间戳。 此值设置为0表明此数据不会主动过期。------------------------- 回 12楼(村里一把手) 的帖子 谢谢,要让大家用得好才算数。 -------------------------缓存与数据库相结合使用,是常见的一种应用搭配场景。现在我们再看一个例子,是用OCS搭配MySQL数据库使用。Java示例代码在此(这个示例代码中,大部分与前几个例子类似。因为要与数据库结合,所以程序需要依赖一个JDBC的jar包才能运行。支持MySQL的JDBC jar包在此(在程序中添加MySQL数据库的连接信息:     …… …… ……            // JDBC driver name and database URL    static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";    static final String DB_URL = "jdbc:mysql://xxxxxxx.mysql.rds.aliyuncs.com/testdb"; //MySQL数据库URL        //  Database用户名及密码    static final String DB_USER = "xxxxxx";    static final String DB_PASS = "xxxxxx";            我们设想这样一个场景:我们需要从数据库的tableone表中查找区域不属于北京的记录总数,用SQL表示就是:SELECT count(*)  FROM testdb.tableone where region != 'beijing'假定这个表中的数据如下,则这条SQL查询返回的结果就是7:如果这个查询被调用到的频率很高,多个用户反复不断的在数据库中查这个数据,我们就可以把这个查询结果放到OCS缓存中去。看下面的代码片段,我们用for循环模拟用户连续20次在数据库中查询上述SQL语句:              for (int i = 1; i <= 20; i++) {                String sql = "SELECT count(*)  FROM testdb.tableone where region != 'beijing'";                String key ="non-beijing"; //给SQL语句自定义一个key                //在OCS缓存里按key查找               String value =  (String) cache.get(key);                                if (value == null) {                    // 在OCS缓存里没有命中                    // step 1:从My SQL数据库中查询                    //Load MySQL Driver                      Class.forName(JDBC_DRIVER);                     con = DriverManager.getConnection(DB_URL, DB_USER, DB_PASS);                    ps = con.prepareStatement(sql);                    ResultSet result = ps.executeQuery(sql);                    result.next();                                        value=result.getString(1);                    System.out.println("从MySQL中查询数据.  Key= "+key+" Value="+value);                                       // step 2: 把数据库返回的数据作为value存放到OCS缓存中去                    cache.set(key, EXPIRE_TIME, value);                                    } else {                    // 在OCS缓存里命中                    System.out.println("从OCS中读取数据.     Key= "+key+" Value="+value);                }                            }// end of for在这段代码中我们可以看到,我们给这条SQL语句标记了一个key,当有用户要执行这条SQL的时候,我们首先按照key在OCS缓存中查找:如果没有对应的缓存数据,则连接MySQL数据库执行SQL查询,把结果返回给用户,并把这个查询结果存到OCS缓存中去;如果OCS中已经有了对应的缓存数据,则直接把缓存数据返回给用户。运行结果如下: 从MySQL中查询数据.  Key= non-beijing, Value=7从OCS中读取数据.     Key= non-beijing, Value=7从OCS中读取数据.     Key= non-beijing, Value=7从OCS中读取数据.     Key= non-beijing, Value=7…… …… 从结果可以看出,程序第1次是从MySQL数据库当中查询数据,后面的19次都是从OCS缓存中获取key对应的value直接返回。也就是说,OCS降低了程序去连接MySQL数据库执行SQL查询的次数,减轻了对数据库的负载压力。用户对热点数据访问的频率越高,OCS的这种优势就越明显。

唐翰 2019-12-01 23:41:23 0 浏览量 回答数 0

回答

Re“零基础”系列课程如何在ECS上快递搭建一个WordPress站点 怎么获得云币?是不是回复帖子会有? ------------------------- Re“零基础”系列课程如何在ECS上快递搭建一个WordPress站点 谢谢 ------------------------- 第二步,安装完之后,没有80、9000端口 第二步,安装完之后,没有80、9000端口,这个是什么原因,该怎么解决?求助 ------------------------- 回 12楼larryli的帖子 第二步,安装完之后,没有80、9000端口,这个是什么原因,该怎么解决?求助啊 ------------------------- 回 145楼training的帖子 楼主好,感谢您的解答,我刚看到您的回复。想问一下,有没有pw论坛的安装教程?,还有,往后是不是重装系统后,也可以搭建WordPress?多谢 ------------------------- Re“零基础”系列课程如何在ECS上快递搭建一个WordPress站点 楼主你好,WordPress我搭建好了。其中遇到过一个问题,已经解决,向您汇报一下,第一步安装“一键安装包”的时候没有安装成功,后来是将系统换成了“centos”,然后才安装成功,所以,ECS的操作系统最好选用这个。 最后,我已经把站点安装好了,希望楼主后续发一些比较适合菜鸟的WordPress应用技巧,多谢。 ------------------------- 回 209楼training的帖子 楼主大大好,我也遇到了198楼那哥们遇到的问题,站点都建好了,而且用  http:/IP地址/wordpress/   可以打开站点,但是,直接输IP地址或者域名,打开后是403 Forbidden  ,请问这个是什么原因?是不是因为没有进行域名绑定?应该怎么操作。我的域名是今天刚通过备案的,才发现这个问题。诚心求教,多谢! ------------------------- 回 198楼伊奇的帖子 哥们,你的问题解决了吗?403 Forbidden 错误,我也遇到了 ------------------------- 回 197楼上云服务的帖子 又遇到问题了,直接输入域名,显示403 Forbidden,是不是需要域名绑定?我去搜了下相关教程,看的云里雾里,希望能给出后续建站的一些指导。多谢 ------------------------- 回 217楼training的帖子 多谢楼主耐心讲解。是不是还可以修改nginx配置文件,把根目录修改成www下面的wordpress?我看您发的第三个视频有修改nginx的过程,是把根目录www/phpwind改成了www。(我不知道说的对不对,这是我理解的,完全小白啊) ------------------------- Re“零基础”系列课程如何在ECS上快递搭建一个WordPress站点 楼主大大好,我按照您的指导,将那个文件放在了www下面,确实可以打开,但是,网址那一栏还是显示的  http://域名/wordpress. 之后,我修改了nginx配置,将根目录(应该是根目录吧)改成了www/wordpress,之后,输入域名,确实能打开,但是,点击返回首页或者登陆,都失败。 我又将nginx配置还原,就是根目录那块儿,我重新按照 http://域名/wordpress.输入网址,能打来,然后登陆,修改了 wordpress的设置,就是网址 之后,我再修改nginx配置,将根目录改成了www/wordpress,之后,浏览器输入域名,可以打开,然后正常登陆。 不知道这样对不对。我对那个代码完全懵逼,就是觉得从逻辑上应该是域名指向某个文件夹,也就是根目录,具体怎么操作,都是照猫画虎,跟着视频走的。 我的网站是www.pajidy.com 我想问下,为什么首页那个建站时间没有显示,而且导航栏去哪了。这些应该是琐碎的操作了,我就是吐槽一下 ------------------------- 回 172楼training的帖子 大神,我按照171楼和172楼的方法,做了修改,为什么最后登陆phpmyadmin的时候显示 “#1045 无法登录 MySQL 服务器” 密码都是对的 我也去百度了一下,是不是修改phpmyadmin的文件夹地址之后,权限出现了问题? 该怎么解决啊,多谢 ------------------------- 回 228楼风愿的帖子 是不是你之前的安装有问题?还有就是选择合适的操作系统 ------------------------- Re“零基础”系列课程如何在ECS上快递搭建一个WordPress站点 关于出现连接数据库错误,我找了一个教程,不知道是不是这么解决,粘贴出来。(我的网站是:啪几网www.pajidy.com) 以前一直用虚机,这次改用了阿里云服务器,因为这个站点纯粹就是个人喜好建立的,所以主机配置比较低,单核1G,1M独立外网带宽,环境是centos6.5 64位,nginx mysql 位安装管理面板,自己对这方面也完全是白丁,整个服务器环境的搭设全部按照阿里云官方的教程进行,整体弄完后,把自己的WORDPRESS搬上去,也还算顺利。不过运行了半个多余突然出现问题。打开网页的时候显示“建立数据库连接时出错”,通过后台链接MYSQL发现报错无法连接,自己也不太懂,就直接重启了服务器,一切正常。不过出现这种问题心理多少有些担忧,就在后台通过看了下进程,一看发现一个php-fpm的进程有很多子进程,且占用内存非常大,很短时间1G内存空闲就只剩下不到300M,而CPU使用率却很低。 找了个在线压力测试,并发30,进行3分钟压力访问,发现内存很快就所剩无几了,直到低于90M以后突然恢复到270M空闲时,发现MYSQL的进程被KILL了。压力测试结束后,内存并没有被释放。这就是问题所在了。 通过百度查询得知,PHP-CGI会释放内存,但并不会把内存归还系统,所以当过多的PHP-FPM子进程存在时,内存就会一点点被吃干,最终导致溢出。解决方法网上貌似很多,但看起来有点天书,选了一种比较好理解易操作的方法,就是修改php-fpm.conf文件,控制这个进程的数量。 找这个文件我就费了很大劲,网上的文章都不说这个文件在哪,对于小白来说,就有点吃力,最后找到,这个文件在php安装文件夹心下的etc文件夹里,如果是阿里云的话,应该就是 /alidata/server/php/etc里。 打开编辑这个文件,可以通过FTP或者LINUX命令行进行修改。主要涉及几个参数。 pm 这个是设置运行方式的,分别是static(静态)或者dynamic(动态) 默认应该是在214行左右,显示为 pm = dynamic,意思就是动态方式,如果内存小,比如512M,1G,2G之类,建议使用动态。 pm.max_children:静态方式下开启的php-fpm进程数量,这个是有在pm模式为static的情况下生效。 pm.start_servers:动态方式下的起始php-fpm进程数量,这个是pm位dynamic模式下需要设置的参数,意思就是启动运行时建立的起始php-fpm进程数量 大概在230行左右,我设置后的,pm.start_servers = 3 pm.min_spare_servers:动态方式下的最小php-fpm进程数 大概位置在235行,我设置后的,pm.min_spare_servers = 3 pm.max_spare_servers:动态方式下的最大php-fpm进程数量 大概位置在240行,我设置后的,pm.max_spare_servers = 10 还有一个就是pm.max_requests,这个在百度查询都的结果就是接受多少次请求后自动重启进程的,默认是500,不知道这个数值具体是指什么的,因为重启就意味着把php占用的空闲内存释放给系统,不过一旦这个值设置的过低,可能会导致所有的php-fpm进程在几乎同时重启,而重启过程中CPU占用率会飙升,且PHP会拒绝访问请求,所以这个值不能过低,按照我这个小白理解就是宁可适当的减少运行的子进程数,也不能过分的降低这个值。不知道对不对 大概位置在251行,我设置后的,pm.max_requests = 200 这就是我设置后的几个参数,保存后重启服务,再次观察,内存占用率基本稳定在400M,缓慢增长,经过了一晚的再次进行30并发的压力测试,虽然内存和CPU同样会在此时爆发增长,但是这个并发数还是挺住了,且在压力测试结束后,内存大部分被释放给系统了。最后又在wordpress安装了wp-super-cache缓存插件,很大程度降低了访问页面时对服务器的压力。 根据百度查到的,配置php-fpm并非由固定的模式,他基本是要找到一个平衡,对于我这样的小白来说,只能一点点的试,先改成这样运行一段时间观察下,后续再做调整,毕竟自己是小白,很多东西都得摸索,短时间内也无法确定效果,慢慢试吧。 linux命令行  top命令可以查看动态的系统资源占用情况,  ps aux可以查看当时占用系统资源的情况,非动态。 ------------------------- 回 252楼czfcyj的帖子 去看看171楼和172楼,感兴趣也可以看看我的发言 ------------------------- Re“零基础”系列课程如何在ECS上快递搭建一个WordPress站点 求助大神,我的数据库登陆不上去了,密码和用户名都对,显示#1045 错误 ------------------------- 回 247楼training的帖子 求助大神,我的数据库登陆不上去了,密码和用户名都对,显示#1045 错误

