• 关于

    通用控制系统不可用

    的搜索结果

回答

本文介绍如何在NAS控制台上管理文件系统,包括创建文件系统、查看文件系统列表、查看文件系统详情、删除文件系统等操作。 创建文件系统 登录NAS控制台。 选择文件系统 > 文件系统列表,单击创建文件系统。 在通用型区域,单击按量付费,此处以创建按量付费的通用型NAS文件系统为例进行说明。 如果您要绑定存储包,请选择购买存储包。存储包是在按量付费的基础上推出的更加优惠的计费方式,详情请参见购买存储包。 如果您要创建极速型NAS文件系统,请在极速型区域,单击包年包月或按量付费进行创建。 在通用型NAS(按量付费)页面,配置相关信息。 创建文件系统 参数 说明 地域 选择要创建文件系统的地域。 说明 不同地域的文件系统与云服务器ECS不互通。 每个账号在单个地域内最多可以创建20个文件系统。 地域不同,文件系统支持的存储类型、协议类型不同,更多详情请参见 NAS 地域与支持的存储类型和协议类型。 可用区 可用区是指在同一地域内,电力和网络互相独立的物理区域。 同一地域不同可用区之间的文件系统与云服务器ECS互通。 选择可用区,建议和云服务器ECS在同一可用区,避免跨可用区产生的时延。 协议类型 包括NFS(包含 NFSv3 和 NFSv4)和SMB(2.1及以上)。 NFS适合Linux ECS文件共享, SMB适合Windows ECS文件共享。 存储类型 包括性能型或容量型。 性能型文件系统容量上限为1PB,容量型文件系统容量上限为10PB。按实际使用量付费。 加密类型 使用KMS服务托管密钥,对文件系统落盘数据进行加密存储,详情请参见数据加密。 说明 目前只支持NFS文件系统。 针对极速型NAS,如果启用了数据加密功能,则在创建快照时,也会自动加密数据。 在读写加密数据时,无需解密。 加密类型分为:不加密和静态加密。 单击立即购买,根据页面提示,完成购买。 说明 创建文件系统成功后会绑定默认的权限组。如果您要修改权限组,请参见修改挂载点的权限组。 查看文件系统列表 在文件系统列表页面,可查看当前区域所有的文件系统。在文件系统列表中,找到目标文件系统,可修改文件系统的名称。 查看文件系统列表 查看文件系统详情 找到目标文件系统,单击文件系统ID或者管理,进入文件系统详情页面,可查看文件系统的基本信息、挂载使用和性能监控。 查看文件系统详情 删除文件系统 只有当文件系统的挂载点数目为0时,您才可以删除文件系统实例。 找到目标文件系统,单击更多,选择删除,即可删除文件系统。 警告 文件系统实例一旦删除,数据将不可恢复,请谨慎操作。

1934890530796658 2020-03-31 03:24:14 0 浏览量 回答数 0

回答

按量付费计费规则说明一、“按量付费”介绍 阿里云全新推出的付费模式,按实际使用量后付费开通,可随时开启随时释放。 按需取用,按需付费,无需购买大量设备,相比于传统主机投入成本降低30%-80%;支持多种主流操作系统,让您以服务的方式使用计算及存储资源。 目前阿里云云服务器有两种付费模式:包年包月、按量付费。 二、“按量付费“计费说明 1、云服务器按量付费收费方式 1.1 采用阿里云账户先充值,后按实际用量结算方式进行结算。以小时为单位,按实际消费金额对账户余额进行扣费。 1.2 “按量付费”云服务器计费项包括:CPU、内存、数据盘、公网带宽(按固定带宽、按使用流量两种可选)。 2、开通说明 2.1 开通按量付费的云服务器,现金账户余额不得少于100.00元,如账户金额少于100.00元,需充值后方可开通。 3、计费说明 3.1 每小时计费总费用=CPU费用+内存费用+数据盘费用+公网带宽费用。 3.2 CPU、内存、数据盘:按固定费用每小时扣费; 3.3 公网带宽:固定带宽,按固定费用每小时扣费; 3.4 公网带宽:按使用流量,仅单向收取流出流量费用(0.8 元/GB),流入流量免费,按实际使用金额每小时扣费。例如您在1小时内公网流出流量为2.5GB,收取费用为2.5GB*0.8元/小时=2.0元。 4、结算说明 4.1 结算周期。以小时为单位整点结算(均以北京时间为准)。 开通时间建议: 整点开通才划算,非整点开通,按整点算钱!提前释放按整点周期算钱! 比如:您在1点20分开通,那么时间到2点的时候就算做1小时。所以尽量在整点后几分钟内开通,在整点前几分钟释放。 4.2 结算范围 实际开通时长(即云服务器从“开通”开启计费到“释放“结束计费,以小时为单位整点结算)因账户欠费而产生的账单,账户一旦充值系统将会自动结算。 若账号下有欠费账单,可能会导致无法结算其他订单或结算其他订单时系统会自动优先扣除欠费账单金额。 4.3 结算时间 以系统自动结算时间为准 。 温馨提醒:避免超出预期开通时长,请设置自动释放服务时间!(可进入”用户中心“-”控制台“设置) 。 5、释放规则 5.1 按小时扣费后,“阿里云现金账户”出现欠费。 即在整点扣费时,(现金账户余额-账单中当周期整点结算的费用)<0时,按量付费的ECS将会欠费停机,从停机时刻起数据保留7天(即168小时,自行设置释放的除外),7天后实例以及实例相关数据(包括临时磁盘,云磁盘、随ECS实例释放的独立云磁盘,快照)均处于不可用状态,系统会回收相关欠费资源,数据无法找回。 欠费后,按量付费的云磁盘会被限制使用,无法实现正常的IO读写访问,会影响挂载该欠费磁盘的ECS实例正常运行,包括但不限于,应用程度读写性能低下,部分操作提示严重超时,某些操作系统版本下关机或重启失败等情况。 5.2 已设置自动释放时间的云服务器,会按照设置时间系统自动释放(按量付费服务器实例可能存在释放延迟,如果您设置释放时间点由于释放延迟进入下一计费周期,不会收取下一计费周期费用,只会针对您设置的释放时间点前的时间进行计费) 若按小时扣费后,“阿里云现金账户”余额为0元,”按量付费“的云服务器不遵循设置的系统释放时间,自账号为0元时起7天后实例以及实例相关数据(包括临时磁盘,云磁盘、随ECS实例释放的独立云磁盘,快照)都将被永久删除,数据无法找回。 5.3 提醒规则 余额不足提醒:以小时为单位整点结算后,若下一计费周期内账户可用余额小于上一周期账单金额,则发短信和邮件提醒; 释放通知:因到期/欠费释放,系统会短信和邮件通知。 6、举例 6.1 1:00整开通云服务器,1:00~2:00为第一个结算周期,实际开通时长60分钟算作1小时计费结算。 6.2 1:59分开通云服务器,1:00~2:00为第一个结算周期,实际开通时长1分钟算作1小时计费结算;2:01分释放云服务器,2:00~3:00为第二个结算周期,实际开通时长1分钟算作1小时计费结算,此用户需要支付2小时费用。 说明:此“ 释放 ”包括用户通过控制台自行操作释放、以小时为单位整点结算后现金账户欠费由系统触发的释放。请设置”自动释放服务时间“避免系统触发的释放导致超出预期的开通时长。 三、按量付费开通须知 1、”按量付费“均暂不支持更换配置 1.1 暂不支持配置变更功能(包括带宽升级、CPU和内存升级)。 若选择0M固定带宽:不分配外网IP,不支持0M带宽升级,请谨慎选择。 2、计费模式不支持更换 2.1 “包年包月“和”按量付费“不支持相互更换:1台云服务器只能选择1种,无法同时选择; 2.2 公网带宽:按固定带宽/按使用流量计费模式不支持相互更换,1台云服务器只能选择1种,无法同时选择。 3、金牌服务不支持 3.1 不提供备案服务。如果您的网站需要备案,请您包年包月购买,价更优! 3.2 不支持5天无理由退款 3.3 不支持免费数据迁移 4、代金券使用限制 仅支持有效期内通用券。 5、免费使用云盾、云监控、负载均衡 “按量付费”和“包年包月”仅计费模式不同,可同样免费使用云盾、云监控、负载均衡等阿里云产品。 四、常见问题 FAQ Q:按量付费我不能购买是什么原因? A: 请检查您是否已经通过实名认证,如果没有实名认证,建议您前往用户中心做实名认证。 目前按量付费是每个账号50台购买限制,如果您有超过50台的需求,可以根据提交工单申请按量高配。 由于管控限制,当某个地域售卖量达到限制的时候该地域会暂时关闭,建议您稍后再来尝试购买 Q:“固定带宽”和带宽“按使用流量”有什么区别? A: 固定带宽:买多少是多少; 带宽按使用流量:评估使用峰值,对带宽进行选择,按使用流量扣费。 Q:公网带宽“按使用流量”我应该选多少M才合适? A: 根据应用及实际使用情况进行选择。 Q:没有通过支付宝实名认证就不能购买“按量付费”云服务器吗? A: 是的,下单购买前,必须进行实名认证。Q:“按量付费”代金券能用吗? A:目前代金券账户仅限有效期内的通用券可用,请及时关注代金券的有效期 。 Q:如果金额不足,会提示么?什么时候提示?云服务器会直接停掉么? A:扣费后,若阿里云现金账户(代金券账户仅限有效期内的通用券可用)余额为0元,云服务器上的数据会保留7天后自动释放!详情查看《按量付费云服务器开通释放规则》 提醒规则: 余额不足提醒:每小时整点结算后仍有未释放的云服务器,若下一计费周期内账户可用余额小于上一周期账单金额,则发短信和邮件提醒;释放通知:因到期/欠费释放,系统会短信和邮件通知。 Q:账户余额不足,服务器数据会受影响吗? A:按小时扣费后,当“阿里云账户”出现欠费,即现金账户(代金券账户仅限有效期内的通用券可用)余额”为0元,“按量付费”的云服务器将不可用,如7天内没有续费,服务器将自动释放,数据不可恢复。 Q:一次性可以购买多少台云服务器?一个云帐号可以买几台云服务器? A:一次性最多可购买50台云服务器,一个云帐号下最多可以购买50台(包含50台)。 Q:结算时间怎么算?例如我1点30分钟开通,到2点,算半小时还是一小时? A:整点结算,以系统自动结算时间为准。算1小时。建议整点开通。 Q: 云服务器的地域是怎么选择的? A:地域可以自行选择。 Q:如果设置了带宽峰值,后期可以再进行调整吗? A:带宽峰值设置之后,就无法进行调整。 Q:我的服务器被攻击了,流量给我计费了?跟我自己检测流量差距很大,是什么原因? A:流量计费仅对出网带宽进行收费,网络攻击如属于入网带宽,则不会进行计费,如产生了出网带宽,会进行计费。推荐使用云盾进行攻击防护。 Q:能否自行关闭服务器? A:可以自行设置自动释放服务时间。 Q:“按量付费”,发票怎么开? A:可以开发票,申请发票时将基于月结算单开具发票,月结算单不可拆分开票,请您登录阿里云用户中心进行申请发票 。 Q:“按量付费”,能备案吗? A: 不提供备案服务,如果您的网站需要备案,请您包年包月购买,价更优! Q:能否支持5天内无理由退款? A:不支持 Q:是否支持百倍赔偿? A:支持。 Q:“按量计费”的云服务器(ECS)停机和关机后,还会产生费用吗? A:停机不产生费用,而关机将按正常计费规则收取费用。关机状态的按量付费ECS因服务时间到期或欠费时,将会变为“停机”状态。“停机”是指按量付费ECS到期或因欠费而自动停止服务的状态;而“关机”是指按量付费ECS在正常运行期间(账号余额>0元),用户在管理控制台中点击“停止”后,服务器即进入关机状态。 说明:按量付费的ECS停机后,数据保留7天后会自动释放;如需快速释放,您也可以登录ECS控制台->管理->释放,届时您ECS上的数据将立即被全部清除。 Q:“按量付费”的云服务器对内、对外产生的流量怎么收费的? A:同一局域网内的云服务器之间交互产生的流量全部免费,云服务器与公网交互产生的流量说明如下: 带宽按使用流量计费:互联网流入云服务器的流量是免费的,例如您通过云服务器从互联网上下载文件,阿里云不会收取任何费用,只有云服务器向互联网流出的流量才会产生费用。按固定带宽计费:在以单位价格购买的固定带宽上限之内,云服务器向互联网流出的流量都不会再另收取任何费用。

