• 关于

    阶段式服务器模型会出现哪些问题

    的搜索结果

回答

分布式事务的解决方案有如下几种: 全局消息基于可靠消息服务的分布式事务TCC最大努力通知方案1:全局事务(DTP模型)全局事务基于DTP模型实现。DTP是由X/Open组织提出的一种分布式事务模型——X/Open Distributed Transaction Processing Reference Model。它规定了要实现分布式事务,需要三种角色: AP:Application 应用系统 它就是我们开发的业务系统,在我们开发的过程中,可以使用资源管理器提供的事务接口来实现分布式事务。 TM:Transaction Manager 事务管理器 分布式事务的实现由事务管理器来完成,它会提供分布式事务的操作接口供我们的业务系统调用。这些接口称为TX接口。事务管理器还管理着所有的资源管理器,通过它们提供的XA接口来同一调度这些资源管理器,以实现分布式事务。DTP只是一套实现分布式事务的规范,并没有定义具体如何实现分布式事务,TM可以采用2PC、3PC、Paxos等协议实现分布式事务。RM:Resource Manager 资源管理器 能够提供数据服务的对象都可以是资源管理器,比如:数据库、消息中间件、缓存等。大部分场景下,数据库即为分布式事务中的资源管理器。资源管理器能够提供单数据库的事务能力,它们通过XA接口,将本数据库的提交、回滚等能力提供给事务管理器调用,以帮助事务管理器实现分布式的事务管理。XA是DTP模型定义的接口,用于向事务管理器提供该资源管理器(该数据库)的提交、回滚等能力。DTP只是一套实现分布式事务的规范,RM具体的实现是由数据库厂商来完成的。有没有基于DTP模型的分布式事务中间件?DTP模型有啥优缺点?方案2:基于可靠消息服务的分布式事务这种实现分布式事务的方式需要通过消息中间件来实现。假设有A和B两个系统,分别可以处理任务A和任务B。此时系统A中存在一个业务流程,需要将任务A和任务B在同一个事务中处理。下面来介绍基于消息中间件来实现这种分布式事务。 title 在系统A处理任务A前,首先向消息中间件发送一条消息消息中间件收到后将该条消息持久化,但并不投递。此时下游系统B仍然不知道该条消息的存在。消息中间件持久化成功后,便向系统A返回一个确认应答;系统A收到确认应答后,则可以开始处理任务A;任务A处理完成后,向消息中间件发送Commit请求。该请求发送完成后,对系统A而言,该事务的处理过程就结束了,此时它可以处理别的任务了。 但commit消息可能会在传输途中丢失,从而消息中间件并不会向系统B投递这条消息,从而系统就会出现不一致性。这个问题由消息中间件的事务回查机制完成,下文会介绍。消息中间件收到Commit指令后,便向系统B投递该消息,从而触发任务B的执行;当任务B执行完成后,系统B向消息中间件返回一个确认应答,告诉消息中间件该消息已经成功消费,此时,这个分布式事务完成。上述过程可以得出如下几个结论: 消息中间件扮演者分布式事务协调者的角色。 系统A完成任务A后,到任务B执行完成之间,会存在一定的时间差。在这个时间差内,整个系统处于数据不一致的状态,但这短暂的不一致性是可以接受的,因为经过短暂的时间后,系统又可以保持数据一致性,满足BASE理论。 上述过程中,如果任务A处理失败,那么需要进入回滚流程,如下图所示: title 若系统A在处理任务A时失败,那么就会向消息中间件发送Rollback请求。和发送Commit请求一样,系统A发完之后便可以认为回滚已经完成,它便可以去做其他的事情。消息中间件收到回滚请求后,直接将该消息丢弃,而不投递给系统B,从而不会触发系统B的任务B。此时系统又处于一致性状态,因为任务A和任务B都没有执行。 上面所介绍的Commit和Rollback都属于理想情况,但在实际系统中,Commit和Rollback指令都有可能在传输途中丢失。那么当出现这种情况的时候,消息中间件是如何保证数据一致性呢?——答案就是超时询问机制。 title 系统A除了实现正常的业务流程外,还需提供一个事务询问的接口,供消息中间件调用。当消息中间件收到一条事务型消息后便开始计时,如果到了超时时间也没收到系统A发来的Commit或Rollback指令的话,就会主动调用系统A提供的事务询问接口询问该系统目前的状态。该接口会返回三种结果: 提交 若获得的状态是“提交”,则将该消息投递给系统B。回滚 若获得的状态是“回滚”,则直接将条消息丢弃。处理中 若获得的状态是“处理中”,则继续等待。消息中间件的超时询问机制能够防止上游系统因在传输过程中丢失Commit/Rollback指令而导致的系统不一致情况,而且能降低上游系统的阻塞时间,上游系统只要发出Commit/Rollback指令后便可以处理其他任务,无需等待确认应答。而Commit/Rollback指令丢失的情况通过超时询问机制来弥补,这样大大降低上游系统的阻塞时间,提升系统的并发度。 下面来说一说消息投递过程的可靠性保证。 当上游系统执行完任务并向消息中间件提交了Commit指令后,便可以处理其他任务了,此时它可以认为事务已经完成,接下来消息中间件一定会保证消息被下游系统成功消费掉!那么这是怎么做到的呢?