原不周 2019-12-01 23:22:13 0 浏览量 回答数 0

回答

【徐寅-南京大学- 阿里实习心得】 现在的心情非常复杂,因为小姐姐说看中了我的研究成果才让我参加这个实习心得分享的,但是我环顾四周只有我一个人的成果还没有发表出来!有一种青铜误入王者局的错乱感,不过在小姐姐大大的“不准退出”四个字面前,还得强撑着分享一点我的搬砖经历。 技术落地 来到菜鸟实习给了我在学校科研完全不一样的体验。这点感觉大家应该都深有体会。在学校是设计一个漂亮的齿轮,而在公司需要把这个齿轮安装到巨大的机器上,还要保证能够正常运行。结果就是来了菜鸟以后我花了很多时间在算法无关的事情上,比如说上线代码的编写和调试,比如说符合rtp接口的模型的训练和装载,比如和仓库运维人员的沟(扯)通(皮),争取更多的流量给我们的算法测试等等。在仓库这种大规模的现实复杂环境进行落地,为了数据的准确,只有到仓库实地考察测算以后你才能安下心来。 快乐工作 在我来阿里之前,关于阿里只听过马老师的“福报论”,因此以为可能会是一个从黑夜干到黑夜的血汗工厂。不过没想到实际上是10-6-5的八小时工作制,马老师的“福报论”只是鼓励大家要多奋斗而已。虽然大家都习惯了自愿加班到9点,不过有学长借的工牌,能够每天吃20块的夜宵。不过要是夜宵的种类能更丰富一点就好了,那种精致的小蛋糕总是可遇不可求。 回想一下,在杭州已经去过不少次西湖了,不过都是团建的活动。菜鸟ai部的团建应该是我最喜欢的团建类型了。在西湖的茶园美景边上,享受着清风和茶香,大家悠闲地玩着桌游或者聊天,让我这个ktv残疾人终于享受到了团建的快乐。 希望成果没事 半年多的实习一共攒出来两个工作,一个是偏理论的强化学习多目标环境自动分解技术,另一个是强化学习应用在仓库进行拣选单全局优化的工作,目前即将投稿Neurips20和NMI,希望能有一个好结果吧! 【杨亚涛-中山大学- 我的RI实习经历和感受】 现在回想还能非常清晰的记得当初实习第一天的那个场景,经过一系列入职流程之后,在杭州那高温的鬼天气下,我和师兄搬着台式机从四号楼走到了七号楼。由于我属于那种营养过剩的体型,机器搬到七号楼时,我的整个上衣都感觉被汗打湿了。进入大厅中,好不容易从被高温天气折磨的懵逼的状态下解脱出来。我又进入到了一个新的懵逼阶段。师兄带着我掠过了无数个工位之后转身进入了最角落的一个小房间。嗯,没错,我在实习的第一天就被拉进阿里特色的双十一项目室了。环顾着周围的大佬,心中还是有些胆怯。懵逼的在各位大佬面前做完自我介绍。 之后,在师兄的帮助下装完各种实验环境。师兄带着我到了走廊并在玻璃上描绘着大家做的事情以及我要做的事情。呃。。。懵逼过后的我开始接触了一个全新的令我再次懵逼的研究内容-Query改写。简单来说就是淘宝的用户常常输入的Query和商品标题描述之间会存在GAP。如何消除这个GAP是需要Query改写来做的。举个例子,用户搜索“大容量冰箱”,很多相关的商品标题不会用“大容量”来描述。会用多少升来写。单用用户输入的Query进行商品召回,会有很多相关产品会被忽略,并且还有可能面临不相关产品被召回展示。为了增加相关商品召回以及准确度,就需要对用户输入的原始Query进行改写。呃。。。听完师兄的介绍之后,师兄说希望能在双十一检验下效果。那个时候的感觉就是,哪有时间懵逼啊,抓紧做吧。 接下来,每天就在师兄发资料、阅读资料、实验、分析数据中度过。实验结果逐渐从坏变成了好。不过最后还是很遗憾没有在双十一时候检测模型效果。不过,在双十一之后师兄上线测试效果。还是有明显的改进的。在看到师兄周报中线上指标的提升之后,我的内心不由的升起了些许成就感。之后就开始了写论文投论文。经过一轮SIGIR的Reject之后,该工作被CIKM接收。总体谈下实习的感受。在来到阿里做RI实习之前,在实验室都是做一些偏向于研究性质的工作。呃。。。简单来说就是做了很多脱离应用场景的的工作。就是为了发论文而发论文。在阿里做的都是实用的、能够迅速看到实际效果的工作。既能够发论文,自己每次打开淘宝搜索时又能获得满满的成就感。 【张心怡-北京大学- 在阿里数据库科研团队实习是种怎样的体验?】 作者简介: 张心怡,北京大学前沿交叉研究院研究生,中国人民大学信息学院本科生。从18年底开始在POLARDB-X团队智能数据库组的实习,现已在阿里度过了一年多的时光。 心怡说,对于有志于数据库领域研究的小伙伴,这里是最好的学习和工作平台。 优秀的同行人,助我成长 我所在组的研究方向是智能数据库,目标是利用机器学习和统计优化等技术,实现数据库系统各个组件的自动优化,如存储引擎,并发控制,SQL优化器等,以减少系统成本,提升系统性能,以实现一个self-driving的数据库系统。 这是一个很有前景的方向。大四上学期,初来实习的我内心其实颇为忐忑,面对组里的同事前辈,“跟不上进度”成了我最担心的事情。然而,进入到工作状态之后,我心里的石头落了地:mentor给实习生安排的任务是循序渐进的,一次次讨论与指导,使我能够快速上手。经过和mentor的讨论,我选择把“智能查询优化”作为第一个研究项目,并且与大四学期的毕设结合,基于阿里线上平台的实际问题,展开研究。查询优化属于数据库比较底层的部分,之前我没有很深的了解。在开展研究的过程中,除了自己阅读文献,同事成为了我的“知识宝库”。遇到场景落地问题时,我会请教PolarDB-X优化器开发的同事,他们往往能够一针见血地指出实际问题。 我的成长离不开组里各位老师的帮助与分享,组内还会定期或不定期组织reading group,讲解工作成果与学界进展。在这里,你会发现身边的同事大多对深耕于某一领域,实力扎实,与他们交流会收获很多! 快乐工作,认真生活 “快乐工作,认真生活”,记得我刚刚入职时HR提到了这个观点,入职之后我发现这是阿里人身体力行的一句话。 在工作上,身边的人都很努力。在这种氛围的感召下,遇到难题,我也会情不自禁地在工位上多坐一会。暑期实习的时候,时常9点之后结束工作,打车回宿舍。生活上,团队里组织了丰富多彩的活动。聚餐已经成为了常规项目。工作间隙还可以去健身房锻炼一波,园区的按摩椅也成为了养生女孩的午休项目。印象最深的是团队组织的运动会,女子项目是平板支撑。听到这个消息之后,我基本每天都进行练习。运动会那天,杭州base、北京base、硅谷base进行了三地PK,在同事的加油下,我坚持了平板支持7分25秒,最后拿到了女子组冠军。 大家的工作与生活模式都很健康充实。在阿里,我见识到了工作发展的可持续性与优秀的团队交互模式。 阿里实习,带我打开科研大门 来到阿里之前,我是一个对科研比较懵懂的门外汉。特别幸运的是,在这里我遇到了很棒的mentor们指导我进行研究工作。不论是基础的代码风格还是研究思路、遇到的问题,mentor都会事无巨细地进行引导。以前我写代码,能跑起来、自己看得懂就行。 我在阿里提交的第一次merge request,有不少随意的空行和一些tricky且难以维护的逻辑。印象很深的是,当时mentor逐行写了comment指出问题。我认识到了代码的规范性和可维护性,以及别人是否能够理解自己的代码都是要考虑的问题。 2019年我从中国人民大学毕业,来到北京大学攻读数据科学研究生,感谢我的研究生导师崔斌老师对我在阿里实习的支持。当时,我在阿里研究的第一个课题,也画上了圆满的句号:我在NDBC(CCF National Database Conference)进行了课题报告,投稿论文并被评为best student paper。 我在阿里参与研究的第二个课题是数据库的智能调参。传统的数据库调参中DBA基于经验与尝试推荐参数值,而我们要做的是基于机器学习算法自动高效给出推荐。这个课题在进行过程中遇到了不少困难,算法的适用性与有效性是我们重点考虑的。在进行了很久的实验之后,会发现一些坑和问题,挫败感是有的,但是会马上被新的尝试与期待替代。 我发现,在这里的研究并不是为了学术灌水而做,有意义研究是问题导向的。mentor时常强调要找到可复现的场景和实际问题,这样才有实际意义。我的mentor base在硅谷,因为时差我时不时在早上收到消息和反馈,这成为了我起床开启新的一天的最大动力。mentor是我科研路上的引路人,也是并肩作战的战友,大家一起为了攻克问题而努力! 阿里的实习经历,帮我找到了打开科研大门的钥匙,让我从对科研的懵懵懂懂,到爱上了这一发现问题、攻克问题的过程。我希望将来能继续数据库领域的研究工作,在玉洁冰清的逻辑世界继续追寻。 【张亚斌-华南理工大学- 搬砖有感之研究吐槽】 首先声明这是一份任务性报告,大家如果赶去吃饭就可以先撤了。大家如果正在排队,可以一起吐槽一下。 作为一名即将硕士毕业&博士入学的研究生,我的研究经验有限,所以以下感悟吐槽仅供大家茶余饭后一笑,偶有雷同,纯属巧合~ 选题 提到学术研究,首当其冲的就是选题啦。选题并不仅仅是选择自己喜欢的热点题目,要综合考虑很多其他因素: - Supervisor or coauthor的研究背景。该项涉及到可预期的帮助 - 可使用的硬件资源。对于cv和ml来说,有的课题需要占用很大的计算资源,如 - -ImageNet based NAS。硬件资源基本决定了试错的时间成本。 - 研究课题的研究价值。当时火的课题,有些做1-2年之后可能就过时了,有些1-2年之后可能更加火。决定性因素很大程度是其潜在应用空间。 该研究课题在工业界的价值。在阿里工作实习的我们的研究课题当然和公司项目有千丝万缕的联系。 自己的兴趣。 除了上述的热点课题或潜在热点课题,还有如下的选择: 自创新的课题,俗称挖坑。该方面需要对整个研究领域比较全面和比较深入的理解,然后对整个研究领域的研究方向进行建设性的预测。一般都是大佬在挖坑。 方法 选好课题之后,得到对应的解决问题的方法一般经由如下步骤: 1. 发现问题的能力:一般来说,对于新问题会有一个或几个直接的处理方法,此时就是比手速的时候了;不过很多时候这里真正较量的是发现问题的能力。 2.发现问题的能力again:后续像我这样的大多数研究人员都是在该框架上修修改改,当然也会有大牛直接开辟新的basic pipelines。如果我们聚焦在对现有框架的修改,首先第一步要做的是分析现有框架有什么遗留问题,然后针对该问题设计改进方法。 3.Naïve idea:我们一般会发现其实做出少量改进并发表论文是相对容易的,因为simple idea是比较容易获得的:如 https://mp.weixin.qq.com/s/vnyra_xcg9D6NUNVpKtP0Q所调侃,单纯的做方法A+方法B,或者A方法用于B领域就可以实现(或许这就是多看论文的巨大优势?调侃脸)。不过对于非入门同学来说,该method combine的方式形同饮鸩止渴。 4.Mature idea:相对于直接将其他论文中的方法“借”为己用,借鉴其他论文方法提出过程中的研究思路是一个更加合理的选择。也就是要分析出:该作者发现了哪些问题?对该问题提出了怎样的思考?如何从思考过渡到实际算法改进?甚至对于算法改进过程中碰到的问题的处理方法。这个分析过程是重要的也是必要的,我觉得这个过程是研究人员提升的过程,即发现问题,解决问题能力的全面提升。 5.Advanced idea: 特指原创性很强的,从无到有的idea。和上面说的大牛的basic pipelines应该基本重叠吧。 写作 基本方法验证之后,接下来论文写作了。 英文写作约等于逻辑+英文本身,其中逻辑占绝大比重。逻辑就是讲故事,如何条理分明将自己的工作讲给别人听,并让听者觉得该工作在整个研究的领域是重要的,有意义的。写作能力很重要,例如即使naive的idea 如果写作很好也是很有机会发表的。那么如何练习呢?我导师给的朴素建议是:多练习,每天把自己的工作进展和想法用英文formal 的写出来。 最后,也是最重要的,祝各位同学抱紧大腿,大腿紧抱。

