• 关于

    组件处理不可用

    的搜索结果

回答

在计算中,负载平衡可以改善跨计算机,计算机集群,网络链接,中央处理单元或磁盘驱动器等多种计算资源的工作负载分布。负载平衡旨在优化资源使用,最大化吞吐量,最小化响应时间并避免任何单一资源的过载。使用多个组件进行负载平衡而不是单个组件可能会通过冗余来提高可靠性和可用性。负载平衡通常涉及专用软件或硬件,例如多层交换机或域名系统服务器进程。
游客pklijor6gytpx 2019-12-02 03:10:47 0 浏览量 回答数 0

回答

软件系统架构设计原则就是把我们在各种场景下的架构设计进行抽选化提取公共特征形成过一定的方法论,这些方法论是经过严格推敲并具备移植性的,我们在设计系统时遵从这些设计规则可以为我们的体统提供更高的扩展性、稳定性。抽象原则各平台(含基础设施、中间件技术服务、各层业务服务等)需要通过合理地抽象,将内部信息、处理与扩展能力聚合成标准的服务于扩展接口,并通过统一的形式提供给使用者,屏蔽内部的实现与运行细节。以下是一些符合抽象原则的架构规范或模式: 架构分层(layer)/级(tier),层、级间提供标准服务与数据接口 根据业务模型,统一服务标准与数据标准 使用服务目录屏蔽服务位置等实现细节 使用“逻辑库”屏蔽数据库物理细节 通过SLA,标准化服务的质量水平 提供标准插件架构支持扩展 使用标准数据库特性,保持厂商无关性 使用逻辑的网络与系统名称 使用商品化硬件单元共享原则最大化重用数据、计算资源、业务组件等资产,防止数据、逻辑与技术实现不一致性带来的管理复杂性,避免重复建设成本与管理成本,通过安全机制保证共享资产的合法使用,通过业务分级保障共享资源效益最大化。 以下是一些符合共享原则的架构规范或模式:同一业务服务有唯一提供者 同一技术服务有唯一提供者 同一数据有唯一可信源 控制技术多样性 (但需要同时防止厂商绑定) 服务具备互操作性 服务具备易用性 统一的身份、访问控制与加解密机制 为共享服务提供多租户能力 (Multi-tenancy) 提供访问计量与控制能力 提供业务分级能力,对不同级别的业务提供区分服务 自治原则每一个组件(计算资源、业务组件、信息实体等)具备最大可能的自我完备性,可独立运行、监控、部署、配置与禁用,具备确定的SLA,并与其它组件之间以松散耦合的方式进行协作。当依赖的组件不存在或者无法正常提供服务时,能够以良好的方式降级,且在故障解除后自动恢复。 以下是一些符合自治原则的架构规范或模式:基于开-闭原则(OCP)设计组件 应用无启动依赖 最小化运行依赖集 根据运行依赖关系合理安排组件物理colocation 能够隔离依赖组件的故障 异步调用 (提升异常流量的承载能力,简化故障隔离的实现) 具备自我健康检查能力 具备自我恢复能力 无状态设计 冗余原则各组件(计算资源、业务组件、数据等)都必须有充分、合理的冗余实例,保证单一组件实例失效不影响业务正常运行(多活/热备),或可以通过切换备份实例快速恢复(温备/冷备),不会丢失不可恢复的数据。针对不同类型的组件,需要明确定义冗余量与冗余类型。 以下是一些符合冗余原则的架构规范或模式:高可用水平扩展服务器集群(负载均衡、健康检查与自动切换) 无单点设计 (含逻辑单点) 采用“随机写”策略的数据库水平拆分 Failover数据库 N+1或N+x设计 “多活”数据中心 数据复制 灾难备份 分布原则整个系统拆分成职责清晰、粒度恰当、便于管理的组件,各组件(计算资源、业务组件、数据等)可分布部署运行。组件的拆分与分布可以采取复制、根据功能垂直拆分、或根据用户与访问模式水平拆分等形式。 以下是一些符合分布原则的架构规范或模式:读写分离设计 垂直分拆 水平分拆 柔性的分布事务 自动原则系统设计了具备自监控、自管理、自适应与自优化能力,可以随着业务量与访问模式的变化、以及其它内、外部因素的改变,自动地对资源进行调度、调整服务策略,保障自身的稳定与服务的质量。 以下是一些符合自动原则的架构规范或模式:监控每一个服务的质量与资源的状态与报警 从客户视角监控最终服务的质量 统一、自动的错误报告、管理与响应 提供完备的配置能力 自动化系统安装 自动化应用部署 自动化资源分配 可以mark up/mark down服务 支持优雅降级 自动拒绝超出SLA之外异常流量 作者:技术僧 来源:CSDN 原文:https://blog.csdn.net/Bryans/article/details/80545040 版权声明:本文为博主原创文章,转载请附上博文链接!
wangccsy 2019-12-02 01:46:48 0 浏览量 回答数 0

回答

在线程中使用 System.Windows.Forms.Timer 是不能触发 Tick 事件的,为什么?如何在线程中使用定时器呢?就看本文介绍。 一. System.Windows.Forms.Timer System.Windows.Forms.Timer 要求要有UI 消息泵, 所以通常只在主线程上使用. System.Windows.Forms.Timer 用于以用户定义的事件间隔触发事件。 Windows 计时器是为单线程环境设计的,其中,UI 线程用于执行处理。 它要求用户代码有一个可用的 UI 消息泵,而且总是在同一个线程中操作,或者将调用封送到另一个线程. 且看MSDN的用法解释: 实现在用户定义的时间间隔引发事件的计时器。此计时器最宜用于 Windows 窗体应用程序中,并且必须在窗口中使用。 二. System.Timers.Timer System.Timers.Timer 组件是基于服务器的计时器,它使您能够指定在应用程序中引发 Elapsed 事件的周期性间隔。 然后可以操控此事件以提供定期处理。例如,假设您有一台关键性服务器,必须每周 7 天、每天 24 小时都保持运行。 可以创建一个使用 Timer 的服务,以定期检查服务器并确保系统开启并在运行。如果系统不响应,则该服务可以尝试重新启动服务器或通知管理员。 基于服务器的 Timer 是为在多线程环境中用于辅助线程而设计的。 服务器计时器可以在线程间移动来处理引发的 Elapsed 事件,这样就可以比 Windows 计时器更精确地按时引发事件。 有关基于服务器的计时器的更多信息,请参见“基于服务器的计时器介绍”。 在 Visual Studio 和 .NET Framework 中有三种计时器控件:基于服务器的计时器(可以在“工具箱”的“组件”选项卡上看到)、基于 Windows 的标准计时器(可以在“工具箱”的“Windows 窗体”选项卡上看到)和线程计时器(只能以编程方式使用)。 基于 Windows 的计时器从 Visual Basic 1.0 版起就存在于该产品中,并且基本上未做改动。该计时器针对在 Windows 窗体应用程序中使用而进行了优化。 基于服务器的计时器是传统的计时器为了在服务器环境上运行而优化后的更新版本。 线程计时器是一种简单的、轻量级计时器,它使用回调方法而不是使用事件,并由线程池线程提供支持。 在 Win32 体系结构中有两种类型的线程:UI 线程和辅助线程。UI 线程绝大多数时间处于空闲状态,等待消息循环中的消息到来。 一旦接收到消息,它们就进行处理并等待下一个消息到来。另外,辅助线程用来执行后台处理而且不使用消息循环。 Windows 计时器和基于服务器的计时器在运行时都使用 Interval 属性。线程计时器的时间间隔在 Timer 构造函数中设置。 计时器的设计目的各不相同,它们的线程处理明确地指出了这一点: 1.Windows 计时器是为单线程环境设计的,其中,UI 线程用于执行处理。Windows 计时器的精度限定为 55 毫秒。 这些传统计时器要求用户代码有一个可用的 UI 消息泵,而且总是在同一个线程中操作,或者将调用封送到另一个线程。对于 COM 组件来说,这样会降低性能。 2.基于服务器的计时器是为在多线程环境下与辅助线程一起使用而设计的。由于它们使用不同的体系结构,因此基于服务器的计时器可能比 Windows 计时器精确得多。 服务器计时器可以在线程之间移动来处理引发的事件。 3.对消息不在线程上发送的方案中,线程计时器是非常有用的。例如,基于 Windows 的计时器依赖于操作系统计时器的支持,如果不在线程上发送消息,与计时器相关的事件将不会发生。 在这种情况下,线程计时器就非常有用。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!
牧明 2019-12-02 02:17:14 0 浏览量 回答数 0

回答

大数据平台的搭建步骤: 1、linux系统安装    一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。2、分布式计算平台/组件安装  国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。3、数据导入数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。4、数据分析数据分析一般包括两个阶段:数据预处理和数据建模分析。数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。5、结果可视化及输出API可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。 大数据平台搭建中的主要问题1、稳定性 Stability 理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。 2、可扩展性 Scalability 如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。 来源于网络,供您参考,如若满意,请点击右侧【采纳答案】,如若还有问题,请点击【追问】 希望我的回答对您有所帮助,望采纳! ~ O(∩_∩)O~
保持可爱mmm 2019-12-02 03:03:49 0 浏览量 回答数 0

问题

负载均衡高可用框架

负载均衡高可用特性介绍 集群化部署  如下图所示,负载均衡系统中四层负载均衡(LVS)服务、七层负载均衡(Tengine)服务和控制系统等关键组件都采用集群化部署&#...
行者武松 2019-12-01 21:36:54 1691 浏览量 回答数 0

