• 关于

    区间多项式可以做什么

    的搜索结果

问题

【算法】五分钟算法小知识:贪心算法之区间调度问题

游客ih62co2qqq5ww 2020-05-15 13:57:43 0 浏览量 回答数 0

回答

成为一名合格的开发工程师不是一件简单的事情,需要掌握从开发到调试到优化等一系列能力,这些能力中的每一项掌握起来都需要足够的努力和经验。而要成为一名合格的机器学习算法工程师(以下简称算法工程师)更是难上加难,因为在掌握工程师的通用技能以外,还需要掌握一张不算小的机器学习算法知识网络。 下面我们就将成为一名合格的算法工程师所需的技能进行拆分,一起来看一下究竟需要掌握哪些技能才能算是一名合格的算法工程师。 1.基础开发能力 所谓算法工程师,首先需要是一名工程师,那么就要掌握所有开发工程师都需要掌握的一些能力。 有些同学对于这一点存在一些误解,认为所谓算法工程师就只需要思考和设计算法,不用在乎这些算法如何实现,而且会有人帮你来实现你想出来的算法方案。这种思想是错误的,在大多数企业的大多数职位中,算法工程师需要负责从算法设计到算法实现再到算法上线这一个全流程的工作。 笔者曾经见过一些企业实行过算法设计与算法实现相分离的组织架构,但是在这种架构下,说不清楚谁该为算法效果负责,算法设计者和算法开发者都有一肚子的苦水,具体原因不在本文的讨论范畴中,但希望大家记住的是,基础的开发技能是所有算法工程师都需要掌握的。 2.概率和统计基础 概率和统计可以说是机器学习领域的基石之一,从某个角度来看,机器学习可以看做是建立在概率思维之上的一种对不确定世界的系统性思考和认知方式。学会用概率的视角看待问题,用概率的语言描述问题,是深入理解和熟练运用机器学习技术的最重要基础之一。 概率论内容很多,但都是以具体的一个个分布为具体表现载体体现出来的,所以学好常用的概率分布及其各种性质对于学好概率非常重要。 对于离散数据,伯努利分布、二项分布、多项分布、Beta分布、狄里克莱分布以及泊松分布都是需要理解掌握的内容; 对于离线数据,高斯分布和指数分布族是比较重要的分布。这些分布贯穿着机器学习的各种模型之中,也存在于互联网和真实世界的各种数据之中,理解了数据的分布,才能知道该对它们做什么样的处理。 此外,假设检验的相关理论也需要掌握。在这个所谓的大数据时代,最能骗人的大概就是数据了,掌握了假设检验和置信区间等相关理论,才能具备分辨数据结论真伪的能力。例如两组数据是否真的存在差异,上线一个策略之后指标是否真的有提升等等。这种问题在实际工作中非常常见,不掌握相关能力的话相当于就是大数据时代的睁眼瞎。 在统计方面,一些常用的参数估计方法也需要掌握,典型的如最大似然估计、最大后验估计、EM算法等。这些理论和最优化理论一样,都是可以应用于所有模型的理论,是基础中的基础。 3.机器学习理论 虽然现在开箱即用的开源工具包越来越多,但并不意味着算法工程师就可以忽略机器学习基础理论的学习和掌握。这样做主要有两方面的意义: 掌握理论才能对各种工具、技巧灵活应用,而不是只会照搬套用。只有在这个基础上才能够真正具备搭建一套机器学习系统的能力,并对其进行持续优化。