元芳啊 2019-12-01 23:23:10 0 浏览量 回答数 0

回答

您可以通过阿里云RDS管理控制台或API创建RDS实例。本文介绍如何通过控制台创建RDS MySQL实例。 其他引擎创建实例请参见: 创建RDS SQL Server实例 创建RDS PostgreSQL实例 创建RDS PPAS实例 创建RDS MariaDB实例 除了新版本的创建实例页面,您也可以切换回旧版创建实例页面。操作详情请参见: 创建RDS实例(新版) 创建RDS实例(旧版) 优惠活动 首购折扣价:首次购买RDS MySQL享受折扣价。详情请参见优惠活动。 计费说明 关于实例计费说明,请参见计费方式。 前提条件 已注册阿里云账号。具体操作请参见注册阿里云账号。 若您要创建按量付费的实例,请确保您的阿里云账号的余额大于等于100元。 注意事项 包年包月实例无法转为按量付费实例。 按量付费实例可以转为包年包月实例,请参见按量付费转包年包月。 同一个主账号,最多可以创建30个按量付费的RDS实例。如需提高此限额,请提交工单申请。 创建RDS实例(新版) 进入RDS实例创建页面。 说明 您也可以在当前创建RDS实例页面上方单击返回旧版切换到旧版创建RDS实例页面。 设置以下参数。 类别 说明 计费方式 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 地域 实例所在的地域,即实例所在的地理位置。 购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 类型 数据库引擎的类型和版本,这里选择MySQL。 当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。 说明 不同地域和数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。ESSD云盘分为如下三类: ESSD云盘:PL1性能级别的ESSD云盘。 ESSD PL2云盘:相比PL1,PL2性能级别的ESSD云盘大约可提升2倍IOPS和吞吐量。 ESSD PL3云盘:相比PL1,PL3性能级别的ESSD云盘最高可提升20倍IOPS、11倍吞吐量,适合对极限并发I/O性能要求极高、读写时延极稳定的业务场景。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 更多信息,请参见存储类型。 可用区 可用区是地域中的一个独立物理区域,主节点可用区指主实例所在可用区,备节点可用区指备实例所在可用区。 您可以设置实例为单可用区部署或多可用区部署: 单可用区部署指主节点可用区和备节点可用区都处于相同可用区。 多可用区部署指主节点可用区和备节点可用区处于不同可用区,此时您只需要选择主节点可用区,系统会自动选择备节点可用区。 相比单可用区部署,多可用区部署能提供可用区级别的容灾,建议您使用多可用区部署。 可用区 实例规格 入门级:通用型的实例规格,独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 企业级:独享或独占型的实例规格。独享型指独享被分配的CPU、内存、存储和I/O资源。独占型是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 说明 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 存储空间 存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。调整存储空间时最小单位为5GB。 说明 部分本地SSD盘的存储空间大小与实例规格绑定,ESSD/SSD云盘不受此限制。详情请参见主实例规格列表。 单击下一步:网络和资源组。 设置以下参数。 类别 说明 网络类型 经典网络:传统的网络类型。 专有网络:也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。选择专有网络时您需要选择对应的VPC和主节点交换机。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致(如果选择专有网络,还需要保证VPC一致),否则它们无法通过内网互通。 存储引擎 设置实例的默认存储引擎。当前仅MySQL 8.0高可用版(本地SSD盘)实例支持此选项。 关于阿里自研的X-Engine引擎详情请参见X-Engine简介。 说明 X-Engine兼容InnoDB,而且拥有更好的性能表现,建议您使用X-Engine作为默认存储引擎。 参数模板 设置实例参数模板。当前仅高可用版(本地SSD盘)实例支持此选项。 说明 您可以选择系统参数模板或自定义参数模板,详情请参见使用参数模板。 时区 设置实例时区。当前仅本地SSD盘实例支持此选项。 表名大小写 设置实例表名是否区分大小写。当本地数据库区分大小时,您可以选择区分大小写,便于您迁移数据。当前仅本地SSD盘实例支持此选项。 资源组 实例所属的资源组。 单击下一步:确认订单。 确认参数配置,选择购买量和购买时长(仅包年包月实例),勾选服务协议,单击去支付完成支付。 创建RDS实例(旧版) 进入旧版RDS实例创建页面。 选择计费方式。 按量付费:属于后付费,即按小时扣费。适合短期需求,用完可立即释放实例,节省费用。 包年包月:属于预付费,即在新建实例时需要支付费用。适合长期需求,价格比按量付费更实惠,且购买时长越长,折扣越多。 设置以下参数。 参数 说明 地域 实例所在的地理位置。购买后无法更换地域。 请根据目标用户所在的地理位置就近选择地域,提升用户访问速度。 请确保RDS实例与需要连接的ECS实例创建于同一个地域,否则它们无法通过内网互通,只能通过外网互通,无法发挥最佳性能。 资源组 实例所属的资源组。 数据库类型 即数据库引擎的类型,这里选择MySQL。 说明 不同地域支持的数据库类型不同,请以实际界面为准。 版本 指MySQL的版本。当前支持MySQL 5.5、5.6、5.7、8.0。 说明 不同地域所支持的版本不同,请以实际界面为准。 系列 基础版:单节点,计算与存储分离,性价比高。 高可用版:一个主节点和一个备节点,经典高可用架构。 三节点企业版(原金融版):一个主节点和两个备节点,位于同一地域的三个不同的可用区,提供金融级可靠性。仅4个地域提供三节点企业版实例:华东1、华东2、华南1、华北2。 说明 不同数据库版本支持的系列不同,请以实际界面为准。关于各个系列的详细介绍,请参见产品系列概述。 存储类型 本地SSD盘:与数据库引擎位于同一节点的SSD盘。将数据存储于本地SSD盘,可以降低I/O延时。 SSD云盘:基于分布式存储架构的弹性块存储设备。将数据存储于SSD云盘,即实现了计算与存储分离。 说明 SSD云盘支持云盘加密,能够最大限度保护您的数据安全,您的业务和应用程序无需做额外的改动。详情请参见云盘加密。 ESSD云盘:增强型(Enhanced)SSD云盘,是阿里云全新推出的超高性能云盘产品。ESSD云盘基于新一代分布式块存储架构,结合25GE网络和RDMA技术,为您提供单盘高达100万的随机读写能力和更低的单路时延。 更多信息,请参见存储类型。 密钥 云盘加密所使用的的密钥。密钥的创建请参见管理密钥。 可用区 可用区是地域中的一个独立物理区域,不同可用区之间没有实质性区别。您可以选择将RDS实例的主备节点创建在同一可用区或不同可用区。 相比单可用区,多可用区能提供可用区级别的容灾。 网络类型 经典网络:传统的网络类型。 专有网络(推荐):也称为VPC(Virtual Private Cloud)。VPC是一种隔离的网络环境,安全性和性能均高于传统的经典网络。 说明 请确保RDS实例与需要连接的ECS实例网络类型一致,否则它们无法通过内网互通。 规格 每种规格都有对应的CPU核数、内存、最大连接数和最大IOPS。详情请参见主实例规格列表。 RDS实例有以下规格族: 通用型:独享被分配的内存和I/O资源,与同一服务器上的其他通用型实例共享CPU和存储资源。 独享型:独享被分配的CPU、内存、存储和I/O资源。 独占物理机型:是独享型的顶配,独占整台服务器的CPU、内存、存储和I/O资源。 例如,8核32GB是通用型实例规格,8核32GB(独享套餐)是独享型实例规格,30核220GB(独占主机)是独占物理机型实例规格。 存储空间 该存储空间包括数据空间、系统文件空间、Binlog文件空间和事务文件空间。 设置购买时长(仅针对包年包月实例)和实例数量,然后单击右侧的立即购买。 说明 购买包年包月实例时,可以勾选自动续费,系统将根据您的购买时长进行自动续费。例如,您购买3个月的实例并勾选自动续费,则每次自动续费时会缴纳3个月的费用。 对于包年包月实例,您也可以单击加入购物车将实例加入到购物车中,最后单击购物车进行结算。 在订单确认页面,勾选相关协议,根据提示完成支付。 下一步 在控制台左上角,选择实例所在的地域即可查看到刚刚创建的实例。选择地域 创建实例后,您需要设置白名单和创建账号,如果是通过外网连接,还需要申请外网地址。然后就可以连接实例。 如果连接实例失败,请参见解决无法连接实例问题。 常见问题 为什么创建实例后无反应,实例列表也看不到创建中的实例? 看不到创建中的实例可能有如下两个原因: 地域错误 可能您所在地域和您创建实例时选择的地域不一致。您可以在页面左上角切换地域。 选择地域 可用区内资源不足 由于可用区资源是动态分配的,可能您下单后可用区内资源不足,所以会创建失败,建议您更换可用区重试。创建失败您可以在订单列表里看到退款。 如何授权子账号管理RDS实例? 答:请参见云数据库 RDS 授权。 相关API API 描述 CreateDBInstance 创建RDS实例。 操作视频 RDS实例创建

游客yl2rjx5yxwcam 2020-03-09 10:46:09 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

回答

本文介绍了创建及配置集群的基本配置流程和查看配置清单的方法,并详细说明了各高级配置项的用法。 基本配置流程 开通并创建NAS 首次创建E-HPC集群之前,需要先登录文件存储产品页面 开通NAS服务,NAS服务开通后,登录到NAS控制台开始 创建NAS文件系统,并为文件系统 添加挂载点,操作完成之后,就可以登录到EHPC控制台创建集群了。 创建集群 1.. 登录E-HPC管理控制台。如果尚未注册,请先单击 免费注册 完成注册流程(按照最新国家规定,需要实名制注册)。登录后定位到 弹性高性能计算,会直接显示如下的集群界面: ClusterView 2.. 在该 集群 界面,先选择地域(如华东1),单击右上角开始 创建集群。 注意1:请先了解地域和可用区。 注意2: 在创建、管理或使用E-HPC集群时,非特殊情况请勿使用云服务器ECS管理控制台调整单个集群节点。建议通过E-HPC集群管控平台操作。详情见 为什么不能使用ECS管理控制台对E-HPC集群节点进行操作? 第一步:硬件配置 硬件配置项包括:可用区、付费类型、部署方式和节点配置,如下图所示:HardwareConfig 选择可用区。 ZoneSelect 说明:为了保证E-HPC节点间的网络通讯效率,所有开通的节点均位于同一地域同一可用区,请参见地域和可用区。如果在开通E-HPC集群时发现想用的区域不可选,请参见为什么某些地域无法开通E-HPC集群 选择付费类型 付费类型是指集群节点ECS实例的计费方式,其中不包括弹性IP、NAS存储的费用。共有三种付费类型供您选择:包年包月、按量付费和竞价实例。ChargeMode 选择部署方式 DeployMode 说明: 标准:登录节点、管控节点和计算节点分离部署,管控节点可以选2台或4台(HA)。 简易:登录、管控服务混合部署在一台节点上,计算节点分离。 One-box: 所有类型的服务都部署在一台计算节点上,整个集群只有一个节点,可选择使用本地存储或NAS存储。使用NAS存储时可支持集群扩容。 4. 节点配置 NodeSelect 如上图,系统中默认分配2个管控节点实例,还可以自己选择1个或者4(HA)。计算节点的数量指定为3台。登录节点默认分配1台。点击节点的打开下拉菜单可进一步选择所需机型。 说明: E-HPC集群主要由以下3种节点构成 计算节点:用于执行高性能计算作业的节点 管控节点:用于进行作业角度和域账户管理的节点,包括相互独立的2种节点: 作业调度节点:部署作业调度器 域帐户管理节点:部署集群的域账号管理软件 登录节点:具备公网IP,用户可远程登录该节点,通过命令行操作HPC集群 一般来说,作业调度节点只处理作业调度,域帐户管理节点只处理帐户信息,都不参与作业运算,因此原则上管控节点选用较低配置的企业级实例(如小于4CPU核的sn1ne实例)保证高可用性即可。计算节点的硬件配置选择是影响集群性能的关键点。登录节点通常会被配置为开发环境,需要为集群所有用户提供软件开发调试所需的资源及测试环境,因此推荐登录节点选择与计算节点配置一致或内存配比更大的实例。各种机型的详细信息可参考推荐配置。 完成硬件配置后,点击下一步进入软件配置界面。 第二步:软件配置 软件配置项包括:镜像类型、操作系统、调度器和软件包,如下图所示:SoftwareConfig 说明: 选择不同的镜像类型,操作系统的可选项也会变化。操作系统指部署在集群所有节点上的操作系统。“镜像类型”说明: 若用户选择镜像为"自定义镜像类型",则不能使用基于已有E-HPC集群节点创建产生的自定义镜像,否则,创建集群计算节点将会产生异常。 调度器是指HPC集群上部署的作业调度软件。选择不同的作业调度软件,向集群提交作业时作业脚本和参数也会有相应的不同。 软件包是指HPC集群上部署的HPC软件,HPC提供多种类型的典型配置软件包如GROMACS、OpenFOAM和LAMMPS等,包含相应的软件和运行依赖,集群创建完毕之后,所选的软件将会预装到集群上。 第三步:基础配置 基础配置项包括:基本信息和登录设置,如下图所示:BaseConfig 说明: 基本信息中的名称是指集群名称,该名称将会在集群列表中显示,便于用户查找。 登录设置填写的是登录该集群的密码,该密码用于远程SSH访问集群登录节点时使用,对应的用户名为root。 完成基本配置后,勾选《E-HPC服务条款》,点击确认即可创建集群。 查看配置清单 您可以在创建集群界面的右侧查看当前配置清单。默认情况下,配置清单仅显示基础配置,您可以勾选高级配置选项查看更多配置项。 ConfigList 查看配置拓扑图 在创建完集群之后,点击右上角查看详情,我们可以查看到集群的在拓扑图。TopoButton 可以看到当前配置拓扑图中,包括VPC名称、交换机名称、NAS实例名、登录节点、管控节点、计算节点的配置及数量等。ClusterTopo 查询创建状态 大约20分钟后,您可以回到E-HPC集群页面,查看新集群状态。若新集群所有节点皆处于 运行中 的状态,则集群已创建完毕。下一步用户可登录到集群进行操作,请参见指引使用集群。 高级配置 按照基本配置流程可创建通用E-HPC集群,如果用户需要更灵活的配置,可以在高级配置选项下进行选择。创建集群的三个步骤中前两个步骤都有高级配置可供用户选择。 硬件高级配置 依次打开创建集群 > 硬件配置 > 高级配置,可以看到如下配置选项(本例在创建集群前已事先创建了网络、存储等基础服务): HardwareAdvConfig 网络配置 上图中的网络配置部分,用户可自行在阿里云专有网络控制台创建VPC、交换机,在阿里云云服务器控制台创建安全组,创建完成后即可在这里可以选择所需的VPC、交换机、安全组等网络配置。如果不想跳转到其他服务的控制台,也可点击此处的“创建VPC”、“创建子网(交换机)”链接,在右侧的滑动窗口中创建相应的组件。 说明:如果用户事先没有创建VPC和交换机,创建集群的流程将会自动创建默认一个默认的VPC和交换机,VPC网段为192.168.0.0/16,交换机网段为192.168.0.0/20。用户如果自行创建了VPC,需要在所需的可用区下自行创建交换机才可继续创建集群。如果用户自行创建了VPC和交换机,使用基础配置流程创建集群时将会自动选择第一个VPC和交换机,请确保交换机下的IP地址空间足够(可用IP数大于集群所有节点的数量),用户也可以在高级配置下的VPC和交换机配置中自行选择任何已创建的VPC和交换机。 共享存储配置 上图中的共享存储部分,E-HPC所有用户数据、用户管理、作业共享数据等信息都会存储在共享存储上以供集群各节点访问。目前共享存储是由文件存储NAS提供。而要使用NAS还要配套挂载点和远程目录。 说明:如果用户事先没有在当前可用区创建NAS实例和挂载点,创建集群的流程将会在可用区下自动创建默认一个默认的NAS实例与挂载点。如果用户在当前可用区自行创建了NAS实例和挂载点,使用基础配置流程创建集群时将会自动选择第一个NAS实例和挂载点。如果在该NAS实例在可用区下没有可用的挂载点,创建集群的流程会自动创建一个挂载点。请确保该NAS实例还有可用的挂载点余量。 系统盘大小配置 用户可以根据自己实际需求,在这里指定创建集群计算节点的系统盘大小,默认值是40,范围在40-500(G)之间。 该值与集群扩容时系统盘大小的默认值保持一致,用户也可以在集群扩容时为新扩容的节点重新设置系统盘大小。 软件高级配置 依次打开创建集群 > 软件配置 > 高级配置,进行高级选项配置。 队列配置 用户可在此处为创建的集群指定队列,当不指定时集群会加入到默认的队列,如,PBS集群的默认队列为workq,slurm集群的默认队列为comp. queueconfig 安装后执行脚本 集群部署完毕后,用户可以在此处执行脚本。PostScript 说明: 下载地址是指脚本文件所在的地址,一般将脚本上传到OSS服务,这里填写OSS文件的url。 执行参数是指执行脚本时需要传入的命令行参数。 软件版本 用户可以在此处选择域账号服务软件类型和具体的软件清单:VersionConfig 注意:在选择预装高性能计算应用软件时,必须选择所依赖的软件包(如mpich或openmpi,参见软件包名后缀)。如选择”-gpu”后缀的软件,必须确保计算节点使用GPU系列机型。否则会有集群创建失败或软件无法正常运行的风险。