回答

微服务 (MicroServices) 架构是当前互联网业界的一个技术热点,圈里有不少同行朋友当前有计划在各自公司开展微服务化体系建设,他们都有相同的疑问:一个微服务架构有哪些技术关注点 (technical concerns)?需要哪些基础框架或组件来支持微服务架构?这些框架或组件该如何选型?笔者之前在两家大型互联网公司参与和主导过大型服务化体系和框架建设,同时在这块也投入了很多时间去学习和研究,有一些经验和学习心得,可以和大家一起分享。 服务注册、发现、负载均衡和健康检查和单块 (Monolithic) 架构不同,微服务架构是由一系列职责单一的细粒度服务构成的分布式网状结构,服务之间通过轻量机制进行通信,这时候必然引入一个服务注册发现问题,也就是说服务提供方要注册通告服务地址,服务的调用方要能发现目标服务,同时服务提供方一般以集群方式提供服务,也就引入了负载均衡和健康检查问题。根据负载均衡 LB 所在位置的不同,目前主要的服务注册、发现和负载均衡方案有三种: 第一种是集中式 LB 方案,如下图 Fig 1,在服务消费者和服务提供者之间有一个独立的 LB,LB 通常是专门的硬件设备如 F5,或者基于软件如 LVS,HAproxy 等实现。LB 上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向 LB 发起请求,由 LB 以某种策略(比如 Round-Robin)做负载均衡后将请求转发到目标服务。LB 一般具备健康检查能力,能自动摘除不健康的服务实例。服务消费方如何发现 LB 呢?通常的做法是通过 DNS,运维人员为服务配置一个 DNS 域名,这个域名指向 LB。 Fig 1, 集中式 LB 方案 集中式 LB 方案实现简单,在 LB 上也容易做集中式的访问控制,这一方案目前还是业界主流。集中式 LB 的主要问题是单点问题,所有服务调用流量都经过 LB,当服务数量和调用量大的时候,LB 容易成为瓶颈,且一旦 LB 发生故障对整个系统的影响是灾难性的。另外,LB 在服务消费方和服务提供方之间增加了一跳 (hop),有一定性能开销。 第二种是进程内 LB 方案,针对集中式 LB 的不足,进程内 LB 方案将 LB 的功能以库的形式集成到服务消费方进程里头,该方案也被称为软负载 (Soft Load Balancing) 或者客户端负载方案,下图 Fig 2 展示了这种方案的工作原理。这一方案需要一个服务注册表 (Service Registry) 配合支持服务自注册和自发现,服务提供方启动时,首先将服务地址注册到服务注册表(同时定期报心跳到服务注册表以表明服务的存活状态,相当于健康检查),服务消费方要访问某个服务时,它通过内置的 LB 组件向服务注册表查询(同时缓存并定期刷新)目标服务地址列表,然后以某种负载均衡策略选择一个目标服务地址,最后向目标服务发起请求。这一方案对服务注册表的可用性 (Availability) 要求很高,一般采用能满足高可用分布式一致的组件(例如 Zookeeper, Consul, Etcd 等)来实现。 Fig 2, 进程内 LB 方案 进程内 LB 方案是一种分布式方案,LB 和服务发现能力被分散到每一个服务消费者的进程内部,同时服务消费方和服务提供方之间是直接调用,没有额外开销,性能比较好。但是,该方案以客户库 (Client Library) 的方式集成到服务调用方进程里头,如果企业内有多种不同的语言栈,就要配合开发多种不同的客户端,有一定的研发和维护成本。另外,一旦客户端跟随服务调用方发布到生产环境中,后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。 进程内 LB 的案例是 Netflix 的开源服务框架,对应的组件分别是:Eureka 服务注册表,Karyon 服务端框架支持服务自注册和健康检查,Ribbon 客户端框架支持服务自发现和软路由。另外,阿里开源的服务框架 Dubbo 也是采用类似机制。 第三种是主机独立 LB 进程方案,该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将 LB 和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立 LB 进程做服务发现和负载均衡,见下图 Fig 3。 Fig 3 主机独立 LB 进程方案 该方案也是一种分布式方案,没有单点问题,一个 LB 进程挂了只影响该主机上的服务调用方,服务调用方和 LB 之间是进程内调用,性能好,同时,该方案还简化了服务调用方,不需要为不同语言开发客户库,LB 的升级不需要服务调用方改代码。该方案的不足是部署较复杂,环节多,出错调试排查问题不方便。 该方案的典型案例是 Airbnb 的 SmartStack 服务发现框架,对应组件分别是:Zookeeper 作为服务注册表,Nerve 独立进程负责服务注册和健康检查,Synapse/HAproxy 独立进程负责服务发现和负载均衡。Google 最新推出的基于容器的 PaaS 平台 Kubernetes,其内部服务发现采用类似的机制。 服务前端路由微服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关 (Service Gateway),见图 Fig 4,网关是连接企业内部和外部系统的一道门,有如下关键作用: 服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。 Fig 4, 服务网关 除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试 (Surgical debugging),金丝雀测试 (Canary Testing),数据中心双活 (Active-Active HA) 等高级功能。 网关通常工作在 7 层,有一定的计算逻辑,一般以集群方式部署,前置 LB 进行负载均衡。 开源的网关组件有 Netflix 的 Zuul,特点是动态可热部署的过滤器 (filter) 机制,其它如 HAproxy,Nginx 等都可以扩展作为网关使用。 在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图 (Fig 5) 来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内 LB 服务发现和负载均衡机制。在下图 Fig 5 的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务 Middle Tier Service)和前端服务(也称边缘服务 Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如 PC,Pad 或者 Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似 Proxy 代理或者 Façade 门面模式,而服务注册表和服务自注册自发现类似 IoC 依赖注入模式,微服务可以理解为基于网关代理和注册表 IoC 构建的分布式系统。 Fig 5, 简化的微服务架构图 服务容错当企业微服务化以后,服务之间会有错综复杂的依赖关系,例如,一个前端请求一般会依赖于多个后端服务,技术上称为 1 -> N 扇出 (见图 Fig 6)。在实际生产环境中,服务往往不是百分百可靠,服务可能会出错或者产生延迟,如果一个应用不能对其依赖的故障进行容错和隔离,那么该应用本身就处在被拖垮的风险中。在一个高流量的网站中,某个单一后端一旦发生延迟,可能在数秒内导致所有应用资源 (线程,队列等) 被耗尽,造成所谓的雪崩效应 (Cascading Failure,见图 Fig 7),严重时可致整个网站瘫痪。 Fig 6, 服务依赖 Fig 7, 高峰期单个服务延迟致雪崩效应 经过多年的探索和实践,业界在分布式服务容错一块探索出了一套有效的容错模式和最佳实践,主要包括: Fig 8, 弹性电路保护状态图 电路熔断器模式 (Circuit Breaker Patten), 该模式的原理类似于家里的电路熔断器,如果家里的电路发生短路,熔断器能够主动熔断电路,以避免灾难性损失。在分布式系统中应用电路熔断器模式后,当目标服务慢或者大量超时,调用方能够主动熔断,以防止服务被进一步拖垮;如果情况又好转了,电路又能自动恢复,这就是所谓的弹性容错,系统有自恢复能力。下图 Fig 8 是一个典型的具备弹性恢复能力的电路保护器状态图,正常状态下,电路处于关闭状态 (Closed),如果调用持续出错或者超时,电路被打开进入熔断状态 (Open),后续一段时间内的所有调用都会被拒绝 (Fail Fast),一段时间以后,保护器会尝试进入半熔断状态 (Half-Open),允许少量请求进来尝试,如果调用仍然失败,则回到熔断状态,如果调用成功,则回到电路闭合状态。舱壁隔离模式 (Bulkhead Isolation Pattern),顾名思义,该模式像舱壁一样对资源或失败单元进行隔离,如果一个船舱破了进水,只损失一个船舱,其它船舱可以不受影响 。线程隔离 (Thread Isolation) 就是舱壁隔离模式的一个例子,假定一个应用程序 A 调用了 Svc1/Svc2/Svc3 三个服务,且部署 A 的容器一共有 120 个工作线程,采用线程隔离机制,可以给对 Svc1/Svc2/Svc3 的调用各分配 40 个线程,当 Svc2 慢了,给 Svc2 分配的 40 个线程因慢而阻塞并最终耗尽,线程隔离可以保证给 Svc1/Svc3 分配的 80 个线程可以不受影响,如果没有这种隔离机制,当 Svc2 慢的时候,120 个工作线程会很快全部被对 Svc2 的调用吃光,整个应用程序会全部慢下来。限流 (Rate Limiting/Load Shedder),服务总有容量限制,没有限流机制的服务很容易在突发流量 (秒杀,双十一) 时被冲垮。限流通常指对服务限定并发访问量,比如单位时间只允许 100 个并发调用,对超过这个限制的请求要拒绝并回退。回退 (fallback),在熔断或者限流发生的时候,应用程序的后续处理逻辑是什么?回退是系统的弹性恢复能力,常见的处理策略有,直接抛出异常,也称快速失败 (Fail Fast),也可以返回空值或缺省值,还可以返回备份数据,如果主服务熔断了,可以从备份服务获取数据。Netflix 将上述容错模式和最佳实践集成到一个称为 Hystrix 的开源组件中,凡是需要容错的依赖点 (服务,缓存,数据库访问等),开发人员只需要将调用封装在 Hystrix Command 里头,则相关调用就自动置于 Hystrix 的弹性容错保护之下。Hystrix 组件已经在 Netflix 经过多年运维验证,是 Netflix 微服务平台稳定性和弹性的基石,正逐渐被社区接受为标准容错组件。 服务框架微服务化以后,为了让业务开发人员专注于业务逻辑实现,避免冗余和重复劳动,规范研发提升效率,必然要将一些公共关注点推到框架层面。服务框架 (Fig 9) 主要封装公共关注点逻辑,包括: Fig 9, 服务框架 服务注册、发现、负载均衡和健康检查,假定采用进程内 LB 方案,那么服务自注册一般统一做在服务器端框架中,健康检查逻辑由具体业务服务定制,框架层提供调用健康检查逻辑的机制,服务发现和负载均衡则集成在服务客户端框架中。监控日志,框架一方面要记录重要的框架层日志、metrics 和调用链数据,还要将日志、metrics 等接口暴露出来,让业务层能根据需要记录业务日志数据。在运行环境中,所有日志数据一般集中落地到企业后台日志系统,做进一步分析和处理。REST/RPC 和序列化,框架层要支持将业务逻辑以 HTTP/REST 或者 RPC 方式暴露出来,HTTP/REST 是当前主流 API 暴露方式,在性能要求高的场合则可采用 Binary/RPC 方式。针对当前多样化的设备类型 (浏览器、普通 PC、无线设备等),框架层要支持可定制的序列化机制,例如,对浏览器,框架支持输出 Ajax 友好的 JSON 消息格式,而对无线设备上的 Native App,框架支持输出性能高的 Binary 消息格式。配置,除了支持普通配置文件方式的配置,框架层还可集成动态运行时配置,能够在运行时针对不同环境动态调整服务的参数和配置。限流和容错,框架集成限流容错组件,能够在运行时自动限流和容错,保护服务,如果进一步和动态配置相结合,还可以实现动态限流和熔断。管理接口,框架集成管理接口,一方面可以在线查看框架和服务内部状态,同时还可以动态调整内部状态,对调试、监控和管理能提供快速反馈。Spring Boot 微框架的 Actuator 模块就是一个强大的管理接口。统一错误处理,对于框架层和服务的内部异常,如果框架层能够统一处理并记录日志,对服务监控和快速问题定位有很大帮助。安全,安全和访问控制逻辑可以在框架层统一进行封装,可做成插件形式,具体业务服务根据需要加载相关安全插件。文档自动生成,文档的书写和同步一直是一个痛点,框架层如果能支持文档的自动生成和同步,会给使用 API 的开发和测试人员带来极大便利。Swagger 是一种流行 Restful API 的文档方案。当前业界比较成熟的微服务框架有 Netflix 的 Karyon/Ribbon,Spring 的 Spring Boot/Cloud,阿里的 Dubbo 等。 运行期配置管理服务一般有很多依赖配置,例如访问数据库有连接字符串配置,连接池大小和连接超时配置,这些配置在不同环境 (开发 / 测试 / 生产) 一般不同,比如生产环境需要配连接池,而开发测试环境可能不配,另外有些参数配置在运行期可能还要动态调整,例如,运行时根据流量状况动态调整限流和熔断阀值。目前比较常见的做法是搭建一个运行时配置中心支持微服务的动态配置,简化架构如下图 (Fig 10): Fig 10, 服务配置中心 动态配置存放在集中的配置服务器上,用户通过管理界面配置和调整服务配置,具体服务通过定期拉 (Scheduled Pull) 的方式或者服务器推 (Server-side Push) 的方式更新动态配置,拉方式比较可靠,但会有延迟同时有无效网络开销 (假设配置不常更新),服务器推方式能及时更新配置,但是实现较复杂,一般在服务和配置服务器之间要建立长连接。配置中心还要解决配置的版本控制和审计问题,对于大规模服务化环境,配置中心还要考虑分布式和高可用问题。 配置中心比较成熟的开源方案有百度的 Disconf,360 的 QConf,Spring 的 Cloud Config 和阿里的 Diamond 等。 Netflix 的微服务框架Netflix 是一家成功实践微服务架构的互联网公司,几年前,Netflix 就把它的几乎整个微服务框架栈开源贡献给了社区,这些框架和组件包括: Eureka: 服务注册发现框架Zuul: 服务网关Karyon: 服务端框架Ribbon: 客户端框架Hystrix: 服务容错组件Archaius: 服务配置组件Servo: Metrics 组件Blitz4j: 日志组件下图 Fig 11 展示了基于这些组件构建的一个微服务框架体系,来自 recipes-rss。 Fig 11, 基于 Netflix 开源组件的微服务框架 Netflix 的开源框架组件已经在 Netflix 的大规模分布式微服务环境中经过多年的生产实战验证,正逐步被社区接受为构造微服务框架的标准组件。Pivotal 去年推出的 Spring Cloud 开源产品,主要是基于对 Netflix 开源组件的进一步封装,方便 Spring 开发人员构建微服务基础框架。对于一些打算构建微服务框架体系的公司来说,充分利用或参考借鉴 Netflix 的开源微服务组件 (或 Spring Cloud),在此基础上进行必要的企业定制,无疑是通向微服务架构的捷径。 原文地址:https://www.infoq.cn/article/basis-frameworkto-implement-micro-service#anch130564%20%EF%BC%8C
auto_answer 2019-12-02 01:55:22 0 浏览量 回答数 0