这由消息中间件的投递流程来保证。 消息中间件向下游系统投递完消息后便进入阻塞等待状态,下游系统便立即进行任务的处理,任务处理完成后便向消息中间件返回应答。消息中间件收到确认应答后便认为该事务处理完毕! 如果消息在投递过程中丢失,或消息的确认应答在返回途中丢失,那么消息中间件在等待确认应答超时之后就会重新投递,直到下游消费者返回消费成功响应为止。当然,一般消息中间件可以设置消息重试的次数和时间间隔,比如:当第一次投递失败后,每隔五分钟重试一次,一共重试3次。如果重试3次之后仍然投递失败,那么这条消息就需要人工干预。 title title 有的同学可能要问:消息投递失败后为什么不回滚消息,而是不断尝试重新投递? 这就涉及到整套分布式事务系统的实现成本问题。 我们知道,当系统A将向消息中间件发送Commit指令后,它便去做别的事情了。如果此时消息投递失败,需要回滚的话,就需要让系统A事先提供回滚接口,这无疑增加了额外的开发成本,业务系统的复杂度也将提高。对于一个业务系统的设计目标是,在保证性能的前提下,最大限度地降低系统复杂度,从而能够降低系统的运维成本。 不知大家是否发现,上游系统A向消息中间件提交Commit/Rollback消息采用的是异步方式,也就是当上游系统提交完消息后便可以去做别的事情,接下来提交、回滚就完全交给消息中间件来完成,并且完全信任消息中间件,认为它一定能正确地完成事务的提交或回滚。然而,消息中间件向下游系统投递消息的过程是同步的。也就是消息中间件将消息投递给下游系统后,它会阻塞等待,等下游系统成功处理完任务返回确认应答后才取消阻塞等待。为什么这两者在设计上是不一致的呢? 首先,上游系统和消息中间件之间采用异步通信是为了提高系统并发度。业务系统直接和用户打交道,用户体验尤为重要,因此这种异步通信方式能够极大程度地降低用户等待时间。此外,异步通信相对于同步通信而言,没有了长时间的阻塞等待,因此系统的并发性也大大增加。但异步通信可能会引起Commit/Rollback指令丢失的问题,这就由消息中间件的超时询问机制来弥补。 那么,消息中间件和下游系统之间为什么要采用同步通信呢? 异步能提升系统性能,但随之会增加系统复杂度;而同步虽然降低系统并发度,但实现成本较低。因此,在对并发度要求不是很高的情况下,或者服务器资源较为充裕的情况下,我们可以选择同步来降低系统的复杂度。 我们知道,消息中间件是一个独立于业务系统的第三方中间件,它不和任何业务系统产生直接的耦合,它也不和用户产生直接的关联,它一般部署在独立的服务器集群上,具有良好的可扩展性,所以不必太过于担心它的性能,如果处理速度无法满足我们的要求,可以增加机器来解决。而且,即使消息中间件处理速度有一定的延迟那也是可以接受的,因为前面所介绍的BASE理论就告诉我们了,我们追求的是最终一致性,而非实时一致性,因此消息中间件产生的时延导致事务短暂的不一致是可以接受的。 方案3:最大努力通知(定期校对)最大努力通知也被称为定期校对,其实在方案二中已经包含,这里再单独介绍,主要是为了知识体系的完整性。这种方案也需要消息中间件的参与,其过程如下: title 上游系统在完成任务后,向消息中间件同步地发送一条消息,确保消息中间件成功持久化这条消息,然后上游系统可以去做别的事情了;消息中间件收到消息后负责将该消息同步投递给相应的下游系统,并触发下游系统的任务执行;当下游系统处理成功后,向消息中间件反馈确认应答,消息中间件便可以将该条消息删除,从而该事务完成。上面是一个理想化的过程,但在实际场景中,往往会出现如下几种意外情况: 消息中间件向下游系统投递消息失败上游系统向消息中间件发送消息失败对于第一种情况,消息中间件具有重试机制,我们可以在消息中间件中设置消息的重试次数和重试时间间隔,对于网络不稳定导致的消息投递失败的情况,往往重试几次后消息便可以成功投递,如果超过了重试的上限仍然投递失败,那么消息中间件不再投递该消息,而是记录在失败消息表中,消息中间件需要提供失败消息的查询接口,下游系统会定期查询失败消息,并将其消费,这就是所谓的“定期校对”。 如果重复投递和定期校对都不能解决问题,往往是因为下游系统出现了严重的错误,此时就需要人工干预。 对于第二种情况,需要在上游系统中建立消息重发机制。可以在上游系统建立一张本地消息表,并将 任务处理过程 和 向本地消息表中插入消息 这两个步骤放在一个本地事务中完成。如果向本地消息表插入消息失败,那么就会触发回滚,之前的任务处理结果就会被取消。如果这量步都执行成功,那么该本地事务就完成了。接下来会有一个专门的消息发送者不断地发送本地消息表中的消息,如果发送失败它会返回重试。当然,也要给消息发送者设置重试的上限,一般而言,达到重试上限仍然发送失败,那就意味着消息中间件出现严重的问题,此时也只有人工干预才能解决问题。 对于不支持事务型消息的消息中间件,如果要实现分布式事务的话,就可以采用这种方式。它能够通过重试机制+定期校对实现分布式事务,但相比于第二种方案,它达到数据一致性的周期较长,而且还需要在上游系统中实现消息重试发布机制,以确保消息成功发布给消息中间件,这无疑增加了业务系统的开发成本,使得业务系统不够纯粹,并且这些额外的业务逻辑无疑会占用业务系统的硬件资源,从而影响性能。 