1934890530796658 2020-03-23 16:48:30 0 浏览量 回答数 0

回答

Guns基于SpringBoot,致力于做更简洁的后台管理系统,完美整合springmvc + shiro + mybatis-plus + beetl!Guns项目代码简洁,注释丰富,上手容易,同时Guns包含许多基础模块(用户管理,角色管理,部门管理,字典管理等10个模块),可以直接作为一个后台管理系统的脚手架。Guns v3.0新增rest api服务,提供对接服务端接口的支持,并利用jwt token鉴权机制给予客户端的访问权限,传输数据进行md5签名保证传输过程数据的安全性!项目特点1、基于SpringBoot,简化了大量项目配置和maven依赖,让您更专注于业务开发,独特的分包方式,代码多而不乱。2、完善的日志记录体系,可记录登录日志,业务操作日志(可记录操作前和操作后的数据),异常日志到数据库,通过@BussinessLog注解和LogObjectHolder.me().set()方法,业务操作日志可具体记录哪个用户,执行了哪些业务,修改了哪些数据,并且日志记录为异步执行,详情请见@BussinessLog注解和LogObjectHolder,LogManager,LogAop类。3、利用beetl模板引擎对前台页面进行封装和拆分,使臃肿的html代码变得简洁,更加易维护。4、对常用js插件进行二次封装,使js代码变得简洁,更加易维护,具体请见webapp/static/js/common文件夹内js代码。5、利用ehcache框架对经常调用的查询进行缓存,提升运行速度,具体请见ConstantFactory类中@Cacheable标记的方法。6、controller层采用map + warpper方式的返回结果,返回给前端更为灵活的数据,具体参见com.stylefeng.guns.modular.system.warpper包中具体类。7、防止XSS攻击,通过XssFilter类对所有的输入的非法字符串进行过滤以及替换。8、简单可用的代码生成体系,通过SimpleTemplateEngine可生成带有主页跳转和增删改查的通用控制器、html页面以及相关的js,还可以生成Service和Dao,并且这些生成项都为可选的,通过ContextConfig下的一些列xxxSwitch开关,可灵活控制生成模板代码,让您把时间放在真正的业务上。9、控制器层统一的异常拦截机制,利用@ControllerAdvice统一对异常拦截,具体见com.stylefeng.guns.core.aop.GlobalExceptionHandler类。10、页面统一的js key-value单例模式写法,每个页面生成一个唯一的全局变量,提高js的利用效率,并且有效防止多个人员开发引起的函数名/类名冲突,并且可以更好地去维护代码。11、可以查看博文:热门开源项目:Guns-后台管理系统-博客-云栖社区-阿里云 https://yq.aliyun.com/articles/224607?spm=5176.8091938.0.0.aLr7RG

zwt9000 2019-12-02 00:24:40 0 浏览量 回答数 0

问题

怎样实现数据存储的管理维护

elinks 2019-12-01 21:14:17 9098 浏览量 回答数 0

回答

什么是Kubernetes? Kubernetes是一种轻便的可伸展的开源平台,用来管理容器化的工作或者服务,拥有声明化配置和自动化等优点。它现在拥有一个快速扩大与成长的生态系统,其服务,工具和技术支持可被广泛用于各个方面。 为什么我需要Kubernetes,它用来做些什么? Kubernetes拥有大量的特性,比如: 容器平台 微服务平台 轻量化云服务平台 等等 Kubernetes提供了一个以容器为中心的管理环境,它根据用户的工作负载来协调计算,网络和储存基础架构。它既有PaaS的简化性,又具有IaaS的灵活性,并支持跨基础架构的可移植性 为什么Kubernetes是一个平台? 尽管Kubernetes提供了大量的功能性,总会有新的场景需要新的功能。一些特性的应用程序工作流程可以被简化来加快开发速度。最初的部署通常需要大规模的应用自动化。这就是为什么Kubernetes被设计成一个平台服务,用来创建一个包含工具和其他组成部分的系统环境,来使部署,测量和管理应用更加容易。 Label可以授权用户按照他们的想法来组织他们的资源。Annotation允许用户布置含有自定义信息的资源,来使工作流更加顺畅,并为管理工具提供到checkpoint状态的一种更简单的方式。 此外,Kubernetes控制平面基于开发人员和用户可用的相同API构建。用户可以编写他们自己的 controller,比如schedulers,这些API可以通过通用命令行工具进行定位。 这种设计使得许多其他系统能够在Kubernetes上面构建 Kubernetes不是什么 Kubernetes不是一个传统的,包罗万象的PaaS(平台即服务)系统。由于Kubernetes在容器级而不是在硬件级运行,因此它能提供一些PaaS产品常用的通用功能,比如部署,扩展,负载均衡,日志记录和监控。但是,Kubernetes并不是一个整体,这些默认解决方案都是可选和可插拔的。Kubernetes提供了构建人员平台的构建模块,但是在一些重要的地方保留了用户选择和灵活性。 Kubernetes: 不限制支持的应用程序类型。Kubernetes旨在支持各种各样的工作负载,包括无状态,有状态和数据处理工作负载。 如果一个应用程序可以在一个容器中运行,它应该在Kubernetes上运行得很好。 不部署源代码并且不构建您的应用程序。持续集成,交付和部署(CI / CD)工作流程由组织和偏好以及技术要求决定。 不提供应用程序级服务,例如中间件(例如,消息总线),数据处理框架(例如,Spark),数据库(例如,mysql),高速缓存,也不提供集群存储系统(例如,Ceph)。 在服务中。 这些组件可以在Kubernetes上运行,和/或可以通过便携式机制(例如Open Service Broker)在Kubernetes上运行的应用程序访问。 不指示日志,监视或警报解决方案。 它提供了一些集成作为概念证明,以及收集和导出指标的机制。 不提供或授权配置语言/系统(例如,jsonnet)。 它提供了一个声明性API,可以通过任意形式的声明性规范来实现。 不提供或采用任何全面的机器配置,维护,管理或自我修复系统。 此外,Kubernetes不仅仅是一个编排系统。 实际上,它消除了编排的需要。 业务流程的技术定义是执行定义的工作流程:首先执行A,然后运行B,然后运行C.相反,Kubernetes由一组独立的,可组合的控制流程组成,这些流程将当前状态持续推向所提供的所需状态。 如何从A到C无关紧要。也不需要集中控制。 这使得系统更易于使用且功能更强大,更具弹性且可扩展 为什么使用容器 过去部署应用的方式,是将应用安装在一个使用操作系统软件包管理器的主机上。这样做的缺点是应用程序的可执行文件、配置、库和生命周期互相影响,也会和操作系统纠缠不清。你也可以构建一个不可被修改的虚拟机镜像来实现可预测的部署和回滚,但是这样显然不够轻量化而且不可被移植 新的方式是在虚拟化的操作系统层来部署容器,而不是在虚拟化的硬件层。这些容器之间彼此独立,相对主机也保持独立。它们有自己单独的文件系统,也不能看到其他容器的进程,而且它们对于计算资源的使用量可以被限制。它们比虚拟机更容易被构建,因为它们从底层基础架构和主机文件系统中解耦出来,也可以跨单机与云之间移植。 因为容器小巧且轻快,一个应用程序可以被打包放到每个容器镜像中。这种一对一的应用对镜像的关系可以使容器发挥出最大功效。有了容器,不可变的容器镜像可以在构建时被创建,而不是在部署时,因为每个应用都不需要依赖于程序的其它应用部分,也不依赖于基础生产环境。同样,容器比VM更加透明,这有利于监控和管理。当容器的生命周期由基础架构管理而不是隐藏在流程管理器之后时,尤其如此。最后,当一个应用被部署在每个容器时,管理容器就变得和管理程序部署一样了。 阿里云导入自建K8S集群 更多阿里云帮助文档 https://help.aliyun.com 希望对您有帮助!

阿里朵 2019-12-02 02:19:54 0 浏览量 回答数 0

回答

云服务器(Elastic Compute Service,简称ECS)是阿里云提供的性能卓越、稳定可靠、弹性扩展的IaaS(Infrastructure as a Service)级别云计算服务。云服务器ECS免去了您采购IT硬件的前期准备,让您像使用水、电、天然气等公共资源一样便捷、高效地使用服务器,实现计算资源的即开即用和弹性伸缩。阿里云ECS持续提供创新型服务器,解决多种业务需求,助力您的业务发展。 为什么选择云服务器ECS 选择云服务器ECS,您可以轻松构建具有以下优势的计算资源: 无需自建机房,无需采购以及配置硬件设施。 分钟级交付,快速部署,缩短应用上线周期。 快速接入部署在全球范围内的数据中心和BGP机房。 成本透明,按需使用,支持根据业务波动随时扩展和释放资源。 提供GPU和FPGA等异构计算服务器、弹性裸金属服务器以及通用的x86架构服务器。 支持通过内网访问其他阿里云服务,形成丰富的行业解决方案,降低公网流量成本。 提供虚拟防火墙、角色权限控制、内网隔离、防病毒攻击及流量监控等多重安全方案。 提供性能监控框架和主动运维体系。 提供行业通用标准API,提高易用性和适用性。 更多选择理由,请参见云服务器ECS的优势和应用场景。 产品架构 云服务器ECS主要包含以下功能组件: 实例:等同于一台虚拟服务器,内含CPU、内存、操作系统、网络配置、磁盘等基础的计算组件。实例的计算性能、内存性能和适用业务场景由实例规格决定,其具体性能指标包括实例vCPU核数、内存大小、网络性能等。 镜像:提供实例的操作系统、初始化应用数据及预装的软件。操作系统支持多种Linux发行版和多种Windows Server版本。 块存储:块设备类型产品,具备高性能和低时延的特性。提供基于分布式存储架构的云盘、共享块存储以及基于物理机本地存储的本地盘。 快照:某一时间点一块云盘或共享块存储的数据状态文件。常用于数据备份、数据恢复和制作自定义镜像等。 安全组:由同一地域内具有相同保护需求并相互信任的实例组成,是一种虚拟防火墙,用于设置实例的网络访问控制。 网络: 专有网络(Virtual Private Cloud):逻辑上彻底隔离的云上私有网络。您可以自行分配私网IP地址范围、配置路由表和网关等。 经典网络:所有经典网络类型实例都建立在一个共用的基础网络上。由阿里云统一规划和管理网络配置。 更多功能组件详情,请参见云服务器ECS产品详情页。 以下为云服务器ECS的产品组件架构图,图中涉及的功能组件的详细介绍请参见相应的帮助文档。whatIsECS 产品定价 云服务器ECS支持包年包月、按量付费、预留实例券、抢占式实例等多种账单计算模式。更多详情,请参见计费概述和云产品定价页。 管理工具 通过注册阿里云账号,您可以在任何地域下,通过阿里云提供的以下途径创建、使用或者释放云服务器ECS: ECS管理控制台:具有交互式操作的Web服务页面。关于管理控制台的操作,请参见常用操作导航。 ECS API:支持GET和POST请求的RPC风格API。关于API说明,请参见API参考。以下为调用云服务器ECS API的常用开发者工具: 命令行工具CLI:基于阿里云API建立的灵活且易于扩展的管理工具。您可基于命令行工具封装阿里云的原生API,扩展出您需要的功能。 OpenAPI Explorer:提供快速检索接口、在线调用API和动态生成SDK示例代码等服务。 阿里云SDK:提供Java、Python、PHP等多种编程语言的SDK。 资源编排(Resource Orchestration Service):通过创建一个描述您所需的所有阿里云资源的模板,然后资源编排将根据模板,自动创建和配置资源。 运维编排服务(Operation Orchestration Service):自动化管理和执行运维任务。您可以在执行模板中定义执行任务、执行顺序、执行输入和输出等,通过执行模板达到自动化完成运维任务的目的。 Terraform:能够通过配置文件在阿里云以及其他支持Terraform的云商平台调用计算资源,并对其进行版本控制的开源工具。 阿里云App:移动端类型的管理工具。 Alibaba Cloud Toolkit:阿里云针对IDE平台为开发者提供的一款插件,用于帮助您高效开发并部署适合在云端运行的应用。 部署建议 您可以从以下维度考虑如何启动并使用云服务器ECS: 地域和可用区 地域指阿里云的数据中心,地域和可用区决定了ECS实例所在的物理位置。一旦成功创建实例后,其元数据(仅专有网络VPC类型ECS实例支持获取元数据)将确定下来,并无法更换地域。您可以从用户地理位置、阿里云产品发布情况、应用可用性、以及是否需要内网通信等因素选择地域和可用区。例如,如果您同时需要通过阿里云内网使用云数据库RDS,RDS实例和ECS实例必须处于同一地域中。更多详情,请参见地域和可用区。 高可用性 为保证业务处理的正确性和服务不中断,建议您通过快照实现数据备份,通过跨可用区、部署集、负载均衡(Server Load Balancer)等实现应用容灾。 网络规划 阿里云推荐您使用专有网络VPC,可自行规划私网IP,全面支持新功能和新型实例规格。此外,专有网络VPC支持多业务系统隔离和多地域部署系统的使用场景。更多详情,请参见专有网络(Virtual Private Cloud)。 安全方案 您可以使用云服务器ECS的安全组,控制ECS实例的出入网访问策略以及端口监听状态。对于部署在云服务器ECS上的应用,阿里云为您提供了免费的DDoS基础防护和基础安全服务,此外您还可以使用阿里云云盾,例如: 通过DDoS高防IP保障源站的稳定可靠。更多详情,请参见DDoS高防IP文档。 通过云安全中心保障云服务器ECS的安全。更多详情,请参见云安全中心文档。 相关服务 使用云服务器ECS的同时,您还可以选择以下阿里云服务: 根据业务需求和策略的变化,使用弹性伸缩(Auto Scaling)自动调整云服务器ECS的数量。更多详情,请参见弹性伸缩。 使用专有宿主机(Dedicated Host)部署ECS实例,可让您独享物理服务器资源、降低上云和业务部署调整的成本、满足严格的合规和监管要求。更多详情,请参见专有宿主机DDH。 使用容器服务Kubernetes版在一组云服务器ECS上通过Docker容器管理应用生命周期。更多详情,请参见容器服务Kubernetes版。 通过负载均衡(Server Load Balancer)对多台云服务器ECS实现流量分发的负载均衡目的。更多详情,请参见负载均衡。 通过云监控(CloudMonitor)制定实例、系统盘和公网带宽等的监控方案。更多详情,请参见云监控。 在同一阿里云地域下,采用关系型云数据库(Relational Database Service)作为云服务器ECS的数据库应用是典型的业务访问架构,可极大降低网络延时和公网访问费用,并实现云数据库RDS的最佳性能。云数据库RDS支持多种数据库引擎,包括MySQL、SQL Server、PostgreSQL、PPAS和MariaDB。更多详情,请参见关系型云数据库。 在云市场获取由第三方服务商提供的基础软件、企业软件、网站建设、代运维、云安全、数据及API、解决方案等相关的各类软件和服务。您也可以成为云市场服务供应商,提供软件应用及服务。更多详情,请参见云市场文档。 更多方案,请参见阿里云解决方案。