问问小秘 2020-05-19 13:01:37 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 68 浏览量 回答数 0

回答

ReAliDDNS基于云解析API的DDNSC 基于DTSDAO发布的AliDDNS 3.0继续开发至3.6.0,算是一个成熟的版本了,今天刚编译出来,分享给大家。 需要的下载吧 AliDDNS v3.6.0 v3.6.0更新内容: 1、版本号更新至3.6.0 2、著作信息放入系统托盘右键菜单“关于”。 3、增加随系统启动功能。 4、增加软件启动隐藏至托盘功能。 5、增加日志记录、超过10000行自动转储至软件目录功能。 6、软件功能实现根据使用习惯调整。 7、配置文件名称更改,参数增加。 8、完善窗体标签功能实现时的更新逻辑。 9、完善当域名记录不存在时自动添加。 10、程序代码调整,有兴趣的可以git。 ------------------------- ReAliDDNS基于云解析API的DDNSC 这个主题时间比较久了,看了一下,大家所提到的问题在v3.6.0版本已经解决。 下一个版本功能有需求的可以提提。 居然无法发表主题,没有权限,郁闷,有权限的帮忙发到新主题,可以让更多人看到、用到、反馈,谢了先! ------------------------- ReAliDDNS基于云解析API的DDNSC 再次提交一个新的版本v3.7.0.1: 1、版本号更新至3.7.0.1 2、著作信息放入系统托盘右键菜单“关于”。 3、增加随系统启动功能。 4、增加软件启动隐藏至托盘功能。 5、增加日志记录、超过10000行自动转储至软件目录功能。 6、软件功能实现根据使用习惯调整。 7、配置文件名称更改,参数增加。 8、完善窗体标签功能实现时的更新逻辑。 9、完善当域名记录不存在时自动添加。 10、增加手工指定一个IP,用于当不能从网址获取WAN口IP时救急使用。由于通过http方式从网站获取WAN口IP技术,是从返回信息过滤抓取xxx.xxx.xxx.xxx字串,有时候返回信息包含内容过多,会过滤抓取失败,因此,有必要保留一个手工指定IP的功能。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.7.1.1 1、增加系统托盘图标状态更新功能:红色-获取WAN口IP或者获取域名绑定IP失败。黄色-获取成功,但WAN口IP和域名绑定IP不一致。绿色-获取成功,WAN口IP和域名绑定IP一致。灰色-WAN口网络不通。 2、修改代码和窗体标签刷新BUG。 3、修复系统托盘图标刷新BUG。 ------------------------- 回 34楼飞翔的笨猫的帖子 ttl值使用的系统默认值,免费版本是600秒,主要是阿里云解析有好多版本,不知道修改后能否有效果,我增加一个参数,你们测试看看。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.0.0 1、增加TTL参数。 2、修复代码BUG。 ------------------------- ReAliDDNS基于云解析API的DDNSC 增加了TTL参数,请大家测试反馈信息哈。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.1.0 1、在配置文件中对accessKeyId和accessKeySecret进行加密存储。注意现有配置文件中未加密参数将失效。 ------------------------- Re回 37楼wisdomwei的帖子 引用第39楼飞翔的笨猫于2018-04-22 10:31发表的 回 37楼wisdomwei的帖子 : win10系统,勾选启动时最小化和日志自动转储 不起作用,随系统启动后,第一次无法自动绑定域名,必须手动点击立即更新一次才行 日志如下: 2018/4/22 10:28:32 运行出错!信息: System.UnauthorizedAccessException: 对注册表项“HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionRun”的访问被拒绝。    在 Microsoft.Win32.RegistryKey.Win32Error(Int32 errorCode, String str)    在 Microsoft.Win32.RegistryKey.CreateSubKeyInternal(String subkey, RegistryKeyPermissionCheck permissionCheck, Object registrySecurityObj, RegistryOptions registryOptions) ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1776828][/url] 1、日志第一行报错是因为系统禁止写入注册表了,当随系统启动选定时,软件会写入系统注册表,看看是否杀毒软件拦截或者禁止了。 2、自动最小化不起作用目前无法复现错误,你再观察一下,把错误日志贴出来。 3、日志转储错误,建议使用管理员模式运行程序,有可能是文件权限原因。 如果最小化和日志转储都不起作用,建议把配置文件删除,重新运行软件,录入参数再测试保存后试一下看看是否恢复正常。 ------------------------- Re回 39楼飞翔的笨猫的帖子 引用第40楼飞翔的笨猫于2018-04-22 10:33发表的 回 39楼飞翔的笨猫的帖子 : 并且 win10 系统 设置ttl值后 无法保存设置 电脑重启后 还是回复默认600 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1776829][/url] 根据你两个帖子反馈的情况,建议你把设置文件删除,然后使用管理员模式运行一下程序,重新设置一下试试看,如果问题依旧,把错误日志贴出来看看。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.2.1 1、增加角色权限检测。 2、更多功能日志输出。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第46楼佳盟自动化于2018-04-22 17:58发表的 ReAliDDNS基于云解析API的DDNSC : 见识了  我想发链接可以吗? [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1776874][/url] 可以,就是拿出来分享的哈 ------------------------- Re回 43楼wisdomwei的帖子 引用第45楼飞翔的笨猫于2018-04-22 17:17发表的 回 43楼wisdomwei的帖子 : 用了 最新的3.8.2.1版 可以自启动 设置也能保存 ddns也能自动更新,但是日志还是报错,你看下: 2018/4/22 17:06:20 计算机名: Work-PC 2018/4/22 17:06:20 当前用户: he* 2018/4/22 17:06:20 角色信息:Work-PChe* 2018/4/22 17:06:20 当前用户需要文件写入和注册表操作权限,否则相关参数不起作用! ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1776869][/url] 提示注册表访问被拒绝,原因可能是注册表访问策略被修改,或者安装了杀毒软件,例如360,把软件对注册表的访问拦截了,如果是360,看看拦截清单里面有没有,有的话就删除拦截记录,再添加一条信任记录。 如果不是360等杀毒软件,就编辑一下组策略,把当前用户对注册表访问通过。 ------------------------- ReAliDDNS基于云解析API的DDNSC 下一个版本打算增加一个自动检测升级功能,实现无人值守的自动检测升级,不用再手工替换升级版本了,目前开发中。 ------------------------- 回 50楼清者自清12的帖子 使用了c#默认的控件textbox,mask设置成了000.000.000.000,代码里面校验了不能超出255.255.255.255,使用输入时稍微将就一下,以后有时间会重新设计一下控件,默认textbox处理录入格式时比较蠢。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第53楼清者自清12于2018-06-08 13:56发表的 ReAliDDNS基于云解析API的DDNSC : 还有个,获取IP那两个网址能不能自动切换,当一个网址获取不到IP时,自动切换到另外一个网址。 软件启动过程中,当获取不到IP时,软件就会卡死好一会, [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1782201][/url] 下载最新版本,已经添加了www.net.cn获取IP的网址,当然可以自行录入地址,地址获取返回含有xxx.xxx.xxx.xxx格式的ip的,函数会自动过滤其它信息,但内容含有多个ip就会失败。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第55楼lhpdir于2018-06-13 23:08发表的 ReAliDDNS基于云解析API的DDNSC : 如果设置时间3600秒,左边显示的是360,不过10秒掉1秒,是作者有意为之? [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1782899][/url] 是窗体控件格式问题,宽度不够,新版本已经增加了宽度,下载新版本即可。至于10秒掉一秒,估计是cpu时钟运行与程序控件显示不同步造成的,理论上应该是毫秒,本程序使用的是C#自带Timer控件,没有修改过。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第54楼lhpdir于2018-06-13 21:56发表的 ReAliDDNS基于云解析API的DDNSC : 解压密码? [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1782895][/url] winrar压缩,不需要解压密码 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.4.0   1、增加Ngrok网络穿透功能。 