因此,尽量选择支持事务型消息的消息中间件来实现分布式事务,如RocketMQ。 方案4:TCC(两阶段型、补偿型)TCC即为Try Confirm Cancel,它属于补偿型分布式事务。顾名思义,TCC实现分布式事务一共有三个步骤: Try:尝试待执行的业务 这个过程并未执行业务,只是完成所有业务的一致性检查,并预留好执行所需的全部资源Confirm:执行业务 这个过程真正开始执行业务,由于Try阶段已经完成了一致性检查,因此本过程直接执行,而不做任何检查。并且在执行的过程中,会使用到Try阶段预留的业务资源。Cancel:取消执行的业务 若业务执行失败,则进入Cancel阶段,它会释放所有占用的业务资源,并回滚Confirm阶段执行的操作。下面以一个转账的例子来解释下TCC实现分布式事务的过程。 假设用户A用他的账户余额给用户B发一个100元的红包,并且余额系统和红包系统是两个独立的系统。 Try 创建一条转账流水,并将流水的状态设为交易中将用户A的账户中扣除100元(预留业务资源)Try成功之后,便进入Confirm阶段Try过程发生任何异常,均进入Cancel阶段Confirm 向B用户的红包账户中增加100元将流水的状态设为交易已完成Confirm过程发生任何异常,均进入Cancel阶段Confirm过程执行成功,则该事务结束Cancel 将用户A的账户增加100元将流水的状态设为交易失败在传统事务机制中,业务逻辑的执行和事务的处理,是在不同的阶段由不同的部件来完成的:业务逻辑部分访问资源实现数据存储,其处理是由业务系统负责;事务处理部分通过协调资源管理器以实现事务管理,其处理由事务管理器来负责。二者没有太多交互的地方,所以,传统事务管理器的事务处理逻辑,仅需要着眼于事务完成(commit/rollback)阶段,而不必关注业务执行阶段。 TCC全局事务必须基于RM本地事务来实现全局事务TCC服务是由Try/Confirm/Cancel业务构成的, 其Try/Confirm/Cancel业务在执行时,会访问资源管理器(Resource Manager,下文简称RM)来存取数据。这些存取操作,必须要参与RM本地事务,以使其更改的数据要么都commit,要么都rollback。 这一点不难理解,考虑一下如下场景: title 假设图中的服务B没有基于RM本地事务(以RDBS为例,可通过设置auto-commit为true来模拟),那么一旦[B:Try]操作中途执行失败,TCC事务框架后续决定回滚全局事务时,该[B:Cancel]则需要判断[B:Try]中哪些操作已经写到DB、哪些操作还没有写到DB:假设[B:Try]业务有5个写库操作,[B:Cancel]业务则需要逐个判断这5个操作是否生效,并将生效的操作执行反向操作。 不幸的是,由于[B:Cancel]业务也有n(0<=n<=5)个反向的写库操作,此时一旦[B:Cancel]也中途出错,则后续的[B:Cancel]执行任务更加繁重。因为,相比第一次[B:Cancel]操作,后续的[B:Cancel]操作还需要判断先前的[B:Cancel]操作的n(0<=n<=5)个写库中哪几个已经执行、哪几个还没有执行,这就涉及到了幂等性问题。而对幂等性的保障,又很可能还需要涉及额外的写库操作,该写库操作又会因为没有RM本地事务的支持而存在类似问题。。。可想而知,如果不基于RM本地事务,TCC事务框架是无法有效的管理TCC全局事务的。 反之,基于RM本地事务的TCC事务,这种情况则会很容易处理:[B:Try]操作中途执行失败,TCC事务框架将其参与RM本地事务直接rollback即可。后续TCC事务框架决定回滚全局事务时,在知道“[B:Try]操作涉及的RM本地事务已经rollback”的情况下,根本无需执行[B:Cancel]操作。 换句话说,基于RM本地事务实现TCC事务框架时,一个TCC型服务的cancel业务要么执行,要么不执行,不需要考虑部分执行的情况。 TCC事务框架应该提供Confirm/Cancel服务的幂等性保障一般认为,服务的幂等性,是指针对同一个服务的多次(n>1)请求和对它的单次(n=1)请求,二者具有相同的副作用。 在TCC事务模型中,Confirm/Cancel业务可能会被重复调用,其原因很多。比如,全局事务在提交/回滚时会调用各TCC服务的Confirm/Cancel业务逻辑。执行这些Confirm/Cancel业务时,可能会出现如网络中断的故障而使得全局事务不能完成。因此,故障恢复机制后续仍然会重新提交/回滚这些未完成的全局事务,这样就会再次调用参与该全局事务的各TCC服务的Confirm/Cancel业务逻辑。 既然Confirm/Cancel业务可能会被多次调用,就需要保障其幂等性。 那么,应该由TCC事务框架来提供幂等性保障?还是应该由业务系统自行来保障幂等性呢? 个人认为,应该是由TCC事务框架来提供幂等性保障。如果仅仅只是极个别服务存在这个问题的话,那么由业务系统来负责也是可以的;然而,这是一类公共问题,毫无疑问,所有TCC服务的Confirm/Cancel业务存在幂等性问题。TCC服务的公共问题应该由TCC事务框架来解决;而且,考虑一下由业务系统来负责幂等性需要考虑的问题,就会发现,这无疑增大了业务系统的复杂度。