回答

基于这些背景,我们设计了一个面向终态的集群管理系统。系统定时检测集群当前状态,判断是否与目标状态一致,出现不一致时,Operators 会发起一系列操作,驱动集群达到目标状态。 这一设计参考控制理论中常见的负反馈闭环控制系统,系统实现闭环,可以有效抵御系统外部的干扰,在我们的场景下,干扰对应于节点软硬件故障。 构架设计 如上图,元集群是一个高可用的 Kubernetes 集群,用于管理 N 个业务集群的 Master 节点。业务集群是一个服务生产业务的 Kubernetes 集群。SigmaBoss 是集群管理入口,为用户提供便捷的交互界面和可控的变更流程。 元集群中部署的 Cluster-Operator 提供了业务集群集群创建、删除和升级能力,Cluster-Operator 面向终态设计,当业务集群 Master 节点或组件异常时,会自动隔离并进行修复,以保证业务集群 Master 节点达到稳定的终态。这种采用 Kubernetes 管理 Kubernetes 的方案,我们称作 Kube on Kube 方案,简称 KOK 方案。 业务集群中部署有 Machine-Operator 和节点故障自愈组件用于管理业务集群的工作节点,提供节点新增、删除、升级和故障处理能力。在 Machine-Operator 提供的单节点终态保持的能力上,SigmaBoss 上构建了集群维度灰度变更和回滚能力。
问问小秘 2019-12-02 03:14:53 0 浏览量 回答数 0

问题

帮你了解负载均衡产品

负载均衡产品种类越来越多,那么基础的分类包括硬件和软件。那么随着网络的不断升级,我们的产品也随着不断地得到提升。那么,应用于各个领域的负载均衡产品已经不是只具有单一均衡功能的一个设备,...
zhenrongyu 2019-12-01 21:31:47 9056 浏览量 回答数 1

问题

阿里云服务器名词解释

亲爱的阿里云ECS用户小伙伴们:        今天有用户在论坛问云服务器和实例的区别,为了方便让大家更好的了解,今天给大家准备了阿里云服务器的名词解释) 更多参考阿里云ECS服务器...
qilu 2019-12-01 20:55:18 18515 浏览量 回答数 29

回答

web数据集成技术可以从web上自动获取数据,但是获取的信息存在着大量的脏数据,比如滥用缩写词,惯用语,数据输入错误,重复记录,丢失值,拼写变化,不同的计量单位。这些数据是没有意义的,根本就不可能为以后的数据挖掘决策分析提供任何支持。数据清洗主要是提高数据的可用性,目前,数据清洗主要应用于三个领域: 1 数据仓库(DW) 2数据库中的知识发现(KDD) 3数据质量管理(TDQM) 我在公司里的第一个项目就是数据质量管理,在这里在说下数据质量管理: 通过制定、实施数据质量检核,暴露各系统数据质量问题。持续监控各系统数据质量波动情况及数据质量规则占比分析,定期生成各系统关键数据质量报告,掌握系统数据质量状况。结合系统提供的清洗组件以及数据质量问题处理流程为各系统数据质量提升提供有效支撑。数据质量(DataQuality)管理是贯穿数据生命周期的全过程,覆盖质量评估,数据去噪,数据监控,数据探查,数据清洗,数据诊断等方面。数据度量和变化频度提供了衡量数据质量好坏的手段。数据度量主要包括完整性、唯一性、一致性、准确性、合法性。变化频度主要包括业务系统数据的变化周期和实体数据的刷新周期。数据质量管理准则包括测量、提高组织数据的质量和整合性的方法。数据质量处理包括数据标准化、匹配、生存和质量监测。数据必须具备适当的质量,以解决业务要求问题。 结合大数据的参考框架及数据处理实际需求情况,数据质量管理系统主要功能定位为:数据发现、质量管理、元数据、主数据管理和信息政策管理。在数据生命周期中,数据的获取和使用周期包括系列活动:评估,分析,调整,丢弃数据,目前数据清洗的模型: 基于粗糙集理论数据清洗 基于聚式模式数据清洗 基于模糊匹配数据清洗模型 基于遗传神经网络数据清洗 基于专家系统体系结构等数据校验及转换 数据校验的目的是确保抽取数据本身的正确性和完整性, 数据转换的目的是保证数据的一致性数据清洗流程1数据预处理: 包括数据元素化,保准化 2确定清洗方法: 3校验清洗方法:先验证所用的清洗方法是否合适,抽取小样本进行验证,判断其召回率和准确率 4执行清洗工具: 5数据归档:将新旧数据源进行归档处理,方便以后的清洗一般情况下,模式中反应的元数据对应判断一个数据源的质量远远不够,因此通过具体实例来获得有关数据熟悉和不寻常模式的元数据很重要。这些元数据可以帮助发现数据质量问题,也有助于发现属性间的依赖关系,
xuning715 2019-12-02 01:12:15 0 浏览量 回答数 0

回答

(1)关于Quartz的基本使用 可参考Quartz官方文档和网上博客实践教程。 (2)业务使用要满足动态修改和重启不丢失, 一般需要使用数据库进行保存。 Quartz本身支持JDBCJobStore,但是其配置的数据表比较多,官方推荐配置可参照官方文档,超过10张表,业务使用比较重。 在使用的时候只需要存在基本trigger配置和对应任务以及相关执行日志的表即可满足绝大部分需求。 (3)组件化 将quartz动态任务配置信息持久化到数据库,将数据操作包装成基本jar包,供项目之间使用,引用项目只需要引入jar包依赖和配置对应的数据表,使用时就可以对Quartz配置透明。 (4)扩展 集群模式 通过故障转移和负载均衡实现了任务的高可用性,通过数据库的锁机制来确保任务执行的唯一性,但是集群特性仅仅只是用来HA,节点数量的增加并不会提升单个任务的执行效率,不能实现水平扩展。 Quartz插件 可以对特定需要进行扩展,比如增加触发器和任务执行日志,任务依赖串行处理场景,可参考:quartz插件——实现任务之间的串行调度
kun坤 2020-04-23 16:21:32 0 浏览量 回答数 0

问题

读写分离简介

功能介绍 目前,只有MySQL 5.6版本的实例支持读写分离功能,因为该功能必须和 只读实例一起使用。当您开通读写分离功能后,实例中会存在如下三类地址: 主实例的连接地址ÿ...
云栖大讲堂 2019-12-01 21:39:36 1046 浏览量 回答数 0

回答

云服务器(Elastic Compute Service,简称ECS)是阿里云提供的性能卓越、稳定可靠、弹性扩展的IaaS(Infrastructure as a Service)级别云计算服务。云服务器ECS免去了您采购IT硬件的前期准备,让您像使用水、电、天然气等公共资源一样便捷、高效地使用服务器,实现计算资源的即开即用和弹性伸缩。阿里云ECS持续提供创新型服务器,解决多种业务需求,助力您的业务发展。 为什么选择云服务器ECS 选择云服务器ECS,您可以轻松构建具有以下优势的计算资源: 无需自建机房,无需采购以及配置硬件设施。 分钟级交付,快速部署,缩短应用上线周期。 快速接入部署在全球范围内的数据中心和BGP机房。 成本透明,按需使用,支持根据业务波动随时扩展和释放资源。 提供GPU和FPGA等异构计算服务器、弹性裸金属服务器以及通用的x86架构服务器。 支持通过内网访问其他阿里云服务,形成丰富的行业解决方案,降低公网流量成本。 提供虚拟防火墙、角色权限控制、内网隔离、防病毒攻击及流量监控等多重安全方案。 提供性能监控框架和主动运维体系。 提供行业通用标准API,提高易用性和适用性。 更多选择理由,请参见云服务器ECS的优势和应用场景。 产品架构 云服务器ECS主要包含以下功能组件: 实例:等同于一台虚拟服务器,内含CPU、内存、操作系统、网络配置、磁盘等基础的计算组件。实例的计算性能、内存性能和适用业务场景由实例规格决定,其具体性能指标包括实例vCPU核数、内存大小、网络性能等。 镜像:提供实例的操作系统、初始化应用数据及预装的软件。操作系统支持多种Linux发行版和多种Windows Server版本。 块存储:块设备类型产品,具备高性能和低时延的特性。提供基于分布式存储架构的云盘、共享块存储以及基于物理机本地存储的本地盘。 快照:某一时间点一块云盘或共享块存储的数据状态文件。常用于数据备份、数据恢复和制作自定义镜像等。 安全组:由同一地域内具有相同保护需求并相互信任的实例组成,是一种虚拟防火墙,用于设置实例的网络访问控制。 网络: 专有网络(Virtual Private Cloud):逻辑上彻底隔离的云上私有网络。您可以自行分配私网IP地址范围、配置路由表和网关等。 经典网络:所有经典网络类型实例都建立在一个共用的基础网络上。由阿里云统一规划和管理网络配置。 更多功能组件详情,请参见云服务器ECS产品详情页。 以下为云服务器ECS的产品组件架构图,图中涉及的功能组件的详细介绍请参见相应的帮助文档。whatIsECS 产品定价 云服务器ECS支持包年包月、按量付费、预留实例券、抢占式实例等多种账单计算模式。更多详情,请参见计费概述和云产品定价页。 管理工具 通过注册阿里云账号,您可以在任何地域下,通过阿里云提供的以下途径创建、使用或者释放云服务器ECS: ECS管理控制台:具有交互式操作的Web服务页面。关于管理控制台的操作,请参见常用操作导航。 ECS API:支持GET和POST请求的RPC风格API。关于API说明,请参见API参考。以下为调用云服务器ECS API的常用开发者工具: 命令行工具CLI:基于阿里云API建立的灵活且易于扩展的管理工具。您可基于命令行工具封装阿里云的原生API,扩展出您需要的功能。 OpenAPI Explorer:提供快速检索接口、在线调用API和动态生成SDK示例代码等服务。 阿里云SDK:提供Java、Python、PHP等多种编程语言的SDK。 资源编排(Resource Orchestration Service):通过创建一个描述您所需的所有阿里云资源的模板,然后资源编排将根据模板,自动创建和配置资源。 运维编排服务(Operation Orchestration Service):自动化管理和执行运维任务。您可以在执行模板中定义执行任务、执行顺序、执行输入和输出等,通过执行模板达到自动化完成运维任务的目的。 Terraform:能够通过配置文件在阿里云以及其他支持Terraform的云商平台调用计算资源,并对其进行版本控制的开源工具。 阿里云App:移动端类型的管理工具。 Alibaba Cloud Toolkit:阿里云针对IDE平台为开发者提供的一款插件,用于帮助您高效开发并部署适合在云端运行的应用。 部署建议 您可以从以下维度考虑如何启动并使用云服务器ECS: 地域和可用区 地域指阿里云的数据中心,地域和可用区决定了ECS实例所在的物理位置。一旦成功创建实例后,其元数据(仅专有网络VPC类型ECS实例支持获取元数据)将确定下来,并无法更换地域。您可以从用户地理位置、阿里云产品发布情况、应用可用性、以及是否需要内网通信等因素选择地域和可用区。例如,如果您同时需要通过阿里云内网使用云数据库RDS,RDS实例和ECS实例必须处于同一地域中。更多详情,请参见地域和可用区。 高可用性 为保证业务处理的正确性和服务不中断,建议您通过快照实现数据备份,通过跨可用区、部署集、负载均衡(Server Load Balancer)等实现应用容灾。 网络规划 阿里云推荐您使用专有网络VPC,可自行规划私网IP,全面支持新功能和新型实例规格。此外,专有网络VPC支持多业务系统隔离和多地域部署系统的使用场景。更多详情,请参见专有网络(Virtual Private Cloud)。 安全方案 您可以使用云服务器ECS的安全组,控制ECS实例的出入网访问策略以及端口监听状态。对于部署在云服务器ECS上的应用,阿里云为您提供了免费的DDoS基础防护和基础安全服务,此外您还可以使用阿里云云盾,例如: 通过DDoS高防IP保障源站的稳定可靠。更多详情,请参见DDoS高防IP文档。 通过云安全中心保障云服务器ECS的安全。更多详情,请参见云安全中心文档。 相关服务 使用云服务器ECS的同时,您还可以选择以下阿里云服务: 根据业务需求和策略的变化,使用弹性伸缩(Auto Scaling)自动调整云服务器ECS的数量。更多详情,请参见弹性伸缩。 使用专有宿主机(Dedicated Host)部署ECS实例,可让您独享物理服务器资源、降低上云和业务部署调整的成本、满足严格的合规和监管要求。更多详情,请参见专有宿主机DDH。 使用容器服务Kubernetes版在一组云服务器ECS上通过Docker容器管理应用生命周期。更多详情,请参见容器服务Kubernetes版。 通过负载均衡(Server Load Balancer)对多台云服务器ECS实现流量分发的负载均衡目的。更多详情,请参见负载均衡。 通过云监控(CloudMonitor)制定实例、系统盘和公网带宽等的监控方案。更多详情,请参见云监控。 在同一阿里云地域下,采用关系型云数据库(Relational Database Service)作为云服务器ECS的数据库应用是典型的业务访问架构,可极大降低网络延时和公网访问费用,并实现云数据库RDS的最佳性能。云数据库RDS支持多种数据库引擎,包括MySQL、SQL Server、PostgreSQL、PPAS和MariaDB。更多详情,请参见关系型云数据库。 在云市场获取由第三方服务商提供的基础软件、企业软件、网站建设、代运维、云安全、数据及API、解决方案等相关的各类软件和服务。您也可以成为云市场服务供应商,提供软件应用及服务。更多详情,请参见云市场文档。 更多方案,请参见阿里云解决方案。
1934890530796658 2020-03-24 14:03:02 0 浏览量 回答数 0

