• 关于

    自复制自动机不可用

    的搜索结果

回答

不同的问题有不同的解决方案。如果是觉得单机redis服务器可用性不高,则可以做至少一个redis从机,这又取决于你希望做到多高的可用性,从机可以配置多台,冗余越多,在出问题的情况下恢复速度越快,业务可用性就更高,你的主从复制策略又有很多现则可以做。若希望在主机出现故障后,应用自动转移到从机上,则可以在客户端上实现,也可以通过代理服务器实现,Redis Sentinel也是一种解决方案。如果你的问题是多台redis集群的内存不够大,扩展性有问题,那么你应该首先做按照应用的垂直切换,将不用的应用连接使用不同的redis集群,若单个应用的内存使用量太大,单个redis服务器的内存不够大,则又可以做按照key做散列,将散列后的数据放入不同的redis分片上去。

落地花开啦 2019-12-02 01:52:35 0 浏览量 回答数 0

回答

你好,非常感谢你关注我的文章以正确方式连接复制集来保证高可用是指(以写操作为例说明)当你后端的复制集有成员故障时,可能会选出新的primary,这时driver会自动检测到后端节点宕机时,会获取到最新的副本集状态,然后向新的primary写入,这样应用程序就能继续写入。但如果使用driver时,仅仅只是『正确连接副本集』是远远不够的,应用程序该做的基本逻辑还是要有的,不然也是无法保证高可用。应用程序需要检查每次写入操作的执行结果,只有成功返回了,才能认为数据写入成功。如果应用程序不能接受数据丢失,需要在写入时指定更高级别的WriteConcern,比如{w: majority},保证数据成功写入大多数节点才返回。按你描述的场景,正确连接副本集后,如果你做了上述1、2的工作,是完全可以保证服务高可用,数据高可靠的。

张友东(林青) 2019-12-02 01:43:39 0 浏览量 回答数 0

回答

下文将RDS和自建数据库从多个方面进行对比,介绍RDS具有的优势。 特性对比 对比项 云数据库RDS 自购服务器搭建数据库服务 服务可用性 高可用架构提供高可用性。 需自行保障,自行搭建主备复制,自建RAID等。 数据可靠性 自动主备复制、数据备份、日志备份等。 需自行保障,自行搭建主备复制,自建RAID等。 系统安全性 防DDoS攻击,流量清洗;及时修复各种数据库安全漏洞。 自行部署,价格高昂;自行修复数据库安全漏洞。 数据库备份 自动备份。 自行实现,但需要寻找备份存放空间以及定期验证备份是否可恢复。 软硬件投入 无软硬件投入,按需付费。 数据库服务器成本相对较高,对于SQL Server还需支付许可证费用。 系统托管 无托管费用。 每台2U服务器每年超过5000元(如果需要主备,两台服务器需超过10000元/年)。 维护成本 无需运维。 需招聘专职DBA来维护,花费大量人力成本。 部署扩容 即时开通,快速部署,弹性扩容。 需硬件采购、机房托管、机器部署等工作,周期较长。 资源利用率 按实际结算,100%利用率。 由于业务有高峰期和低峰期,资源利用率很低。 价格对比 费用 云数据库RDS 自购服务器搭建数据库服务 硬件费用和备品配件费用 RDS实例的费用。例如,内存1200 MB、存储空间50 GB(IOPS能力可达到600)的实例费用是2040元/年。 至少需要2台数据库服务器。每台IOPS能力达到600的服务器费用大约是6000元。 1台用于连接前端Web服务器的内网交换机(便宜的1U非网管交换机为1000元左右)。 后期硬件损坏和更换至少还要消耗30%费用。 硬件花费:(6000 × 2 + 1000)× 130% = 16900元。 每年费用:16900元/3 = 5633元(硬件按照3年折旧计算)。 机房托管费用 服务商负责,无需付费。 1U机柜空间托管费用为3000元/年,共有2台1U服务器和1台1U内网交换机需要计费,机房托管费用:3000 × 3 = 9000元。 带宽费用 同一地域内,ECS和RDS可以通过内网互通,且不收取费用。 若在不同地域,ECS和RDS可以通过外网互通,需收取外网流量费用,详细收费标准请参见云数据库RDS详细价格信息。 只用于内网,不产生公网费用。 数据库运维工程师费用 数据库维护由服务商负责,无人员成本。 1个初级DBA工程师月薪至少5000/月,假设当前项目占用该工程师30%的工作量,则人员成本为5000 × 12× 30% = 18000元。 每年总费用 2040元/年。 32633元/年。 RDS MySQL与自建数据库对比优势 对比项 RDS MySQL ECS自建 IDC自建 性价比 弹性资源; ALISQL提供各种特性功能,提升用户使用感受; 备份有一半实例空间免费; 公网流量免费; 免费使用自带的域名; 更新速度快,紧跟MySQL最新版本。 弹性资源; 开源版无性能优化; 备份空间独立收费; 公网流量收费。 一次投入的沉没成本大; 开源版无性能优化; 需要独立准备备份资源,成本极高; 公网流量收费,域名费用高。 可用性 基础版约15分钟即可完成故障转移; 高可用版和集群版提供自研高可用系统,实现30秒内故障恢复; 只读实例自动实现负载均衡; 读写分离使用方便; 未来会推出分析节点,满足分析型场景需求。 基础版约30分钟完成故障转移; 需要单独购买高可用系统; 需要单独实现或者购买负载均衡; 分析型场景需要与分析型数据库结合,搭建难度大、成本高。 单机实例,少则两小时,多则等待配货数周; 需要单独购买高可用系统; 需要单独实现或者购买负载均衡设备; 分析型场景需要与分析型数据库结合,搭建难度大、成本高。 可靠性 数据可靠性高,自动主备复制、数据备份、日志备份等; MySQL 5.6三节点企业版,实现RPO(Recovery Point Object)=0; MySQL 5.7三节点企业版(MGR),实现RPO=0、RTO(Recovery Time Objective) < 1分钟。 在好的架构下才能实现高可靠性; 实现RPO=0的成本极高,需要单独购买研发服务。 数据可靠性一般,取决于单块磁盘的损害概率; 实现RPO=0的成本极高,需要单独购买研发服务。 易用性 自动化备份恢复系统,支持按时间点恢复、单库备份恢复等,流式备份对实例性能影响小; 自动化监控告警系统,支持秒级监控,覆盖实例和数据库所有性能指标,支持短信、邮箱、旺旺、钉钉等通道,且根据消费有大额度的免费短信数量; 支持异地容灾; 支持一键版本升级。 无自动备份系统,流式备份能力需要单独实现,实现按时间点恢复功能成本高; 需要单独购买监控系统,在云监控中配置告警系统; 技术实现难度极大; 版本升级成本高。 无自动备份系统,流式备份能力需要单独实现,实现按时间点恢复功能成本高; 需要单独购买或配置监控系统,通道较少,成本较高; 异地数据中心成本极高,技术实现难度也大,很难实现异地容灾; 版本升级成本高。 性能 MySQL的本地SSD盘实例性能极佳; MySQL的ESSD性能较SSD提升显著; 增加只读实例之后性能强劲且负载均衡; CloudDBA提供高级优化能力; SQL洞察满足大部分监控及性能优化数据库场景。 ECS本地盘意味着降低数据可靠性,采用云盘的话需要规划架构,成本支出较大; 基于ESSD的ECS自建MySQL性能低于基于ESSD的RDS MySQL性能; 实现集群版的难度较高,咨询成本较高,维护成本极高; 依赖资深DBA,支出大,受制于人。 比云计算硬件更新速度慢,性能一般都会低于云数据库; 难以实现计算和存储分离,若使用高端存储实现计算和存储分离,动辄需要数千万支出; 实现集群版的难度较高,咨询成本较高,维护成本极高; 依赖资深DBA,支出大,受制于人。 安全 事前防护:白名单、安全组、专有网络隔离; 事中保护:连接链路加密、数据落盘加密(BYOK覆盖多种存储介质); 事后审计:SQL洞察、历史事件。 事前防护:白名单、安全组、专有网络隔离; 事中保护:需要单独实现连接链路加密和数据落盘加密,BYOK密钥轮转难度大,咨询成本较高; 事后审计:审计困难,需要单独保存SQL日志。 事前防护:白名单和专有网络隔离的咨询成本较高; 事中保护:需要单独实现连接链路加密和数据落盘加密,BYOK密钥轮转难度大,咨询成本较高; 事后审计:审计困难,需要单独保存SQL日志。 RDS SQL Server与自建数据库对比优势 对比项 RDS SQL Server ECS自建 IDC自建 性价比 弹性资源; WEB版性价比极高; 备份有一半实例空间免费; 公网流量免费。 弹性资源; 不可使用WEB版; 备份空间独立收费; 公网流量收费。 一次投入的沉没成本大; 不可使用WEB版; 需要独立准备备份资源,成本极高; 公网流量收费,域名费用高。 可用性 基础版约15分钟即可完成故障转移; 高可用版和集群版提供自研高可用系统,实现30秒内故障恢复; 集群版的只读实例自动实现负载均衡; 集群版的读写分离使用方便。 基础版约30分钟完成故障转移; 需要单独购买高可用系统; 需要单独实现或者购买负载均衡。 单机实例,少则两小时,多则等待配货数周; 需要单独购买高可用系统; 需要单独实现或者购买负载均衡设备。 可靠性 数据可靠性高,自动主备复制、数据备份、日志备份等; 集群版可实现RPO(Recovery Point Object)=0。 在好的架构下才能实现高可靠性; 实现RPO=0的成本极高,需要单独购买研发服务。 数据可靠性一般,取决于单块磁盘的损害概率; 实现RPO=0的成本极高,需要单独购买研发服务。 易用性 自动化备份恢复系统,支持按时间点恢复、单库备份恢复等,流式备份对实例性能影响小; 自动化监控告警系统,支持秒级监控,覆盖实例和数据库所有性能指标,支持短信、邮箱、旺旺、钉钉等通道,且根据消费有大额度的免费短信数量; 即将支持异地容灾。 无自动备份系统,流式备份能力需要单独实现,实现按时间点恢复功能成本高; 需要单独购买监控系统,在云监控中配置告警系统; 技术实现难度极大。 无自动备份系统,流式备份能力需要单独实现,实现按时间点恢复功能成本高; 需要单独购买或配置监控系统,通道较少,成本较高; 异地数据中心成本极高,技术实现难度也大,很难实现异地容灾。 性能 SQL Server 2008 R2的本地SSD盘实例性能极佳,SQL Server 201x版本新计算存储分离架构可享受硬件红利 ; SQL Server的ESSD性能较SSD提升显著; 增加只读实例之后性能强劲且负载均衡; CloudDBA提供高级优化能力。 ECS本地盘意味着降低数据可靠性,采用云盘的话需要规划架构,成本支出较大; 基于ESSD的ECS自建SQL Server性能低于基于ESSD的RDS SQL Server性能; 实现集群版的难度较高,咨询成本较高,维护成本极高; 依赖资深DBA,支出大,受制于人。 比云计算硬件更新速度慢,性能一般都会低于云数据库; 难以实现计算和存储分离,若使用高端存储实现计算和存储分离,动辄需要数千万支出; 实现集群版的难度较高,咨询成本较高,维护成本极高; 依赖资深DBA,支出大,受制于人。 安全 事前防护:白名单、专有网络隔离; 事中保护:连接链路加密、数据落盘加密; 事后审计:SQL审计(数据库审计)、历史事件; 微软安全更新,阿里技术兜底。 事前防护:白名单、安全组、专有网络隔离; 事中保护:需要单独实现连接链路加密和数据落盘加密,咨询成本较高; 事后审计:审计困难,需要单独保存SQL日志。 事前防护:白名单和专有网络隔离的咨询成本较高; 事中保护:需要单独实现连接链路加密和数据落盘加密,咨询成本较高; 事后审计:审计困难,需要单独保存SQL日志。 法律 附带License,无法律风险; 即将支持自带License,降低整体成本支出。 只有单独购买License。 只有单独购买License,否则法律风险极大。

游客yl2rjx5yxwcam 2020-03-09 10:46:50 0 浏览量 回答数 0

阿里云试用中心,为您提供0门槛上云实践机会!