1210119897362579 2019-12-02 00:14:25 0 浏览量 回答数 0

问题

【精品问答】Java技术1000问(1)

问问小秘 2019-12-01 21:57:43 39926 浏览量 回答数 17

问题

MaxCompute百问集锦(持续更新20171011)

隐林 2019-12-01 20:19:23 38430 浏览量 回答数 18

阿里云高校特惠,助力学生创业梦!0元体验,快速入门云计算!

学生动手场景应用,快速了解并掌握云服务器的各种新奇玩法!

回答

1 js 的基本数据类型? 2 JavaScript 有几种类型的值? 3 什么是堆?什么是栈?它们之间有什么区别和联系? 4 内部属性 [Class] 是什么? 5 介绍 js 有哪些内置对象? 6 undefined 与 undeclared 的区别? 7 null 和 undefined 的区别? 8 如何获取安全的 undefined 值? 9 说几条写 JavaScript 的基本规范? 10 JavaScript 原型,原型链? 有什么特点? 11 js 获取原型的方法? 12 在 js 中不同进制数字的表示方式? 13 js 中整数的安全范围是多少? 14 typeof NaN 的结果是什么? 15 isNaN 和 Number.isNaN 函数的区别? 16 Array 构造函数只有一个参数值时的表现? 17 其他值到字符串的转换规则? 18 其他值到数字值的转换规则? 19 其他值到布尔类型的值的转换规则? 20 {} 和 [] 的 valueOf 和 toString 的结果是什么? 21 什么是假值对象? 22 ~ 操作符的作用? 23 解析字符串中的数字和将字符串强制类型转换为数字的返回结果都是数字,它们之间的区别是什么? 24 + 操作符什么时候用于字符串的拼接? 25 什么情况下会发生布尔值的隐式强制类型转换? 26 || 和 && 操作符的返回值? 27 Symbol 值的强制类型转换? 28 == 操作符的强制类型转换规则? 29 如何将字符串转化为数字,例如 '12.3b'? 30 如何将浮点数点左边的数每三位添加一个逗号,如 12000000.11 转化为『12,000,000.11』? 31 常用正则表达式? 32 生成随机数的各种方法? 33 如何实现数组的随机排序? 34 javascript 创建对象的几种方式? 35 JavaScript 继承的几种实现方式? 36 寄生式组合继承的实现? 37 Javascript 的作用域链? 38 谈谈 This 对象的理解。 39 eval 是做什么的? 40 什么是 DOM 和 BOM? 41 写一个通用的事件侦听器函数。 42 事件是什么?IE 与火狐的事件机制有什么区别? 如何阻止冒泡? 43 三种事件模型是什么? 44 事件委托是什么? 45 ['1', '2', '3'].map(parseInt) 答案是多少? 46 什么是闭包,为什么要用它? 47 javascript 代码中的 'use strict'; 是什么意思 ? 使用它区别是什么? 48 如何判断一个对象是否属于某个类? 49 instanceof 的作用? 50 new 操作符具体干了什么呢?如何实现? 51 Javascript 中,有一个函数,执行时对象查找时,永远不会去查找原型,这个函数是? 52 对于 JSON 的了解? 53 [].forEach.call($$(''),function(a){a.style.outline='1px solid #'+(~~(Math.random()(1<<24))).toString(16)}) 能解释一下这段代码的意思吗? 54 js 延迟加载的方式有哪些? 55 Ajax 是什么? 如何创建一个 Ajax? 56 谈一谈浏览器的缓存机制? 57 Ajax 解决浏览器缓存问题? 58 同步和异步的区别? 59 什么是浏览器的同源政策? 60 如何解决跨域问题? 61 服务器代理转发时,该如何处理 cookie? 62 简单谈一下 cookie ? 63 模块化开发怎么做? 64 js 的几种模块规范? 65 AMD 和 CMD 规范的区别? 66 ES6 模块与 CommonJS 模块、AMD、CMD 的差异。 67 requireJS 的核心原理是什么?(如何动态加载的?如何避免多次加载的?如何 缓存的?) 68 JS 模块加载器的轮子怎么造,也就是如何实现一个模块加载器? 69 ECMAScript6 怎么写 class,为什么会出现 class 这种东西? 70 documen.write 和 innerHTML 的区别? 71 DOM 操作——怎样添加、移除、移动、复制、创建和查找节点? 72 innerHTML 与 outerHTML 的区别? 73 .call() 和 .apply() 的区别? 74 JavaScript 类数组对象的定义? 75 数组和对象有哪些原生方法,列举一下? 76 数组的 fill 方法? 77 [,,,] 的长度? 78 JavaScript 中的作用域与变量声明提升? 79 如何编写高性能的 Javascript ? 80 简单介绍一下 V8 引擎的垃圾回收机制 81 哪些操作会造成内存泄漏? 82 需求:实现一个页面操作不会整页刷新的网站,并且能在浏览器前进、后退时正确响应。给出你的技术实现方案? 