回答

设计微服务五个建议:1.它不会与其他服务共享数据库表2.它拥有最少量的数据库表3.它设计为有状态的或无状态的4.其数据可用性需求5.这是真相的唯一来源避免任意规则在设计和创建微服务时,不要陷入使用任意规则的陷阱。如果你阅读了足够多的建议,你会遇到下面的一些规则。虽然吸引人,但这些并不都是划分微服务边界的正确方法。如下:1.“微服务应该有X行代码”让我们弄清楚一件事。对于微服务中有多少行代码没有限制。微服务不会因为你写了几行额外的代码而突然变成单体巨石。关键是确保服务中的代码具有很高的凝聚力(稍后会详细介绍)。2.“将每个函数变成微服务”如果一个函数是根据三个输入值计算出某些东西,并返回一个结果,那么这个函数就是一个微服务吗?这个函数是否是一个可单独部署的应用程序吗?其实真的取决于函数是什么以及它如何服务于整个系统。其他任意规则包括那些不考虑整个上下文的规则,例如团队的经验,DevOps容量,服务在做什么以及数据的可用性需求等。精心设计的服务的特点如果您已阅读过有关微服务的文章,毫无疑问,您会发现有关设计良好的服务的建议。简而言之:高凝聚力和松散耦合。如果你不熟悉这些概念,有很多关于这些概念的文章。虽然合理的建议,但这些概念是相当抽象的。 我已经和数十位CTO就这个话题进行了交流,向他们学习他们如何划分微服务界限,下面为你们提供了一些潜在的特性。特性#1:它不会与其他服务共享数据库表当设计一个微服务时,如果你有多个引用同一个表的服务,这是一个红色警告,因为它可能意味着你的数据库是耦合的来源。“每个服务都应该有自己的表[并且]不应共享数据库表。” - Darby Frey,Lead Honestly共同创始人这实际上是关于服务与数据的关系,这正是Elastic Swiftype SRE的负责人Oleksiy Kovrin告诉我的:“我们在开发新服务时使用的主要基本原则之一是它们不应该跨越数据库边界。每项服务都应该依靠自己的一套底层数据存储。这使我们能够集中访问控制,审计日志记录,缓存逻辑等等,“他说。Kovyrin继续解释说,如果数据库表的一部分“与数据集的其余部分没有或很少有关系,这是一个强烈的信号,即组件可能可以被隔离到一个单独的API或单独的服务中。”特性#2:它具有最少量的数据库表正如第1章所提到的,微服务的理想尺寸应该足够小,但不能过小一点。每个服务的数据库表的数量也是一样。Scaylr工程负责人Steven Czerwinski在接受采访时向我解释说,Scaylr的甜蜜点是“一个服务 + 一个或两个数据库表”。特点#3:它有设计为有状态或无状态在设计微服务时,您需要问自己是否需要访问数据库,或者它是否将成为处理TB数据(如电子邮件或日志)的无状态服务。“我们通过定义服务的输入和输出来定义服务的边界。有时服务是网络API,但它也可能是一个处理输入文件并在数据库中生成记录的过程(这是我们的日志处理服务的情况)“ - Julien Lemoine要清楚这个前沿,它会导致更好的设计服务。特点#4:它的数据可用性需求被考虑在内在设计微服务时,您需要记住哪些服务将依赖于这项新服务,以及如果数据不可用,对系统的影响是什么。考虑到这一点,您可以为此服务正确设计数据备份和恢复系统。 当与Steven Czerwinski谈话时,他提到他们的关键客户行空间映射数据由于其重要性而以不同方式复制和分离到不同分区。“而每个分片信息,都是在自己的小分区中。 如果所在分区宕机,那么就没有备份可用,但它只影响5%的客户,而不是100%的客户,“Czerwinski解释说。特点#5:这是一个真理的单一来源要牢记的最后一个特点是设计一个服务,使其成为系统中某件事情的唯一真理来源。举例来说,当您从电子商务网站订购某物品时,会生成订单ID。此订单ID可供其他服务用于查询订单服务以获取有关订单的完整信息。使用pub / sub概念,在服务之间传递的数据应该是订单ID,而不是订单本身的属性/信息。只有订单服务具有完整的信息,并且是给定订单的唯一真实来源。考虑更大的团队对于大型系统而言,在确定服务边界时,组织架构考虑将发挥作用。有两点需要注意:独立发布时间表和不同的上线时间的重要性。Cloud66首席执行官Khash Sajadi表示:“我们所见过的最成功的微服务实施要么基于软件设计原则,例如基于领域驱动设计、面向服务架构SOA或反映组织方式的架构。“所以对于支付团队来说,”Sajadi继续说道,“他们有支付服务或信用卡验证服务,这是他们向外界提供的服务。这主要是关于向外界提供更多服务的业务部门。““[亚马逊CEO:杰夫贝佐斯]提出了'两个比萨饼'的规则 - 一个团队不能多到两个披萨饼还不够他们吃的地步。” - Iron.io首席技术官Travis Reeder亚马逊是拥有多个团队的大型组织的完美典范。正如在API推荐人发表的一篇文章中提到的,杰夫贝佐斯向所有员工发布了一份授权通知他们,公司内的每个团队都必须通过API进行沟通。任何不会的人将被解雇。这样,所有的数据和功能都通过接口暴露出来。贝佐斯还设法让每个团队解耦,定义他们的资源,并通过API使其可用。亚马逊总是自底而上从头开始建立一个系统。这可以让公司内的每个团队成为彼此的合作伙伴。我与Iron.io的首席技术官Travis Reeder谈到了贝佐斯的内部计划。“杰夫贝佐斯强制所有team都必须建立API来与其他team进行沟通,他也提出了'两个披萨'规则,一个团队不能多到两个披萨饼还不够他们吃的地步。”他说。“我认为这同样适用于这样情况:当一个小团队在开发、管理和生产方面开始变得笨拙或开始变慢,这说明这个团队可能已经太大了,“Reeder告诉我。如何判断服务是否太小,或许没有正确定义在微服务系统的测试和实施阶段,需要牢记下面两条出现现象。要注意的第一个现象是服务之间的任何过度依赖。如果两个服务不断地互相调用,那么这已经是一个强烈的耦合信号,他们如果并成一个服务可能更好。第二个现象:建立服务的开销超过了让其独立的好处。在这种情况下不如合并成一个服务。Darby Frey解释说:“每个应用程序需要将其日志汇总到某处并需要进行监控。您需要设置报警。然后需要有标准的响应操作程序,并在事情中断时运行。你必须管理SSH的访问权限。为了让应用程序正常运行,必须准备大量基础设施支持。“
wangccsy 2019-12-02 01:46:40 0 浏览量 回答数 0