否则只能算是机器学习搬砖工人,算不得合格的工程师。出了问题也不会解决,更谈不上对系统做优化。 学习机器学习的基础理论的目的不仅仅是学会如何构建机器学习系统,更重要的是,这些基础理论里面体现的是一套思想和思维模式,其内涵包括概率性思维、矩阵化思维、最优化思维等多个子领域,这一套思维模式对于在当今这个大数据时代做数据的处理、分析和建模是非常有帮助的。如果你脑子里没有这套思维,面对大数据环境还在用老一套非概率的、标量式的思维去思考问题,那么思考的效率和深度都会非常受限。 机器学习的理论内涵和外延非常之广,绝非一篇文章可以穷尽,所以在这里我列举了一些比较核心,同时对于实际工作比较有帮助的内容进行介绍,大家可在掌握了这些基础内容之后,再不断探索学习。 4.开发语言和开发工具 掌握了足够的理论知识,还需要足够的工具来将这些理论落地,这部分我们介绍一些常用的语言和工具。 5.架构设计 最后我们花一些篇幅来谈一下机器学习系统的架构设计。 所谓机器学习系统的架构,指的是一套能够支持机器学习训练、预测、服务稳定高效运行的整体系统以及他们之间的关系。 在业务规模和复杂度发展到一定程度的时候,机器学习一定会走向系统化、平台化这个方向。这个时候就需要根据业务特点以及机器学习本身的特点来设计一套整体架构,这里面包括上游数据仓库和数据流的架构设计,以及模型训练的架构,还有线上服务的架构等等。这一套架构的学习就不像前面的内容那么简单了,没有太多现成教材可以学习,更多的是在大量实践的基础上进行抽象总结,对当前系统不断进行演化和改进。但这无疑是算法工程师职业道路上最值得为之奋斗的工作。在这里能给的建议就是多实践,多总结,多抽象,多迭代。 6.机器学习算法工程师领域现状 现在可以说是机器学习算法工程师最好的时代,各行各业对这类人才的需求都非常旺盛。典型的包括以下一些细分行业: 推荐系统。推荐系统解决的是海量数据场景下信息高效匹配分发的问题,在这个过程中,无论是候选集召回,还是结果排序,以及用户画像等等方面,机器学习都起着重要的作用。 广告系统。广告系统和推荐系统有很多类似的地方,但也有着很显著的差异,需要在考虑平台和用户之外同时考虑广告主的利益,两方变成了三方,使得一些问题变复杂了很多。它在对机器学习的利用方面也和推荐类似。 搜索系统。搜索系统的很多基础建设和上层排序方面都大量使用了机器学习技术,而且在很多网站和App中,搜索都是非常重要的流量入口,机器学习对搜索系统的优化会直接影响到整个网站的效率。 风控系统。风控,尤其是互联网金融风控是近年来兴起的机器学习的又一重要战场。不夸张地说,运用机器学习的能力可以很大程度上决定一家互联网金融企业的风控能力,而风控能力本身又是这些企业业务保障的核心竞争力,这其中的关系大家可以感受一下。 但是所谓“工资越高,责任越大”,企业对于算法工程师的要求也在逐渐提高。整体来说,一名高级别的算法工程师应该能够处理“数据获取数据分析模型训练调优模型上线”这一完整流程,并对流程中的各种环节做不断优化。一名工程师入门时可能会从上面流程中的某一个环节做起,不断扩大自己的能力范围。 除了上面列出的领域以外,还有很多传统行业也在不断挖掘机器学习解决传统问题的能力,行业的未来可谓潜力巨大。