2、调整倒计时控件宽度,修复当倒计时超过3位时被遮挡的问题。 3、精简代码。 ------------------------- Re回 51楼wisdomwei的帖子 引用第52楼清者自清12于2018-06-02 13:03发表的 回 51楼wisdomwei的帖子 : 兄台,whatismyip.akamai.com这个网址我这边有些地方经常获取不到IP,然后WAN口地址就变成0.0.0.0  软件能不能加一条,如果IP是0.0.0.0则不更新。要不然一获取不到IP,域名就绑定0.0.0.0了 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1781486][/url] 已经实现自主添加其他查询网址,启用自动运行时会逐个查询。 v3.8.5.0 1、设置修改实时保存。 2、可添加多个公网IP查询网址,自动运行是逐个查询,当有返回值时停止。 3、简化代码。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第53楼清者自清12于2018-06-08 13:56发表的 ReAliDDNS基于云解析API的DDNSC : 还有个,获取IP那两个网址能不能自动切换,当一个网址获取不到IP时,自动切换到另外一个网址。 软件启动过程中,当获取不到IP时,软件就会卡死好一会, [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1782201][/url] 已经实现自主添加其他查询网址,启用自动运行时会逐个查询。 v3.8.5.0 1、设置修改实时保存。 2、可添加多个公网IP查询网址,自动运行是逐个查询,当有返回值时停止。 3、简化代码。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.5.0 1、设置修改实时保存。 2、可添加多个公网IP查询网址,自动运行是逐个查询,当有返回值时停止。 3、简化代码。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.6.0   1、修改代码,.net框架版本由4.5降低到4.0,可在WinXP系统运行,WinXP系统最高支持.net 4.0。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第65楼purelyc于2018-07-21 18:44发表的 ReAliDDNS基于云解析API的DDNSC : 感谢作者的软件,请问有没有方式做成可以为域名下多个主机记录做记录值的,现在只能做一个有点浪费域名了 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1786873][/url] 你的意思是动态刷新几个A记录的IP地址吗?把几个记录刷新同一个IP地址还是不同IP地址? 或者你的意思是做一个管理域名的软件? ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第68楼qz_陈sir于2018-07-22 13:08发表的 ReAliDDNS基于云解析API的DDNSC : 楼主 发现你这个工具有个问题  用了这个工具  有设置了开机启动  其他用户远程桌面注销不了  必须把工具先退出才能注销   测了3个2003的服务器都是这样 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1786987][/url] 如果win2003服务器,建议查看一下系统日志,看看远程登录之后都执行了什么操作,最好把相关日志贴出来看看。 远程桌面注销不了这种情况第一次遇到,我试试看能否重现你说的情况。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第70楼purelyc于2018-07-22 17:21发表的 ReAliDDNS基于云解析API的DDNSC : 请问一个问题,启动后不手动点一次测试连接,域名IP就无法自动绑定 自动更新时间到达后提示 2018/7/22 17:02:25    updateDomainRecord() Exception:  Aliyun.Acs.Core.Exceptions.ClientException: InvalidParameter : The parameter value RecordId is invalid.    在 Aliyun.Acs.Core.DefaultAcsClient.ParseAcsResponse[T](AcsRequest`1 request, HttpResponse httpResponse) ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1787006][/url] 1、只有勾选了启动自动运行,软件启动才会自动分别查询阿里云DNS的A记录和WAN口IP,查询之后对比两者IP是否一致,一致就静默,等待下一次更新时间到来,不一致就立即更新。 如果没有勾选,软件启动后需要手工点击测试。 2、当返回你贴出来的日志时,说明你之前已经成功更新过A记录,但再次运行时,你只修改了域名,没有经过测试和添加到阿里云DNS,造成阿里云DNS里面的recordid对应的域名和你现在配置文件里面的不一致,正确的方法是每次修改之后都测试一下,如果不存在会提醒添加记录。 下载使用最新版本v3.8.6.0,日志记录里面会有很明确的提醒。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第73楼cxq82于2018-07-27 11:03发表的 ReAliDDNS基于云解析API的DDNSC : 帖主好! 非常感谢,开发这个插件分享给大家,这个实在找到辛苦,最终还是找到这里了。 有个疑问反馈下: 1、局域网内2机器同时开程序,更新同一域名,过会儿会无法更新域名;阿里后台发现有2个A记录,不懂是阿里故意设置的还是bug。 2、上述情况,关闭一台机器;在另一地域,用此程序更新另一个二级域名,也出现无法更新现象;是否同一key 不能多台电脑使用呢? ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1787650][/url] 1、对于同一局域网内的两台机器同时运行AliDDNS.exe,更新同一域名a.demo.com,只要录入没有问题,应该不会出现a.demo.com在阿里云DNS里面有两个recordid,请检查录入是否正确。如果问题依旧,请把两台机器的软件运行界面截图和运行日志一起贴出来,还有阿里云控制台A记录的截图,我分析一下看看是否是软件BUG。 2、不同局域网,只要WAN口IP不同,不管地域是否是否相同,更新同一域名,只会导致阿里云DNS该A记录的IP不断变化。 3、不管是否是同一局域网,同一accesskey和accesssecret,可以更新任意不同A记录的IP,如果不能成功,请检查accesskey和accesssecret是否正确,或者网络路由是否有防火墙限制,点击【测试】试一下。可以把日志贴出来看看,分析一下问题。 据我所知,目前阿里云还没有限制DNS中A记录更新的频率和次数。 我见过宽带使用长城宽带的,每次更新WAN口IP都不同,奇葩的不得了,最后ngrok网络穿透了事。 ------------------------- Re回 72楼wisdomwei的帖子 引用第75楼kakalin于2018-07-31 15:39发表的 回 72楼wisdomwei的帖子 : 帖主好,我也遇到这样的问题,随系统自动启动已经开了,但是还是要每次手动点击测试连接才能正常工作。 日志: 2018/7/31 15:31:48 计算机名: xxxx 2018/7/31 15:31:48 当前用户: xxx 2018/7/31 15:31:48 角色信息:xxxx ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1788169][/url] 关键的出错信息在这里: 2018/7/31 15:32:03 updateDomainRecord() Exception:  Aliyun.Acs.Core.Exceptions.ClientException: InvalidParameter : The parameter value RecordId is invalid. 之前已经成功运行过,阿里云DNS已经添加了域名并返回recordid了,但是,你再次启动时,配置文件里面的recordid和域名与阿里云DNS里面的recordid和域名不一致! 可能原因:1、本地修改域名后没有测试并添加。2、本地修改了recordid。3、本地配置文件被手工修改。4、阿里云DNS对应记录被手工修改。 解决办法:修改域名后点击测试和添加,确保生效,不要手工修改本地配置文件和阿里云DNS服务器里面的域名记录,除非你知道是在干什么。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第81楼鱼花于2018-08-14 20:58发表的 ReAliDDNS基于云解析API的DDNSC : 用上3.8.6版,乍么github.com/dtsdao/AliDDNS只有verson 1.0 ??? 3.8.6版在电算机重启后不会得自动点击测试连接,只能手工。要是人在外边,刚好ip又给营运商变了就不能及时更新正确ip了 补充:我的win 2012 打上自启了,能自启,就是不能解析? [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1789959][/url] 原作者已经不维护更新了,我fork过来继续更新。