1934890530796658 2020-03-24 14:03:02 0 浏览量 回答数 0

问题

什么是Redis 管理控制台

云栖大讲堂 2019-12-01 21:19:31 1313 浏览量 回答数 0

回答

本入门教程采用ecs.g6.large实例规格,在CentOS 8.0系统上配置了Apache服务,结合ECS管理控制台展示如何快速使用云服务器ECS。 准备工作 创建账号,以及完善账号信息。 注册阿里云账号,并完成实名认证。具体操作,请参见阿里云账号注册流程。 本入门教程创建的是按量付费实例,您的账号的可用余额(含现金、代金券、优惠券等)不得少于100元人民币。充值方式请参见如何充值。 可选: 阿里云提供一个默认的专有网络VPC,如果您不想使用默认的,可以在目标地域创建一个专有网络和交换机。 具体操作,请参见搭建IPv4专有网络。 可选: 阿里云提供一个默认的安全组,如果您不想使用默认的,可以在目标地域创建一个安全组。 具体操作,请参见创建安全组。 步骤一:创建ECS实例 前往实例创建页。 在购买页面的前四个配置页面,完成实例启动配置。 本入门教程采用以下配置,未提及的配置保持默认选项。 配置页面 配置项 示例 说明 基础配置 付费模式 按量付费 按量付费模式操作相对灵活。详情请参见计费概述。 说明 如果您需要为网站域名备案,必须选择包年包月。 地域与可用区 地域:华东1(杭州) 可用区:随机分配 实例创建后,无法直接更改地域和可用区,请谨慎选择。 实例 规格族:通用型g6 规格:ecs.g6.large 可供选择的实例规格由您所选择的地域以及库存供应决定。 您可以前往ECS实例可购买地域,查看实例的可购情况。 镜像 类型:公共镜像 版本:CentOS 8.0 64位 实例启动后,系统盘将完整复制镜像的操作系统和应用数据。 网络和安全组 专有网络 [默认]vpc-bp1opxu1zkhn00g****** 带[默认]前缀的资源由ECS控制台自动创建。 分配公网IPv4地址 勾选 勾选后,自动分配一个公网IP(v4)地址。 带宽计费模式 按使用流量 按使用流量模式只需为所消耗的公网流量付费。详情请参见公网带宽计费方式。 峰值带宽 2 Mbps 无。 安全组 安全组:[默认]sg-bp1bhjjsoiyx44****** 安全组规则:勾选ICMP协议、SSH 22、RDP 3389、HTTP 80和HTTPS 443端口 带[默认]前缀的资源由ECS控制台自动创建。 系统配置 登录凭证 自定义密码 请记录该配置,连接ECS实例时,您需要输入root密码。 实例名称 EcsQuickStart 本文中的实例一律使用EcsQuickStart指代。 分组设置 标签 ECS:Documentation 有多台实例时,建议添加标签,方便管理。 单击下一步:确认订单,在该页面确认所选配置,或者单击编辑图标编辑-图标返回修改配置。 快速入门-Linux版 可选: 单击保存为启动模板,然后设置模板名称和描述。 快速入门-启动模板 说明 将当前实例所选配置保存为启动模板,方便您下次通过模板一键下单。 勾选《云服务器ECS服务条款》,然后单击创建实例。 单击创建成功提示框里的管理控制台,前往实例列表页面查看创建进度。 实例状态进入运行中后表示已成功创建。复制实例的公网IP地址,便于下文连接ECS实例时使用。快速入门-Linux版-创建成功 步骤二:添加安全组规则 如果创建ECS实例时,您没有在默认安全组中勾选添加安全组规则,或者ECS实例加入的是一个全新的安全组,请按以下步骤继续操作。 单击实例ID,进入实例详情页。 在左侧导航栏,单击本实例安全组,然后单击安全组ID,进入安全组详情页。 在安全组规则页面的右上角,单击快速创建规则。 按以下设置添加安全组规则,未提及的配置保持页面默认选项。 规则方向 授权策略 常用端口 授权类型 授权对象 入方向 允许 SSH 22 RDP 3389 HTTP 80 HTTPS 443 IPv4地址段访问 0.0.0.0/0 说明 常用端口处勾选的是ECS实例上运行的应用需开放的端口。例如步骤四:配置Apache服务时使用的SSH服务和Apache服务,未开启SSH 22端口和HTTP 80端口会导致实例无响应。 0.0.0.0/0表示允许全网段设备访问指定的端口。如果您知晓请求端的IP地址,建议设置为具体的IP范围。 快速入门-Linux版-添加安全组规则 单击确定。 步骤三:连接ECS实例 单击下一步骤中的cloud-shell-try-it按钮,等待初始化CloudShell客户端。 使用ssh命令连接实例。 试用 ssh root@<实例公网IP地址> 提示ECS实例此次授信登录需要存储密钥指纹时,输入yes。 输入ECS实例的root用户名密码,并回车。 输入密码阶段,password:处保持黑屏,无提示信息。提示以下信息则表示您已连接ECS实例。 Welcome to Alibaba Cloud Elastic Compute Service ! 步骤四:配置Apache服务 安装Apache服务。 试用 yum install -y httpd 启动Apache服务。 试用 systemctl start httpd 设置Apache服务开机自启动。 试用 systemctl enable httpd 查询Apache服务是否处于运行中状态。 试用 systemctl status httpd 返回active (running)则表示已开始运行Apache服务。 在当前浏览器页面,新开启一个网页,在地址栏输入实例的公网IP地址,并回车。 试用 http://<实例公网IP地址> 快速入门-Linux版-测试网站 步骤五:(可选)解析网站域名 直接通过实例公网IP地址访问Apache服务会降低服务端安全性。如果您已有域名或者想为Apache网站注册一个域名,请参见以下步骤。 注册域名。 详情请参见注册通用域名。 如果域名指向的网站托管在阿里云中国大陆境内节点服务器,您需要备案域名。 首次备案,请参见首次备案,其他情况请参见ICP备案流程概述。 解析域名,将域名指向实例公网IP。 域名解析是使用域名访问您的网站的必备环节。具体操作流程,请参见设置域名解析。 使用解析后的域名访问Apache服务,例如,https://ecs-quickstarts.info。 步骤六:(可选)释放ECS实例 如果您不再需要这台实例,可以将其释放。释放后,实例停止计费,数据不可恢复。 说明 本小节操作仅适用于按量付费实例,不支持手动释放包年包月实例。如果您需要提前释放包年包月实例,请参见退款规则及退款流程。 返回实例列表页面,找到实例EcsQuickStart。 在操作列中,单击更多 > 实例状态 > 释放设置。 选择立即释放,并单击下一步。 确认要释放的实例,并单击确定。 输入您收到的手机验证码,单击确认。 步骤七:查看费用账单 账单明细数据延迟一天更新,且不含万网和云通信数据。 在ECS管理控制台顶部工具栏处,选择费用 > 用户中心。 ECS快速入门-查看费用账单 在左侧导航栏,单击费用账单,然后单击页面中的账单明细页签。 在实例名称处,输入实例名称EcsQuickStart,并回车开始搜索。 后续步骤 了解云服务器ECS在售的实例规格族:实例规格族 了解更多创建ECS实例的方式:创建方式导航 了解镜像的相关概念:镜像概述 了解安全组的相关概念:安全组概述 了解专有网络VPC的相关概念:什么是专有网络 了解云服务器ECS的常见操作:常用操作导航 了解云服务器ECS提供的API:API概览

1934890530796658 2020-03-24 14:02:43 0 浏览量 回答数 0

回答

申请退款,换成一个可用区。 五天无理由退款 目前阿里云部分产品支持 5 天无理由退款。如果您购买这些产品 5 天内(包含产品试用时间)有退款需求,可登录阿里云费用中心 五天无理由退款 进行操作(具体规则以退款页面的退款说明为准)。退款款项会退至用于支付的原支付宝帐号、网银渠道或阿里云账号中。 可五天无理由退款产品 新购包年包月产品:云服务器 ECS、关系型数据库 RDS、云市场产品、 云虚拟主机、云盾高防 IP。 五天无理由退款规则说明 支持 5 天无理由退款的产品,在包年包月新购 5 天内,可申请无理由退款。 服务器退款限制: 云服务器 ECS、关系型数据库 RDS 或云虚拟主机限每个用户最多退款 1 次,最多累积可退 1 个实例。 云盾高防 IP 和安全网络产品限每个用户每个产品最多可累计退款 2 个订单(如果产生了 DDoS 攻击事件则无法退款)。 云虚拟主机新购 5 天内做过续费、升级、更换系统和机房(增加带宽的除外),不支持 5 天无理由退款。 云市场产品申请全额退款条件: 处于   已开通  状态,且在购买之日起 5 天内。 处于   服务中  状态,在状态变为   已完成  前可申请。 退款只退还实付金额,已使用的代金券不退还。 活动期购买的云产品申请 5 天无理由退款后,赠品(代金券、延长服务期等)将作废清零。 活动规则中说明   不支持5天无理由退款  无法申请 5 天无理由退款。 参与活动购买产品,如若通用退款规则与活动规则冲突,以活动规则为准。 5 天无理由退款操作方法 登录 阿里云控制台,单击页面上方 费用 进入费用中心。再单击左侧导航栏中 退订管理 > 五天无理由退款。然后按照退款流程完成退款申请。

51干警网 2019-12-02 00:38:16 0 浏览量 回答数 0

问题

云服务器ECS·镜像

马铭芳 2019-12-01 21:21:25 1040 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 答案来源网络,供您参考

问问小秘 2019-12-02 02:13:31 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!

牧明 2019-12-02 02:16:53 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构, 然后从网络、 资源管理、存储、服务发现、负载均衡、高可用、rolling upgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。 当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解 Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。 1.Kubernetes的一些理念: 用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。 保证系统总是按照用户指定的状态去运行。 不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。 那些需要担心和不需要担心的事情。 更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。 对于Kubernetes的架构,可以参考官方文档。 大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。 看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在 Kubernetes 的未来版本中解决。 2.Kubernetes的主要特性 会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性 -> 由于时间有限,只能简单一些了。 另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。 1)网络 Kubernetes的网络方式主要解决以下几个问题: a. 紧耦合的容器之间通信,通过 Pod 和 localhost 访问解决。 b. Pod之间通信,建立通信子网,比如隧道、路由,Flannel、Open vSwitch、Weave。 c. Pod和Service,以及外部系统和Service的通信,引入Service解决。 Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。 注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖Pod IP;通过Service环境变量或者DNS解决。 2) 服务发现及负载均衡 kube-proxy和DNS, 在v1之前,Service含有字段portalip 和publicIPs, 分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp 通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp, 而在service port 定义列表里,增加了nodePort项,即对应node上映射的服务端口。 DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取Kubernetes API获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain, "tenx.domain"是提前设置的主域名。 注意:kube-proxy 在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service 的endpints 或者 Pods上。Kubernetes官方也在修复这个问题。 3)资源管理 有3 个层次的资源限制方式,分别在Container、Pod、Namespace 层次。Container层次主要利用容器本身的支持,比如Docker 对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。 资源管理模型 -》 简单、通用、准确,并可扩展 目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的scheduler plugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。 4)高可用 主要是指Master节点的 HA方式 官方推荐 利用etcd实现master 选举,从多个Master中得到一个kube-apiserver 保证至少有一个master可用,实现high availability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。 一张图帮助大家理解: 也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver 同一时间只能有一套运行。 5) rolling upgrade RC 在开始的设计就是让rolling upgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。 通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback 当前正在执行的upgrade操作。 同样, Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。 6)存储 大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes 的 Volume就是主要来解决上面两个基础问题的。 Docker 也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。 创建一个带Volume的Pod: spec.volumes 指定这个Pod需要的volume信息 spec.containers.volumeMounts 指定哪些container需要用到这个Volume Kubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。 emptyDir 随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持 RAM-backed filesystemhostPath 类似于Docker的本地Volume 用于访问一些本地资源(比如本地Docker)。 gcePersistentDisk GCE disk - 只有在 Google Cloud Engine 平台上可用。 awsElasticBlockStore 类似于GCE disk 节点必须是 AWS EC2的实例 nfs - 支持网络文件系统。 rbd - Rados Block Device - Ceph secret 用来通过Kubernetes API 向Pod 传递敏感信息,使用 tmpfs (a RAM-backed filesystem) persistentVolumeClaim - 从抽象的PV中申请资源,而无需关心存储的提供方 glusterfs iscsi gitRepo 根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的 :) 7)安全 一些主要原则: 基础设施模块应该通过API server交换数据、修改系统状态,而且只有API server可以访问后端存储(etcd)。 把用户分为不同的角色:Developers/Project Admins/Administrators。 允许Developers定义secrets 对象,并在pod启动时关联到相关容器。 以secret 为例,如果kubelet要去pull 私有镜像,那么Kubernetes支持以下方式: 通过docker login 生成 .dockercfg 文件,进行全局授权。 通过在每个namespace上创建用户的secret对象,在创建Pod时指定 imagePullSecrets 属性(也可以统一设置在serviceAcouunt 上),进行授权。 认证 (Authentication) API server 支持证书、token、和基本信息三种认证方式。 授权 (Authorization) 通过apiserver的安全端口,authorization会应用到所有http的请求上 AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。 8)监控 比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的container metrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。 Kubernetes集群范围内的监控主要由kubelet、heapster和storage backend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。 注意: heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 此答案来源于网络,希望对你有所帮助。