寒凝雪 2019-12-02 01:21:12 0 浏览量 回答数 0

问题

【精品问答】python技术1000问(2)

问问小秘 2019-12-01 22:03:02 68 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

【精品问答】110+数据挖掘面试题集合

珍宝珠 2019-12-01 21:56:45 2713 浏览量 回答数 3

回答

流处理,听起来很高大上啊,其实就是分块读取。有这么一些情况,有一个很大的几个G的文件,没办法一次处理,那么就分批次处理,一次处理1百万行,接着处理下1百万行,慢慢地总是能处理完的。 使用类似迭代器的方式 data=pd.read_csv(file, chunksize=1000000)for sub_df in data: print('do something in sub_df here') 1234索引 Series和DataFrame都是有索引的,索引的好处是快速定位,在涉及到两个Series或DataFrame时可以根据索引自动对齐,比如日期自动对齐,这样可以省去很多事。 缺失值 pd.isnull(obj)obj.isnull()12将字典转成数据框,并赋予列名,索引 DataFrame(data, columns=['col1','col2','col3'...], index = ['i1','i2','i3'...]) 12查看列名 DataFrame.columns 查看索引 DataFrame.index 重建索引 obj.reindex(['a','b','c','d','e'...], fill_value=0] 按给出的索引顺序重新排序,而不是替换索引。如果索引没有值,就用0填充 就地修改索引 data.index=data.index.map(str.upper)12345列顺序重排(也是重建索引) DataFrame.reindex[columns=['col1','col2','col3'...])` 也可以同时重建index和columns DataFrame.reindex[index=['a','b','c'...],columns=['col1','col2','col3'...])12345重建索引的快捷键 DataFrame.ix[['a','b','c'...],['col1','col2','col3'...]]1重命名轴索引 data.rename(index=str.title,columns=str.upper) 修改某个索引和列名,可以通过传入字典 data.rename(index={'old_index':'new_index'}, columns={'old_col':'new_col'}) 12345查看某一列 DataFrame['state'] 或 DataFrame.state1查看某一行 需要用到索引 DataFrame.ix['index_name']1添加或删除一列 DataFrame['new_col_name'] = 'char_or_number' 删除行 DataFrame.drop(['index1','index2'...]) 删除列 DataFrame.drop(['col1','col2'...],axis=1) 或 del DataFrame['col1']1234567DataFrame选择子集 类型 说明obj[val] 选择一列或多列obj.ix[val] 选择一行或多行obj.ix[:,val] 选择一列或多列obj.ix[val1,val2] 同时选择行和列reindx 对行和列重新索引icol,irow 根据整数位置选取单列或单行get_value,set_value 根据行标签和列标签选择单个值针对series obj[['a','b','c'...]]obj['b':'e']=512针对dataframe 选择多列 dataframe[['col1','col2'...]] 选择多行 dataframe[m:n] 条件筛选 dataframe[dataframe['col3'>5]] 选择子集 dataframe.ix[0:3,0:5]1234567891011dataframe和series的运算 会根据 index 和 columns 自动对齐然后进行运算,很方便啊 方法 说明add 加法sub 减法div 除法mul 乘法 没有数据的地方用0填充空值 df1.add(df2,fill_value=0) dataframe 与 series 的运算 dataframe - series 规则是: -------- v 指定轴方向 dataframe.sub(series,axis=0)规则是:-------- --- | | | | ----->| | | | | | | | | | | | -------- ---12345678910111213141516171819202122apply函数 f=lambda x:x.max()-x.min() 默认对每一列应用 dataframe.apply(f) 如果需要对每一行分组应用 dataframe.apply(f,axis=1)1234567排序和排名 默认根据index排序,axis = 1 则根据columns排序 dataframe.sort_index(axis=0, ascending=False) 根据值排序 dataframe.sort_index(by=['col1','col2'...]) 排名,给出的是rank值 series.rank(ascending=False) 如果出现重复值,则取平均秩次 在行或列上面的排名 dataframe.rank(axis=0)12345678910111213描述性统计 方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idxmin,idxmax 最大最小值的索引值quantile 计算样本分位数sum,mean 对列求和,均值mediam 中位数mad 根据平均值计算平均绝对离差var,std 方差,标准差skew 偏度(三阶矩)Kurt 峰度(四阶矩)cumsum 累积和Cummins,cummax 累计组大致和累计最小值cumprod 累计积diff 一阶差分pct_change 计算百分数变化唯一值,值计数,成员资格 obj.unique()obj.value_count()obj.isin(['b','c'])123处理缺失值 过滤缺失值 只要有缺失值就丢弃这一行 dataframe.dropna() 要求全部为缺失才丢弃这一行 dataframe.dropna(how='all') 根据列来判断 dataframe.dropna(how='all',axis=1) 填充缺失值 1.