83 如何判断当前脚本运行在浏览器还是 node 环境中?(阿里) 84 把 script 标签放在页面的最底部的 body 封闭之前和封闭之后有什么区别?浏览器会如何解析它们? 85 移动端的点击事件的有延迟,时间是多久,为什么会有? 怎么解决这个延时? 86 什么是“前端路由”?什么时候适合使用“前端路由”?“前端路由”有哪些优点和缺点? 87 如何测试前端代码么? 知道 BDD, TDD, Unit Test 么? 知道怎么测试你的前端工程么(mocha, sinon, jasmin, qUnit..)? 88 检测浏览器版本版本有哪些方式? 89 什么是 Polyfill ? 90 使用 JS 实现获取文件扩展名? 91 介绍一下 js 的节流与防抖? 92 Object.is() 与原来的比较操作符 '==='、'==' 的区别? 93 escape,encodeURI,encodeURIComponent 有什么区别? 94 Unicode 和 UTF-8 之间的关系? 95 js 的事件循环是什么? 96 js 中的深浅拷贝实现? 97 手写 call、apply 及 bind 函数 98 函数柯里化的实现 99 99. 为什么 0.1 + 0.2 != 0.3?如何解决这个问题? 100 原码、反码和补码的介绍 101 toPrecision 和 toFixed 和 Math.round 的区别? 102 什么是 XSS 攻击?如何防范 XSS 攻击? 103 什么是 CSP? 104 什么是 CSRF 攻击?如何防范 CSRF 攻击? 105 什么是 Samesite Cookie 属性? 106 什么是点击劫持?如何防范点击劫持? 107 SQL 注入攻击? 108 什么是 MVVM?比之 MVC 有什么区别?什么又是 MVP ? 109 vue 双向数据绑定原理? 110 Object.defineProperty 介绍? 111 使用 Object.defineProperty() 来进行数据劫持有什么缺点? 112 什么是 Virtual DOM?为什么 Virtual DOM 比原生 DOM 快? 113 如何比较两个 DOM 树的差异? 114 什么是 requestAnimationFrame ? 115 谈谈你对 webpack 的看法 116 offsetWidth/offsetHeight,clientWidth/clientHeight 与 scrollWidth/scrollHeight 的区别? 117 谈一谈你理解的函数式编程? 118 异步编程的实现方式? 119 Js 动画与 CSS 动画区别及相应实现 120 get 请求传参长度的误区 121 URL 和 URI 的区别? 122 get 和 post 请求在缓存方面的区别 123 图片的懒加载和预加载 124 mouseover 和 mouseenter 的区别? 125 js 拖拽功能的实现 126 为什么使用 setTimeout 实现 setInterval?怎么模拟? 127 let 和 const 的注意点? 128 什么是 rest 参数? 129 什么是尾调用,使用尾调用有什么好处? 130 Symbol 类型的注意点? 131 Set 和 WeakSet 结构? 132 Map 和 WeakMap 结构? 133 什么是 Proxy ? 134 Reflect 对象创建目的? 135 require 模块引入的查找方式? 136 什么是 Promise 对象,什么是 Promises/A+ 规范? 137 手写一个 Promise 138 如何检测浏览器所支持的最小字体大小? 139 怎么做 JS 代码 Error 统计? 140 单例模式模式是什么? 141 策略模式是什么? 142 代理模式是什么? 143 中介者模式是什么? 144 适配器模式是什么? 145 观察者模式和发布订阅模式有什么不同? 146 Vue 的生命周期是什么? 147 Vue 的各个生命阶段是什么? 148 Vue 组件间的参数传递方式? 149 computed 和 watch 的差异? 150 vue-router 中的导航钩子函数 151 两个router 的区别? 152 vue 常用的修饰符? 153 computed 和 watch 区别? 154 keep-alive 组件有什么作用? 155 vue 中 mixin 和 mixins 区别? 156 开发中常用的几种 Content-Type ? 157 如何封装一个 javascript 的类型判断函数? 158 如何判断一个对象是否为空对象? 159 使用闭包实现每隔一秒打印 1,2,3,4 160 手写一个 jsonp 161 手写一个观察者模式? 162 EventEmitter 实现 163 一道常被人轻视的前端 JS 面试题 164 如何确定页面的可用性时间,什么是 Performance API? 165 js 中的命名规则 166 js 语句末尾分号是否可以省略? 167 Object.assign() 168 Math.ceil 和 Math.floor 169 js for 循环注意点 170 一个列表,假设有 100000 个数据,这个该怎么办? 171 js 中倒计时的纠偏实现? 172 进程间通信的方式? 173 如何查找一篇英文文章中出现频率最高的单词? 174 174道 JavaScript 面试题,合集