0元试用32+款产品,最高免费12个月!拨打95187-1,咨询专业上云建议!

问题

云数据库Redis 标准版-单副本简介

云栖大讲堂 2019-12-01 21:19:13 1106 浏览量 回答数 0

问题

对比ECS自建数据库与RDS性能时的注意事项

云栖大讲堂 2019-12-01 21:42:55 1114 浏览量 回答数 0

问题

产品优势-RDS与自建数据库对比优势

李沃晟 2019-12-01 21:35:56 737 浏览量 回答数 0

问题

【Java问答学堂】2期 如何保证消息队列的高可用?

剑曼红尘 2020-04-17 09:04:32 75 浏览量 回答数 2

回答

面试官心理分析 如果有人问到你 MQ 的知识,高可用是必问的。上一讲提到,MQ 会导致系统可用性降低。所以只要你用了 MQ,接下来问的一些要点肯定就是围绕着 MQ 的那些缺点怎么来解决了。 要是你傻乎乎的就干用了一个 MQ,各种问题从来没考虑过,那你就杯具了,面试官对你的感觉就是,只会简单使用一些技术,没任何思考,马上对你的印象就不太好了。这样的同学招进来要是做个 20k 薪资以内的普通小弟还凑合,要是做薪资 20k+ 的高工,那就惨了,让你设计个系统,里面肯定一堆坑,出了事故公司受损失,团队一起背锅。 面试题剖析 这个问题这么问是很好的,因为不能问你 Kafka 的高可用性怎么保证?ActiveMQ 的高可用性怎么保证?一个面试官要是这么问就显得很没水平,人家可能用的就是 RabbitMQ,没用过 Kafka,你上来问人家 Kafka 干什么?这不是摆明了刁难人么。 所以有水平的面试官,问的是 MQ 的高可用性怎么保证?这样就是你用过哪个 MQ,你就说说你对那个 MQ 的高可用性的理解。 RabbitMQ 的高可用性 RabbitMQ 是比较有代表性的,因为是基于主从(非分布式)做高可用性的,我们就以 RabbitMQ 为例子讲解第一种 MQ 的高可用性怎么实现。 RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。 单机模式 单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式。 普通集群模式(无高可用性) 普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。 这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个 queue 所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。 而且如果那个放 queue 的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让 RabbitMQ 落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个 queue 拉取数据。 所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个 queue 的读写操作。 镜像集群模式(高可用性) 这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。 那么如何开启这个镜像集群模式呢?其实很简单,RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。 这样的话,好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!第二,这么玩儿,不是分布式的,就没有扩展性可言了,如果某个 queue 负载很重,你加机器,新增的机器也包含了这个 queue 的所有数据,并没有办法线性扩展你的 queue。你想,如果这个 queue 的数据量很大,大到这个机器上的容量无法容纳了,此时该怎么办呢? Kafka 的高可用性 Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据。 这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的,每个机器就放一部分数据。 实际上 RabbitMQ 之类的,并不是分布式消息队列,它就是传统的消息队列,只不过提供了一些集群、HA(High Availability, 高可用性) 的机制而已,因为无论怎么玩儿,RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。 Kafka 0.8 以前,是没有 HA 机制的,就是任何一个 broker 宕机了,那个 broker 上的 partition 就废了,没法写也没法读,没有什么高可用性可言。 比如说,我们假设创建了一个 topic,指定其 partition 数量是 3 个,分别在三台机器上。但是,如果第二台机器宕机了,会导致这个 topic 的 1/3 的数据就丢了,因此这个是做不到高可用的。 Kafka 0.8 以后,提供了 HA 机制,就是 replica(复制品) 副本机制。每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。只能读写 leader?很简单,要是你可以随意读写每个 follower,那么就要 care 数据一致性的问题,系统复杂度太高,很容易出问题。Kafka 会均匀地将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。 这么搞,就有所谓的高可用性了,因为如果某个 broker 宕机了,没事儿,那个 broker上面的 partition 在其他机器上都有副本的。如果这个宕机的 broker 上面有某个 partition 的 leader,那么此时会从 follower 中重新选举一个新的 leader 出来,大家继续读写那个新的 leader 即可。这就有所谓的高可用性了。 写数据的时候,生产者就写 leader,然后 leader 将数据落地写本地磁盘,接着其他 follower 自己主动从 leader 来 pull 数据。一旦所有 follower 同步好数据了,就会发送 ack 给 leader,leader 收到所有 follower 的 ack 之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为) 消费的时候,只会从 leader 去读,但是只有当一个消息已经被所有 follower 都同步成功返回 ack 的时候,这个消息才会被消费者读到。 看到这里,相信你大致明白了 Kafka 是如何保证高可用机制的了,对吧?不至于一无所知,现场还能给面试官画画图。要是遇上面试官确实是 Kafka 高手,深挖了问,那你只能说不好意思,太深入的你没研究过。