用0填充 df.fillna(0) 2.不同的列用不同的值填充 df.fillna({1:0.5, 3:-1}) 3.用均值填充 df.fillna(df.mean()) 此时axis参数同前面, 123456789101112131415161718192021将列转成行索引 df.set_index(['col1','col2'...])1数据清洗,重塑 合并数据集 取 df1,df2 都有的部分,丢弃没有的 默认是inner的连接方式 pd.merge(df1,df2, how='inner') 如果df1,df2的连接字段名不同,则需要特别指定 pd.merge(df1,df2,left_on='l_key',right_on='r_key') 其他的连接方式有 left,right, outer等。 如果dataframe是多重索引,根据多个键进行合并 pd.merge(left, right, on=['key1','key2'],how = 'outer') 合并后如果有重复的列名,需要添加后缀 pd.merge(left, right, on='key1', suffixes=('_left','_right'))1234567891011121314索引上的合并 针对dataframe中的连接键不是列名,而是索引名的情况。 pd.merge(left, right, left_on = 'col_key', right_index=True) 即左边的key是列名,右边的key是index。 多重索引 pd.merge(left, right, left_on=['key1','key2'], right_index=True)123456dataframe的join方法 实现按索引合并。 其实这个join方法和数据库的join函数是以一样的理解 left.join(right, how='outer') 一次合并多个数据框 left.join([right1,right2],how='outer')123456轴向连接(更常用) 连接:concatenation 绑定:binding 堆叠:stacking列上的连接 np.concatenation([df1,df2],axis=1) #np包pd.concat([df1,df2], axis=1) #pd包 和R语言中的 cbind 是一样的 如果axis=0,则和 rbind 是一样的 索引对齐,没有的就为空 join='inner' 得到交集 pd.concat([df1,df2], axis=1, join='innner') keys 参数,还没看明白 ignore_index=True,如果只是简单的合并拼接而不考虑索引问题。 pd.concat([df1,df2],ignore_index=True)123456789101112131415合并重复数据 针对可能有索引全部或者部分重叠的两个数据集 填充因为合并时索引赵成的缺失值 where函数 where即if-else函数 np.where(isnull(a),b,a)12combine_first方法 如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first(df2)12345重塑层次化索引 stact:将数据转为长格式,即列旋转为行 unstack:转为宽格式,即将行旋转为列result=data.stack()result.unstack()12长格式转为宽格式 pivoted = data.pivot('date','item','value') 前两个参数分别是行和列的索引名,最后一个参数则是用来填充dataframe的数据列的列名。如果忽略最后一个参数,得到的dataframe会带有层次化的列。 123透视表 table = df.pivot_table(values=["Price","Quantity"], index=["Manager","Rep"], aggfunc=[np.sum,np.mean], margins=True)) values:需要对哪些字段应用函数 index:透视表的行索引(row) columns:透视表的列索引(column) aggfunc:应用什么函数 fill_value:空值填充 margins:添加汇总项 然后可以对透视表进行筛选 table.query('Manager == ["Debra Henley"]')table.query('Status == ["pending","won"]')123456789101112131415移除重复数据 判断是否重复 data.duplicated()` 移除重复数据 data.drop_duplicated() 对指定列判断是否存在重复值,然后删除重复数据 data.drop_duplicated(['key1'])123456789交叉表 是一种用于计算分组频率的特殊透视表. 注意,只对离散型的,分类型的,字符型的有用,连续型数据是不能计算频率这种东西的。 pd.crosstab(df.col1, df.col2, margins=True)1类似vlookup函数 利用函数或映射进行数据转换 1.首先定义一个字典 meat_to_animal={ 'bacon':'pig', 'pulled pork':'pig', 'honey ham':'cow' } 2.