剑曼红尘 2020-04-02 14:05:35 0 浏览量 回答数 0

回答

Go 的优势在于能够将简单的和经过验证的想法结合起来,同时避免了其他语言中出现的许多问题。本文概述了 Go 背后的一些设计原则和工程智慧,作者认为,Go 语言具备的所有这些优点,将共同推动其成为接替 Java 并主导下一代大型软件开发平台的最有力的编程语言候选。很多优秀的编程语言只是在个别领域比较强大,如果将所有因素都纳入考虑,没有其他语言能够像 Go 语言一样“全面开花”,在大型软件工程方面,尤为如此。 基于现实经验 Go 是由经验丰富的软件行业老手一手创建的,长期以来,他们对现有语言的各种缺点有过切身体会的痛苦经历。几十年前,Rob Pike 和 Ken Thompson 在 Unix、C 和 Unicode 的发明中起到了重要作用。Robert Griensemer 在为 JavaScript 和 Java 开发 V8 和 HotSpot 虚拟机之后,在编译器和垃圾收集方面拥有数十年的经验。有太多次,他们不得不等待 Google 规模的 C++/Java 代码库进行编译。于是,他们开始着手创建新的编程语言,将他们半个世纪以来的编写代码所学到的一切经验包含进去。 专注于大型工程 小型工程项目几乎可以用任何编程语言来成功构建。当成千上万的开发人员在数十年的持续时间压力下,在包含数千万行代码的大型代码库上进行协作时,就会发生真正令人痛苦的问题。这样会导致一些问题,如下: 较长的编译时间导致中断开发。代码库由几个人 / 团队 / 部门 / 公司所拥有,混合了不同的编程风格。公司雇佣了数千名工程师、架构师、测试人员、运营专家、审计员、实习生等,他们需要了解代码库,但也具备广泛的编码经验。依赖于许多外部库或运行时,其中一些不再以原始形式存在。在代码库的生命周期中,每行代码平均被重写 10 次,被弄得千疮百痍,而且还会发生技术偏差。文档不完整。 Go 注重减轻这些大型工程的难题,有时会以使小型工程变得更麻烦为代价,例如,代码中到处都需要几行额外的代码行。 注重可维护性 Go 强调尽可能多地将工作转给自动化的代码维护工具中。Go 工具链提供了最常用的功能,如格式化代码和导入、查找符号的定义和用法、简单的重构以及代码异味的识别。由于标准化的代码格式和单一的惯用方式,机器生成的代码更改看起来非常接近 Go 中人为生成的更改并使用类似的模式,从而允许人机之间更加无缝地协作。 保持简单明了 初级程序员为简单的问题创建简单的解决方案。高级程序员为复杂的问题创建复杂的解决方案。伟大的程序员找到复杂问题的简单解决方案。 ——Charles Connell 让很多人惊讶的一点是,Go 居然不包含他们喜欢的其他语言的概念。Go 确实是一种非常小巧而简单的语言,只包含正交和经过验证的概念的最小选择。这鼓励开发人员用最少的认知开销来编写尽可能简单的代码,以便许多其他人可以理解并使用它。 使事情清晰明了 良好的代码总是显而易见的,避免了那些小聪明、难以理解的语言特性、诡异的控制流和兜圈子。 许多语言都致力提高编写代码的效率。然而,在其生命周期中,人们阅读代码的时间却远远超过最初编写代码所需的时间(100 倍)。例如,审查、理解、调试、更改、重构或重用代码。在查看代码时,往往只能看到并理解其中的一小部分,通常不会有完整的代码库概述。为了解释这一点,Go 将所有内容都明确出来。 错误处理就是一个例子。让异常在各个点中断代码并在调用链上冒泡会更容易。Go 需要手动处理和返回每个错误。这使得它可以准确地显示代码可以被中断的位置以及如何处理或包装错误。总的来说,这使得错误处理编写起来更加繁琐,但是也更容易理解。 简单易学 Go 是如此的小巧而简单,以至于人们可以在短短几天内就能研究通整个语言及其基本概念。根据我们的经验,培训用不了一个星期(相比于掌握其他语言需要几个月),初学者就能够理解 Go 专家编写的代码,并为之做出贡献。为了方便吸引更多的用户,Go 网站提供了所有必要的教程和深入研究的文章。这些教程在浏览器中运行,允许人们在将 Go 安装到本地计算机上之前就能够学习和使用 Go。 解决之道 Go 强调的是团队之间的合作,而不是个人的自我表达。 在 Go(和 Python)中,所有的语言特性都是相互正交和互补的,通常有一种方法可以做一些事情。如果你想让 10 个 Python 或 Go 程序员来解决同一个问题,你将会得到 10 个相对类似的解决方案。不同的程序员在彼此的代码库中感觉更自在。在查看其他人的代码时,国骂会更少,而且人们的工作可以更好地融合在一起,从而形成了一致的整体,人人都为之感到自豪,并乐于工作。这还避免了大型工程的问题,如: 开发人员认为良好的工作代码很“混乱”,并要求在开始工作之前进行重写,因为他们的思维方式与原作者不同。 不同的团队成员使用不同的语言子集来编写相同代码库的部分内容。 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/e64418f1455d46aaacfdd03fa949f16d.png) 简单、内置的并发性 Go 专为现代多核硬件设计。 目前使用的大多数编程语言(Java、JavaScript、Python、Ruby、C、C++)都是 20 世纪 80 年代到 21 世纪初设计的,当时大多数 CPU 只有一个计算内核。