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第82楼鱼花于2018-08-14 21:18发表的 ReAliDDNS基于云解析API的DDNSC : 018/8/14 21:08:57 计算机名: computer 2018/8/14 21:08:57 当前用户: Administrator 2018/8/14 21:08:57 角色信息:computerAdministrator 2018/8/14 21:08:57 当前用户需要文件写入和注册表操作权限,否则相关参数不起作用! ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1789962][/url] 稍后我会更新一下代码,当IP为0.0.0.0的时候不更新阿里云DNS记录,仅提示未能获取IP,需要手工获取。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第80楼服务器云于2018-08-10 22:56发表的 ReAliDDNS基于云解析API的DDNSC : 这个就是根据家里的IP 变化通过api动态的更新DNS? 有延迟么?python可以做么? [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1789426][/url] 完全可以,很简单。 ------------------------- Re回 28楼wisdomwei的帖子 引用第79楼flcz于2018-08-10 16:24发表的 回 28楼wisdomwei的帖子 : 有没有获取到0.0.0.0,不修改记录的功能。我现在可能是网络原因,老被改为0.0.0.0 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1789379][/url] 稍后我会更新一下代码,当获取IP为0.0.0.0时不更新阿里云记录, 提示手工更改。 你可以尝试添加其他获取IP的地址的网址,看能否自动获取。例如:http://www.net.cn/static/customercare/yourip.asp http://ip.qq.com/ http://www.3322.org/dyndns/getip ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第78楼鱼花于2018-08-07 09:43发表的 ReAliDDNS基于云解析API的DDNSC : win 2012点击验证安钮没反应 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1788817][/url] 是“测试连接”按钮吧?点击后稍等,如果网络状况不佳,或者设置错误,会有延迟。 程序运行需要.NET FRAMEWORK 4.0以上版本。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第77楼kakalin于2018-08-01 21:07发表的 ReAliDDNS基于云解析API的DDNSC : 找到原因了,本地配置文件无法保存recordid,手动写进去以后就正常了。 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1788345][/url] 不建议修改recordid,除非你明白是在做什么?修改域名后测试连接,如果DNS记录存在,会自动获取recordid,如果不存在,会提示添加新记录。 ------------------------- Re回 72楼wisdomwei的帖子 引用第75楼kakalin于2018-07-31 15:39发表的 回 72楼wisdomwei的帖子 : 帖主好,我也遇到这样的问题,随系统自动启动已经开了,但是还是要每次手动点击测试连接才能正常工作。 日志: 2018/7/31 15:31:48 计算机名: xxxx 2018/7/31 15:31:48 当前用户: xxx 2018/7/31 15:31:48 角色信息:xxxx ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1788169][/url] 勾选随系统启动自动运行即可。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第90楼kanxiji于2018-08-18 23:34发表的 ReAliDDNS基于云解析API的DDNSC : 楼主你好 你的东西很好用, 提个建议:TTL和更新秒数可以分别设置 [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1791200][/url] 抱歉是个BUG,升级对配置文件读写时参数错误,已经修复。感谢提供建议! ------------------------- ReAliDDNS基于云解析API的DDNSC v.3.8.6.2 1、修复配置文件参数TTL和WaitingTime写入BUG。 2、增加更新逻辑,当获取WAN口IP返回0.0.0.0时,不更新阿里云DNS记录,提示手工修改。 ------------------------- ReAliDDNS基于云解析API的DDNSC v3.8.6.3 1、修改测试存储逻辑,锁定Recordid编辑框,避免添加域名成功后,手工修改造成配置文件存储Recordid与服务器不一致时造成的自动更新出错。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第94楼鱼花于2018-08-28 11:00发表的 ReAliDDNS基于云解析API的DDNSC : v3.8.6.3  ,在win2012下点测试,没能得到本地ip 勾选自启,关闭退出,重新启动,这选项是空的。 之前下载的版本,在win 2012 r2下手动还能用就是机器重启后,没能得到本机ip,要手机点测试后才正常。 ....... [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1792007][/url] 1、点击【测试连接】是测试阿里云账号信息设置是否正确,如果正确就会测试录入的域名记录是否存在,如果存在就返回recordid,如果不存在就提示添加。 2、获取本地WAN口IP点击【获取WAN口IP】按钮,而不是【测试连接】按钮。 3、如果需要自动更新,需要设置自动更新倒计时秒数,勾选自动更新,勾选随系统启动自动运行。 感觉你对软件运行界面设置不熟悉,建议详细看一下软件运行界面,配置修改日志输出框都会有提示,也详细看一下。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第96楼saoian于2018-08-30 16:02发表的 ReAliDDNS基于云解析API的DDNSC : 你好: 程序运行时提示,版本检测程序update.exe未找到,能把这个文件发出来吗? 另外在运行升级时提示,软件运行目录下没有找到updateinfo.txt,是否是直接在运行目录下新建一个updateinfo.txt文件就可了? [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1792277][/url] 抱歉自动升级功能的update.exe还有些BUG,还没有放出来,请先取消勾选【关于】菜单下的【自动检测升级】,不勾选时其它功能可正常使用,等update.exe放出来您再勾选这个功能菜单。 ------------------------- ReReAliDDNS基于云解析API的DDNSC 引用第98楼daoyuanjiao于2018-09-14 11:12发表的 ReAliDDNS基于云解析API的DDNSC : 可以具体描述一下里面的ngrok的使用吗?我的配置后一直无法访问。但是单独打开ngrok设置令牌后,启动ngrok http 80 是可以访问的!谢谢!我i一直显示“Ngrok功能启用,ngrok.exe将自动加载!本机浏览器打开:127.0.0.1:4040 查看运行状态。”但是打开127.0.0.1:4040一直显示无法访问! [url=https://bbs.aliyun.com/job.php?action=topost&tid=289624&pid=1793763][/url] ngrok的详细使用方法你从官网看一下,我这里简单说两个方法: 1、使用官网网址映射。在ngrok官网 注册一个免费账号,从官方下载编译好的ngrok.exe程序,跟AliDDNS.EXE放在一个文件夹下,然后根据页面提示,填写参数,保存,勾选后自动运行。 2、如果自己有服务器的话,从github fork一下ngrok源码到本地,直接编译一个ngrokd出来,在服务器上运行,一般运行的方式是./bin/ngrokd -tlsKey="server.key" -tlsCrt="server.crt" -domain="ngrok.xxxx.cn" -httpAddr=":8081" -httpsAddr=":8082" -tunnelAddr=":8083" &  然后再根据编译时生成的证书,编译一个win的ngrok.exe程序来,跟AliDDNS.exe放在一个文件夹下,根据服务端的配置,令牌为空,地址为:ngrok.xxx.cn:8083,要穿透的二级域名假设为demo,那么穿透后的完整URL是http://demo.ngrok.xxx.cn:8081 访问http服务, 或者https://demo.ngrok.xxx.cn:8082 访问https服务,页面是否能打开,取决于80端口上是否有服务可以访问。内网的其他服务端口也是一样,假设ftp服务跑在21端口上,穿透WAN端口是2221,那么访问URL是ftp://demo.ngrok.xxx.cn:2221,不知道说明白了吗? ------------------------- 回 102楼estas的帖子 我用的北京联通的光纤,没有任何问题。 把日志贴出来。 DDNS跟线路关系不大,阿里云是智能路由,看本地DNS设置,或者杀毒软件设置。 ------------------------- 回 100楼daoyuanjiao的帖子 不支持,仅在windows平台可用,.net3.5以上。