回答

提交注册表单到后端处理时,调用第三方短信服务(手机号码,后端生成验证码),限制多少时间内重发。验证码可以保存数据库中有效时间,或者session中设置过期时间问题有些太开放,宽松制约。重新考虑一下需求;如你所说的确实是个问题。或者其他人解答一下手机号码注册,短信只作验证功能(省事,用户群体比较有质量,手机号码唯一性,防止恶意刷注册用户数)/邮箱验证也可以,用户体验上手机较好(后期还可以通过手机号码去分析用户) 如果每次登陆都用短信验证码(短信服务还是要钱的...这个一天登陆一多就懂) ######首先 非常感谢你这么认真的回答。 我看完后 再回复你。先谢谢你###### 1. 你们服务端生成 短信 内容 提交到他们那,验证码可以放到缓存里,用户确定的时候检查缓存.写一个公共的服务组件, Linux可用crontab Win可用定时任务,在指定时间段内 每分钟查询下数据库,提交到短信提供商.最好不要使用短信登陆. ######关于问题1 ,一般都是用户前台输入手机号,点击获取验证码按钮后先在自己服务器根据短信服务商的接口规范生成url(包括验证码的生成,生成之后保存在session或者数据库中),然后用curl发请求,收到一个唯一的短信id就表示发送成功了(但是有可能是对方服务器出了问题,收到了id用户还没收到短信,我遇到过这个问题,最后他们换了一个线路解决了)###### 引用来自“p2ng”的评论 提交注册表单到后端处理时,调用第三方短信服务(手机号码,后端生成验证码),限制多少时间内重发。验证码可以保存数据库中有效时间,或者session中设置过期时间问题有些太开放,宽松制约。重新考虑一下需求;如你所说的确实是个问题。或者其他人解答一下手机号码注册,短信只作验证功能(省事,用户群体比较有质量,手机号码唯一性,防止恶意刷注册用户数)/邮箱验证也可以,用户体验上手机较好(后期还可以通过手机号码去分析用户) 如果每次登陆都用短信验证码(短信服务还是要钱的...这个一天登陆一多就懂) 回复1: 一般大家的普通做法是 保持数据库中还是SESSION中 还是内存中啊。  验证码好像就是临时的吧。 这个手机验证码 是需要我自定义生成吗? 我做过登陆图形验证码。用户输入后判断下。就行。提交一次重新生成。 但这个貌似可以提交多次,直到你输入正确的短信验证码是吧? 回复2: 举个简单例子吧: 我加入要做个提醒的功能。  我在web网站上 设置好时间,设置后内容。然后我当天那个时间收到这个短信内容。 我就是提供给会员这个事情。  比如我做一个比赛预告的WEB页面,用户点击比赛前1小时短信提醒我。  回复3: 每次短信登陆的确很麻烦也很费钱。 但类似微博就是这种的啊。 可以提供手机短信登陆的啊。 短信登陆唯一好处就是 用户注册/登陆都一样的,这样用户注册的时候就没有密码设置这一项,用户第一次实用的体验度会很好。。。。 ###### 引用来自“金马超”的评论 你们服务端生成 短信 内容 提交到他们那,验证码可以放到缓存里,用户确定的时候检查缓存.写一个公共的服务组件, Linux可用crontab Win可用定时任务,在指定时间段内 每分钟查询下数据库,提交到短信提供商.最好不要使用短信登陆. 回复1: 大体思路我明白了,只是之前没做过短信注册这个模块。 我看看第三方1069通道的 应该不难。 或者网上搜搜下 回复2: linux的crontab定时任务和win我都会,但我的意思是 一个用户 写周四下午3点 那我这边就执行一个定时任务会不会太浪费了?也太多了? 或者你说,每分钟查下数据库 也就是每隔一分钟执行一个php脚本文件,遍历循环下? 有的话就发 没有的 就不发。 就等于轮询? 这样是不是很耗费服务器资源? 有没有其他解解方法 回复3: 你的意思是 短信注册可以,然后引导用户设置密码。 但手机短信登陆不建议ma? 但我的意思,像weibo就是手机短信验证码直接登陆 携程也是这样 还有一种是你说的只能手机+密码来登陆 那我的意思是,如果二者并行,怎么设计这个表。。。 ###### 引用来自“西南茂”的评论关于问题1 ,一般都是用户前台输入手机号,点击获取验证码按钮后先在自己服务器根据短信服务商的接口规范生成url(包括验证码的生成,生成之后保存在session或者数据库中),然后用curl发请求,收到一个唯一的短信id就表示发送成功了(但是有可能是对方服务器出了问题,收到了id用户还没收到短信,我遇到过这个问题,最后他们换了一个线路解决了) 回复1: 你的流程是   用户填手机号---》用户点击提交获取验证码--》服务器生成一个验证码---》这个验证码通过sdk 用curl发送到短信运营商---》短信运营商服务器收到后发到用户手机号上---》 用户收到输入这个验证码--》我们后台核对  OK? ######对,差不多就是这个流程###### 引用来自“金马超”的评论 你们服务端生成 短信 内容 提交到他们那,验证码可以放到缓存里,用户确定的时候检查缓存.写一个公共的服务组件, Linux可用crontab Win可用定时任务,在指定时间段内 每分钟查询下数据库,提交到短信提供商.最好不要使用短信登陆. 引用来自“kacc850”的评论 回复1: 大体思路我明白了,只是之前没做过短信注册这个模块。 我看看第三方1069通道的 应该不难。 或者网上搜搜下 回复2: linux的crontab定时任务和win我都会,但我的意思是 一个用户 写周四下午3点 那我这边就执行一个定时任务会不会太浪费了?也太多了? 或者你说,每分钟查下数据库 也就是每隔一分钟执行一个php脚本文件,遍历循环下? 有的话就发 没有的 就不发。 就等于轮询? 这样是不是很耗费服务器资源? 有没有其他解解方法 回复3: 你的意思是 短信注册可以,然后引导用户设置密码。 但手机短信登陆不建议ma? 但我的意思,像weibo就是手机短信验证码直接登陆 携程也是这样 还有一种是你说的只能手机+密码来登陆 那我的意思是,如果二者并行,怎么设计这个表。。。 写成一个公共的组件...   这个服务从指定的一张表里查询数据 eg  ID 内容 下发时间 手机号 ... 只要代码没问题的话  对服务器来说不会是什么太大的问题.嗯   是这样的,不建议短信登陆,可以用短信找回密码. 你们公司不是微博/携程,没人家那种财力,最好不要这么做, 而且短信这个行业也不是你想的那么简单,提交就能发的. 如果要并行的话,单独建立一张表用来记录短信登陆比较好. 用户表只放基本信息,短信登陆表 带上用户名,手机号,登陆时间,IP可有可无. 和用户表稍微关联下就行. ######硕达通短信平台,发验证码5秒到,发通知5秒到,速度快,到达率98%以上,成功计费(失败不计费)实时状态报告(成功失败一目了然)支持上下行 北京硕达通  www.shdat.com  买短信有红包!######凌凯短信:快/3秒响应 ·12年品牌塑造,三网(移动、联通、电信)通道,覆盖所有手机号码 ·3秒快速响应,行业领先(www.028lk.com)######雨林木风短信平台,三网合一,五秒达到,到达率99%,欢迎站内信哟~~~~
kun坤 2020-06-11 10:43:41 0 浏览量 回答数 0

问题

了解什么是 Redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?【Java问答】37期

面试题 了解什么是 Redis 的雪崩、穿透和击穿?Redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 Redis 的穿透? 面试官心理分析 其实这是问到缓存必问的&#...
剑曼红尘 2020-06-17 13:17:18 31 浏览量 回答数 1

问题

用户指南-读写分离-读写分离简介

功能介绍 当您开通读写分离功能后,实例中会存在如下三类地址: 主实例的连接地址:可以只有内网或者外网地址,也可以内外网地址共存。只读实例的连接地址:可以只有内网或者外...
李沃晟 2019-12-01 21:38:38 697 浏览量 回答数 0

问题

【教程免费下载】Flume日志收集与MapReduce模式

Preface?前  言 Hadoop是个非常优秀的开源工具,可以将海量的非结构化数据转换为易于管理的内容,从而更好地洞察客户需求。它很便宜(几乎是免费的),只要数据中心...
沉默术士 2019-12-01 22:07:57 1285 浏览量 回答数 1

回答

能干的多了去了看下面弹性计算云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务块存储:可弹性扩展、高性能、高可靠的块级随机存储专有网络 VPC:帮您轻松构建逻辑隔离的专有网络负载均衡:对多台云服务器进行流量分发的负载均衡服务弹性伸缩:自动调整弹性计算资源的管理服务资源编排:批量创建、管理、配置云计算资源容器服务:应用全生命周期管理的Docker服务高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机批量计算:简单易用的大规模并行批处理计算服务E-MapReduce:基于Hadoop/Spark的大数据处理分析服务数据库云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL云数据库MongoDB版:三节点副本集保证高可用云数据库Redis版:兼容开源Redis协议的Key-Value类型云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库云数据库HybridDB:基于Greenplum Database的MPP数据仓库云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库数据传输:比GoldenGate更易用,阿里异地多活基础架构数据管理:比phpMyadmin更强大,比Navicat更易用存储对象存储OSS:海量、安全和高可靠的云存储服务文件存储:无限扩展、多共享、标准文件协议的文件存储服务归档存储:海量数据的长期归档、备份服务块存储:可弹性扩展、高性能、高可靠的块级随机存储表格存储:高并发、低延时、无限容量的Nosql数据存储服务网络CDN:跨运营商、跨地域全网覆盖的网络加速服务专有网络 VPC:帮您轻松构建逻辑隔离的专有网络高速通道:高速稳定的VPC互联和专线接入服务NAT网关:支持NAT转发、共享带宽的VPC网关大数据(数加)MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具人工智能机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景云安全(云盾)服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。互联网中间件企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务云服务总线CSB:企业级互联网能力开放平台业务实施监控服务ARMS:端到端一体化实时监控解决方案产品分析E-MapReduce:基于Hadoop/Spark的大数据处理分析服务云数据库HybirdDB:基于Greenplum Database的MPP数据仓库高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机大数据计算服务MaxCompute:TB/PB级数据仓库解决方案分析型数据库:海量数据实时高并发在线分析开放搜索:结构化数据搜索托管服务管理与监控云监控:指标监控与报警服务访问控制:管理多因素认证、子账号与授权、角色与STS令牌资源编排:批量创建、管理、配置云计算资源操作审计:详细记录控制台和API操作密钥管理服务:安全、易用、低成本的密钥管理服务应用服务日志服务:针对日志收集、存储、查询和分析的服务开放搜索:结构化数据搜索托管服务性能测试:性能云测试平台,帮您轻松完成系统性能评估邮件推送:事务/批量邮件推送,验证码/通知短信服务API网关:高性能、高可用的API托管服务,低成本开放API物联网套件:助您快速搭建稳定可靠的物联网应用消息服务:大规模、高可靠、高并发访问和超强消息堆积能力视频服务视频点播:安全、弹性、高可定制的点播服务媒体转码:为多媒体数据提供的转码计算服务视频直播:低延迟、高并发的音频视频直播服务移动服务移动推送:移动应用通知与消息推送服务短信服务:验证码和短信通知服务,三网合一快速到达HTTPDNS:移动应用域名防劫持和精确调整服务移动安全:为移动应用提供全生命周期安全服务移动数据分析:移动应用数据采集、分析、展示和数据输出服务移动加速:移动应用访问加速云通信短信服务:验证码和短信通知服务,三网合一快速到达语音服务:语音通知和语音验证,支持多方通话流量服务:轻松玩转手机流量,物联卡专供物联终端使用私密专线:号码隔离,保护双方的隐私信息移动推送:移动应用通知与消息推送服务消息服务:大规模、高可靠、高并发访问和超强消息堆积能力邮件推送:事务邮件、通知邮件和批量邮件的快速发送
巴洛克上校 2019-12-02 00:25:55 0 浏览量 回答数 0

问题

Python 爬虫的工具列表

这个列表包含与网页抓取和数据处理的Python库 1. 网络 通用 urllib -网络库(stdlib)。requests -网络库。grab – 网络库(基于pycurl)。pycurl ...
驻云科技 2019-12-01 21:44:42 4079 浏览量 回答数 2