对某一列应用一个函数,或者字典,顺便根据这一列的结果创建新列 data['new_col']=data['food'].map(str.lower).map(meat_to_animal)123456789替换值 data.replace(-999,np.na) 多个值的替换 data.replace([-999,-1000],np.na) 对应替换 data.replace([-999,-1000],[np.na,0]) 对应替换也可以传入一个字典 data.replace({-999:np.na,-1000:0})123456789离散化 定义分割点 简单分割(等宽分箱) s=pd.Series(range(100))pd.cut(s, bins=10, labels=range(10)) bins=[20,40,60,80,100] 切割 cats = pd.cut(series,bins) 查看标签 cats.labels 查看水平(因子) cats.levels 区间计数 pd.value_count(cats) 自定义分区的标签 group_names=['youth','youngAdult','MiddleAge','Senior']pd.cut(ages,bins,labels=group_names)1234567891011121314151617181920212223分位数分割 data=np.random.randn(1000)pd.qcut(data,4) #四分位数 自定义分位数,包含端点 pd.qcut(data,[0,0.3,0.5,0.9,1])12345异常值 查看各个统计量 data.describe() 对某一列 col=data[3]col[np.abs(col)>3] 选出全部含有“超过3或-3的值的行 data[(np.abs(data)>3).any(1)] 异常值替换 data[np.abs(data)>3]=np.sign(data)*312345678910111213抽样 随机抽取k行 df.take(np.random.permutation(len(df))[:k]) 随机抽取k行,但是k可能大于df的行数 可以理解为过抽样了 df.take(np.random.randint(0,len(df),size=k))1234567数据摊平处理 相当于将类别属性转成因子类型,比如是否有车,这个字段有3个不同的值,有,没有,过段时间买,那么将会被编码成3个字段,有车,没车,过段时间买车,每个字段用0-1二值填充变成数值型。 对摊平的数据列增加前缀 dummies = pd.get_dummies(df['key'],prefix='key') 将摊平产生的数据列拼接回去 df[['data1']].join(dummies)12345字符串操作 拆分 strings.split(',') 根据正则表达式切分 re.split('s+',strings) 连接 'a'+'b'+'c'...或者'+'.join(series) 判断是否存在 's' in strings`strings.find('s') 计数 strings.count(',') 替换 strings.replace('old','new') 去除空白字符 s.strip()12345678910111213141516171819202122232425正则表达式 正则表达式需要先编译匹配模式,然后才去匹配查找,这样能节省大量的CPU时间。 re.complie:编译 findall:匹配所有 search:只返回第一个匹配项的起始和结束地址 match:值匹配字符串的首部 sub:匹配替换,如果找到就替换 原始字符串 strings = 'sdf@153.com,dste@qq.com,sor@gmail.com' 编译匹配模式,IGNORECASE可以在使用的时候对大小写不敏感 pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'regex = re.compile(pattern,flags=re.IGNORECASE) 匹配所有 regex.findall(strings) 使用search m = regex.search(strings) #获取匹配的地址strings[m.start():m.end()] 匹配替换 regex.sub('new_string', strings)12345678910111213141516根据模式再切分 将模式切分,也就是将匹配到的进一步切分,通过pattern中的括号实现. pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'regex = re.compile(pattern)regex.findall(strings) 如果使用match m=regex.match(string)m.groups() 效果是这样的 suzyu123@163.com --> [(suzyu123, 163, com)] 获取 list-tuple 其中的某一列 matches.get(i)12345678910111213分组聚合,计算 group_by技术 根据多个索引分组,然后计算均值 means = df['data1'].groupby([df['index1'],df['index2']).mean() 展开成透视表格式 means.unstack()12345分组后价将片段做成一个字典 pieces = dict(list(df.groupby('index1'))) pieces['b']123groupby默认是对列(axis=0)分组,也可以在行(axis=1)上分组 语法糖,groupby的快捷函数 df.groupby('index1')['col_names']df.groupby('index1')[['col_names']] 是下面代码的语法糖 df['col_names'].groupby(df['index1']) df.groupby(['index1','index2'])['col_names'].mean()1234567通过字典或series进行分组 people = DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim','Travis']) 选择部分设为na people.ix[2:3,['b','c']]=np.na mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f' : 'orange'} people.groupby(mapping,axis=1).sum()1234567891011通过函数进行分组 