这就是为什么它们本质上是单线程的,并将并行化视为边缘情况的马后炮。通过现成和同步点之类的附加组件来实现,而这些附加组件既麻烦又难以正确使用。第三方库虽然提供了更简单的并发形式,如 Actor 模型,但是总有多个可用选项,结果导致了语言生态系统的碎片化。今天的硬件拥有越来越多的计算内核,软件必须并行化才能高效运行。Go 是在多核处理器时代编写的,并且在语言中内置了简单、高级的 CSP 风格并发性。 面向计算的语言原语 就深层而言,计算机系统接收数据,对其进行处理(通常要经过几个步骤),然后输出结果数据。例如,Web 服务器从客户端接收 HTTP 请求,并将其转换为一系列数据库或后端调用。一旦这些调用返回,它就将接收到的数据转换成 HTML 或 JSON 并将其输出给调用者。Go 的内置语言原语直接支持这种范例: 结构表示数据 读和写代表流式 IO 函数过程数据 goroutines 提供(几乎无限的)并发性 在并行处理步骤之间传输管道数据 因为所有的计算原语都是由语言以直接形式提供的,因此 Go 源代码更直接地表达了服务器执行的操作。 OO — 好的部分 更改基类中的某些内容的副作用 面向对象非常有用。过去几十年来,面向对象的使用富有成效,并让我们了解了它的哪些部分比其他部分能够更好地扩展。Go 在面向对象方面采用了一种全新的方法,并记住了这些知识。它保留了好的部分,如封装、消息传递等。Go 还避免了继承,因为它现在被认为是有害的,并为组合提供了一流的支持。 现代标准库 目前使用的许多编程语言(Java、JavaScript、Python、Ruby)都是在互联网成为当今无处不在的计算平台之前设计的。因此,这些语言的标准库只提供了相对通用的网络支持,而这些网络并没有针对现代互联网进行优化。Go 是十年前创建的,当时互联网已全面发展。Go 的标准库允许在没有第三方库的情况下创建更复杂的网络服务。这就避免了第三方库的常见问题: 碎片化:总是有多个选项实现相同的功能。 膨胀:库常常实现的不仅仅是它们的用途。 依赖地狱:库通常依赖于特定版本的其他库。 未知质量:第三方代码的质量和安全性可能存在问题。 未知支持:第三方库的开发可能随时停止支持。 意外更改:第三方库通常不像标准库那样严格地进行版本控制。 关于这方面更多的信息请参考 Russ Cox 提供的资料 标准化格式 Gofmt 的风格没有人会去喜欢,但人人都会喜欢 gofmt。 ——Rob Pike Gofmt 是一种以标准化方式来格式化 Go 代码的程序。它不是最漂亮的格式化方式,但却是最简单、最不令人生厌的格式化方式。标准化的源代码格式具有惊人的积极影响: 集中讨论重要主题: 它消除了围绕制表符和空格、缩进深度、行长、空行、花括号的位置等一系列争论。 开发人员在彼此的代码库中感觉很自在, 因为其他代码看起来很像他们编写的代码。每个人都喜欢自由地按照自己喜欢的方式进行格式化代码,但如果其他人按照自己喜欢的方式格式化了代码,这么做很招人烦。 自动代码更改并不会打乱手写代码的格式,例如引入了意外的空白更改。 许多其他语言社区现在正在开发类似 gofmt 的东西。当作为第三方解决方案构建时,通常会有几个相互竞争的格式标准。例如,JavaScript 提供了 Prettier 和 StandardJS。这两者都可以用,也可以只使用其中的一个。但许多 JS 项目并没有采用它们,因为这是一个额外的决策。Go 的格式化程序内置于该语言的标准工具链中,因此只有一个标准,每个人都在使用它。 快速编译 ![image.png](https://ucc.alicdn.com/pic/developer-ecology/8a76f3f07f484266af42781d9e7b8692.png) 对于大型代码库来说,它们长时间的编译是促使 Go 诞生的原因。Google 主要使用的是 C++ 和 Java,与 Haskell、Scala 或 Rust 等更复杂的语言相比,它们的编译速度相对较快。尽管如此,当编译大型代码库时,即使是少量的缓慢也会加剧编译的延迟,从而激怒开发人员,并干扰流程。Go 的设计初衷是为了提高编译效率,因此它的编译器速度非常快,几乎没有编译延迟的现象。这给 Go 开发人员提供了与脚本类语言类似的即时反馈,还有静态类型检查的额外好处。 交叉编译 由于语言运行时非常简单,因此它被移植到许多平台,如 macOS、Linux、Windows、BSD、ARM 等。Go 可以开箱即用地为所有这些平台编译二进制文件。这使得从一台机器进行部署变得很容易。 快速执行 Go 的运行速度接近于 C。与 JITed 语言(Java、JavaScript、Python 等)不同,Go 二进制文件不需要启动或预热的时间,因为它们是作为编译和完全优化的本地代码的形式发布的。Go 的垃圾收集器仅引入微秒量级的可忽略的停顿。除了快速的单核性能外,Go 还可以轻松利用所有的 CPU 内核。 内存占用小 像 JVM、Python 或 Node 这样的运行时不仅仅在运行时加载程序代码,每次运行程序时,它们还会加载大型且高度复杂的基础架构,以进行编译和优化程序。