剑曼红尘 2020-04-17 09:31:13 0 浏览量 回答数 0

问题

如何保证消息队列的高可用?【Java问答学堂】20期

剑曼红尘 2020-05-18 11:21:10 2 浏览量 回答数 1

回答

ECS磁盘 我想在ECS 跨服务器进行数据拷贝,有没有知道实现方法的? Linux系统服务器重启或初始化系统之后,再登录服务器执行df -h查看磁盘挂载,发现数据不见了。这是为什么?能不能找回来? 重启服务器后发现/alidata目录所有数据丢失。怎么才能找回来呢? ECS Linux扩容格式化磁盘提示magic number in super-block while trying to open /dev/xvdb1 ? Linux 实例初始化系统盘后,怎样才能重新挂载数据盘? 如何在ECS 利用快照创建磁盘实现无损扩容数据盘? ECS云服务器磁盘FAQ云服务器磁盘I/O速度是多少? Linux 购买了数据盘,但是系统中看不到怎么办? ECS系统盘和数据盘二次分区FAQ,系统盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,数据盘能否再次划分出一个分区用作数据存储? ECS系统盘和数据盘二次分区FAQ,划分了多个分区的磁盘,做快照时是针对该分区的,还是针对磁盘的? ECS系统盘和数据盘二次分区FAQ,磁盘二次分区有哪些注意事项? ECS系统盘和数据盘二次分区FAQ,数据盘进行二次分区后,此时回滚快照后,数据盘是几个分区? 什么是可用区? 怎么根据服务器应用需求选择可用区? 按量付费云盘和云盘有什么区别? 按量付费云盘和普通云盘的性能和数据安全性一样吗,磁盘性能会有提升吗? 可以使用用户快照创建按量付费云盘吗? 什么是挂载点? 一块按量付费云盘可以挂载到多个 ECS 实例上吗? 一台 ECS 实例能同时挂载多少块按量付费云盘吗? 按量付费云盘能够挂载到包年包月和按量付费 ECS 实例上吗? 为什么挂载按量付费云盘时找不到我想挂载的 ECS 实例? 购买按量付费云盘后,挂载到目标 ECS 实例的挂载点是否还需要执行磁盘挂载操作? 我已经操作过续费变配,在续费变配期内是否还能将普通云盘转为按量付费云盘? ECS快照 为什么我的按量付费云盘没有自动快照了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 卸载按量付费云盘时,我的磁盘会丢数据吗? 我能够卸载系统盘吗? 什么是独立云磁盘? 什么是可用区? 独立云磁盘跟现在的磁盘有什么区别? 服务器应用与可用区选择的选择关系是怎么样的? 独立云磁盘怎么收费? 独立云磁盘能够挂载到包年包月实例上吗? 独立云磁盘和普通云磁盘的磁盘性能和数据安全性一样吗,磁盘性能会有提升吗? 我的包年包月实例上不需要的磁盘能不能卸载? 为什么我的独立云磁盘和我的实例一起释放了? 为什么独立云磁盘挂载时找不到我想挂载的实例? 为什么我在本实例列表中选择独立云磁盘挂载时找不到我想要挂载的磁盘? 我删除磁盘的时候,快照会被保留吗? 为什么我的独立云磁盘没有自动快照了? 为什么我不能购买独立云磁盘? 一台实例能挂载多少块独立云磁盘? 卸载独立云磁盘时,我的磁盘会丢数据吗? 我的系统盘能够卸载吗? 什么是设备名? 为什么我在控制台上找不到重置磁盘,更换操作系统,回滚快照的操作了? 重新初始化磁盘时,我的快照会丢失吗? 更换系统盘时,我的快照会丢失吗? 为什么我的数据盘不能选择临时磁盘 独立云磁盘服务器的应用场景有哪些? 可以使用用户快照创建独立云磁盘吗? 独立云磁盘购买后挂载到目标实例的挂载点后,是否还需要执行磁盘挂载操作? 本地SSD盘“本地”是指? 本地SSD盘适合的用户场景有哪些? SSD盘相对之前的普通云盘性能提升多少,是否可以提供具体参数? 本地SSD盘是否支持在原ECS上进行添加或者将原云磁盘更换成本地SSD盘? 本地SSD盘购买后是否支持升级? SSD 云盘具备怎样的 I/O 性能? SSD云盘的数据可靠性是怎样的? SSD 云盘适合的应用场景有哪些? SSD 云盘相对普通云盘性能提升多少?是否可以提供具体参数? I/O 优化是什么概念?能将存量的 ECS 实例升级为 I/O 优化的实例吗? 是否支持将原普通云盘更换成 SSD 云盘? 如何购买 SSD 云盘,I/O 优化的实例及 SSD 云盘的价格是多少? 为什么 I/O 优化的实例有时启动比较耗时? 有些自定义镜像不支持创建 I/O 优化的实例,我该如何操作? 购买SSD云盘后是否支持升级? 使用了 I/O 优化实例和 SSD 云盘之后,Linux 系统在分区挂载的时候报错。 为什么我用 fio 测试性能时,会导致实例宕机? 云盘参数和性能测试工具及方法有推荐的吗? 我想扩容系统盘,求详细步骤! 所有块存储都支持系统盘扩容吗?有地域限制吗? 包年包月和按量付费的ECS实例都支持系统盘扩容吗? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费? 新购ECS时,系统盘开始单独收费?老用户存量的系统盘如何收费?系统盘扩容是否需要停机操作? 系统盘扩容上线后,系统盘的容量范围多少? 哪些镜像支持系统盘扩容? 云服务器续费变配后,不支持更换系统盘时指定系统盘容量? 系统盘扩容之后是否支持再缩容? 扩容系统盘应注意的问题? 回滚磁盘报错,进行快照回滚的时候,出现如下错误提示: 执行回滚磁盘需要停止实例,并确保当前磁盘没有创建中的快照和没有更换过操作系统。 这是什么原因? 普通云盘和SSD云盘添加挂载信息时有哪些要注意的事项? 申请公测资格 什么是共享块存储? 共享块存储适用于哪些行业和业务场景? 为什么需要共享块存储? 如何正确使用共享块存储? 我能跨地域挂载共享块存储吗? 共享块存储产品规格有哪些? 我想知道阿里云产品的售卖模式和公测范围! 公测购买入口是哪,求链接! 有没有谁分享下共享块存储性能测试命令? 数据盘挂载问题导致数据无法访问,我要怎么排查问题? 我要怎样才能在Linux和Windows主机之间挂载ntfs格式云盘? 为什么ECS实例里文件系统和快照空间大小不一致?在ECS实例内删除文件后再打快照,发现快照容量并没有变小。 ECS实例如何优化快照使用成本? 在ECS实例里什么是快照商业化? 在ECS实例里,快照商业化后过渡优惠期是什么时候? 在ECS实例里,快照商业化的用户范围包括有哪些? 在ECS实例里,如果我已经开通了 OSS,快照会自动存到我的 OSS Bucket 吗?是否需要重新再创建一个 Bucket 来存储快照? 已经购买了 OSS 预付费存储包,同时在使用快照和 OSS 服务,那么存储包会优先抵扣哪个产品? 快照商业化之后,我希望继续使用,需要购买哪个产品,云盘还是对象存储OSS资源包? 快照商业化的收费模式是怎样的? 快照费用的计算方法是怎样的? 快照收费后,不停止自动快照是否就开始收取费用? 快照要收费了,之前的快照要被删除吗? 如果不想付费,之前的快照能继续使用吗? 快照收费后,之前创建的手动快照和自动快照都会收费吗? 快照收费前停止快照策略,需手动删除历史快照吗?正式收费后会直接删除我的历史快照吗? 快照收费以后,账户欠费对快照有什么影响? 如果账号欠费,有关联关系(创建过磁盘或者镜像)的快照,在欠费15天之后是否会被删除? 快照服务和块存储服务的关系,在收费方面的关系是什么? 快照容量是如何计算的,是等于磁盘大小吗? ECS实例内删除文件会减少空间占用吗? 为什么快照容量大于文件系统内看到的数据量? 参考快照增量说明,如中间快照被删除,后面的快照能否使用? 如何开通快照服务? 快照和镜像的关系? 如何在保留关联实例和磁盘的情况下,删除快照跟镜像,快照、实例、镜像之间的关系? 快照和块存储、OSS对象存储是什么关系? 一块云盘能否设置多个快照策略? 快照 2.0 服务包括哪些内容? 快照有什么用途? 快照 2.0 服务支持的云盘类型? 快照数量有什么限制? 快照保留时长怎样? 打快照对块存储 I/O 性能有多少影响? 快照怎么收费? 老的自动快照策略什么时候不可用? 老的快照策略产生的快照什么时候删除? 自动快照功能细节有哪些? 用户的自定义快照和自动快照有冲突吗? 我能保留其中想要的自动快照而让系统不删除吗? 如果一个自动快照被引用(用户创建自定义镜像或者磁盘),会导致自动快照策略执行失败吗? 我如果什么都没有设置,自动快照会启动吗? 自动快照能够删除吗? 自动快照具体在什么时间创建能看到吗? 我如何区分哪些快照是自动快照和用户快照? 更换系统盘、云服务器 ECS 到期后或手动释放磁盘时,自动快照会不会释放? 未随磁盘释放和更换系统盘释放的自动快照会一直保留吗? 云服务器 ECS 到期后或手动释放磁盘时,手工快照会不会释放? 我能单独制定某几块磁盘执行或取消自动快照吗? 云服务器 ECS 有没有自动备份? 磁盘无快照是否能够回滚或数据恢复? 快照回滚能否单独回滚某个分区或部分数据? 系统盘快照回滚是否会影响数据盘? 更换系统后,快照能否回滚? 在回滚快照前,有哪些注意事项? 怎样使ECS回滚快照后同步数据? 如何通过API配置定时自定义快照? 超出预付费存储包的流量,会怎么收费? ECS镜像 Aliyun Linux 17.01 特性有哪些,有说明文档吗? 云市场镜像有哪些功能? 镜像能带来哪些便利? 目前镜像支持哪些服务器环境和应用场景? 镜像是否安全? 选择了镜像后能更换吗? 镜像安装使用过程中出问题了怎么办? Docker私有镜像库是什么? 自定义镜像如何查看数据盘? 自定义镜像,如何卸载和删除 disk table 里的数据? 如何确认已经卸载数据盘,并可以新建自定义镜像? ECS 实例释放后,自定义镜像是否还存在? ECS 实例释放后,快照是否还存在? 用于创建自定义镜像的云服务器 ECS 实例到期或释放数据后,创建的自定义镜像是否受影响?使用自定义镜像开通的云服务器 ECS 实例是否受影响? 使用自定义镜像创建的 ECS 实例是否可以更换操作系统?更换系统后原来的自定义镜像是否还可以使用? 更换系统盘时另选操作系统,是否可以使用自定义镜像? 已创建的自定义镜像,是否可以用于更换另一台云服务器 ECS 的系统盘数据? 是否可以升级自定义镜像开通的云服务器 ECS 的 CPU、内存、带宽、硬盘等? 是否可以跨地域使用自定义镜像? 包年包月云服务器 ECS 的自定义镜像,是否可以用于开通按量付费的云服务器 ECS? ECS Windows企业版和标准版区别 什么情况下需要复制镜像? 可以复制哪些镜像? 当前有哪些支持镜像复制功能的地域? 复制一个镜像大概需要多久? 复制镜像怎么收费的? 在复制镜像过程中,源镜像和目标镜像有什么限制? 怎么复制我的云账号的镜像资源到其他云账号的其他地域? 复制镜像有镜像容量限制吗? 如何购买镜像市场镜像? 按次购买的镜像的使用期限是多久? 镜像市场的镜像支持退款吗? 镜像市场商业化后,还有免费的镜像市场镜像吗? 在杭州买了一个镜像市场的镜像,能否在北京创建ECS实例或者更换系统盘? ECS实例使用镜像市场的镜像,升级和续费ECS实例,需要为镜像继续付费吗? ECS实例使用镜像市场的镜像,实例释放后,继续购买ECS实例还可以免费使用该镜像吗? 使用镜像市场镜像创建ECS实例,该实例创建一个自定义镜像,使用该自定义镜像创建ECS实例需要为该镜像付费吗? 来源于镜像市场的镜像复制到其他地域创建ECS实例,是否需要为该镜像付费? 如果把来源于镜像市场的自定义镜像共享给其他账号(B)创建ECS实例,账号B是否需要为该镜像付费? 如果使用镜像市场的镜像或者来源于镜像市场的镜像进行更换系统盘,需要付费吗? ECS实例正在使用镜像市场的镜像,进行重置系统盘需要收费吗? 怎么调用ECS API,使用镜像市场镜像或者来源镜像市场的自定义镜像或者共享镜像,创建ECS实例和更换系统盘? 如果没有购买镜像市场的镜像或者来源于镜像市场的镜像,在调用ECS API 使用该镜像创建ECS实例和更换系统盘,会报错吗? 我的ESS是自动创建机器的,并且量是不固定,设置最小值为10台,最大值为100台,那么使用镜像市场的镜像如何保证我的的需求实例能正常弹出来? 镜像市场的镜像是否支持批量购买? 如果之前使用的镜像市场的镜像,已不存在该商品(如:jxsc000010、jxsc000019),怎能保证已经设置的弹性伸缩组的机器的正常弹出? 1个product code能否支持不同region的镜像? 我买了100 product code同样值的镜像,是否可以支持在所有的地域可用? 为什么有的ECS云服务器无法选择Windows操作系统? 操作系统是否要收费? 我能否自己安装或者升级操作系统? 服务器的登录用户名密码是什么? 能否更换或升级操作系统? 操作系统是否有图形界面? 如何选择操作系统? 操作系统自带 FTP 上传吗? 每个用户最多可以获得多少个共享镜像? 每个镜像最多可以共享给多少个用户? 使用共享镜像是否占用我的镜像名额? 使用共享镜像创建实例的时候存不存在地域限制? 我曾把自己账号中的某个自定义镜像共享给其他账号,现在我可以删除这个镜像吗 我把某个自定义镜像(M)的共享账号(A)给删除了,会有什么影响? 使用共享镜像创建实例存在什么样的风险? 我把自定义镜像共享给其他账号,存在什么风险? 我能把别人共享给我的镜像再共享给他人吗? 我把镜像共享给他人,还能使用该镜像创建实例吗? ECS Windows服务器桌面分辨率过高导致VNC花屏处理方法通过 管理终端 进入服务器后,把 Windows 服务器桌面分辨率设置过高,确定后,WebVNC 出现花屏。 ECS创建自定义镜像创建服务器为何需要注释挂载项 勾选"IO优化实例"选项导致购买ECS实例时无法选择云市场镜像 如何为 Linux 服务器安装 GRUB 历史Linux镜像的问题修复方案 如何处理 CentOS DNS 解析超时? 什么是镜像市场的包年包月和按周付费镜像? 预付费镜像能与哪种 ECS 实例搭配使用? 怎么购买预付费镜像?可以单独购买吗? 预付费镜像怎么付费? 预付费镜像到期了就不能用了吗?怎么继续使用? 购买预付费镜像后,如果我不想再使用这个镜像,能要求退款吗? 退款时,费用怎么结算? 预付费镜像能转换为按量付费镜像吗? 预付费镜像与其它镜像之间能互换吗?更换后费用怎么计算? 在哪里查看并管理我购买的预付费镜像? 使用预付费镜像制作的自定义镜像会收费吗?预付费镜像过期对于自定义镜像有什么影响? ECS 实例操作系统选择说明 阿里云支持哪些 SUSE 版本? SUSE 操作系统提供哪些服务支持? ECS安全组 如何检查 TCP 80 端口是否正常工作? 什么是安全组? 为什么在购买 ECS 实例的时候选择安全组? 安全组配置错误会造成哪些影响? 专有网络实例设置安全组规则时为什么不能设置公网规则? 创建 ECS 实例时我还没创建安全组怎么办? 为什么无法访问 25 端口? 为什么我的安全组里自动添加了很多规则? 为什么有些安全组规则的优先级是 110? 为什么我在安全组里放行了 TCP 80 端口,还是无法访问 80 端口? ECS安全组被添加内网ip地址了,是怎么回事? 能说明下ECS安全组中规则的优先级执行匹配顺序吗? ECS实例安全组默认的公网规则被删除导致无法ping通,ECS 服务器无法ping通,排查防火墙、网卡IP配置无误,回滚系统后仍然无法ping通。 我刚购买了ECS实例,如何选择及配置安全组? 没有添加默认安全组访问规则-导致通过API创建的ECS实例断网,要怎么恢复? 使用ECS安全组工具撤销之前账号间互通的操作 ECS网络 带宽与上传、下载速度峰值的有什么关系? 弹性公网IP在哪里可以查看流量和带宽监控信息? 我用的是ECS Ubuntu系统,要怎么单独禁用和启动内外网卡? ECS 实例子网划分和掩码是什么? ECS 实例网络带宽是否独享? 带宽单线还是双线,电信还是网通? 5 Mbps 带宽怎么理解? 带宽的价格是多少? 不同地域的 ECS 实例之间的内网是通的吗? 为何新建的 ECS 实例就有 200 Kbps 左右入网流量? 我的 ECS 实例经常能在 Web 日志中看到大量的恶意 IP 访问我的网站,疑有刷流量和恶意访问的嫌疑,询问云盾是否有屏蔽 IP 的功能? 包月ECS新购时是否可以选择带宽按照使用流量计费? 包月ECS带宽按流量计费是如何计费的? 目前使用的固定带宽计费,是否可以转换为带宽按流量计费? 是否可以随时调整流量带宽峰值? 续费变更配置时(比如到期时间为2015年3月31日,续费一个月到4月30日),如果将包月ECS按固定带宽计费改成按流量付费计费,操作以后在未生效前(3月31日前),是否还可以升级带宽? 续费变更配置时候将包月ECS带宽按流量计费改成按固定带宽计费,为什么我的带宽服务停掉了? 如果账号没有足够余额,欠费怎么办?ECS实例也会停掉吗? 带宽流量欠费是否有短信通知? 当带宽按照流量计费欠费时,是否可以对实例进行升级 CPU、内存操作? 欠费充值后带宽是自动恢复的吗? 包月带宽转流量计费后,流量价格是多少? ECS 服务器出现了异地登录怎么办? 爱哪里可以查看云服务器 ECS 公网流量统计总和? 我的ECS 实例对外 DDoS 攻击导致被锁定了,要如何处理 ? 什么是云服务器 ECS 的入网带宽和出网带宽? ECS云服务器如何禁用公网IP? ECS 实例停止(关机)后按量付费带宽仍产生流量,ECS 实例在控制台上状态为已停止,但按量付费的带宽每小时仍会产生不小的费用,且此时 ECS 实例正在遭受攻击,云盾控制台中 DDoS 防护中 ECS 的状态为清洗中。 访问ECS服务器的网站提示“由于你访问的URL可能对网站造成安全威胁,您的访问被阻断”,这是什么原因? 服务器黑洞是什么?求科普! 如果想确认该服务器的IP信息和地理位置,要在哪里去查询? 我想知道客户端本地到ECS服务器是不是丢包,要怎么测试? 内网和公共 NTP 服务器是什么?它们两个有什么区别 我能 ping 通但端口不通,这是端口的问题吗? 如何通过防火墙策略限制对外扫描行为? 我想用手机移动端网络路由跟踪探测,可以吗? 云监控中的ECS带宽和ECS控制台中看到的带宽不一致是什么原因? 云服务器ECS三张网卡有什么区别? Ubuntu系统ECS使用“如何通过防火墙策略限制对外扫描行为”脚本之后出现无法远程、数据库连接不上。 什么业务场景需要在专有网络(VPC)类型ECS购买PublicIP? 怎么购买专有网络(VPC)类型分配 PublicIP 的 ECS? 专有网络(VPC)类型 ECS 的 PublicIP 和 EIP 的区别? 专有网络(VPC)类型ECS的 PublicIP 的可以升级带宽吗? 专有网络(VPC)类型ECS的 PublicIP 可以解绑吗? 如果购买网络(VPC)类型 ECS 的时候,没有分配公网 IP,该怎么才能分配一个公网 IP? 怎么查询专有网络(VPC)类型 ECS 的 PublicIP 的监控数据? 怎么查询专有网络(VPC)类型ECS的按流量付费的 PublicIP 的账单? 专有网络和经典网络的 PublicIP 异同? 专有网络(VPC)类型 ECS 购买 PublicIP 的付费方式? ECS API 如何通过 API / SDK 实现不同账号 ECS 实例的内网通信? ECS API绑定公网IP报错:The IP is already in use分析 ECS API修改实例带宽不能指定时间范围吗? 所在可用区不支持相应磁盘类型-导致ECS API创建实例报错 用ECS API创建实例的时候,返回如下错误信息: "Code": "InvalidDataDiskCategory.NotSupported" 如何创建有公网 IP 的 ECS 实例? 通过API或SDK查询安全组规则无法显示所有的规则,这是怎么回事? 如何通过OpenAPI创建ECS实例的流程状态描述? 数据传输服务DTS实时同步功能,我想只同步表结构,要怎么做? 如何获取控制台RequestId? 阿里云中国站部分地域实例什么时候降价? ECS Linux 实例怎么设置 Locale 变量? 克隆ECS服务器的方法 其它国家和地区是否都可以提供经典网络和专有网络的类型呢?网络类型是否可以变更呢? 各个地域的网络覆盖范围是什么呢? 其他相关问题 不同地域的实例,价格一样吗? 如果我使用其它国家和地区的实例搭建了一个网站,我的用户将通过域名访问网站,这个域名需要 ICP 备案吗? 为什么有些实例规格只能在中国大陆地域购买,而在其它国家和地区无法购买? 可否将中国大陆地域的实例迁移到其它国家和地区呢? 如何在其它国家和地区部署 ECS 实例? 我要买其它国家和地区的实例,需要单独申请一个国际站账号吗? ——更多ECS相关问题—— · ECS故障处理百问合集