根据索引的长度进行分组 people.groupby(len).sum()12数据聚合 使用自定义函数 对所有的数据列使用自定义函数 df.groupby('index1').agg(myfunc) 使用系统函数 df.groupby('index1')['data1']describe()12345根据列分组应用多个函数 分组 grouped = df.groupby(['col1','col2']) 选择多列,对每一列应用多个函数 grouped['data1','data2'...].agg(['mean','std','myfunc'])12345对不同列使用不同的函数 grouped = df.groupby(['col1','col2']) 传入一个字典,对不同的列使用不同的函数 不同的列可以应用不同数量的函数 grouped.agg({'data1':['min','max','mean','std'], 'data2':'sum'}) 123456分组计算后重命名列名 grouped = df.groupby(['col1','col2']) grouped.agg({'data1':[('min','max','mean','std'),('d_min','d_max','d_mean','d_std')], 'data2':'sum'}) 1234返回的聚合数据不要索引 df.groupby(['sex','smoker'], as_index=False).mean()1分组计算结果添加前缀 对计算后的列名添加前缀 df.groupby('index1').mean().add_prefix('mean_')12将分组计算后的值替换到原数据框 将函数应用到各分组,再将分组计算的结果代换原数据框的值 也可以使用自定义函数 df.groupby(['index1','index2'...]).transform(np.mean)123更一般化的apply函数 df.groupby(['col1','col2'...]).apply(myfunc) df.groupby(['col1','col2'...]).apply(['min','max','mean','std'])123禁用分组键 分组键会跟原始对象的索引共同构成结果对象中的层次化索引 df.groupby('smoker', group_keys=False).apply(mean)1分组索引转成df的列 某些情况下,groupby的as_index=False参数并没有什么用,得到的还是一个series,这种情况一般是尽管分组了,但是计算需要涉及几列,最后得到的还是series,series的index是层次化索引。这里将series转成dataframe,series的层次化索引转成dataframe的列。 def fmean(df): """需要用两列才能计算最后的结果""" skus=len(df['sku'].unique()) sums=df['salecount'].sum() return sums/skus 尽管禁用分组键,得到的还是series salemean=data.groupby(by=['season','syear','smonth'],as_index=False).apply(fmean) 将series转成dataframe,顺便设置索引 sub_df = pd.DataFrame(salemean.index.tolist(),columns=salemean.index.names,index=salemean.index) 将groupby的结果和sub_df合并 sub_df['salemean']=salemean12345678910111213桶分析与分位数 对数据切分段,然后对每一分段应用函数 frame = DataFrame({'col1':np.random.randn(1000), 'col2':np.random.randn(1000)}) 数据分段,创建分段用的因子 返回每一元素是属于哪一分割区间 factor = pd.cut(frame.col1, 4) 分组计算,然后转成数据框形式 grouped = frame.col2.groupby(factor)grouped.apply(myfunc).unstack()12345678910用分组的均值填充缺失值 自定义函数 fill_mean= lambda x:x.fillna(x.mean()) 分组填充 df.groupby(group_key).apply(fill_mean)12345分组后不同的数据替换不同的值 定义字典 fill_value = {'east':0.5, 'west':-1} 定义函数 fill_func = lambda x:x.fillna(fill_value(x.name)) 分组填充 df.groupby(['index1','index2'...]).apply(fill_func)12345678sql操作 有时候觉得pandas很方便,但是有时候却很麻烦,不如SQL方便。因此pandas中也有一些例子,用pandas实现SQL的功能,简单的就不说了,下面说些复杂点的操作。 之所以说这个复杂的语句,是因为不想将这些数据操作分写在不同的语句中,而是从头到尾连续编码实现一个功能。 SQL复杂操作用到的主要函数是assign,简单说其实和join的功能是一样的,根据df1,df2的索引值来将df2拼接到df1上。 两个函数是query,也听方便的。 有一批销量数据,筛选出那些有2个月以上的销量产品的数据,说白了就是剔除那些新上市产品的数据 方法是先统计每个产品的数据量,然后选出那些数据量>2的产品,再在数据表中选择这些产品 sku smonth a 1 a 2 a 3 a 4 b 5 b 6 b 7 b 8 c 9 c 10 按sku分组,统计smonth的次数,拼接到salecount中,然后查询cnt>2的 salecount.assign(cnt=salecount.groupby(['sku'])['smonth'].count()).query('cnt>2')

xuning715 2019-12-02 01:10:39 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站