回答

互联网时代,大家提倡敏捷迭代,总嫌传统方式太重,流程复杂,影响效率,什 么都希望短平快,在扁平化的组织中,经常是需求火速分发到一线研发,然后就靠个 人折腾去了,其实技术架构评审这同样是一个非常重要的环节。架构评审或技术方案 评审的价值在于集众人的力量大家一起来分析看看方案里是否有坑,方案上线后是否会遇到不可逾越的重大技术问题,提前尽可能把一些事情先考虑到提出质疑其实对项 目的健康发展有很大的好处。 基于架构评审,我们的目标核心是要满足以下几点: 1. 设计把关,确保方案合格,各方面都考虑到了,避免缺陷和遗漏,不求方案 多牛,至少不犯错。 2. 保证架构设计合理和基本一致,符合整体原则。 3. 维持对系统架构的全局认知,避免黑盒效应。 4. 通过评审发掘创新亮点,推广最佳实践。 5. 架构设计既要保证架构设计的合理性和可扩展性,又要避免过度设计。架构设计 不仅仅是考虑功能实现,还有很多非功能需求,以及持续运维所需要的工作,需要工 程实践经验,进行平衡和取舍。 架构评审需要以下几点: 1. 技术选型:为什么选用 A 组件不选用 B、C 组件,A 是开源的,开源协议是 啥?基于什么语言开发的,出了问题我们自身是否能够维护?性能方面有没 有压测过?这些所有问题作为技术选型我们都需要考虑清楚,才能做最终决定。 2. 高性能:产品对应的 TPS、QPS 和 RT 是多少?设计上会做到的 TPS、 QPS 和 RT 是多少?而实际上我们整体随着数据量的增大系统性能会不会出 现明显问题?随着业务量、数据量的上升,我们的系统的性能如何去进一步 提高?系统哪个环节会是最大的瓶颈?是否有抗突发性能压力的能力,大概 可以满足多少的 TPS 和 QPS,怎么去做来实现高性能,这些问题都需要我 们去思考。 3. 高可用:是否有单点的组件,非单点的组件如何做故障转移?是否考虑过多活 的方案?是否有数据丢失的可能性?数据丢失如何恢复?出现系统宕机情况, 对业务会造成哪些影响?有无其他补救方案?这些问题需要想清楚,有相应 的解决方案。 4. 可扩展性:A 和 B 的业务策略相差无几,后面会不会继续衍生出 C 的业务策 略,随着业务的发展哪些环节可以做扩展,如何做扩展?架构设计上需要考 虑到业务的可扩展性。 5. 可伸缩性:每个环节的服务是不是无状态的?是否都是可以快速横向扩展的? 扩容需要怎么做手动还是自动?扩展后是否可以提高响应速度?这所有的问 题都需要我们去思考清楚,并有对应的解决方案。 6. 弹性处理:消息重复消费、接口重复调用对应的服务是否保证幂等?是否考虑 了服务降级?哪些业务支持降级?支持自动降级还是手工降级?是否考虑了 服务的超时熔断、异常熔断、限流熔断?触发熔断后对客户的影响?服务是 否做了隔离,单一服务故障是否影响全局?这些问题统统需要我们想清楚对 应的解决方案,才会进一步保证架构设计的合理性。 7. 兼容性:上下游依赖是否梳理过,影响范围多大?怎么进行新老系统替换?新 老系统能否来回切换?数据存储是否兼容老的数据处理?如果对你的上下游 系统有影响,是否通知到上下游业务方?上下游依赖方进行升级的方案成本 如何最小化?这些问题需要有完美的解决方案,稍有不慎会导致故障。 8. 安全性:是否彻底避免 SQL 注入和 XSS ?是否有数据泄露的可能性?是否 做了风控策略?接口服务是否有防刷保护机制?数据、功能权限是否做了控制?小二后台系统是否做了日志审计?数据传输是否加密验签?应用代码中 是否有明文的 AK/SK、密码?这些安全细节问题需要我们统统考虑清楚,安 全问题任何时候都不能轻视。 9. 可测性:测试环境和线上的差异多大?是否可以在线上做压测?线上压测怎 么隔离测试数据?是否有测试白名单功能?是否支持部署多套隔离的测试环 境?测试黑盒白盒工作量的比例是怎么样的?新的方案是否非常方便测试, 在一定程度也需要考量。 10. 可运维性:系统是否有初始化或预热的环节?数据是否指数级别递增?业务 数据是否需要定期归档处理?随着时间的推移如果压力保持不变的话系统需 要怎么来巡检和维护?业务运维方面的设计也需要充分考虑到。 11. 监控与报警:对外部依赖的接口是否添加了监控与报警?应用层面系统内部 是否有暴露了一些指标作监控和报警?系统层面使用的中间件和存储是否有 监控报警?只有充分考虑到各个环节的监控、报警,任何问题会第一时间通 知到研发,阻止故障进一步扩散。 其实不同阶段的项目有不同的目标,我们不会在项目起步的时候做 99.99% 的 可用性支持百万 QPS 的架构,高效完成项目的业务目标也是架构考虑的因素之一。 而且随着项目的发展,随着公司中间件和容器的标准化,很多架构的工作被标准化替 代,业务代码需要考虑架构方面伸缩性运维性等等的需求越来越少,慢慢的这些工作 都能由架构和运维团队来接。一开始的时候我们可以花一点时间来考虑这些问题,但 是不是所有的问题都需要有最终的方案。
Lee_tianbai 2020-12-30 18:33:39 0 浏览量 回答数 0

回答

本文介绍了创建及配置集群的基本配置流程和查看配置清单的方法,并详细说明了各高级配置项的用法。 基本配置流程 开通并创建NAS 首次创建E-HPC集群之前,需要先登录文件存储产品页面 开通NAS服务,NAS服务开通后,登录到NAS控制台开始 创建NAS文件系统,并为文件系统 添加挂载点,操作完成之后,就可以登录到EHPC控制台创建集群了。 创建集群 1.. 登录E-HPC管理控制台。如果尚未注册,请先单击 免费注册 完成注册流程(按照最新国家规定,需要实名制注册)。登录后定位到 弹性高性能计算,会直接显示如下的集群界面: ClusterView 2.. 在该 集群 界面,先选择地域(如华东1),单击右上角开始 创建集群。 注意1:请先了解地域和可用区。 注意2: 在创建、管理或使用E-HPC集群时,非特殊情况请勿使用云服务器ECS管理控制台调整单个集群节点。建议通过E-HPC集群管控平台操作。详情见 为什么不能使用ECS管理控制台对E-HPC集群节点进行操作? 第一步:硬件配置 硬件配置项包括:可用区、付费类型、部署方式和节点配置,如下图所示:HardwareConfig 选择可用区。 ZoneSelect 说明:为了保证E-HPC节点间的网络通讯效率,所有开通的节点均位于同一地域同一可用区,请参见地域和可用区。如果在开通E-HPC集群时发现想用的区域不可选,请参见为什么某些地域无法开通E-HPC集群 选择付费类型 付费类型是指集群节点ECS实例的计费方式,其中不包括弹性IP、NAS存储的费用。共有三种付费类型供您选择:包年包月、按量付费和竞价实例。ChargeMode 选择部署方式 DeployMode 说明: 标准:登录节点、管控节点和计算节点分离部署,管控节点可以选2台或4台(HA)。 简易:登录、管控服务混合部署在一台节点上,计算节点分离。 One-box: 所有类型的服务都部署在一台计算节点上,整个集群只有一个节点,可选择使用本地存储或NAS存储。使用NAS存储时可支持集群扩容。 4. 节点配置 NodeSelect 如上图,系统中默认分配2个管控节点实例,还可以自己选择1个或者4(HA)。计算节点的数量指定为3台。登录节点默认分配1台。点击节点的打开下拉菜单可进一步选择所需机型。 说明: E-HPC集群主要由以下3种节点构成 计算节点:用于执行高性能计算作业的节点 管控节点:用于进行作业角度和域账户管理的节点,包括相互独立的2种节点: 作业调度节点:部署作业调度器 域帐户管理节点:部署集群的域账号管理软件 登录节点:具备公网IP,用户可远程登录该节点,通过命令行操作HPC集群 一般来说,作业调度节点只处理作业调度,域帐户管理节点只处理帐户信息,都不参与作业运算,因此原则上管控节点选用较低配置的企业级实例(如小于4CPU核的sn1ne实例)保证高可用性即可。计算节点的硬件配置选择是影响集群性能的关键点。登录节点通常会被配置为开发环境,需要为集群所有用户提供软件开发调试所需的资源及测试环境,因此推荐登录节点选择与计算节点配置一致或内存配比更大的实例。各种机型的详细信息可参考推荐配置。 完成硬件配置后,点击下一步进入软件配置界面。 第二步:软件配置 软件配置项包括:镜像类型、操作系统、调度器和软件包,如下图所示:SoftwareConfig 说明: 选择不同的镜像类型,操作系统的可选项也会变化。操作系统指部署在集群所有节点上的操作系统。“镜像类型”说明: 若用户选择镜像为"自定义镜像类型",则不能使用基于已有E-HPC集群节点创建产生的自定义镜像,否则,创建集群计算节点将会产生异常。 调度器是指HPC集群上部署的作业调度软件。选择不同的作业调度软件,向集群提交作业时作业脚本和参数也会有相应的不同。 软件包是指HPC集群上部署的HPC软件,HPC提供多种类型的典型配置软件包如GROMACS、OpenFOAM和LAMMPS等,包含相应的软件和运行依赖,集群创建完毕之后,所选的软件将会预装到集群上。 第三步:基础配置 基础配置项包括:基本信息和登录设置,如下图所示:BaseConfig 说明: 基本信息中的名称是指集群名称,该名称将会在集群列表中显示,便于用户查找。 登录设置填写的是登录该集群的密码,该密码用于远程SSH访问集群登录节点时使用,对应的用户名为root。 完成基本配置后,勾选《E-HPC服务条款》,点击确认即可创建集群。 查看配置清单 您可以在创建集群界面的右侧查看当前配置清单。默认情况下,配置清单仅显示基础配置,您可以勾选高级配置选项查看更多配置项。 ConfigList 查看配置拓扑图 在创建完集群之后,点击右上角查看详情,我们可以查看到集群的在拓扑图。TopoButton 可以看到当前配置拓扑图中,包括VPC名称、交换机名称、NAS实例名、登录节点、管控节点、计算节点的配置及数量等。ClusterTopo 查询创建状态 大约20分钟后,您可以回到E-HPC集群页面,查看新集群状态。若新集群所有节点皆处于 运行中 的状态,则集群已创建完毕。下一步用户可登录到集群进行操作,请参见指引使用集群。 高级配置 按照基本配置流程可创建通用E-HPC集群,如果用户需要更灵活的配置,可以在高级配置选项下进行选择。创建集群的三个步骤中前两个步骤都有高级配置可供用户选择。 硬件高级配置 依次打开创建集群 > 硬件配置 > 高级配置,可以看到如下配置选项(本例在创建集群前已事先创建了网络、存储等基础服务): HardwareAdvConfig 网络配置 上图中的网络配置部分,用户可自行在阿里云专有网络控制台创建VPC、交换机,在阿里云云服务器控制台创建安全组,创建完成后即可在这里可以选择所需的VPC、交换机、安全组等网络配置。如果不想跳转到其他服务的控制台,也可点击此处的“创建VPC”、“创建子网(交换机)”链接,在右侧的滑动窗口中创建相应的组件。 说明:如果用户事先没有创建VPC和交换机,创建集群的流程将会自动创建默认一个默认的VPC和交换机,VPC网段为192.168.0.0/16,交换机网段为192.168.0.0/20。用户如果自行创建了VPC,需要在所需的可用区下自行创建交换机才可继续创建集群。如果用户自行创建了VPC和交换机,使用基础配置流程创建集群时将会自动选择第一个VPC和交换机,请确保交换机下的IP地址空间足够(可用IP数大于集群所有节点的数量),用户也可以在高级配置下的VPC和交换机配置中自行选择任何已创建的VPC和交换机。 共享存储配置 上图中的共享存储部分,E-HPC所有用户数据、用户管理、作业共享数据等信息都会存储在共享存储上以供集群各节点访问。目前共享存储是由文件存储NAS提供。而要使用NAS还要配套挂载点和远程目录。 说明:如果用户事先没有在当前可用区创建NAS实例和挂载点,创建集群的流程将会在可用区下自动创建默认一个默认的NAS实例与挂载点。如果用户在当前可用区自行创建了NAS实例和挂载点,使用基础配置流程创建集群时将会自动选择第一个NAS实例和挂载点。如果在该NAS实例在可用区下没有可用的挂载点,创建集群的流程会自动创建一个挂载点。请确保该NAS实例还有可用的挂载点余量。 系统盘大小配置 用户可以根据自己实际需求,在这里指定创建集群计算节点的系统盘大小,默认值是40,范围在40-500(G)之间。 该值与集群扩容时系统盘大小的默认值保持一致,用户也可以在集群扩容时为新扩容的节点重新设置系统盘大小。 软件高级配置 依次打开创建集群 > 软件配置 > 高级配置,进行高级选项配置。 队列配置 用户可在此处为创建的集群指定队列,当不指定时集群会加入到默认的队列,如,PBS集群的默认队列为workq,slurm集群的默认队列为comp. queueconfig 安装后执行脚本 集群部署完毕后,用户可以在此处执行脚本。PostScript 说明: 下载地址是指脚本文件所在的地址,一般将脚本上传到OSS服务,这里填写OSS文件的url。 执行参数是指执行脚本时需要传入的命令行参数。 软件版本 用户可以在此处选择域账号服务软件类型和具体的软件清单:VersionConfig 注意:在选择预装高性能计算应用软件时,必须选择所依赖的软件包(如mpich或openmpi,参见软件包名后缀)。如选择”-gpu”后缀的软件,必须确保计算节点使用GPU系列机型。否则会有集群创建失败或软件无法正常运行的风险。
1934890530796658 2020-03-23 16:48:30 0 浏览量 回答数 0