问问小秘 2020-01-02 15:49:17 0 浏览量 回答数 0

回答

Redis常见的几种主要使用方式: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster(集群) Redis 自研 Redis各种使用方式的优缺点: 1 Redis单副本 Redis各种使用方式的优缺点: Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 2 Redis多副本(主从) Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。主从实例部署在不同的物理服务器上,根据公司的基础环境配置,可以实现同时对外提供服务和读写分离策略。 优点: 1、高可靠性,一方面,采用双机主备架构,能够在主库出现故障时自动进行主备切换,从库提升为主库提供服务,保证服务平稳运行。另一方面,开启数据持久化功能和配置合理的备份策略,能有效的解决数据误操作和数据异常丢失的问题。 2、读写分离策略,从节点可以扩展主库节点的读能力,有效应对大并发量的读操作。 缺点: 1、故障恢复复杂,如果没有RedisHA系统(需要开发),当主库节点出现故障时,需要手动将一个从节点晋升为主节点,同时需要通知业务方变更配置,并且需要让其他从库节点去复制新主库节点,整个过程需要人为干预,比较繁琐。 2、主库的写能力受到单机的限制,可以考虑分片 3、主库的存储能力受到单机的限制,可以考虑Pika 4、原生复制的弊端在早期的版本也会比较突出,如:Redis复制中断后,Slave会发起psync,此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时可能会造成毫秒或秒级的卡顿;又由于COW机制,导致极端情况下的主库内存溢出,程序异常退出或宕机;主库节点生成备份文件导致服务器磁盘IO和CPU(压缩)资源消耗;发送数GB大小的备份文件导致服务器出口带宽暴增,阻塞请求。建议升级到最新版本。 使用场景 对 Redis 协议兼容性要求较高的业务 标准版完全兼容 Redis 协议,业务可以平滑迁移。 Redis 作为持久化数据存储使用的业务 标准版提供持久化机制及备份恢复机制,极大地保证数据可靠性。 单个 Redis 性能压力可控 由于 Redis 原生采用单线程机制,性能在10万 QPS 以下的业务建议使用。如果需要更高的性能要求,请选用集群版本。 Redis 命令相对简单,排序、计算类命令较少 由于 Redis 的单线程机制,CPU 会成为主要瓶颈。如排序、计算类较多的业务建议选用集群版配置。 3 Redis Sentinel(哨兵) Redis Sentinel是社区版本推出的原生高可用解决方案,Redis Sentinel部署架构主要包括两部分:Redis Sentinel集群和Redis数据集群,其中Redis Sentinel集群是由若干Sentinel节点组成的分布式集群。可以实现故障发现、故障自动转移、配置中心和客户端通知。Redis Sentinel的节点数量要满足2n+1(n>=1)的奇数个。 优点: 1、Redis Sentinel集群部署简单 2、能够解决Redis主从模式下的高可用切换问题 3、很方便实现Redis数据节点的线形扩展,轻松突破Redis自身单线程瓶颈,可极大满足对Redis大容量或高性能的业务需求。 4、可以实现一套Sentinel监控一组Redis数据节点或多组数据节点 缺点: 1、部署相对Redis 主从模式要复杂一些,原理理解更繁琐 2、资源浪费,Redis数据节点中slave节点作为备份节点不提供服务 3、Redis Sentinel主要是针对Redis数据节点中的主节点的高可用切换,对Redis的数据节点做失败判定分为主观下线和客观下线两种,对于Redis的从节点有对节点做主观下线操作,并不执行故障转移。 4、不能解决读写分离问题,实现起来相对复杂 建议: 1、如果监控同一业务,可以选择一套Sentinel集群监控多组Redis数据节点的方案,反之选择一套Sentinel监控一组Redis数据节点的方案 2、sentinel monitor 配置中的 建议设置成Sentinel节点的一半加1,当Sentinel部署在多个IDC的时候,单个IDC部署的Sentinel数量不建议超过(Sentinel数量 – quorum)。 3、合理设置参数,防止误切,控制切换灵敏度控制 quorum down-after-milliseconds 30000 failover-timeout 180000 maxclient timeout 4、部署的各个节点服务器时间尽量要同步,否则日志的时序性会混乱 5、Redis建议使用pipeline和multi-keys操作,减少RTT次数,提高请求效率 6、自行搞定配置中心(zookeeper),方便客户端对实例的链接访问 4 Redis Cluster(集群) Redis Cluster是社区版推出的Redis分布式集群解决方案,主要解决Redis分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster能起到很好的负载均衡的目的。Redis Cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。Redis Cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所印映射的键值数据。 优点: 1、无中心架构 2、数据按照slot存储分布在多个节点,节点间数据共享,可动态调整数据分布。 3、可扩展性,可线性扩展到1000多个节点,节点可动态添加或删除。 4、高可用性,部分节点不可用时,集群仍可用。通过增加Slave做standby数据副本,能够实现故障自动failover,节点之间通过gossip协议交换状态信息,用投票机制完成Slave到Master的角色提升。 5、降低运维成本,提高系统的扩展性和可用性。 缺点: 1、Client实现复杂,驱动要求实现Smart Client,缓存slots mapping信息并及时更新,提高了开发难度,客户端的不成熟影响业务的稳定性。目前仅JedisCluster相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。 2、节点会因为某些原因发生阻塞(阻塞时间大于clutser-node-timeout),被判断下线,这种failover是没有必要的。 3、数据通过异步复制,不保证数据的强一致性。 4、多个业务使用同一套集群时,无法根据统计区分冷热数据,资源隔离性较差,容易出现相互影响的情况。 5、Slave在集群中充当“冷备”,不能缓解读压力,当然可以通过SDK的合理设计来提高Slave资源的利用率。 6、key批量操作限制,如使用mset、mget目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于keys 不支持跨slot查询,所以执行mset、mget、sunion等操作支持不友好。 7、key事务操作支持有限,只支持多key在同一节点上的事务操作,当多个key分布于不同的节点上时无法使用事务功能。 8、key作为数据分区的最小粒度,因此不能将一个很大的键值对象如hash、list等映射到不同的节点。 9、不支持多数据库空间,单机下的redis可以支持到16个数据库,集群模式下只能使用1个数据库空间,即db 0。 10、复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。 11、避免产生hot-key,导致主库节点成为系统的短板。 12、避免产生big-key,导致网卡撑爆、慢查询等。 13、重试时间应该大于cluster-node-time时间 14、Redis Cluster不建议使用pipeline和multi-keys操作,减少max redirect产生的场景。 使用场景 数据量较大 Redis 集群版可以有效的扩展数据规模,相比标准版支持存储量更大的64、128、256 GB 集群版,可以有效的满足数据扩展需求。 QPS 压力较大 标准版 Redis 无法支撑较大的 QPS,需要采用多节点的部署方式来冲破 Redis 单线程的性能瓶颈。 吞吐密集型应用 相比标准版,Redis 集群版的内网吞吐限制相对较低,针对热点数据读取、大吞吐类型的业务可以友好的支持。 对 Redis 协议不敏感的应用 由于集群版的架构引入了多个组件,在 Redis 协议支持上相比标准版有一定限制。