wisdomwei 2019-12-02 02:58:27 0 浏览量 回答数 0

问题

干货分享:DBA专家门诊一期:索引与sql优化问题汇总

xiaofanqie 2019-12-01 21:24:21 74007 浏览量 回答数 38

问题

【技术干货】原来阿里云自助实验室的系统架构是这样的啊

驻云科技 2019-12-01 21:07:14 9011 浏览量 回答数 1

回答

你好,这里有208份资料,详情请参考:https://github.com/ty4z2008/Qix/blob/master/ds.md 《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)是MIT读博的时候是做分布式系统的研究的,现在在NUS带学生,不仅仅是分布式系统,还有无线网络.如果感兴趣可以去他的主页了解. 《Distributed porgramming liboratory》介绍:分布式编程实验室,他们发表的很多的paper,其中不仅仅是学术研究,还有一些工业界应用的论文. 《MIT Theory of Distributed Systems》介绍:麻省理工的分布式系统理论主页,作者南希·林奇在2002年证明了CAP理论,并且著《分布式算法》一书. 《Notes on Distributed Systems for Young Bloods》介绍:分布式系统搭建初期的一些建议 《Principles of Distributed Computing》介绍:分布式计算原理课程 《Google's Globally-Distributed Database》介绍:Google全球分布式数据介绍,中文版 《The Architecture Of Algolia’s Distributed Search Network》介绍:Algolia的分布式搜索网络的体系架构介绍 《Build up a High Availability Distributed Key-Value Store》介绍:构建高可用分布式Key-Value存储系统 《Distributed Search Engine with Nanomsg and Bond》介绍:Nanomsg和Bond的分布式搜索引擎 《Distributed Processing With MongoDB And Mongothon》介绍:使用MongoDB和Mongothon进行分布式处理 《Salt: Combining ACID and BASE in a Distributed Database》介绍:分布式数据库中把ACID与BASE结合使用. 《Makes it easy to understand Paxos for Distributed Systems》介绍:理解的Paxos的分布式系统,参考阅读:关于Paxos的历史 《There is No Now Problems with simultaneity in distributed systems》介绍:There is No Now Problems with simultaneity in distributed systems 《Distributed Systems》介绍:伦敦大学学院分布式系统课程课件. 《Distributed systems for fun and profit》介绍:分布式系统电子书籍. 《Distributed Systems Spring 2015》介绍:卡内基梅隆大学春季分布式课程主页 《Distributed Systems: Concepts and Design (5th Edition)》介绍: 电子书,分布式系统概念与设计(第五版) 《走向分布式》介绍:这是一位台湾网友 ccshih 的文字,短短的篇幅介绍了分布式系统的若干要点。pdf 《Introduction to Distributed Systems Spring 2013》介绍:清华大学分布式系统课程主页,里面的schedule栏目有很多宝贵的资源 《Distributed systems》介绍:免费的在线分布式系统书籍 《Some good resources for learning about distributed computing》介绍:Quora上面的一篇关于学习分布式计算的资源. 《Spanner: Google’s Globally-Distributed Database》介绍:这个是第一个全球意义上的分布式数据库,也是Google的作品。其中介绍了很多一致性方面的设计考虑,为了简单的逻辑设计,还采用了原子钟,同样在分布式系统方面具有很强的借鉴意义. 《The Chubby lock service for loosely-coupled distributed systems》介绍:Google的统面向松散耦合的分布式系统的锁服务,这篇论文详细介绍了Google的分布式锁实现机制Chubby。Chubby是一个基于文件实现的分布式锁,Google的Bigtable、Mapreduce和Spanner服务都是在这个基础上构建的,所以Chubby实际上是Google分布式事务的基础,具有非常高的参考价值。另外,著名的zookeeper就是基于Chubby的开源实现.推荐The google stack,Youtube:The Chubby lock service for loosely-coupled distributed systems 《Sinfonia: a new paradigm for building scalable distributed systems》介绍:这篇论文是SOSP2007的Best Paper,阐述了一种构建分布式文件系统的范式方法,个人感觉非常有用。淘宝在构建TFS、OceanBase和Tair这些系统时都充分参考了这篇论文. 《Data-Intensive Text Processing with MapReduce》介绍:Ebook:Data-Intensive Text Processing with MapReduce. 《Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System》介绍:Design and Implementation of a Query Processor for a Trusted Distributed Data Base Management System. 《Distributed Query Processing》介绍:分布式查询入门. 《Distributed Systems and the End of the API》介绍:分布式系统和api总结. 《Distributed Query Reading》介绍:分布式系统阅读论文,此外还推荐github上面的一个论文列表The Distributed Reader。 《Replication, atomicity and order in distributed systems》介绍:Replication, atomicity and order in distributed systems 《MIT course:Distributed Systems》介绍:2015年MIT分布式系统课程主页,这次用Golang作为授课语言。6.824 Distributed Systems课程主页 《Distributed systems for fun and profit》介绍:免费分布式系统电子书。 《Ori:A Secure Distributed File System》介绍:斯坦福开源的分布式文件系统。 《Availability in Globally Distributed Storage Systems》介绍:Google论文:设计一个高可用的全球分布式存储系统。 《Calvin: Fast Distributed Transactions For Partitioned Database Systems》介绍:对于分区数据库的分布式事务处理。 《Distributed Systems Building Block: Flake Ids》介绍:Distributed Systems Building Block: Flake Ids. 《Introduction to Distributed System Design》介绍:Google Code University课程,如何设计一个分布式系统。 《Sheepdog: Distributed Storage System for KVM》介绍:KVM的分布式存储系统. 《Readings in Distributed Systems Systems》介绍:分布式系统课程列表,包括数据库、算法等. 《Tera》介绍:来自百度的分布式表格系统. 《Distributed systems: for fun and profit》介绍:分布式系统的在线电子书. 《Distributed Systems Reading List》介绍:分布式系统资料,此外还推荐Various articles about distributed systems. 《Designs, Lessons and Advice from Building Large Distributed Systems》介绍:Designs, Lessons and Advice from Building Large Distributed Systems. 《Testing a Distributed System》介绍:Testing a distributed system can be trying even under the best of circumstances. 《The Google File System》介绍: 基于普通服务器构建超大规模文件系统的典型案例,主要面向大文件和批处理系统, 设计简单而实用。 GFS是google的重要基础设施, 大数据的基石, 也是Hadoop HDFS的参考对象。 主要技术特点包括: 假设硬件故障是常态(容错能力强), 64MB大块, 单Master设计,Lease/链式复制, 支持追加写不支持随机写. 《Bigtable: A Distributed Storage System for Structured Data》介绍:支持PB数据量级的多维非关系型大表, 在google内部应用广泛,大数据的奠基作品之一 , Hbase就是参考BigTable设计。 Bigtable的主要技术特点包括: 基于GFS实现数据高可靠, 使用非原地更新技术(LSM树)实现数据修改, 通过range分区并实现自动伸缩等.中文版 《PacificA: Replication in Log-Based Distributed Storage Systems》介绍:面向log-based存储的强一致的主从复制协议, 具有较强实用性。 这篇文章系统地讲述了主从复制系统应该考虑的问题, 能加深对主从强一致复制的理解程度。 技术特点: 支持强一致主从复制协议, 允许多种存储实现, 分布式的故障检测/Lease/集群成员管理方法. 《Object Storage on CRAQ, High-throughput chain replication for read-mostly workloads》介绍:分布式存储论文:支持强一直的链式复制方法, 支持从多个副本读取数据,实现code. 《Finding a needle in Haystack: Facebook’s photo storage》介绍:Facebook分布式Blob存储,主要用于存储图片. 主要技术特色:小文件合并成大文件,小文件元数据放在内存因此读写只需一次IO. 《Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency》介绍: 微软的分布式存储平台, 除了支持类S3对象存储,还支持表格、队列等数据模型. 主要技术特点:采用Stream/Partition两层设计(类似BigTable);写错(写满)就封存Extent,使得副本字节一致, 简化了选主和恢复操作; 将S3对象存储、表格、队列、块设备等融入到统一的底层存储架构中. 《Paxos Made Live – An Engineering Perspective》介绍:从工程实现角度说明了Paxo在chubby系统的应用, 是理解Paxo协议及其应用场景的必备论文。 主要技术特点: paxo协议, replicated log, multi-paxo.参考阅读:关于Paxos的历史 《Dynamo: Amazon’s Highly Available Key-Value Store》介绍:Amazon设计的高可用的kv系统,主要技术特点:综和运用一致性哈希,vector clock,最终一致性构建一个高可用的kv系统, 可应用于amazon购物车场景.新内容来自分布式存储必读论文 《Efficient Replica Maintenance for Distributed Storage Systems》介绍:分布式存储系统中的副本存储问题. 《PADS: A Policy Architecture for Distributed Storage Systems》介绍:分布式存储系统架构. 《The Chirp Distributed Filesystem》介绍:开源分布式文件系统Chirp,对于想深入研究的开发者可以阅读文章的相关Papers. 《Time, Clocks, and the Ordering of Events in a Distributed System》介绍:经典论文分布式时钟顺序的实现原理. 《Making reliable distributed systems in the presence of sodware errors》介绍:面向软件错误构建可靠的分布式系统,中文笔记. 《MapReduce: Simplified Data Processing on Large Clusters》介绍:MapReduce:超大集群的简单数据处理. 《Distributed Computer Systems Engineering》介绍:麻省理工的分布式计算课程主页,里面的ppt和阅读列表很多干货. 《The Styx Architecture for Distributed Systems》介绍:分布式系统Styx的架构剖析. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上面的一个问答:有哪些关于分布式计算学习的好资源. 《RebornDB: The Next Generation Distributed Key-Value Store》介绍:下一代分布式k-v存储数据库. 《Operating System Concepts Ninth Edition》介绍:分布式系统归根结底还是需要操作系统的知识,这是耶鲁大学的操作系统概念书籍首页,里面有提供了第8版的在线电子版和最新的学习操作系统指南,学习分布式最好先学习操作系统. 