养狐狸的猫 2019-12-02 02:13:33 0 浏览量 回答数 0

问题

Java开发工程师必备技能

小柒2012 2019-12-01 20:55:20 11780 浏览量 回答数 3

回答

API(Application Programming Interface,应用程序编程接口)是一套用来控制Windows的各个部件(从桌面的外观到为一个新进程分配的内存)的外观和行为的一套预先定义的Windows函数.用户的每个动作都会引发一个或几个函数的运行以告诉Windows发生了什么. 这在某种程度上很象Windows的天然代码.其他的语言只是提供一种能自动而且更容易的访问API的方法.VB在这方面作了很多工作.它完全隐藏了API并且提供了在Windows环境下编程的一种完全不同的方法. 这也就是说,你用VB写出的每行代码都会被VB转换为API函数传递给Windows.例如,Form1.Print...VB 将会以一定的参数(你的代码中提供的,或是默认参数)调用TextOut 这个API函数. 。同样,当你点击窗体上的一个按钮时,Windows会发送一个消息给窗体(这对于你来说是隐藏的),VB获取这个调用并经过分析后生成一个特定事件(Button_Click). API函数包含在Windows系统目录下的动态连接库文件中(如User32.dll,GDI32.dll,Shell32.dll...). API 声明 正如在"什么是API"中所说,API函数包含在位于系统目录下的DLL文件中.你可以自己输入API函数的声明,但VB提供了一种更简单的方法,即使用API Text Viewer. 要想在你的工程中声明API函数,只需运行API Text Viewer,打开Win32api.txt(或.MDB如果你已经把它转换成了数据库的话,这样可以加快速度.注:微软的这个文件有很多的不足,你可以试一下本站提供下载的api32.txt),选择"声明",找到所需函数,点击"添加(Add)"并"复制(Copy)",然后粘贴(Paste)到你的工程里.使用预定义的常量和类型也是同样的方法. 你将会遇到一些问题: 假设你想在你的窗体模块中声明一个函数.粘贴然后运行,VB会告诉你:编译错误...Declare 语句不允许作为类或对象模块中的 Public 成员...看起来很糟糕,其实你需要做的只是在声明前面添加一个Private(如 Private Declare Function...).--不要忘了,可是这将使该函数只在该窗体模块可用. 在有些情况下,你会得到"不明确的名称"这样的提示,这是因为函数.常量或其他的什么东西共用了一个名称.由于绝大多数的函数(也可能是全部,我没有验证过)都进行了别名化,亦即意味着你可以通过Alias子句使用其它的而不是他们原有的名称,你只需简单地改变一下函数名称而它仍然可以正常运行. API 分为四种类型: 远程过程调用(RPC):通过作用在共享数据缓存器上的过程(或任务)实现程序间的通信。 标准查询语言(SQL):是标准的访问数据的查询语言,通过通用数据库实现应用程序间的数据共享。 文件传输:文件传输通过发送格式化文件实现应用程序间数据共享。 信息交付:指松耦合或紧耦合应用程序间的小型格式化信息,通过程序间的直接通信实现数据共享。 当前应用于 API 的标准包括 ANSI 标准 SQL API。另外还有一些应用于其它类型的标准尚在制定之中。API 可以应用于所有计算机平台和操作系统。这些 API 以不同的格式连接数据(如共享数据缓存器、数据库结构、文件框架)。每种数据格式要求以不同的数据命令和参数实现正确的数据通信,但同时也会产生不同类型的错误。因此,除了具备执行数据共享任务所需的知识以外,这些类型的 API 还必须解决很多网络参数问题和可能的差错条件,即每个应用程序都必须清楚自身是否有强大的性能支持程序间通信。相反由于这种 API 只处理一种信息格式,所以该情形下的信息交付 API 只提供较小的命令、网络参数以及差错条件子集。正因为如此,交付 API 方式大大降低了系统复杂性,所以当应用程序需要通过多个平台实现数据共享时,采用信息交付 API 类型是比较理想的选择。 API 与图形用户接口(GUI)或命令接口有着鲜明的差别: API 接口属于一种操作系统或程序接口,而后两者都属于直接用户接口。 有时公司会将 API 作为其公共开放系统。也就是说,公司制定自己的系统接口标准,当需要执行系统整合、自定义和程序应用等操作时,公司所有成员都可以通过该接口标准调用源代码,该接口标准被称之为开放式 API。 da'an'lai'yu'na'w'n答案来源网络,供您参考

问问小秘 2019-12-02 02:13:03 0 浏览量 回答数 0

问题

教程101之服务器系统选择

twl007 2019-12-01 21:11:26 14403 浏览量 回答数 13

问题

教程101之服务器系统选择

twl007 2019-12-01 21:10:14 50945 浏览量 回答数 38

回答

前言 随着计算机技术和 Internet 的日新月异,视频点播技术因其良好的人机交互性和流媒体传输技术倍受教育、娱乐等行业青睐,而在当前, 云计算平台厂商的产品线不断成熟完善, 如果想要搭建视频点播类应用,告别刀耕火种, 直接上云会扫清硬件采购、 技术等各种障碍,以阿里云为例: image 这是一个非常典型的解决方案, 对象存储 OSS 可以支持海量视频存储,采集上传的视频被转码以适配各种终端,CDN 加速终端设备播放视频的速度。此外还有一些内容安全审查需求, 比如鉴黄、鉴恐等。 而在视频点播解决方案中, 视频转码是最消耗计算力的一个子系统,虽然您可以使用云上专门的转码服务,但在很多情况下,您会选择自己搭建转码服务。比如: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? 您有并发处理大量视频的需求。 您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF。后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF、获取视频或者音频的时长,自己搭建成本更低。 各种格式的音频转换或者各种采样率自定义、音频降噪等功能 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将它们再迁移到 OSS 上。 如果您的视频处理系统有上述需求,或者您期望实现一个 弹性、高可用、低成本、免运维、灵活支持任意处理逻辑 的视频处理系统,那么本文则是您期待的最佳实践方案。 Serverless 自定义音视频处理 在介绍具体方案之前, 先介绍两款产品: 函数计算 :阿里云函数计算是事件驱动的全托管计算服务。通过函数计算,您无需管理服务器等基础设施,只需编写代码并上传。函数计算会为您准备好计算资源,以弹性、可靠的方式运行您的代码,并提供日志查询、性能监控、报警等功能。 函数工作流:函数工作流(Function Flow,以下简称 FnF)是一个用来协调多个分布式任务执行的全托管云服务。您可以用顺序,分支,并行等方式来编排分布式任务,FnF 会按照设定好的步骤可靠地协调任务执行,跟踪每个任务的状态转换,并在必要时执行用户定义的重试逻辑,以确保工作流顺利完成。 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 函数计算可靠的执行任意逻辑, 逻辑可以是利用 FFmpeg 对视频任何处理操作, 也可以更新视频 meta 数据到数据库等。函数工作流对相应的函数进行编排, 比如第一步的函数是转码, 第二步的函数是转码成功后,将相应 meta 数据库写入数据库等。 至此,您应该初步理解了函数计算的自定义处理能力 + 函数工作流编排能力几乎满足您任何自定义处理的需求,接下来,本文以一个具体的示例展示基于函数计算和函数工作流打造的一个弹性高可用的 Serverless 视频处理系统,并与传统方案进行性能、成本和工程效率的对比。 Simple 视频处理系统 假设您是对视频进行单纯的处理, 架构方案图如下: image 如上图所示, 用户上传一个视频到 OSS, OSS 触发器自动触发函数执行, 函数调用 FFmpeg 进行视频转码, 并且将转码后的视频保存回 OSS。 OSS 事件触发器, 阿里云对象存储和函数计算无缝集成。您可以为各种类型的事件设置处理函数,当 OSS 系统捕获到指定类型的事件后,会自动调用函数处理。例如,您可以设置函数来处理 PutObject 事件,当您调用 OSS PutObject API 上传视频到 OSS 后,相关联的函数会自动触发来处理该视频。 Simple 视频处理系统示例工程地址 强大的监控系统: 您可以直接基于示例工程部署您的 Simple 音视频处理系统服务, 但是当您想要处理超大视频(比如 test_huge.mov ) 或者对小视频进行多种组合操作的时候, 您会发现函数会执行失败,原因是函数计算的执行环境有最大执行时间为 10 分钟的限制,如果最大的 10 分钟不能满足您的需求, 您可以选择: 对视频进行分片 -> 转码 -> 合成处理, 详情参考:fc-fnf-video-processing, 下文会详细介绍; 联系函数计算团队(钉钉群号: 11721331) 或者提工单: 适当放宽执行时长限制; 申请使用更高的函数内存 12G(8vCPU) 为了突破函数计算执行环境的限制(或者说加快大视频的转码速度), 进行各种复杂的组合操作, 此时引入函数工作流 FnF 去编排函数实现一个功能强大的视频处理工作流系统是一个很好的方案。 视频处理工作流系统 image 如上图所示, 假设用户上传一个 mov 格式的视频到 OSS,OSS 触发器自动触发函数执行, 函数调用 FnF,会同时进行 1 种或者多种格式的转码(由您触发的函数环境变量DST_FORMATS 参数控制)。 所以您可以实现如下需求: 一个视频文件可以同时被转码成各种格式以及其他各种自定义处理,比如增加水印处理或者在 after-process 更新信息到数据库等。 当有多个文件同时上传到 OSS,函数计算会自动伸缩, 并行处理多个文件, 同时每次文件转码成多种格式也是并行。 结合 NAS + 视频切片, 可以解决超大视频(大于 3G )的转码, 对于每一个视频,先进行切片处理,然后并行转码切片,最后合成,通过设置合理的切片时间,可以大大加速较大视频的转码速度。 所谓的视频切片,是将视频流按指定的时间间隔,切分成一系列分片文件,并生成一个索引文件记录分片文件的信息 视频处理工作流系统示例工程地址 示例效果: gif 函数计算 + 函数工作流 Serverless 方案 VS 传统方案 卓越的工程效率 自建服务 函数计算 + 函数工作流 Serverless 基础设施 需要用户采购和管理 无 开发效率 除了必要的业务逻辑开发,需要自己建立相同线上运行环境, 包括相关软件的安装、服务配置、安全更新等一系列问题 只需要专注业务逻辑的开发, 配合 FUN 工具一键资源编排和部署 并行&分布式视频处理 需要很强的开发能力和完善的监控系统来保证稳定性 通过 FnF 资源编排即可实现多个视频的并行处理以及单个大视频的分布式处理,稳定性和监控交由云平台 学习上手成本 除了编程语言开发能力和熟悉 FFmpeg 以外,可能使用 K8S 或弹性伸缩( ESS ),需要了解更多的产品、名词和参数的意义 会编写对应的语言的函数代码和熟悉 FFmpeg 使用即可 项目上线周期 在具体业务逻辑外耗费大量的时间和人力成本,保守估计大约 30 人天,包括硬件采购、软件和环境配置、系统开发、测试、监控报警、灰度发布系统等 预计 3 人天, 开发调试(2人天)+ 压测观察(1 人天) 弹性伸缩免运维,性能优异 自建服务 函数计算 + 函数工作流 Serverless 弹性高可用 需要自建负载均衡 (SLB),弹性伸缩,扩容缩容速度较 FC 慢 FC系统固有毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,免运维,视频处理工作流系统 (FnF + FC) 压测;性能优异, 详情见下面的转码性能表 监控报警查询 ECS 或者容器级别的 metrics 提供更细粒度的 FnF 流程执行以及函数执行情况, 同时可以查询每次函数执行的 latency 和日志等, 更加完善的报警监控机制 函数计算 + 函数工作流 Serverless 方案转码性能表 实验视频为是 89s 的 mov 文件 4K 视频: 4K.mov,云服务进行 mov -> mp4 普通转码需要消耗的时间为 188s, 将这个参考时间记为 T 视频切片时间 FC转码耗时 性能加速百分比 45s 160s 117.5% 25s 100s 188% 15s 70s 268.6% 10s 45s 417.8% 5s 35s 537.1% 性能加速百分比 = T / FC转码耗时 从上表可以看出,设置的视频切片时间越短, 视频转码时间越短, 函数计算可以自动瞬时调度出更多的计算资源来一起完成这个视频的转码, 转码性能优异。 更低的成本 具有明显波峰波谷的视频处理场景(比如只有部分时间段有视频处理请求,其他时间很少甚至没有视频处理请求),选择按需付费,只需为实际使用的计算资源付费。 没有明显波峰波谷的视频处理场景,可以使用预付费(包年包月),成本仍然具有竞争力。 函数计算成本优化最佳实践文档。 假设有一个基于 ECS 搭建的视频转码服务,由于是 CPU 密集型计算, 因此在这里将平均 CPU 利用率作为核心参考指标对评估成本,以一个月为周期,10 台 C5 ECS 的总计算力为例, 总的计算量约为 30% 场景下, 两个解决方案 CPU 资源利用率使用情况示意图大致如下: image 由上图预估出如下计费模型: 函数计算预付费 3CU 一个月: 246.27 元, 计算能力等价于 ECS 计算型 C5 ECS 计算型 C5 (2vCPU,4GB)+云盘: 包月219 元 函数计算按量付费占整个计算量的占比 <= 10%,费用约为 3×864×10% = 259.2 元,(3G 规格的函数满负载跑满一个月费用为:0.00011108×3×30×24×3600 = 863.8,详情查看计费) ITEM 平均CPU利用率 计算费用 总计 函数计算组合付费 >=80% 998(246.27×3+259.2) <= 998 按峰值预留ECS <=30% 2190(10*219) >=2190 在这个模型预估里面,可以看出 FC 方案具有很强的成本竞争力,在实际场景中, 基于 ECS 自建的视频转码服务 CPU 利用甚至很难达到 20%, 理由如下: 可能只有部分时间段有视频转码请求 为了用户体验,视频转码速度有一定的要求,可能一个视频转码就需要 10 台 ECS 并行处理来转码, 因此只能预备很多 ECS 因此,在实际场景中, FC 在视频处理上的成本竞争力远强于上述模型。 即使和云厂商视频转码服务单价 PK, 该方案仍有很强的成本竞争力 我们这边选用点播视频中最常用的两个格式(mp4、flv)之间进行相互转换,经实验验证, 函数内存设置为3G,基于该方案从 mp4 转码为 flv 的费用概览表: 实验视频为是 89s 的 mp4 和 flv 格式的文件视频, 测试视频地址: 480P.mp4 720P.mp4 1080P.mp4 4K.mp4 480P.flv 720P.flv 1080P.flv 4K.flv 测试命令: ffmpeg -i test.flv test.mp4 和 ffmpeg -i test.flv test.mp4 mp4 转 flv: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 889 kb/s 24 11.2s 0.003732288 0.032 88.3% 高清 1280720 1963 kb/s 24 20.5s 0.00683142 0.065 89.5% 超清 19201080 3689 kb/s 24 40s 0.0133296 0.126 89.4% 4K 38402160 11185 kb/s 24 142s 0.04732008 0.556 91.5% flv 转 mp4: 分辨率 bitrate 帧率 FC 转码耗费时间 FC 转码费用 某云视频处理费用 成本下降百分比 标清 640480 712 kb/s 24 34.5s 0.01149678 0.032 64.1% 高清 1280720 1806 kb/s 24 100.3s 0.033424 0.065 48.6% 超清 19201080 3911 kb/s 24 226.4s 0.0754455 0.126 40.1% 4K 38402160 15109 kb/s 24 912s 0.30391488 0.556 45.3% 成本下降百分比 = (某云视频处理费用 - FC 转码费用)/ 云视频处理费用 某云视频处理,计费使用普通转码,转码时长不足一分钟,按照一分钟计算,这里计费采用的是 2 min,即使采用 1.5 min 计算, 成本下降百分比基本在10%以内浮动 从上表可以看出, 基于函数计算 + 函数工作流的方案在计算资源成本上对于计算复杂度较高的 flv 转 mp4 还是计算复杂度较低的 mp4 转 flv, 都具有很强的成本竞争力。 根据实际经验, 往往成本下降比上表列出来的更加明显, 理由如下: 测试视频的码率较高, 实际上很多场景绝大部分都是标清或者流畅视频的转码场景, 码率也比测试视频低,这个时候计算量变小, FC 执行时间短, 费用会降低, 但是通用的云转码服务计费是不变的. 很多视频分辨率在通用的云转码服务是计费是有很大损失的, 比如转码的视频是 856480 或者 1368768, 都会进入云转码服务的下一档计费单价, 比如856480 进入 1280720 高清转码计费档,1368768 进入 19201080 超清转码计费档, 单价基本是跨越式上升, 但是实际真正的计算量增加可能还不到30%, 而函数计算则是真正能做到按计算量付费. 操作部署 免费开通函数计算,按量付费,函数计算有很大的免费额度。 免费开通函数工作流,按量付费,函数工作流有很大的免费额度。 免费开通文件存储服务NAS, 按量付费 详情见各自示例工程的 README Simple 视频处理系统示例工程地址 视频处理工作流系统示例工程地址 总结 基于函数计算 FC 和函数工作流 FnF 的弹性高可用视频处理系统天然继承了这两个产品的优点: 无需采购和管理服务器等基础设施,只需专注视频处理业务逻辑的开发,大幅缩短项目交付时间和人力成本 提供日志查询、性能监控、报警等功能快速排查故障 以事件驱动的方式触发响应用户请求 免运维,毫秒级别弹性伸缩,快速实现底层扩容以应对峰值压力,性能优异 成本极具竞争力 相比于通用的转码处理服务: 超强自定义,对用户透明, 基于 FFmpeg 或者其他音视频处理工具命令快速开发相应的音视频处理逻辑 原有基于 FFmpeg 自建的音视频处理服务可以一键迁移 弹性更强, 可以保证有充足的计算资源为转码服务,比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完 各种格式的音频转换或者各种采样率自定义、音频降噪等功能, 比如专业音频处理工具 aacgain 和 mp3gain 可以和 serverless 工作流完成更加复杂、自定义的任务编排,比如视频转码完成后,记录转码详情到数据库,同时自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力 更多的方式的事件驱动, 比如可以选择 OSS 自动触发(丰富的触发规则), 也可以根据业务选择 MNS 消息(支持 tag 过滤)触发 在大部分场景下具有很强的成本竞争力相比于其他自建服务: 毫秒级弹性伸缩,弹性能力超强,支持大规模资源调用,可弹性支持几万核.小时的计算力,比如 1 万节课半个小时完成转码 只需要专注业务逻辑代码即可,原生自带事件驱动模式,简化开发编程模型,同时可以达到消息(即音视频任务)处理的优先级,可大大提高开发运维效率 函数计算采用 3AZ 部署, 安全性高,计算资源也是多 AZ 获取, 能保证每个用户需要的算力峰值 开箱即用的监控系统, 如上面 gif 动图所示,可以多维度监控函数的执行情况,根据监控快速定位问题,同时给用户提供分析能力, 比如视频的格式分布, size 分布等 在大部分场景下具有很强的成本竞争力, 因为在函数计算是真正的按量付费(计费粒度在百毫秒), 可以理解为 CPU 的利用率为 100% 最后一一回答一下之前列出的问题: Q1: 您已经在虚拟机/容器平台上基于 FFmpeg 部署了一套视频处理服务,能否在此基础上让它更弹性,更高的可用性? A: 如工程示例所示,在虚拟机/容器平台上基于 FFmpeg 的服务可以轻松切换到函数计算, FFmpeg 相关命令可以直接移值到函数计算,改造成本较低, 同时天然继承了函数计算弹性高可用性特性。 Q2:您的需求只是简单的转码需求,或是一些极其轻量的需求,比如获取 OSS 上视频前几帧的 GIF 等。 自己搭建成本更低。 A: 函数计算天生就是解决这些自定义问题, 你的代码你做主, 代码中快速执行几个 FFmpeg 的命令即可完成需求。典型示例: fc-oss-ffmpeg Q3: 您有更高级的自定义处理需求,比如视频转码完成后, 需要记录转码详情到数据库, 或者在转码完成后, 自动将热度很高的视频预热到 CDN 上, 从而缓解源站压力。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案),after-process 中可以做一些自定义的操作, 您还可以基于此流程再做一些额外处理等, 比如: 再增加后续流程 最开始增加 pre-process Q4: 您有并发同时处理大量视频的需求。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), 当有多个文件同时上传到 OSS, 函数计算会自动伸缩, 并行处理多个文件。详情可以参考 视频处理工作流系统 (FnF + FC) 压测 Q5:您有很多超大的视频需要批量快速处理完, 比如每周五定期产生几百个 4G 以上的 1080P 大视频, 但是希望当天几个小时后全部处理完。A: 详情可以参考视频处理工作流系统 (FnF + FC) 压测, 可以通过控制分片的大小, 可以使得每个大视频都有足够多的计算资源参与转码计算, 大大提高转码速度。 Q6: 自定义视频处理流程中可能会有多种操作组合, 比如转码、加水印和生成视频首页 GIF,后续为视频处理系统增加新需求,比如调整转码参数,希望新功能发布上线对在线服务无影响。 A: 详情见视频处理工作流系统(函数计算 + 函数工作流方案), FnF 只负责编排调用函数, 因此只需要更新相应的处理函数即可,同时函数有 version 和 alias 功能, 更好地控制灰度上线, 函数计算版本管理 Q7: 您的视频源文件存放在 NAS 或者 ECS 云盘上,自建服务可以直接读取源文件处理,而不需要将他们再迁移到 OSS 上。 A: 函数计算可以挂载 NAS, 直接对 NAS 中的文件进行处理