剑曼红尘 2020-04-27 14:41:57 0 浏览量 回答数 0

回答

PolarDB支持将RDS MySQL一键升级为PolarDB MySQL。 前提条件 源RDS实例版本为RDS MySQL 5.6高可用版。 源RDS实例未开启TDE和SSL。 源RDS实例的表存储引擎为InnoDB。 如果RDS处于高安全模式(数据库代理模式),需要创建有高权限账号(请参见创建高权限账号),或者切换到高性能模式(参见【重要】RDS网络链路升级说明),才能进行一键升级。查看数据库模式 背景信息 PolarDB是阿里云自研的下一代关系型云数据库,主要优势如下: 存储容量高:最高可达100TB。 性能高:最高可以提升至MySQL的6倍。 Serverless存储:存储容量无需提前购买,自动扩缩容,按使用量计费。 临时升配:临时升级规格,轻松应对短期的业务高峰。 详情请参见产品优势。 一键升级功能可以将RDS MySQL一键升级为PolarDB MySQL,升级后PolarDB集群包含源RDS实例的账号、数据库、IP白名单和必要的参数。 一键升级的功能亮点 迁移完全免费。 迁移过程数据0丢失。 支持增量迁移,停机时间小于10分钟。 支持回滚,迁移失败可以在10分钟内恢复。 迁移流程 参见从RDS迁移的说明,创建一个与源RDS实例数据相同的PolarDB集群,源RDS实例的增量数据会实时同步到该PolarDB集群。 说明 需要在7天内修改应用端的数据库地址为PolarDB地址,确认业务正常,以及单击完成迁移。单击完成迁移会中断RDS和PolarDB之间的数据同步。 单击迁移切换。该操作将源RDS实例修改为只读,将PolarDB集群修改为可读可写,PolarDB的增量数据会实时同步到RDS。修改数据库连接地址。具体操作请参见迁移切换。 说明 迁移切换后,也可以选择迁移回滚。 完成迁移。 注意事项 迁移只能在相同地域内进行。 源RDS实例在迁移时不能修改参数。 从RDS迁移 本操作将创建一个与源RDS实例数据相同的PolarDB集群,源RDS实例的增量数据会实时同步到该PolarDB集群。 登录PolarDB控制台。 单击创建新集群。 选择包年包月或按量付费页签。 设置以下参数。 参数 说明 地域 源RDS MySQL实例所在地域。 说明 新建的PolarDB集群也在此地域。 创建方式 选择从RDS迁移。 即从RDS实例克隆一个PolarDB集群,同时保持数据同步。默认开启新集群的Binlog。 源RDS引擎 源RDS实例的引擎类型,不可变更。 源RDS版本 源RDS实例的版本,不可变更。 源RDS实例 可选的源RDS实例,不包括只读实例。 可用区 可用区是地域中的一个独立物理区域,不同可用区之间没有实质性区别。 您可以选择将PolarDB集群与ECS创建在同一可用区或不同的可用区。 网络类型 PolarDB集群的网络类型,不可变更。 VPC网络 VPC交换机 PolarDB集群所属的VPC和虚拟交换机。请确保PolarDB集群与需要连接的ECS创建于同一个VPC,否则它们无法通过内网互通,无法发挥最佳性能。 兼容性 PolarDB集群的数据库引擎,不可变更。 节点规格 按需选择,建议不低于源RDS实例规格。所有PolarDB节点均为独享型,性能稳定可靠。详情请参见规格与定价。 节点个数 无需选择。系统将自动创建一个与主节点规格相同的只读节点。 存储费用 无需选择容量,根据实际数据使用量按小时计费。详情请参见规格与定价。 设置购买时长(仅针对包年包月集群),然后单击右侧的立即购买。 确认订单信息,阅读和勾选服务协议,单击去开通,完成支付。 进入PolarDB控制台,查看新建的PolarDB集群的状态。 说明 集群创建后开始从RDS实例同步数据,7 天内需要完成修改数据库连接地址以及完成迁移操作。超过7天将自动关闭迁移功能。 您可以在此步骤选择取消迁移,相关影响请参见迁移常见问题。 迁移切换 满足以下条件后,您可以进行迁移切换,然后修改应用里的数据库连接地址。 已完成从RDS迁移的操作。 复制延迟小于60秒。基本信息 进入PolarDB控制台。 找到目标集群,单击集群的ID。 在基本信息页面单击迁移切换,在弹出的对话框中单击确定。本操作将源RDS实例修改为只读,将PolarDB集群修改为可读可写,同时会将PolarDB集群的新增数据同步到RDS实例。迁移切换 说明 数据同步的延迟超过60秒时无法进行迁移切换。 切换过程一般小于5分钟。 刷新页面,当PolarDB读写状态显示为读写后,尽快修改应用里的数据库连接地址。刷新 说明 迁移切换完成后,也可以选择迁移回滚。 完成迁移 从RDS迁移后,需要在7天内修改数据库连接地址以及单击完成迁移。该操作将中断PolarDB集群和RDS实例间的数据同步。 警告 由于本操作将中断PolarDB集群和RDS实例间的数据同步,不再提供迁移回滚功能,建议您使用一段时间PolarDB集群,确认正常后再执行本操作。 进入PolarDB控制台。 找到目标集群,单击集群的ID。 在基本信息页面,单击完成迁移,在弹出的对话框中单击确定。完成迁移完成迁移确定 说明 单击确定后,系统将在约2分钟内中断同步关系,期间完成迁移按钮不会消失,请勿重复单击。 您可以选择是否关闭PolarDB集群的Binlog。关闭Binlog会带来少量的写入性能提升,但需要重启PolarDB。 如果不再需要源RDS实例,可以释放实例。 迁移回滚 在完成迁移前,如果您发现数据存在异常等问题,可以进行回滚操作,快速恢复至迁移前的状态(RDS实例为可读可写,PolarDB集群为只读,同时会将RDS实例的数据同步到PolarDB集群)。 进入PolarDB控制台。 找到目标集群,单击集群的ID。 在基本信息页面单击迁移回滚,在弹出的对话框中单击确定。迁移回滚 说明 单击确定后RDS实例为可读可写,PolarDB集群为只读,同时会将RDS实例的数据同步到PolarDB集群。当源RDS读写状态显示为读写后,请尽快修改应用里的数据库连接地址为RDS连接地址。 迁移常见问题 从RDS迁移会影响源RDS实例吗? 答:不会影响源RDS实例的正常运行。 平滑迁移对业务有影响吗? 答:平滑迁移能够保证迁移过程不丢失数据,停机时间小于10分钟,如果有需要还可以进行回滚。 取消迁移会有什么影响? 答:取消迁移后,源RDS实例可以修改参数;PolarDB集群恢复可读可写,且数据不会释放。手动取消时可以选择是否关闭PolarDB集群的Binlog,自动取消时不会关闭。