《The Log: What every software engineer should know about real-time data's unifying abstraction》介绍:分布式系统Log剖析,非常的详细与精彩. 中文翻译 | 中文版笔记. 《Operating Systems Study Guide》介绍:分布式系统基础之操作系统学习指南. 《分布式系统领域经典论文翻译集》介绍:分布式系统领域经典论文翻译集. 《Maintaining performance in distributed systems》介绍:分布式系统性能维护. 《Computer Science from the Bottom Up》介绍:计算机科学,自底向上,小到机器码,大到操作系统内部体系架构,学习操作系统的另一个在线好材料. 《Operating Systems: Three Easy Pieces》介绍:<操作系统:三部曲>在线电子书,虚拟、并发、持续. 《Database Systems: reading list》介绍:数据库系统经典论文阅读列,此外推送github上面的db reading. 《Unix System Administration》介绍:Unix System Administration ebook. 《The Amoeba Distributed Operating System》介绍:分布式系统经典论文. 《Principles of Computer Systems》介绍:计算机系统概念,以分布式为主.此外推荐Introduction to Operating Systems笔记 《Person page of EMİN GÜN SİRER》介绍:推荐康奈尔大学的教授EMİN GÜN SİRER的主页,他的研究项目有分布式,数据存储。例如HyperDex数据库就是他的其中一个项目之一. 《Scalable, Secure, and Highly Available Distributed File Access》介绍:来自卡内基梅隆如何构建可扩展的、安全、高可用性的分布式文件系统,其他papers. 《Distributed (Deep) Machine Learning Common》介绍:分布式机器学习常用库. 《The Datacenter as a Computer》介绍:介绍了如何构建仓储式数据中心,尤其是对于现在的云计算,分布式学习来说很有帮助.本书是Synthesis Lectures on Computer Architecture系列的书籍之一,这套丛书还有 《The Memory System》,《Automatic Parallelization》,《Computer Architecture Techniques for Power Efficiency》,《Performance Analysis and Tuning for General Purpose Graphics Processing Units》,《Introduction to Reconfigurable Supercomputing》,Memory Systems Cache, DRAM, Disk 等 《helsinki:Distributed Systems Course slider》介绍:来自芬兰赫尔辛基的分布式系统课程课件:什么是分布式,复制,一致性,容错,同步,通信. 《TiDB is a distributed SQL database》介绍:分布式数据库TiDB,Golang开发. 《S897: Large-Scale Systems》介绍:课程资料:大规模系统. 《Large-scale L-BFGS using MapReduce》介绍:使用MapReduce进行大规模分布式集群环境下并行L-BFGS. 《Twitter是如何构建高性能分布式日志的》介绍:Twitter是如何构建高性能分布式日志的. 《Distributed Systems: When Limping Hardware Is Worse Than Dead Hardware》介绍:在分布式系统中某个组件彻底死了影响很小,但半死不活(网络/磁盘),对整个系统却是毁灭性的. 《Tera - 高性能、可伸缩的结构化数据库》介绍:来自百度的分布式数据库. 《SequoiaDB is a distributed document-oriented NoSQL Database》介绍:SequoiaDB分布式文档数据库开源. 《Readings in distributed systems》介绍:这个网址里收集了一堆各TOP大学分布式相关的课程. 《Paxos vs Raft》介绍:这个网站是Raft算法的作者为教授Paxos和Raft算法做的,其中有两个视频链接,分别讲上述两个算法.参考阅读:关于Paxos的历史 《A Scalable Content-Addressable Network》介绍:A Scalable Content-Addressable Network. 《500 Lines or Less》介绍:这个项目其实是一本书( The Architecture of Open Source Applications)的源代码附录,是一堆大牛合写的. 《MIT 6.824 Distributed System》介绍:这只是一个课程主页,没有上课的视频,但是并不影响你跟着它上课:每一周读两篇课程指定的论文,读完之后看lecture-notes里对该论文内容的讨论,回答里面的问题来加深理解,最后在课程lab里把所看的论文实现。当你把这门课的作业刷完后,你会发现自己实现了一个分布式数据库. 《HDFS-alike in Go》介绍:使用go开发的分布式文件系统. 《What are some good resources for learning about distributed computing? Why?》介绍:Quora上关于学习分布式的资源问答. 《SeaweedFS is a simple and highly scalable distributed file system》介绍:SeaweedFS是使用go开发的分布式文件系统项目,代码简单,逻辑清晰. 《Codis - yet another fast distributed solution for Redis》介绍:Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 《Paper: Coordination Avoidance In Distributed Databases By Peter Bailis》介绍:Coordination Avoidance In Distributed Databases. 《从零开始写分布式数据库》介绍:本文以TiDB 源码为例. 《what we talk about when we talk about distributed systems》介绍:分布式系统概念梳理,为分布式系统涉及的主要概念进行了梳理. 《Distributed locks with Redis》介绍:使用Redis实现分布式锁. 《CS244b: Distributed Systems》介绍: 斯坦福2014年秋季分布式课程. 《RAMP Made Easy》介绍: 分布式的“读原子性”. 《Strategies and Principles of Distributed Machine Learning on Big Data》介绍: 大数据分布式机器学习的策略与原理. 《Distributed Systems: What is the CAP theorem?》介绍: 分布式CAP法则. 《How should I start to learn distributed storage system as a beginner?》介绍: 新手如何步入分布式存储系统. 《Cassandra - A Decentralized Structured Storage System》介绍: 分布式存储系统Cassandra剖析,推荐白皮书Introduction to Apache Cassandra. 《What is the best resource to learn about distributed systems?》介绍: 分布式系统学习资源. 《What are some high performance TCP hacks?》介绍: 一些高性能TCP黑客技巧. 《Maintaining performance in distributed systems》介绍:分布式系统性能提升. 《A simple totally ordered broadcast protocol》介绍:Benjamin Reed 和 Flavio P.Junqueira 所著论文,对Zab算法进行了介绍,zab算法是Zookeeper保持数据一致性的核心,在国内有很多公司都使用zookeeper做为分布式的解决方案.推荐与此相关的一篇文章ZooKeeper’s atomic broadcast protocol: Theory and practice. 《zFS - A Scalable Distributed File System Using Object Disk》介绍:可扩展的分布式文件系统ZFS,The Zettabyte File System,End-to-end Data Integrity for File Systems: A ZFS Case Study. 《A Distributed Haskell for the Modern Web》介绍:分布式Haskell在当前web中的应用. 《Reasoning about Consistency Choices in Distributed Systems》介绍:POPL2016的论文,关于分布式系统一致性选择的论述,POPL所接受的论文,github上已经有人整理. 《Paxos Made Simple》介绍:Paxos让分布式更简单.译文.参考阅读:关于Paxos的历史,understanding Paxos part1,Understanding Paxos – Part 2.Quora: What is a simple explanation of the Paxos algorithm?,Tutorial Summary: Paxos Explained from Scratch,Paxos algorithm explained, part 1: The essentials,Paxos algorithm explained, part 2: Insights 《Consensus Protocols: Paxos》介绍:分布式系统一致性协议:Paxos.参考阅读:关于Paxos的历史 《Consensus on Transaction Commit》介绍:事务提交的一致性探讨. 《The Part-Time Parliaments》介绍:在《The Part-Time Parliament》中描述了基本协议的交互过程。在基本协议的基础上完善各种问题得到了最终的议会协议。 为了让人更容易理解《The Part-Time Parliament》中描述的Paxos算法,Lamport在2001发表了《Paxos Made Simple》,以更平直的口头语言描述了Paxos,而没有包含正式的证明和数学术语。《Paxos Made Simple》中,将算法的参与者更细致的划分成了几个角色:Proposer、Acceptor、Learner。另外还有Leader和Client.参考阅读:关于Paxos的历史 《Paxos Made Practical》介绍:看这篇论文时可以先看看理解Paxos Made Practical. 《PaxosLease: Diskless Paxos for Leases》介绍:PaxosLease:实现租约的无盘Paxos算法,译文. 《Paxos Made Moderately Complex》介绍:Paxos算法实现,译文,同时推荐42 Paxos Made Moderately Complex. 《Hadoop Reading List》介绍:Hadoop学习清单. 《Hadoop Reading List》介绍:Hadoop学习清单. 《2010 NoSQL Summer Reading List》介绍:NoSQL知识清单,里面不仅仅包含了数据库阅读清单还包含了分布式系统资料. 《Raft: Understandable Distributed Consensus》介绍:Raft可视化图帮助理解分布式一致性 《Etcd:Distributed reliable key-value store for the most critical data of a distributed system》介绍:Etcd分布式Key-Value存储引擎 《Understanding Availability》介绍:理解peer-to-peer系统中的可用性究竟是指什么.同时推荐基于 Peer-to-Peer 的分布式存储系统的设计 《Process structuring, synchronization, and recovery using atomic actions》介绍:经典论文 《Programming Languages for Parallel Processing》介绍:并行处理的编程语音 《Analysis of Six Distributed File Systems》介绍:此篇论文对HDFS,MooseFS,iRODS,Ceph,GlusterFS,Lustre六个存储系统做了详细分析.