问题

创建及配置集群

硬件配置 登录E-HPC管理控制台。如果尚未注册,请先单击 [backcolor=transparent]免费注册 完成注册流程(按照最新国家规定,需要实名制注册)。登录后概...
反向一觉 2019-12-01 21:07:21 1249 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 答案来源网络,供您参考
问问小秘 2019-12-02 02:13:31 0 浏览量 回答数 0

问题

【百问百答】《零基础入门:从0到1学会Apache Flink》

Flink是如何部署的Flink 和Spark、Storm区别Flink特点Flink Runtime 层的主要架构是什么Flink Runtime Master 组件有哪些?分别有什么作用Flink 资源有哪些模式Flink...
一人吃饱,全家不饿 2021-01-08 15:32:13 9 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构,然后从网络、资源管理、存储、服务发现、负载均衡、高可用、rollingupgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。  当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。  1.Kubernetes的一些理念:  用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。  保证系统总是按照用户指定的状态去运行。  不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。  那些需要担心和不需要担心的事情。  更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。  对于Kubernetes的架构,可以参考官方文档。  大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。  看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在Kubernetes的未来版本中解决。  2.Kubernetes的主要特性  会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性->由于时间有限,只能简单一些了。  另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。  1)网络  Kubernetes的网络方式主要解决以下几个问题:  a.紧耦合的容器之间通信,通过Pod和localhost访问解决。  b.Pod之间通信,建立通信子网,比如隧道、路由,Flannel、OpenvSwitch、Weave。  c.Pod和Service,以及外部系统和Service的通信,引入Service解决。  Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。  注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖PodIP;通过Service环境变量或者DNS解决。  2)服务发现及负载均衡  kube-proxy和DNS,在v1之前,Service含有字段portalip和publicIPs,分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp,而在serviceport定义列表里,增加了nodePort项,即对应node上映射的服务端口。  DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取KubernetesAPI获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain,“tenx.domain”是提前设置的主域名。  注意:kube-proxy在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service的endpints或者Pods上。Kubernetes官方也在修复这个问题。  3)资源管理  有3个层次的资源限制方式,分别在Container、Pod、Namespace层次。Container层次主要利用容器本身的支持,比如Docker对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。  资源管理模型-》简单、通用、准确,并可扩展  目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的schedulerplugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。  4)高可用  主要是指Master节点的HA方式官方推荐利用etcd实现master选举,从多个Master中得到一个kube-apiserver保证至少有一个master可用,实现highavailability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。  一张图帮助大家理解:  也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver同一时间只能有一套运行。  5)rollingupgrade  RC在开始的设计就是让rollingupgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。  通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback当前正在执行的upgrade操作。  同样,Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。  6)存储  大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes的Volume就是主要来解决上面两个基础问题的。  Docker也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。  创建一个带Volume的Pod:  spec.volumes指定这个Pod需要的volume信息spec.containers.volumeMounts指定哪些container需要用到这个VolumeKubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。  emptyDir随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持RAM-backedfilesystemhostPath类似于Docker的本地Volume用于访问一些本地资源(比如本地Docker)。  gcePersistentDiskGCEdisk-只有在GoogleCloudEngine平台上可用。  awsElasticBlockStore类似于GCEdisk节点必须是AWSEC2的实例nfs-支持网络文件系统。  rbd-RadosBlockDevice-Ceph  secret用来通过KubernetesAPI向Pod传递敏感信息,使用tmpfs(aRAM-backedfilesystem)  persistentVolumeClaim-从抽象的PV中申请资源,而无需关心存储的提供方  glusterfs  iscsi  gitRepo  根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的:)  7)安全  一些主要原则:  基础设施模块应该通过APIserver交换数据、修改系统状态,而且只有APIserver可以访问后端存储(etcd)。  把用户分为不同的角色:Developers/ProjectAdmins/Administrators。  允许Developers定义secrets对象,并在pod启动时关联到相关容器。  以secret为例,如果kubelet要去pull私有镜像,那么Kubernetes支持以下方式:  通过dockerlogin生成.dockercfg文件,进行全局授权。  通过在每个namespace上创建用户的secret对象,在创建Pod时指定imagePullSecrets属性(也可以统一设置在serviceAcouunt上),进行授权。  认证(Authentication)  APIserver支持证书、token、和基本信息三种认证方式。  授权(Authorization)  通过apiserver的安全端口,authorization会应用到所有http的请求上  AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。  8)监控  比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的containermetrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。  Kubernetes集群范围内的监控主要由kubelet、heapster和storagebackend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。  注意:heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 “答案来源于网络,供您参考” 希望以上信息可以帮到您!
牧明 2019-12-02 02:16:53 0 浏览量 回答数 0

回答

我们先从整体上看一下Kubernetes的一些理念和基本架构, 然后从网络、 资源管理、存储、服务发现、负载均衡、高可用、rolling upgrade、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性。 当然也会包括一些需要注意的问题。主要目的是帮助大家快速理解 Kubernetes的主要功能,今后在研究和使用这个具的时候有所参考和帮助。 1.Kubernetes的一些理念: 用户不需要关心需要多少台机器,只需要关心软件(服务)运行所需的环境。以服务为中心,你需要关心的是api,如何把大服务拆分成小服务,如何使用api去整合它们。 保证系统总是按照用户指定的状态去运行。 不仅仅提给你供容器服务,同样提供一种软件系统升级的方式;在保持HA的前提下去升级系统是很多用户最想要的功能,也是最难实现的。 那些需要担心和不需要担心的事情。 更好的支持微服务理念,划分、细分服务之间的边界,比如lablel、pod等概念的引入。 对于Kubernetes的架构,可以参考官方文档。 大致由一些主要组件构成,包括Master节点上的kube-apiserver、kube-scheduler、kube-controller-manager、控制组件kubectl、状态存储etcd、Slave节点上的kubelet、kube-proxy,以及底层的网络支持(可以用Flannel、OpenVSwitch、Weave等)。 看上去也是微服务的架构设计,不过目前还不能很好支持单个服务的横向伸缩,但这个会在 Kubernetes 的未来版本中解决。 2.Kubernetes的主要特性 会从网络、服务发现、负载均衡、资源管理、高可用、存储、安全、监控等方面向大家简单介绍Kubernetes的这些主要特性 -> 由于时间有限,只能简单一些了。 另外,对于服务发现、高可用和监控的一些更详细的介绍,感兴趣的朋友可以通过这篇文章了解。 1)网络 Kubernetes的网络方式主要解决以下几个问题: a. 紧耦合的容器之间通信,通过 Pod 和 localhost 访问解决。 b. Pod之间通信,建立通信子网,比如隧道、路由,Flannel、Open vSwitch、Weave。 c. Pod和Service,以及外部系统和Service的通信,引入Service解决。 Kubernetes的网络会给每个Pod分配一个IP地址,不需要在Pod之间建立链接,也基本不需要去处理容器和主机之间的端口映射。 注意:Pod重建后,IP会被重新分配,所以内网通信不要依赖Pod IP;通过Service环境变量或者DNS解决。 2) 服务发现及负载均衡 kube-proxy和DNS, 在v1之前,Service含有字段portalip 和publicIPs, 分别指定了服务的虚拟ip和服务的出口机ip,publicIPs可任意指定成集群中任意包含kube-proxy的节点,可多个。portalIp 通过NAT的方式跳转到container的内网地址。在v1版本中,publicIPS被约定废除,标记为deprecatedPublicIPs,仅用作向后兼容,portalIp也改为ClusterIp, 而在service port 定义列表里,增加了nodePort项,即对应node上映射的服务端口。 DNS服务以addon的方式,需要安装skydns和kube2dns。kube2dns会通过读取Kubernetes API获取服务的clusterIP和port信息,同时以watch的方式检查service的变动,及时收集变动信息,并将对于的ip信息提交给etcd存档,而skydns通过etcd内的DNS记录信息,开启53端口对外提供服务。大概的DNS的域名记录是servicename.namespace.tenx.domain, "tenx.domain"是提前设置的主域名。 注意:kube-proxy 在集群规模较大以后,可能会有访问的性能问题,可以考虑用其他方式替换,比如HAProxy,直接导流到Service 的endpints 或者 Pods上。Kubernetes官方也在修复这个问题。 3)资源管理 有3 个层次的资源限制方式,分别在Container、Pod、Namespace 层次。Container层次主要利用容器本身的支持,比如Docker 对CPU、内存、磁盘、网络等的支持;Pod方面可以限制系统内创建Pod的资源范围,比如最大或者最小的CPU、memory需求;Namespace层次就是对用户级别的资源限额了,包括CPU、内存,还可以限定Pod、rc、service的数量。 资源管理模型 -》 简单、通用、准确,并可扩展 目前的资源分配计算也相对简单,没有什么资源抢占之类的强大功能,通过每个节点上的资源总量、以及已经使用的各种资源加权和,来计算某个Pod优先非配到哪些节点,还没有加入对节点实际可用资源的评估,需要自己的scheduler plugin来支持。其实kubelet已经可以拿到节点的资源,只要进行收集计算即可,相信Kubernetes的后续版本会有支持。 4)高可用 主要是指Master节点的 HA方式 官方推荐 利用etcd实现master 选举,从多个Master中得到一个kube-apiserver 保证至少有一个master可用,实现high availability。对外以loadbalancer的方式提供入口。这种方式可以用作ha,但仍未成熟,据了解,未来会更新升级ha的功能。 一张图帮助大家理解: 也就是在etcd集群背景下,存在多个kube-apiserver,并用pod-master保证仅是主master可用。同时kube-sheduller和kube-controller-manager也存在多个,而且伴随着kube-apiserver 同一时间只能有一套运行。 5) rolling upgrade RC 在开始的设计就是让rolling upgrade变的更容易,通过一个一个替换Pod来更新service,实现服务中断时间的最小化。基本思路是创建一个复本为1的新的rc,并逐步减少老的rc的复本、增加新的rc的复本,在老的rc数量为0时将其删除。 通过kubectl提供,可以指定更新的镜像、替换pod的时间间隔,也可以rollback 当前正在执行的upgrade操作。 同样, Kuberntes也支持多版本同时部署,并通过lable来进行区分,在service不变的情况下,调整支撑服务的Pod,测试、监控新Pod的工作情况。 6)存储 大家都知道容器本身一般不会对数据进行持久化处理,在Kubernetes中,容器异常退出,kubelet也只是简单的基于原有镜像重启一个新的容器。另外,如果我们在同一个Pod中运行多个容器,经常会需要在这些容器之间进行共享一些数据。Kuberenetes 的 Volume就是主要来解决上面两个基础问题的。 Docker 也有Volume的概念,但是相对简单,而且目前的支持很有限,Kubernetes对Volume则有着清晰定义和广泛的支持。其中最核心的理念:Volume只是一个目录,并可以被在同一个Pod中的所有容器访问。而这个目录会是什么样,后端用什么介质和里面的内容则由使用的特定Volume类型决定。 创建一个带Volume的Pod: spec.volumes 指定这个Pod需要的volume信息 spec.containers.volumeMounts 指定哪些container需要用到这个Volume Kubernetes对Volume的支持非常广泛,有很多贡献者为其添加不同的存储支持,也反映出Kubernetes社区的活跃程度。 emptyDir 随Pod删除,适用于临时存储、灾难恢复、共享运行时数据,支持 RAM-backed filesystemhostPath 类似于Docker的本地Volume 用于访问一些本地资源(比如本地Docker)。 gcePersistentDisk GCE disk - 只有在 Google Cloud Engine 平台上可用。 awsElasticBlockStore 类似于GCE disk 节点必须是 AWS EC2的实例 nfs - 支持网络文件系统。 rbd - Rados Block Device - Ceph secret 用来通过Kubernetes API 向Pod 传递敏感信息,使用 tmpfs (a RAM-backed filesystem) persistentVolumeClaim - 从抽象的PV中申请资源,而无需关心存储的提供方 glusterfs iscsi gitRepo 根据自己的需求选择合适的存储类型,反正支持的够多,总用一款适合的 :) 7)安全 一些主要原则: 基础设施模块应该通过API server交换数据、修改系统状态,而且只有API server可以访问后端存储(etcd)。 把用户分为不同的角色:Developers/Project Admins/Administrators。 允许Developers定义secrets 对象,并在pod启动时关联到相关容器。 以secret 为例,如果kubelet要去pull 私有镜像,那么Kubernetes支持以下方式: 通过docker login 生成 .dockercfg 文件,进行全局授权。 通过在每个namespace上创建用户的secret对象,在创建Pod时指定 imagePullSecrets 属性(也可以统一设置在serviceAcouunt 上),进行授权。 认证 (Authentication) API server 支持证书、token、和基本信息三种认证方式。 授权 (Authorization) 通过apiserver的安全端口,authorization会应用到所有http的请求上 AlwaysDeny、AlwaysAllow、ABAC三种模式,其他需求可以自己实现Authorizer接口。 8)监控 比较老的版本Kubernetes需要外接cadvisor主要功能是将node主机的container metrics抓取出来。在较新的版本里,cadvior功能被集成到了kubelet组件中,kubelet在与docker交互的同时,对外提供监控服务。 Kubernetes集群范围内的监控主要由kubelet、heapster和storage backend(如influxdb)构建。Heapster可以在集群范围获取metrics和事件数据。它可以以pod的方式运行在k8s平台里,也可以单独运行以standalone的方式。 注意: heapster目前未到1.0版本,对于小规模的集群监控比较方便。但对于较大规模的集群,heapster目前的cache方式会吃掉大量内存。因为要定时获取整个集群的容器信息,信息在内存的临时存储成为问题,再加上heaspter要支持api获取临时metrics,如果将heapster以pod方式运行,很容易出现OOM。所以目前建议关掉cache并以standalone的方式独立出k8s平台。 此答案来源于网络,希望对你有所帮助。
养狐狸的猫 2019-12-02 02:13:33 0 浏览量 回答数 0