游客yl2rjx5yxwcam 2020-03-08 14:01:57 0 浏览量 回答数 0

回答

一、Java内存分配     Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域存储不同类型的数据,这些区域的内存分配和销毁的时间也不同,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束而建立和销毁。根据《Java虚拟机规范(第2版)》的规定,Java虚拟机管理的内存包括五个运行时数据区域,如下图所示:      1、方法区     方法区(Method Area)是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息(包括类的名称、方法信息、成员变量信息)、常量、静态变量、以及编译器编译后的代码等数据。当方法区无法满足内存分配需求时,将抛出OutOfMemeryError异常。     运行时常量池(Runtime Constant Pool)是方法区的一部分,此区域会在两种情况下存储数据。     (1)class文件的常量池中的数据     class文件中的常量池用于存放编译期生成的各种字面值和常量,这部分内容在类被加载后存放到方法区的运行时常量池中。     字面值:private String name="zhangSan";private int age = 23+3;     常量:private final String TAG = "MainActivity";private final int age = 26;     (2)运行期间生成的常量     运行时常量池相对于class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只能在编译期产生,也就是并非预置入class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。String str = "abc".intern();当运行时常量池中存在字符串"abc时,将该字符串的引用返回,赋值给str,否则创建字符串"abc",加入运行时常量池中,并返回引用赋值给str。既然运行时常量池是方法区的一部分,自然会受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。 2、虚拟机栈     虚拟机栈是线程私有的内存空间,每个线程都有一个线程栈,每个方法被执行时都会创建一个栈帧,方法执行完成,栈帧弹出,线程运行结束,线程栈被回收。虚拟机栈就是Java中的方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧,这个栈帧用于存储局部变量表、操作数栈、指向当前方法所属的类的运行时常量池的引用、方法返回地址等信息,每个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。局部变量表用来存储方法中的局部变量,包括方法中声明的变量以及函数形参。对于基本数据类型的变量,则直接存储它的值,对于引用类型的变量,则存的是指向对象的引用。局部变量表的大小在编译器就可以确定其大小,并且在程序执行期间局部变量表的大小是不会改变的。程序中的所有计算过程都是在借助于操作数栈来完成的。指向运行时常量池的引用,因为在方法执行的过程中有可能需要用到类中的常量,所以必须要有一个引用指向当前方法所属的类的运行时常量池。方法返回地址,当一个方法执行完毕之后,要返回之前调用它的地方,因此在栈帧中必须保存一个方法返回地址。     在Java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果虚拟机栈可以动态扩展(当前大部分的Java虚拟机都可动态扩展,只不过Java虚拟机规范中也允许固定长度的虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。 3、本地方法栈     本地方法栈也是线程私有的内存空间,本地方法栈与Java栈所发挥的作用是非常相似的,它们之间的区别不过是Java栈执行Java方法,本地方法栈执行的是本地方法,有的虚拟机直接把本地方法栈和虚拟机栈合二为一。 4、堆     Java堆是Java虚拟机所管理的内存中最大的一块,在虚拟机启动时创建,此内存区域的目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。从内存分配的角度来看,线程共享的Java堆中可能划分出多个线程私有的分配缓冲区(TLAB)。Java堆可以处于物理上不连续的内存空间,只要逻辑上连续即可,在实现上,既可以实现固定大小的,也可以是扩展的。如果堆中没有足够的内存分配给实例,并且堆也无法再拓展时,将会抛出OutOfMemeryError异常。     堆是运行时动态分配内存,对象在没有引用变量指向它的时候,才变成垃圾,但是仍然占着内存,在程序空闲的时候(没有工作线程运行,GC线程优先级最低)或者堆内存不足的时候(GC线程被触发),被垃圾回收器释放掉,由于要在运行时动态分配内存,存取速度较慢。 5、程序计数器     程序计数器的作用可以看做是当前线程所执行的字节码的行号指示。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。由于Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内存区域为线程私有的内存。如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Natvie方法,这个计数器值则为空。 二、Java内存回收     对于虚拟机栈空间,当方法调用结束后,基本类型变量、引用类型变量、形参占据的空间会被自动释放,但引用类型指向的对象在堆中,堆中的无用内存由垃圾回收线程回收,GC线程优先级最低,只有当没有工作线程存在时GC线程才会执行,或者堆空间不足时会自动触发GC线程工作。除了回收内存,GC线程还负责整理堆中的碎片。 1、四种引用类型     Java中的对象引用分为四种,强引用类型、软引用类型、弱引用类型、虚引用类型。Java中提供这四种引用类型主要有两个目的:第一是可以让程序员通过代码的方式决定某些对象的生命周期;第二是有利于JVM进行垃圾回收。使用软引用和弱引用可以有效的避免oom。软引用关联的对象,只有软引用关联时,才可回收,如果有强引用同时关联,不会回收对象占用的内存,弱引用也如此。 (1)强引用     强引用是使用最普遍的引用,类似Object obj = new Object()、String str = "hello"。如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。 (2)软引用(SoftReference)     软引用是用来描述一些有用但并不是必需的对象,在Java中用java.lang.ref.SoftReference类来表示,如果内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用通常用于网页缓存、图片缓存,防止内存溢出,在内存充足的时候,缓存对象会一直存在,在内存不足的时候,缓存对象占用的内存会被垃圾收集器回收。使用示例: public void testSoftReference() { Map<String,SoftReference<Bitmap>> imagesCache = new HashMap<String,SoftReference<Bitmap>>(); Bitmap bitmap = getBitmap(); SoftReference<Bitmap> image1 = new SoftReference<Bitmap>(bitmap); imagesCache.put("image1",image1); SoftReference<Bitmap> result_SoftReference = imagesCache.get("image1"); Bitmap result_Bitmap = result_SoftReference .get(); } import java.lang.ref.SoftReference; public class Main { public static void main(String[] args) { SoftReference<String> sr = new SoftReference<String>(new String("hello")); System.out.println(sr.get()); } } (3)弱引用(WeakReference)     弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,在java中用java.lang.ref.WeakReference类来表示。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象,不过由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。弱引用可以用于:单例类持有一个activity引用时,会造成内存泄露,把activity声明为弱引用,在activity销毁后,垃圾收集器扫描到activity对象时,会回收activity对象的内存。使用示例: public class SingleTon1 { private static final SingleTon1 mInstance = null; private WeakReference<Context> mContext; private SingleTon1(WeakReference<Context> context) { mContext = context; } public static SingleTon1 getInstance(WeakReference<Context> context) { if (mInstance == null) { synchronized (SingleTon1.class) { if (mInstance == null) { mInstance = new SingleTon1(context); } } } return mInstance; } } public class MyActivity extents Activity { public void onCreate (Bundle savedInstanceState){ super.onCreate(savedInstanceState); setContentView(R.layout.main); SingleTon1 singleTon1 = SingleTon1.getInstance(new WeakReference<Context>(this)); } }import java.lang.ref.WeakReference; public class Main { public static void main(String[] args) { WeakReference<String> sr = new WeakReference<String>(new String("hello")); System.out.println(sr.get()); System.gc(); //通知JVM的gc进行垃圾回收 System.out.println(sr.get()); } } 输出结果: hellonull     第二个输出结果是null,这说明只要JVM进行垃圾回收,被弱引用关联的对象必定会被回收掉。不过要注意的是,这里所说的被弱引用关联的对象是指只有弱引用与之关联,如果存在强引用同时与之关联,则进行垃圾回收时也不会回收该对象(软引用也是如此)。 (4)虚引用     虚引用和软引用、弱引用不同,它并不影响对象的生命周期,也无法通过虚引用来取得一个对象实例,在java中用java.lang.ref.PhantomReference类表示。如果一个对象与虚引用关联,则跟没有引用与之关联一样,在任何时候都可能被垃圾回收器回收。虚引用必须和引用队列(ReferenceQueue)联合使用,如下: import java.lang.ref.PhantomReference;import java.lang.ref.ReferenceQueue; public class Main { public static void main(String[] args) { ReferenceQueue<String> queue = new ReferenceQueue<String>(); PhantomReference<String> pr = new PhantomReference<String>(new String("hello"), queue); System.out.println(pr.get()); } } 2、垃圾回收算法 (1)标记-清除(Mark-Sweep)    标记-清除(Mark-Sweep)算法,分为标记和清除两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。 标记-清除算法主要问题是:1、效率问题,标记和清除过程的效率很低2、空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集 (2)复制(Copying)算法     复制算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。 复制算法的主要问题是:1、复制算法将内存缩小为原来的一半,过于浪费2、对象存活率较高时就要执行较多的复制操作,造成频繁GC,效率将会变低 (3)标记-整理(Mark-Compact)     标记-整理算法的标记过程仍然与标记-清除算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,这样连续的内存空间就比较多了。     如上图所示,所有存活的对象依次向左上角移动,(0,4)移动到(0,2),(1,0)移动到(0,3),依次类推,当所有的存活对象移动完成后,把剩余的所有空间清空,也就是清空(1,1)后的所有空间。 (4)分代回收(generational collection) 程序创建的大部分对象的生命周期都很短,只有一小部分对象的生命周期比较长,根据这样的规律,一般把Java堆分为Young Generation(新生代),Old Generation(老年代)和Permanent Generation(持久代),上面几种算法是通过分代回收混合在一起的,这样就可以根据各个年代的特点采用最适当的回收算法。 (1)新生代     在新生代中,有一个叫Eden Space的空间,主要是用来存放新生的对象,还有两个Survivor Spaces(from、to), 这两个区域大小相等,相当于copying算法中的两个区域,它们用来存放每次垃圾回收后存活下来的对象。在新生代中,垃圾回收一般用Copying的算法,速度快。     当新建对象无法放入eden区时,将触发minor collection(minorGC 是清理新生代的GC线程,eden的清理,from、to的清理都由MinorGC完成),将eden区与from区的存活对象复制到to区,经过一次垃圾回收,eden区和from区清空,to区中则紧密的存放着存活对象;当eden区再次满时,minor collection将eden区和to区的存活对象复制到from区,eden区和to区被清空,from区存放eden区和to区的存活对象,就这样from区和to区来回切换。如果进行minor collection的时候,发现to区放不下,则将eden区和from区的部分对象放入成熟代。另一方面,即使to区没有满,JVM依然会移动世代足够久远的对象到成熟代。 (2)成熟代     在成熟代中主要存放应用程序中生命周期长的内存对象,垃圾回收一般用mark-compact的算法,速度慢些,但减少内存要求。如果成熟代放满对象,无法从新生代移入新的对象,那么将触发major collection(major GC清理整合OldGen的内存空间)。 (3)永久代    在永久代中,主要用来放JVM自己的反射对象,比如类对象、方法对象、成员变量对象、构造方法对象等。     此外,垃圾回收一般是在程序空闲的时候(没有工作线程,GC线程优先级较低)或者堆内存不足的时候自动触发,也可以调用System.gc()主动的通知Java虚拟机进行垃圾回收,但这只是个建议,Java虚拟机不一定马上执行,启动时机的选择由JVM决定,并且取决于堆内存中Eden区是否可用 作者:喜六六 来源:CSDN 原文:https://blog.csdn.net/qq_29078329/article/details/78929457 版权声明:本文为博主原创文章,转载请附上博文链接!