如此一来,它们的启动时间就变慢了,并且还占用了大量内存(数百兆字节)。而 Go 进程的开销更小,因为它们已经完全编译和优化,只需运行即可。Go 还以非常节省内存的方式来存储数据。在内存有限且昂贵的云环境中,以及在开发过程中,这一点非常重要。我们希望在一台机器上能够快速启动整个堆栈,同时将内存留给其他软件。 部署规模小 Go 的二进制文件大小非常简洁。Go 应用程序的 Docker 镜像通常比用 Java 或 Node 编写的等效镜像要小 10 倍,这是因为它无需包含编译器、JIT,以及更少的运行时基础架构的原因。这些特点,在部署大型应用程序时很重要。想象一下,如果要将一个简单的应用程序部署到 100 个生产服务器上会怎么样?如果使用 Node/JVM 时,我们的 Docker 注册表就必须提供 100 个 docker 镜像,每个镜像 200MB,那么一共就需要 20GB。要完成这些部署就需要一些时间。想象一下,如果我们想每天部署 100 次的话,如果使用 Go 服务,那么 Docker 注册表只需提供 10 个 docker 镜像,每个镜像只有 20MB,共只需 2GB 即可。大型 Go 应用程序可以更快、更频繁地部署,从而使得重要更新能够更快地部署到生产环境中。 独立部署 Go 应用程序部署为一个包含所有依赖项的单个可执行文件,并无需安装特定版本的 JVM、Node 或 Python 运行时;也不必将库下载到生产服务器上,更无须对运行 Go 二进制文件的机器进行任何更改。甚至也不需要讲 Go 二进制文件包装到 Docker 来共享他们。你需要做的是,只是将 Go 二进制文件放到服务器上,它就会在那里运行,而不用关心服务器运行的是什么。前面所提到的那些,唯一的例外是使用net和os/user包时针对对glibc的动态链接。 供应依赖关系 Go 有意识避免使用第三方库的中央存储库。Go 应用程序直接链接到相应的 Git 存储库,并将所有相关代码下载(供应)到自己的代码库中。这样做有很多好处: 在使用第三方代码之前,我们可以对其进行审查、分析和测试。该代码就和我们自己的代码一样,是我们应用程序的一部分,应该遵循相同的质量、安全性和可靠性标准。 无需永久访问存储依赖项的各个位置。从任何地方(包括私有 Git repos)获取第三方库,你就能永久拥有它们。 经过验收后,编译代码库无需进一步下载依赖项。 若互联网某处的代码存储库突然提供不同的代码,这也并不足为奇。 即使软件包存储库速度变慢,或托管包不复存在,部署也不会因此中断。 兼容性保证 Go 团队承诺现有的程序将会继续适用于新一代语言。这使得将大型项目升级到最新版本的编译器会非常容易,并且可从它们带来的许多性能和安全性改进中获益。同时,由于 Go 二进制文件包含了它们需要的所有依赖项,因此可以在同一服务器上并行运行使用不同版本的 Go 编译器编译的二进制文件,而无需进行复杂的多个版本的运行时设置或虚拟化。 文档 在大型工程中,文档对于使软件可访问性和可维护性非常重要。与其他特性类似,Go 中的文档简单实用: 由于它是嵌入到源代码中的,因此两者可以同时维护。 它不需要特殊的语法,文档只是普通的源代码注释。 可运行单元测试通常是最好的文档形式。因此 Go 要求将它们嵌入到文档中。 所有的文档实用程序都内置在工具链中,因此每个人都使用它们。 Go linter 需要导出元素的文档,以防止“文档债务”的积累。 商业支持的开源 当商业实体在开放式环境下开发时,那么一些最流行的、经过彻底设计的软件就会出现。这种设置结合了商业软件开发的优势——一致性和精细化,使系统更为健壮、可靠、高效,并具有开放式开发的优势,如来自许多行业的广泛支持,多个大型实体和许多用户的支持,以及即使商业支持停止的长期支持。Go 就是这样发展起来的。 缺点 当然,Go 也并非完美无缺,每种技术选择都是有利有弊。在决定选择 Go 之前,有几个方面需要进行考虑考虑。 未成熟 虽然 Go 的标准库在支持许多新概念(如 HTTP 2 Server push 等)方面处于行业领先地位,但与 JVM 生态系统中的第三方库相比,用于外部 API 的第三方 Go 库可能不那么成熟。 即将到来的改进 由于清楚几乎不可能改变现有的语言元素,Go 团队非常谨慎,只在新特性完全开发出来后才添加新特性。在经历了 10 年的有意稳定阶段之后,Go 团队正在谋划对语言进行一系列更大的改进,作为 Go 2.0 之旅的一部分。 无硬实时 虽然 Go 的垃圾收集器只引入了非常短暂的停顿,但支持硬实时需要没有垃圾收集的技术,例如 Rust。 结语 本文详细介绍了 Go 语言的一些优秀的设计准则,虽然有的准则的好处平常看起来没有那么明显。但当代码库和团队规模增长几个数量级时,这些准则可能会使大型工程项目免于许多痛苦。总的来说,正是这些设计准则让 Go 语言成为了除 Java 之外的编程语言里,用于大型软件开发项目的绝佳选择。

有只黑白猫 2020-01-07 14:11:38 0 浏览量 回答数 0

问题

Java技术1000问(3)【精品问答】

问问小秘 2020-06-02 14:27:10 11463 浏览量 回答数 3
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板