1934890530796658 2020-03-27 18:21:36 0 浏览量 回答数 0

回答

本文简单介绍RDS MySQL及相关概念。 概述 阿里云关系型数据库(Relational Database Service,简称 RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,RDS支持MySQL、SQL Server、PostgreSQL、PPAS(高度兼容 Oracle)和MariaDB引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。关于RDS的优势与价值,请参见产品优势。 如果您需要获取人工帮助,可以在RDS管理控制台的右上角选择工单 > 提交工单。如果业务复杂,您也可以购买支持计划,获取由IM企业群、技术服务经理(TAM)、服务经理等提供的专属支持。 有关阿里云关系型数据库RDS更多介绍信息,请查看产品详情 。 RDS MySQL RDS MySQL基于阿里巴巴的MySQL源码分支,经过双十一高并发、大数据量的考验,拥有优良的性能。RDS MySQL支持实例管理、账号管理、数据库管理、备份恢复、白名单、透明数据加密以及数据迁移等基本功能。除此之外还提供如下高级功能: 只读实例:在对数据库有少量写请求,但有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压力,您可以创建一个或多个只读实例,利用只读实例满足大量的数据库读取需求,增加应用的吞吐量。 读写分离:读写分离功能是在只读实例的基础上,额外提供了一个读写分离地址,联动主实例及其所有只读实例,创建自动的读写分离链路。应用程序只需连接读写分离地址进行数据读取及写入操作,读写分离程序会自动将写入请求发往主实例,而将读取请求按照权重发往各个只读实例。用户只需通过添加只读实例的个数,即可不断扩展系统的处理能力,应用程序上无需做任何修改。 数据库独享代理:数据库独享代理服务是使用独立代理计算资源为当前实例提供代理服务,提供更多高级功能,例如读写分离、短连接优化、事务拆分等。 主机组:主机组功能是以集群形式批量管理实例,一个地域创建多个主机组,一个主机组包含多个主机,一个主机包含多个实例。 CloudDBA数据库性能优化:针对SQL语句性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,会提供问题详情及相应的解决方案,为您维护实例带来极大的便利。 RDS MySQL支持的功能请参见MySQL功能概览。 声明 本文档中描述的部分产品特性或者服务可能不在您的购买或使用范围之内,请以实际商业合同和条款为准。本文档内容仅作为指导使用,文档中的所有内容不构成任何明示或暗示的担保。 基本概念 实例:一个独立占用物理内存的数据库服务进程,用户可以设置不同的内存大小、磁盘空间和数据库类型。其中内存的规格会决定该实例的性能。实例创建后可以变更配置和删除实例。 数据库:在一个实例下创建的逻辑单元,一个实例可以创建多个数据库,数据库在实例内的命名唯一。 地域和可用区:地域是指物理的数据中心。可用区是指在同一地域内,电力和网络互相独立的物理区域。更多信息请参考阿里云全球基础设施。 通用描述约定 描述 说明 本地数据库 指代部署在本地机房或者非阿里云RDS上的数据库。 RDS XX(XX 为 MySQL、SQL Server、PostgreSQL、PPAS或MariaDB) 指代某一数据库类型的RDS,如RDS MySQL是指在RDS上开通的数据库引擎为MySQL的实例。

游客yl2rjx5yxwcam 2020-03-09 10:46:43 0 浏览量 回答数 0

回答

本文简单介绍RDS MySQL及相关概念。 概述 阿里云关系型数据库(Relational Database Service,简称 RDS)是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,RDS支持MySQL、SQL Server、PostgreSQL、PPAS(高度兼容 Oracle)和MariaDB引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。关于RDS的优势与价值,请参见产品优势。 如果您需要获取人工帮助,可以在RDS管理控制台的右上角选择工单 > 提交工单。如果业务复杂,您也可以购买支持计划,获取由IM企业群、技术服务经理(TAM)、服务经理等提供的专属支持。 有关阿里云关系型数据库RDS更多介绍信息,请查看产品详情 。 RDS MySQL RDS MySQL基于阿里巴巴的MySQL源码分支,经过双十一高并发、大数据量的考验,拥有优良的性能。RDS MySQL支持实例管理、账号管理、数据库管理、备份恢复、白名单、透明数据加密以及数据迁移等基本功能。除此之外还提供如下高级功能: 只读实例:在对数据库有少量写请求,但有大量读请求的应用场景下,单个实例可能无法承受读取压力,甚至对业务产生影响。为了实现读取能力的弹性扩展,分担数据库压力,您可以创建一个或多个只读实例,利用只读实例满足大量的数据库读取需求,增加应用的吞吐量。 读写分离:读写分离功能是在只读实例的基础上,额外提供了一个读写分离地址,联动主实例及其所有只读实例,创建自动的读写分离链路。应用程序只需连接读写分离地址进行数据读取及写入操作,读写分离程序会自动将写入请求发往主实例,而将读取请求按照权重发往各个只读实例。用户只需通过添加只读实例的个数,即可不断扩展系统的处理能力,应用程序上无需做任何修改。 数据库独享代理:数据库独享代理服务是使用独立代理计算资源为当前实例提供代理服务,提供更多高级功能,例如读写分离、短连接优化、事务拆分等。 主机组:主机组功能是以集群形式批量管理实例,一个地域创建多个主机组,一个主机组包含多个主机,一个主机包含多个实例。 CloudDBA数据库性能优化:针对SQL语句性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,会提供问题详情及相应的解决方案,为您维护实例带来极大的便利。 RDS MySQL支持的功能请参见MySQL功能概览。 声明 本文档中描述的部分产品特性或者服务可能不在您的购买或使用范围之内,请以实际商业合同和条款为准。本文档内容仅作为指导使用,文档中的所有内容不构成任何明示或暗示的担保。 基本概念 实例:一个独立占用物理内存的数据库服务进程,用户可以设置不同的内存大小、磁盘空间和数据库类型。其中内存的规格会决定该实例的性能。实例创建后可以变更配置和删除实例。 数据库:在一个实例下创建的逻辑单元,一个实例可以创建多个数据库,数据库在实例内的命名唯一。 地域和可用区:地域是指物理的数据中心。可用区是指在同一地域内,电力和网络互相独立的物理区域。更多信息请参考阿里云全球基础设施。 通用描述约定 描述 说明 本地数据库 指代部署在本地机房或者非阿里云RDS上的数据库。 RDS XX(XX 为 MySQL、SQL Server、PostgreSQL、PPAS或MariaDB) 指代某一数据库类型的RDS,如RDS MySQL是指在RDS上开通的数据库引擎为MySQL的实例。