auto_answer 2019-12-02 01:50:42 0 浏览量 回答数 0

问题

Redis 的持久化有哪几种方式?【Java问答】35期

剑曼红尘 2020-06-11 09:27:45 4 浏览量 回答数 1

回答

Java之JVM垃圾回收 内存结构以及垃圾回收算法前言:由于小组技术分享的需要,懂的不是很多所以我就找了这个我自己感兴趣的知识点给大家做个简单的介绍。由于是新人,算不了很懂,只是总结性的讲了些概念性的东西。给大家分享的同时,算是给自己做个笔记吧。作为Java语言的核心之一,JVM垃圾回收帮我们解决了让我们很头疼的垃圾回收问题。我们不需要像VC++一样,作为内存管理的统治者需要我们对我们分配的每一块内存进行回收,否则就会造成内存泄露问题。是不是只要有JVM存在我们就不会出现内存泄露问题,出现内存泄露问题我们又该怎么办,如果我们想提高我们程序的稳定性和其他性能我们能从什么地方下手!!!相信这些问题是我们程序过程中不可逾越的。了解JVM的内存分配及其相应的垃圾回收机制,不仅仅是可以了解底层的JVM运行机制,而且对于程序性能的优化和提升还是很有必要的。一、JVM内存分配区域结构图一从图一可以看出JVM中的内存分配包括PC Register(PC寄存器) JVM栈 堆(Heap) 方法区域(MethodArea)运行时常量池(RuntimeConstant Pool) 本地方法堆栈(NativeMethod Stacks),这几部分区域但是从程序员的角度来看我们只关注JVM Heap和JVM Stack,因为这两部分是直接关系程序运行期间的内存状态,所以我会主要介绍这两部分内存,其他的我只是给出了简单的一些概念性解释:PC Register(Program Counter 寄存器):主要作用是记录当前线程所执行的字节码的行号。方法区域(MethodArea):方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,法区域也是全局共享的,它在虚拟机启动时在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。运行时常量池(RuntimeConstant Pool):存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。本地方法堆栈(NativeMethod Stacks):JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。JVM栈:主要存放一些基本类型的变量和对象的引用变量。JVM堆:用来存放由 new 创建的对象和数组Java 虚拟机的自动垃圾回收器来管理(注意数组也是对象,所以说数组也是存放在JVM堆中)。由于栈中存放的是主要存放一些基本类型的变量和对象的引用变量,所以当过了变量的作用区域或者是当程序运行结束后它所占用的内存会自动的释放掉,所以不用来关心,下面我们主要来说的是堆内存的分配以及回收的算法。二、JVM堆内存介绍工欲善其事,必先利其器。所以了解堆内存的内部结构是很必要的。在Jvm中堆空间划分为三个代:年轻代(Young Generation)、年老代(Old Generation)和永久代(Permanent Generation)。年轻带主要是动态的存储,年轻带主要储存新产生的对象,年老代储存年龄大些的对象,永久带主要是存储的是java的类信息,包括解析得到的方法、属性、字段等。永久带基本不参与垃圾回收。所以说我们说的垃圾回收主要是针对年轻代和年老代。图二年轻代又分成3个部分,一个eden区和两个相同的survior区。刚开始创建的对象都是放置在eden区的。分成这样3个部分,主要是为了生命周期短的对象尽量留在年轻带。当eden区申请不到空间的时候,进行minorGC,把存活的对象拷贝到survior。年老代主要存放生命周期比较长的对象,比如缓存对象。(经过IBM的一个研究机构研究数据表明,基本上80%-98%的对象都会在年轻代的Eden区死掉从而本回收掉,所以说真正进入到老年代的对象很少,这也是为什么MinorGC比MajorGC更加频繁的原因)具体JVM内存垃圾回收过程描述如下 :1、对象在Eden区完成内存分配2、当Eden区满了,再创建对象,会因为申请不到空间,触发minorGC,进行young(eden+1survivor)区的垃圾回收3、minorGC时,Eden不能被回收的对象被放入到空的survivor(Eden肯定会被清空),另一个survivor里不能被GC回收的对象也会被放入这个survivor,始终保证一个survivor是空的4、当做第3步的时候,如果发现survivor满了,则这些对象被copy到old区,或者survivor并没有满,但是有些对象已经足够Old,也被放入Old区 XX:MaxTenuringThreshold5、当Old区被放满的之后,进行fullGC补充: MinorGC:年轻代所进行的垃圾回收,非常频繁,一般回收速度也比较快。 MajorGC:老年代进行的垃圾回收,发生一次MajorGC至少伴随一次MinorGC,一般比MinorGC速度慢十倍以上。 FullGC:整个堆内存进行的垃圾回收,很多时候是MajorGC 以后就是堆内存结构已经大致的垃圾回收过程。三、对象分配原则1.对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。2.大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。3.长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。4.动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。5.空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。四、垃圾收集器作为JVM中的核心之一垃圾收集器,主要完成的功能包括:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。所以说我们在实现垃圾收集器的同时就要实现两个算法一个是发现无用的对象第二就是回收该对象的内存。收集器主要分为引用计数器和跟踪收集器两种,Sun JDK中采用跟踪收集器作为GC实现策略。发现无用对象只要的实现算法包括引用计数法和根搜索算法,引用计数法主要是JVM的早期实现方法,因为引用计数无法解决循环引用的问题,所以现在JVM实现的主要是根搜索算法,引用计数法:堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就不可用从而可以被回收。 根搜索算法:通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。目前的收集器主要有三种:串行收集器:使用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高并行收集器:对年轻代进行并行垃圾回收,因此可以减少垃圾回收时间。一般在多线程多处理器机器上使用并发收集器:可以保证大部分工作都并发进行(应用不停止),垃圾回收只暂停很少的时间,此收集器适合对响应时间要求比较高的中、大规模应用五、垃圾收集器的回收算法Copying算法:算法:复制采用的方式为从根集合扫描出存活的对象,并将找到的存活对象复制到一块新的完全未使用的空间中。 过程: 此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。次算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。Mark-Sweep算法: 算法:标记-清除采用的方式为从根集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未标记的对象,并进行回收。 过程: 第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。它停止所有工作,收集器从根开始访问每一个活跃的节点,标记它所访问的每一个节点。走过所有引用后,收集就完成了,然后就对堆进行清除(即对堆中的每一个对象进行检查),所有没有标记的对象都作为垃圾回收并返回空闲列表。Mark-Compact算法: 算法:标记阶段与“Mark-Sweep”算法相同,但在清除阶段有所不同。在回收不存活对象所占用的内存空间后,会将其他所有存活对象都往左端空闲的空间进行移动,并更新引用其对象指针。过程:此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。Sun JDK GC策略:新生代算法实现:Copying,Copying,Copying旧生代算发实现:Mark-Sweep-Compact,Mark –Compact,Mark –Sweep!!六、JvisuaVM 工具如果我们想优化自己的程序,那么我们就必须清楚的了解不同代码程序所消耗的性能多少,作为JDK的一部分,这个工具给我们提供了很大的帮助。这个工具可以在JDK的bin目录下找到,功能很强大,可以注意利用

auto_answer 2019-12-02 01:56:35 0 浏览量 回答数 0

问题

你们有没有做 MySQL 读写分离?如何实现 MySQL 的读写分离?【Java问答】44期

剑曼红尘 2020-06-24 08:34:06 8 浏览量 回答数 1

问题

如何部署云存储?

elainebo 2019-12-01 21:05:26 7838 浏览量 回答数 0

问题

如何将RDS数据备份到本地MySQL 数据库?

仟与仟寻 2019-12-01 21:03:20 4779 浏览量 回答数 0

问题

Redis 集群模式的工作原理能说一下么?【Java问答】36期

剑曼红尘 2020-06-12 15:07:18 2 浏览量 回答数 1

回答

本入门教程采用ecs.g6.large实例规格,在CentOS 8.0系统上配置了Apache服务,结合ECS管理控制台展示如何快速使用云服务器ECS。 准备工作 创建账号,以及完善账号信息。 注册阿里云账号,并完成实名认证。具体操作,请参见阿里云账号注册流程。 本入门教程创建的是按量付费实例,您的账号的可用余额(含现金、代金券、优惠券等)不得少于100元人民币。充值方式请参见如何充值。 可选: 阿里云提供一个默认的专有网络VPC,如果您不想使用默认的,可以在目标地域创建一个专有网络和交换机。 具体操作,请参见搭建IPv4专有网络。 可选: 阿里云提供一个默认的安全组,如果您不想使用默认的,可以在目标地域创建一个安全组。 具体操作,请参见创建安全组。 步骤一:创建ECS实例 前往实例创建页。 在购买页面的前四个配置页面,完成实例启动配置。 本入门教程采用以下配置,未提及的配置保持默认选项。 配置页面 配置项 示例 说明 基础配置 付费模式 按量付费 按量付费模式操作相对灵活。详情请参见计费概述。 说明 如果您需要为网站域名备案,必须选择包年包月。 地域与可用区 地域:华东1(杭州) 可用区:随机分配 实例创建后,无法直接更改地域和可用区,请谨慎选择。 实例 规格族:通用型g6 规格:ecs.g6.large 可供选择的实例规格由您所选择的地域以及库存供应决定。 您可以前往ECS实例可购买地域,查看实例的可购情况。 镜像 类型:公共镜像 版本:CentOS 8.0 64位 实例启动后,系统盘将完整复制镜像的操作系统和应用数据。 网络和安全组 专有网络 [默认]vpc-bp1opxu1zkhn00g****** 带[默认]前缀的资源由ECS控制台自动创建。 分配公网IPv4地址 勾选 勾选后,自动分配一个公网IP(v4)地址。 带宽计费模式 按使用流量 按使用流量模式只需为所消耗的公网流量付费。详情请参见公网带宽计费方式。 峰值带宽 2 Mbps 无。 安全组 安全组:[默认]sg-bp1bhjjsoiyx44****** 安全组规则:勾选ICMP协议、SSH 22、RDP 3389、HTTP 80和HTTPS 443端口 带[默认]前缀的资源由ECS控制台自动创建。 系统配置 登录凭证 自定义密码 请记录该配置,连接ECS实例时,您需要输入root密码。 实例名称 EcsQuickStart 本文中的实例一律使用EcsQuickStart指代。 分组设置 标签 ECS:Documentation 有多台实例时,建议添加标签,方便管理。 单击下一步:确认订单,在该页面确认所选配置,或者单击编辑图标编辑-图标返回修改配置。 快速入门-Linux版 可选: 单击保存为启动模板,然后设置模板名称和描述。 快速入门-启动模板 说明 将当前实例所选配置保存为启动模板,方便您下次通过模板一键下单。 勾选《云服务器ECS服务条款》,然后单击创建实例。 单击创建成功提示框里的管理控制台,前往实例列表页面查看创建进度。 实例状态进入运行中后表示已成功创建。复制实例的公网IP地址,便于下文连接ECS实例时使用。快速入门-Linux版-创建成功 步骤二:添加安全组规则 如果创建ECS实例时,您没有在默认安全组中勾选添加安全组规则,或者ECS实例加入的是一个全新的安全组,请按以下步骤继续操作。 单击实例ID,进入实例详情页。 在左侧导航栏,单击本实例安全组,然后单击安全组ID,进入安全组详情页。 在安全组规则页面的右上角,单击快速创建规则。 按以下设置添加安全组规则,未提及的配置保持页面默认选项。 规则方向 授权策略 常用端口 授权类型 授权对象 入方向 允许 SSH 22 RDP 3389 HTTP 80 HTTPS 443 IPv4地址段访问 0.0.0.0/0 说明 常用端口处勾选的是ECS实例上运行的应用需开放的端口。例如步骤四:配置Apache服务时使用的SSH服务和Apache服务,未开启SSH 22端口和HTTP 80端口会导致实例无响应。 0.0.0.0/0表示允许全网段设备访问指定的端口。如果您知晓请求端的IP地址,建议设置为具体的IP范围。 快速入门-Linux版-添加安全组规则 单击确定。 步骤三:连接ECS实例 单击下一步骤中的cloud-shell-try-it按钮,等待初始化CloudShell客户端。 使用ssh命令连接实例。 试用 ssh root@<实例公网IP地址> 提示ECS实例此次授信登录需要存储密钥指纹时,输入yes。 输入ECS实例的root用户名密码,并回车。 输入密码阶段,password:处保持黑屏,无提示信息。提示以下信息则表示您已连接ECS实例。 Welcome to Alibaba Cloud Elastic Compute Service ! 步骤四:配置Apache服务 安装Apache服务。 试用 yum install -y httpd 启动Apache服务。 试用 systemctl start httpd 设置Apache服务开机自启动。 试用 systemctl enable httpd 查询Apache服务是否处于运行中状态。 试用 systemctl status httpd 返回active (running)则表示已开始运行Apache服务。 在当前浏览器页面,新开启一个网页,在地址栏输入实例的公网IP地址,并回车。 试用 http://<实例公网IP地址> 快速入门-Linux版-测试网站 步骤五:(可选)解析网站域名 直接通过实例公网IP地址访问Apache服务会降低服务端安全性。如果您已有域名或者想为Apache网站注册一个域名,请参见以下步骤。 注册域名。 详情请参见注册通用域名。 如果域名指向的网站托管在阿里云中国大陆境内节点服务器,您需要备案域名。 首次备案,请参见首次备案,其他情况请参见ICP备案流程概述。 解析域名,将域名指向实例公网IP。 域名解析是使用域名访问您的网站的必备环节。具体操作流程,请参见设置域名解析。 使用解析后的域名访问Apache服务,例如,https://ecs-quickstarts.info。 步骤六:(可选)释放ECS实例 如果您不再需要这台实例,可以将其释放。释放后,实例停止计费,数据不可恢复。 说明 本小节操作仅适用于按量付费实例,不支持手动释放包年包月实例。如果您需要提前释放包年包月实例,请参见退款规则及退款流程。 返回实例列表页面,找到实例EcsQuickStart。 在操作列中,单击更多 > 实例状态 > 释放设置。 选择立即释放,并单击下一步。 确认要释放的实例,并单击确定。 输入您收到的手机验证码,单击确认。 步骤七:查看费用账单 账单明细数据延迟一天更新,且不含万网和云通信数据。 在ECS管理控制台顶部工具栏处,选择费用 > 用户中心。 ECS快速入门-查看费用账单 在左侧导航栏,单击费用账单,然后单击页面中的账单明细页签。 在实例名称处,输入实例名称EcsQuickStart,并回车开始搜索。 后续步骤 了解云服务器ECS在售的实例规格族:实例规格族 了解更多创建ECS实例的方式:创建方式导航 了解镜像的相关概念:镜像概述 了解安全组的相关概念:安全组概述 了解专有网络VPC的相关概念:什么是专有网络 了解云服务器ECS的常见操作:常用操作导航 了解云服务器ECS提供的API:API概览