如果是自己研发对应的存储系统推荐先阅读此篇论文 《A Survey of Distributed File Systems》介绍:分布式文件系统综述 《Concepts of Concurrent Programming》介绍:并行编程的概念,同时推荐卡内基梅隆FTP 《Concurrency Control Performance Modeling:Alternatives and Implications》介绍:并发控制性能建模:选择与意义 《Distributed Systems - Concepts and Design 5th Edition》介绍:ebook分布式系统概念与设计 《分布式系统设计的形式方法》介绍:分布式系统设计的形式方法 《互斥和选举算法》介绍:互斥和选举算法 《Actors:A model Of Concurrent Cornputation In Distributed Systems》介绍:经典论文 《Security Engineering: A Guide to Building Dependable Distributed Systems》介绍:如何构建一个安全可靠的分布式系统,About the Author,Bibliography:文献资料,章节访问把链接最后的01换成01-27即可 《15-712 Advanced and Distributed Operating Systems》介绍:卡内基梅隆大学的分布式系统博士生课程主页,有很丰富的资料 《Dapper, Google's Large-Scale Distributed Systems Tracing Infrastructure》介绍:Dapper,大规模分布式系统的跟踪系统,译文,译文对照 《CS262a: Advanced Topics in Computer Systems》介绍:伯克利大学计算机系统进阶课程,内容有深度,涵盖分布式,数据库等内容 《Egnyte Architecture: Lessons Learned In Building And Scaling A Multi Petabyte Distributed System》介绍:PB级分布式系统构建/扩展经验 《CS162: Operating Systems and Systems Programming》介绍:伯克利大学计算机系统课程:操作系统与系统编程 《MDCC: Multi-Data Center Consistency》介绍:MDCC主要解决跨数据中心的一致性问题中间件,一种新的协议 《Research at Google:Distributed Systems and Parallel Computing》介绍:google公开对外发表的分布式系统与并行计算论文 《HDFS Architecture Guide》介绍:分布式文件系统HDFS架构 《ActorDB distributed SQL database》介绍:分布式 Key/Value数据库 《An efficient data location protocol for self-organizing storage clusters》介绍:是著名的Ceph的负载平衡策略,文中提出的几种策略都值得尝试,比较赞的一点是可以对照代码体会和实践,如果你还需要了解可以看看Ceph:一个 Linux PB 级分布式文件系统,除此以外,论文的引用部分也挺值得阅读的,同时推荐Ceph: A Scalable, High-Performance Distributed File System 《A Self-Organizing Storage Cluster for Parallel Data-Intensive Applications》介绍:Surrento的冷热平衡策略就采用了延迟写技术 《HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems》介绍:对于分布式存储系统的元数据管理. 《Server-Side I/O Coordination for Parallel File Systems》介绍:服务器端的I/O协调并行文件系统处理,网络,文件存储等都会涉及到IO操作.不过里面涉及到很多技巧性的思路在实践时需要斟酌 《Distributed File Systems: Concepts and Examples》介绍:分布式文件系统概念与应用 《CSE 221: Graduate Operating Systems》介绍:加利福尼亚大学的研究生操作系统课程主页,论文很值得阅读 《S4: Distributed Stream Computing Platform》介绍:Yahoo出品的流式计算系统,目前最流行的两大流式计算系统之一(另一个是storm),Yahoo的主要广告计算平台 《Pregel: a system for large-scale graph processing》介绍:Google的大规模图计算系统,相当长一段时间是Google PageRank的主要计算系统,对开源的影响也很大(包括GraphLab和GraphChi) 《GraphLab: A New Framework for Parallel Machine Learning》介绍:CMU基于图计算的分布式机器学习框架,目前已经成立了专门的商业公司,在分布式机器学习上很有两把刷子,其单机版的GraphChi在百万维度的矩阵分解都只需要2~3分钟; 《F1: A Distributed SQL Database That Scales》介绍:这篇论文是Google 2013年发表的,介绍了F1的架构思路,13年时就开始支撑Google的AdWords业务,另外两篇介绍文章F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business .Google NewSQL之F1 《Cockroach DB:A Scalable, Survivable, Strongly-Consistent SQL Database》介绍:CockroachDB :一个可伸缩的、跨地域复制的,且支持事务的数据存储,InfoQ介绍,Design and Architecture of CockroachDb 《Multi-Paxos: An Implementation and Evaluation》介绍:Multi-Paxos实现与总结,此外推荐Paxos/Multi-paxos Algorithm,Multi-Paxos Example,地址:ftp://ftp.cs.washington.edu/tr/2009/09/UW-CSE-09-09-02.PDF 《Zab: High-performance broadcast for primary-backup systems》介绍:一致性协议zab分析 《A Distributed Hash Table》介绍:分布式哈希算法论文,扩展阅读Introduction to Distributed Hash Tables,Distributed Hash Tables 《Comparing the performance of distributed hash tables under churn》介绍:分布式hash表性能的Churn问题 《Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web》介绍:分布式系统的CAP问题,推荐Perspectives on the CAP Theorem.对CAP理论的解析文章,PODC ppt,A plain english introduction to CAP Theorem,IEEE Computer issue on the CAP Theorem 《F2FS: A New File System for Flash Storage》介绍:闪存存储文件系统F2FS 《Better I/O Through Byte-Addressable, Persistent Memory》介绍:微软发表的关于i/o访问优化论文 《tmpfs: A Virtual Memory File System》介绍:虚拟内存文件系统tmpfs 《BTRFS: The Linux B-tree Filesystem》介绍:Linux B-tree文件系统. 《Akamai technical publication》介绍:Akamai是全球最大的云计算机平台之一,承载了全球15-30%网络流量,如果你是做CDN或者是云服务,这个里面的论文会给你很有帮助.例如这几天看facebook开源的osquery。找到通过db的方式运维,找到Keeping Track of 70,000+ Servers: The Akamai Query System这篇论文,先看论文领会思想,然后再使用工具osquery实践 《BASE: An Acid Alternative》介绍:来自eBay 的解决方案,译文Base: 一种Acid的替代方案,应用案例参考保证分布式系统数据一致性的6种方案 《A Note on Distributed Computing》介绍:Jim Waldo和Sam Kendall等人共同撰写了一篇非常有名的论文“分布式计算备忘录”,这篇论文在Reddit上被人推荐为“每个程序员都应当至少读上两篇”的论文。在这篇论文中,作者表示“忽略本地计算与分布式计算之间的区别是一种危险的思想”,特别指出了Emerald、Argus、DCOM以及CORBA的设计问题。作者将这些设计问题归纳为“三个错误的原则”: “对于某个应用来说,无论它的部署环境如何,总有一种单一的、自然的面向对象设计可以符合其需求。” “故障与性能问题与某个应用的组件实现直接相关,在最初的设计中无需考虑这些问题。” “对象的接口与使用对象的上下文无关”. 《Distributed Systems Papers》介绍:分布式系统领域经典论文列表. 《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》介绍:Consistent Hashing算法描述. 《SIGMOD 2016: Accepted Research Papers》介绍:SIGMOD是世界上最有名的数据库会议之一,最具有权威性,收录论文审核非常严格.2016年的SIGMOD 会议照常进行,上面收录了今年SIGMOD收录的论文,把题目输入google中加上pdf就能找到,很多论文值得阅读,SIGMOD 2015 《Notes on CPSC 465/565: Theory of Distributed Systems》介绍:耶鲁大学的分布式系统理论课程笔记 《Distributed Operating System Doc PDF》介绍:分布式系统文档资源(可下载) 《Anatomy of a database system》介绍:数据库系统剖析,这本书是由伯克利大学的Joseph M. Hellerstein和M. Stonebraker合著的一篇论文.对数据库剖析很有深度.除此以外还有一篇文章Architecture of a Database System。数据库系统架构,厦门大学的数据库实验室教授林子雨组织过翻译 《A Relational Model of Data for Large Shared Data Banks》介绍:数据库关系模型论文 《RUC Innovative data systems reaserch lab recommand papers》介绍:中国人民大学数据研究实验室推荐的数据库领域论文 《A Scalable Distributed Information Management System》介绍:构建可扩展的分布式信息管理系统 《Distributed Systems in Haskell》介绍:Haskell中的分布式系统开发 《Large-scale cluster management at Google with Borg》介绍:Google使用Borg进行大规模集群的管理,伯克利大学ppt介绍,中文版 《Lock Free Programming Practice》介绍:并发编程(Concurrency Programming)资料,主要涵盖lock free数据结构实现、内存回收方法、memory model等备份链接 密码: xc5j 《Distributed Algorithms Lecture Notes for 6.852》介绍:Nancy Lynch's的分布式算法研究生课程讲义 《Distributed Algorithms for Topic Models》介绍:分布式算法主题模型. 《RecSys - ACM Recommender Systems》介绍:世界上非常有名的推荐系统会议,我比较推荐接收的PAPER 《All Things Distributed》介绍:推荐一个博客,博主是Amazon CTO Werner Vogels,这是一个关注分布式领域的博客.大部分博文是关于在工业界应用. 《programming, database, distributed system resource list》介绍:这个Git是由阿里(alibaba)的技术专家何登成维护,主要是分布式数据库. 《Making reliable distributed systems in the presence of sodware errors》介绍:Erlang的作者Joe Armstrong撰写的论文,面对软件错误构建可靠的分布式系统.中文译版 《CS 525: Advanced Distributed Systems[Spring 2016]》介绍:伊利诺伊大学的Advanced Distributed Systems 里把各个方向重要papers(updated Spring 2015)列举出来,可以参考一下 《Distributed Algorithms》介绍:这是一本分布式算法电子书,作者是Jukka Suomela.讲述了多个计算模型,一致性,唯一标示,并发等. 《TinyLFU: A Highly Efficient Cache Admission Policy》介绍:当时是在阅读如何设计一个缓存系统时看到的,然后通过Google找到了这一篇关于缓存策略的论文,它是LFU的改良版,中文介绍.如果有兴趣可以看看Golang实现版。结合起来可能会帮助你理解 《6.S897: Large-Scale Systems》介绍:斯坦福大学给研究生开的分布式系统课程。教师是 spark 作者 matei. 能把这些内容真正理解透,分布式系统的功力就很强了。 《学习分布式系统需要怎样的知识?》介绍:[怎么学系列]学习分布式系统需要怎样的知识? 《Distributed systems theory for the distributed systems engineer》介绍:分布式系统工程师的分布式系统理论 《A Distributed Systems Reading List》介绍:分布式系统论文阅读列表 《Distributed Systems Reading Group》介绍:麻省理工大学分布式系统小组,他们会把平时阅读到的优秀论文分享出来。虽然有些论文本页已经收录,但是里面的安排表schedule还是挺赞的 《Scalable Software Architecture》介绍:分布式系统、可扩展性与系统设计相关报告、论文与网络资源汇总. 《MapReduce&Hadoop resource》介绍:MapReduce&Hadoop相关论文,涉及分布式系统设计,性能分析,实践,优化等多个方面 《Distributed Systems: Principles and Paradigms(second edtion)》介绍:分布式系统原理与范型第二版,课后解答 《Distributed Systems Seminar's reading list for Spring 2017》介绍:分布式系统研讨会论文阅读列表 《A Critique of the CAP Theorem》介绍:这是一篇评论CAP定理的论文,学习CAP很有帮助,推荐阅读评论文章"A Critique of the CAP Theorem" 《Evolving Distributed Systems》介绍:推荐文章不断进化的分布式系统.

suonayi 2019-12-02 03:17:27 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 SQL审核 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站 人工智能 阿里云云栖号 云栖号案例 云栖号直播