问题

如何避免错误处理?

调用CloudPushService的相关接口时,如果发生错误,可以在CommonCallback的onFailed()回调中可以获取到errorCode和errorMessage。 <a name&#...
猫饭先生 2019-12-01 21:57:23 1042 浏览量 回答数 0

回答

大数据系统部署方法 大数据的部署是个复杂的过程,涉及内容众多,但无论如何都离不开以客户需求为导向。所以我们首先需要从客户的角度去考虑对方的需求,抽取出影响点,如实际运行时大概的数据量,客户的实时性要求怎样,高可用方面的要求如何,如此等等。 进而我们依据上述的要求来考虑硬件的选型、平台软件的版本选择、部署时组件的配合以及组件自身针对业务形态进行的优化配置。 一般来说,对于硬件往往是配置越高越好,但客户往往也关注效费比等经济性方面的问题,因此我们进行大数据部署时也需要寻找一个经济上的均衡点,让硬件能最大效率的发挥出功能和性能。 大数据项目的实施,一般从概念阶段到部署上线主要分为以下几个步骤: 需求分析 首先就需要和使用大数据平台的用户进行充分的沟通,通过沟通了解用户将来运行的上层业务的业务特点以及重点。一般来说,大数据的业务类型基本可分为离线业务和在线业务,离线业务主要为MapReduce,进行数据的分析计算处理;在线业务主要为HBase,HBase对外提供实时的数据查询业务。当然上层业务也可能基于Hive来处理,但Hive实质上还是基于MapReduce。 了解用户业务运行时的数据量,分析数据模型,包括已有的数据量、后续单位时间内增加的数据量,以及用户期望的数据保存时间等要求。 模型设计 基于用户的数据量等信息设计存储和计算模型。 考虑数据的存储方式是通过HDFS进行存储还是通过HBase进行存储,或者两者兼而有之。如果用户的数据较为离散,并且只有存储的简单要求,一般单纯采用HDFS即可满足要求。如果用户数据存在外部查询用途,且实时性要求较高,则可以考虑采用HBase进行存储,通过HBase对外提供在线查询业务。 硬件规划 主要基于用户的需求进行硬件规划、部署设计、以及IP地址的规划。需要考虑每台服务器的单节点的性能要求。如计算要求高,则CPU和内存的配置要求也较高,同时在部署设计上需要把计算节点独立出来,避免存储节点占用过多CPU,导致计算延迟。如存储要求高,则需要加大磁盘的容量,在部署设计上可以多DataNode节点分担文件读写压力,同时将计算节点和DataNode节点合设,以减少服务器数量。 市场上有各种类型的磁盘,性能上存在差异,所以还要考虑磁盘类型的选择,一般来说选用sas盘较多,性能要求较低可考虑sata盘,性能要求较高可考虑采用ssd盘。 另外还可以通过raid来辅助实现磁盘性能的提升以及高可靠性的提升。 同时平台的整体部署离不开高性能网络的支撑,所以网络建议采用万兆网,既可以降低网络部署的复杂性,也可以提高可维护性。特殊情况下,也可以采用多网口绑定的方式,但是往往会大幅提高网络部署的复杂性。 对于实现高可用,我们一般都会对网络采用双网双平面的部署方式,如下图所示(图中略去防火墙等设备,主要保留平台所需的设备)。 干货丨大数据系统部署4大步骤5大原则 软件规划 根据用户的业务,规划采用哪些组件来满足用户的功能要求,并且通过部署来实现业务的高可用,高可扩展。 在各个节点部署服务时,还要注意服务间的依赖关系。如HDFS的QJM方式的HA实现对Zookeeper有依赖。 硬件部署 即完成机架的部署和网络的部署,以及服务器在机架上的部署。如果有raid卡的话还要完成raid卡的设置。 软件部署 当硬件完成部署后,接下来就是部署软件了,包括操作系统的安装配置,以及大数据平台的安装配置。 操作系统安装完后,如果是多网口绑定,那就还需要作网口绑定设置。 然后就是最关键的大数据平台的部署了,中兴通讯自研了一套功能强大的管理系统,可完成大规模的平台部署,同时完成大量节点的部署,自动高效。 为保证大数据系统的稳定可靠运行,在整体部署上应遵循如下隔离原则: 生产环境和测试环境的隔离 系统环境分为生产环境和测试环境。其中生产环境用于实际运营,承载真实业务数据和业务应用;测试环境用于各种功能验证和性能测试等,包括应用在上线前的功能验证。如把两个环境合用,将带来很多不确定性,测试环境容易对生产环境造成干扰,影响生产环境正常业务的提供,甚至测试环境中不成熟的应用和业务运行时可能对环境造成破坏性的影响。因此对两个环境进行物理隔离,两者独立运行,互不干扰,防止因硬件资源的占用或者抢夺对运行造成不必要的影响。 不同集群的隔离 为避免可能存在的机架断电导致集群数据丢失或者停止服务,需要将属于同一个集群的不同节点分别部署到不同的机架上,通过多个机架的方式提供对服务器的承载。每个集群都基于一套独立的HDFS运行,这样从物理上和逻辑上与其他集群都进行了隔离。 在线应用和离线应用的隔离 在大数据平台上运行的应用分为在线应用和离线应用两大类。为保证重点在线应用的正常运行,需要单独规划HBase集群,且该集群基于一套独立的HDFS运行,从物理上和逻辑上和其他集群都进行隔离。 不同在线应用的隔离 对于在线应用,分为一般在线应用和重点在线应用,重点在线应用基于一套独立的HDFS运行,实现物理隔离,用于存储重要的在线数据,保证实时查询服务的持续提供。一般在线应用用于提供普通的HBase查询,对实时性的要求低于重点在线应用,所以可和离线应用部署在一个集群中。 不同应用数据的隔离 集群中的数据都是基于HDFS进行存放的,因此对于属于同一个集群内的应用的数据隔离,可通过设置不同的HDFS目录存放的方式实现不同应用数据的隔离,参见下图: 干货丨大数据系统部署4大步骤5大原则 不同应用属于不同的用户,不同的应用使用不同的目录,然后通过对目录进行权限配置的方式进行隔离和共享。
1748847708358317 2019-12-02 03:11:09 0 浏览量 回答数 0

问题

Redis 4.0、codis 、云数据库 Redis 版集群对比分析

架构对比 Redis 4.0 cluster Redis 4.0 版本的集群是去中心化的结构,集群元数据信息分布在每个节点上,主备切换依赖于多个节点协商选主。Redis 提供了 redis-trib ...
云栖大讲堂 2019-12-01 21:20:41 1050 浏览量 回答数 0
阿里云企业服务平台 陈四清的老板信息查询 上海奇点人才服务相关的云产品 爱迪商标注册信息 安徽华轩堂药业的公司信息查询 小程序定制 上海微企信息技术相关的云产品 国内短信套餐包 ECS云服务器安全配置相关的云产品 天籁阁商标注册信息 开发者问答 阿里云建站 自然场景识别相关的云产品 万网 小程序开发制作 视频内容分析 视频集锦 代理记账服务 北京芙蓉天下的公司信息查询