游客yl2rjx5yxwcam 2020-03-09 10:46:39 0 浏览量 回答数 0

回答

Spring Cloud 学习笔记(一)——入门、特征、配置 0 放在前面 0.1 参考文档 http://cloud.spring.io/spring-cloud-static/Brixton.SR7/ https://springcloud.cc/ http://projects.spring.io/spring-cloud/ 0.2 maven配置 org.springframework.boot spring-boot-starter-parent 1.5.2.RELEASE org.springframework.cloud spring-cloud-dependencies Dalston.RELEASE pom import org.springframework.cloud spring-cloud-starter-config org.springframework.cloud spring-cloud-starter-eureka 0.3 简介 Spring Cloud为开发人员提供了快速构建分布式系统中的一些通用模式(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线,一次性令牌,全局锁,领导选举,分布式 会话,群集状态)。 分布式系统的协调引出样板模式(boiler plate patterns),并且使用Spring Cloud开发人员可以快速地实现这些模式来启动服务和应用程序。 它们可以在任何分布式环境中正常工作,包括开发人员自己的笔记本电脑,裸机数据中心和受管平台,如Cloud Foundry。 Version: Brixton.SR7 1 特征 Spring Cloud专注于为经典用例和扩展机制提供良好的开箱即用 分布式/版本配置 服务注册与发现 路由选择 服务调用 负载均衡 熔断机制 全局锁 领导人选举和集群状态 分布式消息 2 原生云应用程序 原生云是应用程序开发的一种风格,鼓励在持续交付和价值驱动领域的最佳实践。 Spring Cloud的很多特性是基于Spring Boot的。更多的是由两个库实现:Spring Cloud Context and Spring Cloud Commons。 2.1 Spring Cloud Context: 应用上下文服务 Spring Boot关于使用Spring构建应用有硬性规定:通用的配置文件在固定的位置,通用管理终端,监控任务。建立在这个基础上,Spring Cloud增加了一些额外的特性。 2.1.1 引导应用程序上下文 Spring Cloud会创建一个“bootstrap”的上下文,这是主应用程序的父上下文。对应的配置文件拥有最高优先级,并且,默认不能被本地配置文件覆盖。对应的文件名bootstrap.yml或bootstrap.properties。 可通过设置spring.cloud.bootstrap.enabled=false来禁止bootstrap进程。 2.1.2 应用上下文层级结构 当用SpringApplication或SpringApplicationBuilder创建应用程序上下文时,bootstrap上下文将作为父上下文被添加进去,子上下文将继承父上下文的属性。 子上下文的配置信息可覆盖父上下文的配置信息。 2.1.3 修改Bootstrap配置文件位置 spring.cloud.bootstrap.name(默认是bootstrap),或者spring.cloud.bootstrap.location(默认是空) 2.1.4 覆盖远程配置文件的值 spring.cloud.config.allowOverride=true spring.cloud.config.overrideNone=true spring.cloud.config.overrideSystemProperties=false 2.1.5 定制Bootstrap配置 在/META-INF/spring.factories的key为org.springframework.cloud.bootstrap.BootstrapConfiguration,定义了Bootstrap启动的组件。 在主应用程序启动之前,一开始Bootstrap上下文创建在spring.factories文件中的组件,然后是@Beans类型的bean。 2.1.6 定制Bootstrap属性来源 关键点:spring.factories、PropertySourceLocator 2.1.7 环境改变 应用程序可通过EnvironmentChangedEvent监听应用程序并做出响应。 2.1.8 Refresh Scope Spring的bean被@RefreshScope将做特殊处理,可用于刷新bean的配置信息。 注意 需要添加依赖“org.springframework.boot.spring-boot-starter-actuator” 目前我只在@Controller测试成功 需要自己发送POST请求/refresh 修改配置文件即可 2.1.9 加密和解密 Spring Cloud可对配置文件的值进行加密。 如果有"Illegal key size"异常,那么需要安装JCE。 2.1.10 服务点 除了Spring Boot提供的服务点,Spring Cloud也提供了一些服务点用于管理,注意都是POST请求 /env:更新Environment、重新绑定@ConfigurationProperties跟日志级别 /refresh重新加载配置文件,刷新标记@RefreshScope的bean /restart重启应用,默认不可用 生命周期方法:/pause、/resume 2.2 Spring Cloud Commons:通用抽象 服务发现、负载均衡、熔断机制这种模式为Spring Cloud客户端提供了一个通用的抽象层。 2.2.1 RestTemplate作为负载均衡客户端 通过@Bean跟@LoadBalanced指定RestTemplate。注意URI需要使用虚拟域名(如服务名,不能用域名)。 如下: @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; public String doOtherStuff() { String results = restTemplate.getForObject(" http://stores/stores", String.class); return results; } } 2.2.2 多个RestTemplate对象 注意@Primary注解的使用。 @Configuration public class MyConfiguration { @LoadBalanced @Bean RestTemplate loadBalanced() { return new RestTemplate(); } @Primary @Bean RestTemplate restTemplate() { return new RestTemplate(); } } public class MyClass { @Autowired private RestTemplate restTemplate; @Autowired @LoadBalanced private RestTemplate loadBalanced; public String doOtherStuff() { return loadBalanced.getForObject(" http://stores/stores", String.class); } public String doStuff() { return restTemplate.getForObject(" http://example.com", String.class); } } 2.2.3 忽略网络接口 忽略确定名字的服务发现注册,支持正则表达式配置。 3 Spring Cloud Config Spring Cloud Config提供服务端和客户端在分布式系统中扩展配置。支持不同环境的配置(开发、测试、生产)。使用Git做默认配置后端,可支持配置环境打版本标签。 3.1 快速开始 可通过IDE运行或maven运行。 默认加载property资源的策略是克隆一个git仓库(at spring.cloud.config.server.git.uri')。 HTTP服务资源的构成: /{application}/{profile}[/{label}] /{application}-{profile}.yml /{label}/{application}-{profile}.yml /{application}-{profile}.properties /{label}/{application}-{profile}.properties application是SpringApplication的spring.config.name,(一般来说'application'是一个常规的Spring Boot应用),profile是一个active的profile(或者逗号分隔的属性列表),label是一个可选的git标签(默认为"master")。 3.1.1 客户端示例 创建以Spring Boot应用即可,添加依赖“org.springframework.cloud:spring-cloud-starter-config”。 配置application.properties,注意URL为配置服务端的地址 spring.cloud.config.uri: http://myconfigserver.com 3.2 Spring Cloud Config 服务端 针对系统外的配置项(如name-value对或相同功能的YAML内容),该服务器提供了基于资源的HTTP接口。使用@EnableConfigServer注解,该服务器可以很容易的被嵌入到Spring Boot 系统中。使用该注解之后该应用系统就是一个配置服务器。 @SpringBootApplication @EnableConfigServer public class ConfigApplicion { public static void main(String[] args) throws Exception { SpringApplication.run(ConfigApplicion.class, args); } } 3.2.1 资源库环境 {application} 对应客户端的"spring.application.name"属性 {profile} 对应客户端的 "spring.profiles.active"属性(逗号分隔的列表) {label} 对应服务端属性,这个属性能标示一组配置文件的版本 如果配置库是基于文件的,服务器将从application.yml和foo.yml中创建一个Environment对象。高优先级的配置优先转成Environment对象中的PropertySource。 3.2.1.1 Git后端 默认的EnvironmentRepository是用Git后端进行实现的,Git后端对于管理升级和物理环境是很方便的,对审计配置变更也很方便。也可以file:前缀从本地配置库中读取数据。 这个配置库的实现通过映射HTTP资源的{label}参数作为git label(提交id,分支名称或tag)。如果git分支或tag的名称包含一个斜杠 ("/"),此时HTTP URL中的label需要使用特殊字符串"(_)"来替代(为了避免与其他URL路径相互混淆)。如果使用了命令行客户端如 curl,请谨慎处理URL中的括号(例如:在shell下请使用引号''来转义它们)。 Git URI占位符 Spring Cloud Config Server支持git库URL中包含针对{application}和 {profile}的占位符(如果你需要,{label}也可包含占位符, 不过要牢记的是任何情况下label只指git的label)。所以,你可以很容易的支持“一个应用系统一个配置库”策略或“一个profile一个配置库”策略。 模式匹配和多资源库 spring: cloud: config: server: git: uri: https://github.com/spring-cloud-samples/config-repo repos: simple: https://github.com/simple/config-repo special: pattern: special*/dev*,special/dev* uri: https://github.com/special/config-repo local: pattern: local* uri: file:/home/configsvc/config-repo 如果 {application}/{profile}不能匹配任何表达式,那么将使用“spring.cloud.config.server.git.uri”对应的值。在上例子中,对于 "simple" 配置库, 匹配模式是simple/* (也就说,无论profile是什么,它只匹配application名称为“simple”的应用系统)。“local”库匹配所有application名称以“local”开头任何应用系统,不管profiles是什么(来实现覆盖因没有配置对profile的匹配规则,“/”后缀会被自动的增加到任何的匹配表达式中)。 Git搜索路径中的占位符 spring.cloud.config.server.git.searchPaths 3.2.1.2 版本控制后端文件系统使用 伴随着版本控制系统作为后端(git、svn),文件都会被check out或clone 到本地文件系统中。默认这些文件会被放置到以config-repo-为前缀的系统临时目录中。在Linux上,譬如应该是/tmp/config-repo- 目录。有些操作系统routinely clean out放到临时目录中,这会导致不可预知的问题出现。为了避免这个问题,通过设置spring.cloud.config.server.git.basedir或spring.cloud.config.server.svn.basedir参数值为非系统临时目录。 3.2.1.3 文件系统后端 使用本地加载配置文件。 需要配置:spring.cloud.config.server.native.searchLocations跟spring.profiles.active=native。 路径配置格式:classpath:/, classpath:/config,file:./, file:./config。 3.2.1.4 共享配置给所有应用 基于文件的资源库 在基于文件的资源库中(i.e. git, svn and native),这样的文件名application 命名的资源在所有的客户端都是共享的(如 application.properties, application.yml, application-*.properties,etc.)。 属性覆盖 “spring.cloud.config.server.overrides”添加一个Map类型的name-value对来实现覆盖。 例如 spring: cloud: config: server: overrides: foo: bar 会使所有的配置客户端应用程序读取foo=bar到他们自己配置参数中。 3.2.2 健康指示器 通过这个指示器能够检查已经配置的EnvironmentRepository是否正常运行。 通过设置spring.cloud.config.server.health.enabled=false参数来禁用健康指示器。 3.2.3 安全 你可以自由选择任何你觉得合理的方式来保护你的Config Server(从物理网络安全到OAuth2 令牌),同时使用Spring Security和Spring Boot 能使你做更多其他有用的事情。 为了使用默认的Spring Boot HTTP Basic 安全,只需要把Spring Security 增加到classpath中(如org.springframework.boot.spring-boot-starter-security)。默认的用户名是“user”,对应的会生成一个随机密码,这种情况在实际使用中并没有意义,一般建议配置一个密码(通过 security.user.password属性进行配置)并对这个密码进行加密。 3.2.4 加密与解密 如果远程属性包含加密内容(以{cipher}开头),这些值将在通过HTTP传递到客户端之前被解密。 使用略 3.2.5 密钥管理 配置服务可以使用对称(共享)密钥或者非对称密钥(RSA密钥对)。 使用略 3.2.6 创建一个测试密钥库 3.2.7 使用多密钥和循环密钥 3.2.8 加密属性服务 3.3 可替换格式服务 配置文件可加后缀".yml"、".yaml"、".properties" 3.4 文本解释服务 /{name}/{profile}/{label}/{path} 3.5 嵌入配置服务器 一般配置服务运行在单独的应用里面,只要使用注解@EnableConfigServer即可嵌入到其他应用。 3.6 推送通知和总线 添加依赖spring-cloud-config-monitor,激活Spring Cloud 总线,/monitor端点即可用。 当webhook激活,针对应用程序可能已经变化了的,配置服务端将发送一个RefreshRemoteApplicationEvent。 3.7 客户端配置 3.7.1 配置第一次引导 通过spring.cloud.config.uri属性配置Config Server地址 3.7.2 发现第一次引导 如果用的是Netflix,则用eureka.client.serviceUrl.defaultZone进行配置。 3.7.3 配置客户端快速失败 在一些例子里面,可能希望在没有连接配置服务端时直接启动失败。可通过spring.cloud.config.failFast=true进行配置。 3.7.4 配置客户端重试 添加依赖spring-retry、spring-boot-starter-aop,设置spring.cloud.config.failFast=true。默认的是6次重试,初始补偿间隔是1000ms,后续补偿为1.1指数乘数,可通过spring.cloud.config.retry.*配置进行修改。 3.7.5 定位远程配置资源 路径:/{name}/{profile}/{label} "name" = ${spring.application.name} "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles()) "label" = "master" label对于回滚到之前的版本很有用。 3.7.6 安全 通过spring.cloud.config.password、spring.cloud.config.username进行配置。 答案来源于网络

养狐狸的猫 2019-12-02 02:18:34 0 浏览量 回答数 0

回答

本文为您介绍容器服务 ACK 中涉及的几个基本概念,以便于您更好地理解 ACK 产品。 基本概念 集群 一个集群指容器运行所需要的云资源组合,关联了若干服务器节点、负载均衡、专有网络等云资源。 托管集群(Managed Kubernetes Cluster) 只需创建 Worker 节点,Master 节点由容器服务创建并托管。具备简单、低成本、高可用、无需运维管理 Kubernetes 集群 Master 节点的特点。 专有集群(Dedicated Kubernetes Cluster) 需要创建3个 Master(高可用)节点及若干 Worker 节点,可对集群基础设施进行更细粒度的控制,需要自行规划、维护、升级服务器集群。 Serverless集群(Serverless Kubernetes Cluster) 无需创建和管理 Master 节点及 Worker 节点,即可通过控制台或者命令配置容器实例的资源、指明应用容器镜像以及对外服务的方式,直接启动应用程序。 节点 一台服务器(可以是虚拟机实例或者物理服务器)已经安装了 Docker Engine,可以用于部署和管理容器;容器服务的 Agent 程序会安装到节点上并注册到一个集群上。集群中的节点数量可以伸缩。 容器 一个通过 Docker 镜像创建的运行实例,一个节点可运行多个容器。 镜像 Docker 镜像是容器应用打包的标准格式,在部署容器化应用时可以指定镜像,镜像可以来自于 Docker Hub,阿里云镜像服务,或者用户的私有 Registry。镜像 ID 可以由镜像所在仓库 URI 和镜像 Tag(缺省为 latest)唯一确认。 Kubernetes 相关概念 管理节点(Master Node) 管理节点是 Kubernetes 集群的管理者,运行着的服务包括 kube-apiserver、kube-scheduler、kube-controller-manager、etcd 和容器网络等组件。一般3个管理节点组成 HA 的架构。 工作节点(Worker Node) 工作节点是 Kubernetes 集群中承担工作负载的节点,可以是虚拟机也可以是物理机。工作节点承担实际的 Pod 调度以及与管理节点的通信等。一个工作节点上的服务包括 Docker 运行时环境、kubelet、Kube-Proxy 以及其它一些可选的 Addon 组件。 命名空间(Namespace) 命名空间为 Kubernetes 集群提供虚拟的隔离作用。Kubernetes 集群初始有 3 个命名空间,分别是默认命名空间 default、系统命名空间 kube-system 和 kube-public ,除此以外,管理员可以创建新的命名空间以满足需求。 Pod Pod 是 Kubernetes 部署应用或服务的最小的基本单位。一个 Pod 封装多个应用容器(也可以只有一个容器)、存储资源、一个独立的网络 IP 以及管理控制容器运行方式的策略选项。 副本控制器(Replication Controller,RC) RC 确保任何时候 Kubernetes 集群中有指定数量的 pod 副本(replicas)在运行。通过监控运行中的 Pod 来保证集群中运行指定数目的 Pod 副本。指定的数目可以是多个也可以是 1 个;少于指定数目,RC 就会启动运行新的 Pod 副本;多于指定数目,RC 就会终止多余的 Pod 副本。 副本集(Replica Set,RS) ReplicaSet(RS)是 RC 的升级版本,唯一区别是对选择器的支持,RS 能支持更多种类的匹配模式。副本集对象一般不单独使用,而是作为 Deployment 的理想状态参数使用。 部署(Deployment) 部署表示用户对 Kubernetes 集群的一次更新操作。部署比 RS 应用更广,可以是创建一个新的服务,更新一个新的服务,也可以是滚动升级一个服务。滚动升级一个服务,实际是创建一个新的 RS,然后逐渐将新 RS 中副本数增加到理想状态,将旧 RS 中的副本数减小到 0 的复合操作;这样一个复合操作用一个 RS 是不太好描述的,所以用一个更通用的 Deployment 来描述。不建议您手动管理利用 Deployment 创建的 RS。 服务(Service) Service 也是 Kubernetes 的基本操作单元,是真实应用服务的抽象,每一个服务后面都有很多对应的容器来提供支持,通过 Kube-Proxy 的 port 和服务 selector 决定服务请求传递给后端的容器,对外表现为一个单一访问接口,外部不需要了解后端如何运行,这给扩展或维护后端带来很大的好处。 标签(labels) Labels 的实质是附着在资源对象上的一系列 Key/Value 键值对,用于指定对用户有意义的对象的属性,标签对内核系统是没有直接意义的。标签可以在创建一个对象的时候直接赋予,也可以在后期随时修改,每一个对象可以拥有多个标签,但 key 值必须唯一。 存储卷(Volume) Kubernetes 集群中的存储卷跟 Docker 的存储卷有些类似,只不过 Docker 的存储卷作用范围为一个容器,而 Kubernetes 的存储卷的生命周期和作用范围是一个 Pod。每个 Pod 中声明的存储卷由 Pod 中的所有容器共享。支持使用 Persistent Volume Claim 即 PVC 这种逻辑存储,使用者可以忽略后台的实际存储技术,具体关于 Persistent Volumn(pv)的配置由存储管理员来配置。 持久存储卷(Persistent Volume,PV)和持久存储卷声明(Persistent Volume Claim,PVC) PV 和 PVC 使得 Kubernetes 集群具备了存储的逻辑抽象能力,使得在配置 Pod 的逻辑里可以忽略对实际后台存储技术的配置,而把这项配置的工作交给 PV 的配置者。存储的 PV 和 PVC 的这种关系,跟计算的 Node 和 Pod 的关系是非常类似的;PV 和 Node 是资源的提供者,根据集群的基础设施变化而变化,由 Kubernetes 集群管理员配置;而 PVC 和 Pod是资源的使用者,根据业务服务的需求变化而变化,由 Kubernetes 集群的使用者即服务的管理员来配置。 Ingress Ingress 是授权入站连接到达集群服务的规则集合。你可以通过 Ingress 配置提供外部可访问的 URL、负载均衡、SSL、基于名称的虚拟主机等。用户通过 POST Ingress 资源到 API server 的方式来请求 Ingress。 Ingress controller 负责实现 Ingress,通常使用负载均衡器,它还可以配置边界路由和其他前端,这有助于以 HA 方式处理流量。

1934890530796658 2020-03-26 11:23:18 0 浏览量 回答数 0

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送

巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

问题

热点第三方工具分享

我想带宝宝 2019-12-01 21:35:14 11867 浏览量 回答数 1

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C

auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

问题

Git 改变了分布式 Web 开发规则:报错

kun坤 2020-06-08 11:09:24 3 浏览量 回答数 1

问题

Nginx性能为什么如此吊

小柒2012 2019-12-01 21:20:47 15038 浏览量 回答数 3

回答

MQTT协议 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)最早是IBM开发的一个即时通讯协议,MQTT协议是为大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备通讯而设计的一种协议。 MQTT协议的优势是可以支持所有平台,它几乎可以把所有的联网物品和互联网连接起来。 它具有以下主要的几项特性:1、使用发布/订阅消息模式,提供一对多的消息发布和应用程序之间的解耦;2、消息传输不需要知道负载内容;3、使用 TCP/IP 提供网络连接;4、有三种消息发布的服务质量:QoS 0:“最多一次”,消息发布完全依赖底层 TCP/IP 网络。分发的消息可能丢失或重复。例如,这个等级可用于环境传感器数据,单次的数据丢失没关系,因为不久后还会有第二次发送。QoS 1:“至少一次”,确保消息可以到达,但消息可能会重复。QoS 2:“只有一次”,确保消息只到达一次。例如,这个等级可用在一个计费系统中,这里如果消息重复或丢失会导致不正确的收费。5、小型传输,开销很小(固定长度的头部是 2 字节),协议交换最小化,以降低网络流量;6、使用 Last Will 和 Testament 特性通知有关各方客户端异常中断的机制;在MQTT协议中,一个MQTT数据包由:固定头(Fixed header)、 可变头(Variable header)、 消息体(payload)三部分构成。MQTT的传输格式非常精小,最小的数据包只有2个bit,且无应用消息头。下图是MQTT为可靠传递消息的三种消息发布服务质量 发布/订阅模型允许MQTT客户端以一对一、一对多和多对一方式进行通讯。 下图是MQTT的发布/订阅消息模式 CoAP协议 CoAP是受限制的应用协议(Constrained Application Protocol)的代名词。由于目前物联网中的很多设备都是资源受限型的,所以只有少量的内存空间和有限的计算能力,传统的HTTP协议在物联网应用中就会显得过于庞大而不适用。因此,IETF的CoRE工作组提出了一种基于REST架构、传输层为UDP、网络层为6LowPAN(面向低功耗无线局域网的IPv6)的CoAP协议。 CoAP采用与HTTP协议相同的请求响应工作模式。CoAP协议共有4中不同的消息类型。CON——需要被确认的请求,如果CON请求被发送,那么对方必须做出响应。NON——不需要被确认的请求,如果NON请求被发送,那么对方不必做出回应。ACK——应答消息,接受到CON消息的响应。RST——复位消息,当接收者接受到的消息包含一个错误,接受者解析消息或者不再关心发送者发送的内容,那么复位消息将会被发送。 CoAP消息格式使用简单的二进制格式,最小为4个字节。 一个消息=固定长度的头部header + 可选个数的option + 负载payload。Payload的长度根据数据报长度来计算。 主要是一对一的协议 举个例子: 比如某个设备需要从服务器端查询当前温度信息。 请求消息(CON): GET /temperature , 请求内容会被包在CON消息里面响应消息 (ACK): 2.05 Content “22.5 C” ,响应内容会被放在ACK消息里面 CoAP与MQTT的区别 MQTT和CoAP都是行之有效的物联网协议,但两者还是有很大区别的,比如MQTT协议是基于TCP,而CoAP协议是基于UDP。从应用方向来分析,主要区别有以下几点: 1、MQTT协议不支持带有类型或者其它帮助Clients理解的标签信息,也就是说所有MQTT Clients必须要知道消息格式。而CoAP协议则相反,因为CoAP内置发现支持和内容协商,这样便能允许设备相互窥测以找到数据交换的方式。 2、MQTT是长连接而CoAP是无连接。MQTT Clients与Broker之间保持TCP长连接,这种情形在NAT环境中也不会产生问题。如果在NAT环境下使用CoAP的话,那就需要采取一些NAT穿透性手段。 3、MQTT是多个客户端通过中央代理进行消息传递的多对多协议。它主要通过让客户端发布消息、代理决定消息路由和复制来解耦消费者和生产者。MQTT就是相当于消息传递的实时通讯总线。CoAP基本上就是一个在Server和Client之间传递状态信息的单对单协议。 HTTP协议http的全称是HyperText Transfer Protocol,超文本传输协议,这个协议的提出就是为了提供和接收HTML界面,通过这个协议在互联网上面传出web的界面信息。 HTTP协议的两个过程,Request和Response,两个都有各自的语言格式,我们看下是什么。请求报文格式:(注意这里有个换行) 响应报文格式:(注意这里有个换行) 方法method:       这个很重要,比如说GET和POST方法,这两个是很常用的,GET就是获取什么内容,而POST就是向服务器发送什么数据。当然还有其他的,比如HTTP 1.1中还有:DELETE、PUT、CONNECT、HEAD、OPTIONS、TRACE等一共8个方法(HTTP Method历史:HTTP 0.9 只有GET方法;HTTP 1.0 有GET、POST、HEAD三个方法)。请求URL:       这里填写的URL是不包含IP地址或者域名的,是主机本地文件对应的目录地址,所以我们一般看到的就是“/”。版本version:       格式是HTTP/.这样的格式,比如说HTTP/1.1.这个版本代表的就是我们使用的HTTP协议的版本,现在使用的一般是HTTP/1.1状态码status:       状态码是三个数字,代表的是请求过程中所发生的情况,比如说200代表的是成功,404代表的是找不到文件。原因短语reason-phrase:       是状态码的可读版本,状态码就是一个数字,如果你事先不知道这个数字什么意思,可以先查看一下原因短语。首部header:       注意这里的header我们不是叫做头,而是叫做首部。可能有零个首部也可能有多个首部,每个首部包含一个名字后面跟着一个冒号,然后是一个可选的空格,接着是一个值,然后换行。实体的主体部分entity-body:       实体的主体部分包含一个任意数据组成的数据块,并不是所有的报文都包含实体的主体部分,有时候只是一个空行加换行就结束了。 下面我们举个简单的例子: 请求报文:GET /index.html HTTP/1.1    Accept: text/*Host: www.myweb.com 响应报文:HTTP/1.1 200 OKContent-type: text/plainContent-length: 3  HTTP与CoAP的区别 CoAP是6LowPAN协议栈中的应用层协议,基于REST(表述性状态传递)架构风格,支持与REST进行交互。通常用户可以像使用HTTP协议一样用CoAP协议来访问物联网设备。而且CoAP消息格式使用简单的二进制格式,最小为4个字节。HTTP使用报文格式对于嵌入式设备来说需要传输数据太多,太重,不够灵活。 XMPP协议 XMPP(可扩展通讯和表示协议)是一种基于可扩展标记语言(XML)的协议, 它继承了在XML环境中灵活的发展性。可用于服务类实时通讯、表示和需求响应服务中的XML数据元流式传输。XMPP以Jabber协议为基础,而Jabber是即时通讯中常用的开放式协议。   基本网络结构 XMPP中定义了三个角色,客户端,服务器,网关。通信能够在这三者的任意两个之间双向发生。 服务器同时承担了客户端信息记录,连接管理和信息的路由功能。网关承担着与异构即时通信系统 的互联互通,异构系统可以包括SMS(短信),MSN,ICQ等。基本的网络形式是单客户端通过 TCP/IP连接到单服务器,然后在之上传输XML。 功能 传输的是与即时通讯相关的指令。在以前这些命令要么用2进制的形式发送(比如QQ),要么用纯文本指令加空格加参数加换行符的方式发送(比如MSN)。而XMPP传输的即时通讯指令的逻辑与以往相仿,只是协议的形式变成了XML格式的纯文本。举个例子看看所谓的XML(标准通用标记语言的子集)流是什么样子的?客户端:123456<?xmlversion='1.0'?>to='example_com'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>服务器:1234567<?xmlversion='1.0'?>from='example_com'id='someid'xmlns='jabber:client'xmlns:stream='http_etherx_jabber_org/streams'version='1.0'>工作原理XMPP核心协议通信的基本模式就是先建立一个stream,然后协商一堆安全之类的东西, 中间通信过程就是客户端发送XML Stanza,一个接一个的。服务器根据客户端发送的信息 以及程序的逻辑,发送XML Stanza给客户端。但是这个过程并不是一问一答的,任何时候 都有可能从一方发信给另外一方。通信的最后阶段是关闭流,关闭TCP/IP连接。  网络通信过程中数据冗余率非常高,网络流量中70% 都消耗在 XMPP 协议层了。对于物联网来说,大量计算能力有限且工作在低带宽、不可靠网络的远程传感器和控制设备,省电、省流量是所有底层服务的一个关键技术指标,XMPP协议看起来已经落后了。 SoAP协议 SoAP(简单对象访问协议)是交换数据的一种协议规范,是一种轻量的、简单的、 基于可扩展标记语言(XML)的协议,它被设计成在WEB上交换结构化的和固化的信息。  SOAP 可以和现存的许多因特网协议和格式结合使用,包括超文本传输协议(HTTP), 简单邮件传输协议(SMTP),多用途网际邮件扩充协议(MIME)。它还支持从消息系统到 远程过程调用(RPC)等大量的应用程序。SOAP使用基于XML的数据结构和超文本传输协议 (HTTP)的组合定义了一个标准的方法来使用Internet上各种不同操作环境中的分布式对象。 总结: 从当前物联网应用发展趋势来分析,MQTT协议具有一定的优势。因为目前国内外主要的云计算服务商,比如阿里云、AWS、百度云、Azure以及腾讯云都一概支持MQTT协议。还有一个原因就是MQTT协议比CoAP成熟的要早,所以MQTT具有一定的先发优势。但随着物联网的智能化和多变化的发展,后续物联网应用平台肯定会兼容更多的物联网应用层协议。 作者:HFK_Frank 来源:CSDN 原文:https://blog.csdn.net/acongge2010/article/details/79142380 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:55:21 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 2020阿里巴巴研发效能峰会 企业建站模板 云效成长地图 高端建站