1934890530796658 2020-03-24 14:02:43 0 浏览量 回答数 0

回答

本文介绍AliSQL的内核版本更新说明。 MySQL 8.0 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 允许在只读实例上进行语句级并发控制(CCL)操作。 备实例支持Outline。 Proxy短连接优化。 优化不同CPU架构下的pause指令执行时间。 添加内存表查看线程池运行情况。 Bug修复 在低于4.9的Linux Kenerls中禁用ppoll,使用poll代替。 修复wrap_sm4_encrypt函数调用错误问题。 修复在滚动审核日志时持有全局变量锁的问题。 修复恢复不一致性检查的问题。 修复io_statistics表出现错误time值的问题。 修复无效压缩算法导致崩溃的问题。 修复用户列与5.6不兼容的问题。 20200110 新特性 Inventory Hint:新增了三个hint, 支持SELECT、UPDATE、INSERT、DELETE 语句,快速提交/回滚事务,提高业务吞吐能力。 性能优化 启动实例时,先初始化Concurrency Control队列结构,再初始化Concurrency Control规则。 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 默认情况下禁用恢复不一致性检查。 更改设置变量所需的权限: 设置以下变量所需的权限已更改为普通用户权限: auto_increment_increment auto_increment_offset bulk_insert_buffer_size binlog_rows_query_log_events 设置以下变量所需的权限已更改为超级用户或系统变量管理用户权限: binlog_format binlog_row_image binlog_direct sql_log_off sql_log_bin 20191225 新特性 Recycle Bin:临时将删除的表转移到回收站,还可以设置保留的时间,方便您找回数据。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 通过Redo刷新Binlog时出现错误会显式释放文件同步锁。 删除不必要的TCP错误日志。 默认情况下启用线程池。 Bug修复 修复慢日志刷新的问题。 修复锁定范围不正确的问题。 修复TDE的Select函数导致的核心转储问题。 20191115 新特性 Statement Queue:针对语句的排队机制,将语句进行分桶排队,尽量把可能具有相同冲突的语句放在一个桶内排队,减少冲突的开销。 20191101 新特性 为TDE添加SM4加密算法。 保护备实例信息:拥有SUPER或REPLICATION_SLAVE_ADMIN权限的用户才能插入/删除/修改表slave_master_info、slave_relay_log_info、slave_worker_info。 提高自动递增键的优先级:如果表中没有主键或非空唯一键,具有自动增量的非空键将是第一候选项。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 Redo Log刷新到磁盘之前先将Binlog文件刷新到磁盘。 实例被锁定时也会影响临时表。 添加新的基于LSM树的事务存储引擎X-Engine。 性能优化 Thread Pool:互斥优化。 Performance Insight:性能点支持线程池。 参数调整: primary_fast_lookup:会话参数,默认值为true。 thread_pool_enabled:全局参数,默认值为true。 20191015 新特性 TDE:支持透明数据加密TDE(Transparent Data Encryption)功能,可对数据文件执行实时I/O加密和解密,数据在写入磁盘之前进行加密,从磁盘读入内存时进行解密。 Returning:Returning功能支持DML语句返回Resultset,同时提供了工具包(DBMS_TRANS)便于您快捷使用。 强制将引擎从MyISAM/MEMORY转换为InnoDB:如果全局变量force_memory/mysiam_to_innodb为ON,则创建/修改表时会将表引擎从MyISAM/MEMORY转换为InnoDB。 禁止非高权限账号切换主备实例。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮循方式,保留最近的秒级性能数据。 Innodb mutex timeout cofigurable:可配置全局变量innodb_fatal_semaphore_wait_threshold,默认值:600。 忽略索引提示错误:可配置全局变量ignore_index_hint_error,默认值:false。 可关闭SSL加密功能。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 支持本地AIO的Linux系统内,在触发线性预读之前会合并AIO请求。 优化表/索引统计信息。 如果指定了主键,则直接访问主索引。 20190915 Bug修复 修复Cmd_set_current_connection内存泄露问题。 20190816 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 Statement Concurrency Control:通过控制并发数应对突发的数据库请求流量、资源消耗过高的语句访问以及SQL访问模型的变化,保证MySQL实例持续稳定运行。 Statement Outline:利用Optimizer Hint和Index Hint让MySQL稳定执行计划。 Sequence Engine:简化获取序列值的复杂度。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 修复文件大小计算错误的问题。 修复偶尔出现的内存空闲后再次使用的问题。 修复主机缓存大小为0时的崩溃问题。 修复隐式主键与CTS语句的冲突问题。 修复慢查询导致的slog出错问题。 20190601 性能优化 缩短日志表MDL范围,减少MDL阻塞的可能性。 重构终止选项的代码。 Bug修复 修复审计日志中没有记录预编译语句的问题。 屏蔽无效表名的错误日志。 MySQL 5.7基础版/高可用版 20200229 新特性 Performance Agent:更加便捷的性能数据统计方案。通过MySQL插件的方式,实现MySQL实例内部各项性能数据的采集与统计。 在半同步模式下添加网络往返时间,并记录到性能数据。 性能优化 优化不同CPU架构下的pause指令执行时间。 Proxy短连接优化。 添加内存表查看线程池运行情况。 Bug修复 修复DDL重做日志不安全的问题。 修复io_statistics表出现错误time值的问题。 修复更改表导致服务器崩溃的问题。 修复MySQL测试用例。 20200110 性能优化 异步清除文件时继续取消小文件的链接。 优化Thread Pool性能。 thread_pool_enabled参数的默认值调整为OFF。 20191225 新特性 内部账户管理与防范:调整用户权限保护数据安全。 性能优化 提高短连接处理性能。 使用专用线程为maintain user服务,避免HA失败。 删除不必要的TCP错误日志。 优化线程池。 Bug修复 修复读写分离时mysqld进程崩溃问题。 修复密钥环引起的核心转储问题。 20191115 Bug修复 修复主备切换后审计日志显示变量的问题。 20191101 新特性 为TDE添加SM4加密算法。 如果指定了主键,则直接访问主索引。 对系统表和处于初始化状态线程用到的表,不进行Memory引擎到MyISAM引擎的自动转换。 性能优化 Thread Pool:互斥优化。 引入审计日志缓冲机制,提高审计日志的性能。 Performance Insight:性能点支持线程池。 默认开启Thread Pool。 Bug修复 在处理维护用户列表时释放锁。 补充更多TCP错误信息。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 性能代理插件:收集性能数据并保存到本地格式化文本文件,采用文件轮轮循方式,保留最近的秒级性能数据。 强制将引擎从MEMORY转换为InnoDB:如果全局变量rds_force_memory_to_innodb为ON,则创建/修改表时会将表引擎从MEMORY转换为InnoDB。 TDE机制优化:添加keyring-rds插件与管控系统/密钥管理服务进行交互。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 Bug修复 修复DDL中的意外错误Error 1290。 20190925 参数修改 将系统变量auto_generate_certs的默认值由true改为false。 增加全局只读变量auto_detact_certs,默认值为false,有效值为[true | false]。 该系统变量在Server端使用OpenSSL编译时可用,用于控制Server端在启动时是否在数据目录下自动查找SSL加密证书和密钥文件,即控制是否开启Server端的证书和密钥的自动查找功能。 20190915 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 20190815 新特性 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 Performance Insight:专注于实例负载监控、关联分析、性能调优的利器,帮助您迅速评估数据库负载,找到性能问题的源头,提升数据库的稳定性。 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 Bug修复 禁止在set rds_current_connection命令中设置rds_prepare_begin_id。 允许更改已锁定用户的信息。 禁止用关键字actual作为表名。 修复慢日志导致时间字段溢出的问题。 20190510版本 新特性:允许在事务内创建临时表。 20190319版本 新特性:支持在handshake报文内代理设置threadID。 20190131版本 升级到官方5.7.25版本。 关闭内存管理功能jemalloc。 修复内部变量net_lenth_size计算错误问题。 20181226版本 新特性:支持动态修改binlog-row-event-max-size,加速无主键表的复制。 修复Proxy实例内存申请异常的问题。 20181010版本 支持隐式主键。 加快无主键表的主备复制。 支持Native AIO,提升I/O性能。 20180431版本 新特性: 支持高可用版。 支持SQL审计。 增强对处于快照备份状态的实例的保护。 MySQL 5.7三节点企业版 20191128 新特性 支持读写分离。 Bug修复 修复部分场景下Follower Second_Behind_Master计算错误问题。 修复表级并行复制事务重试时死锁问题。 修复XA相关bug。 20191016 新特性 支持MySQL 5.7高可用版(本地SSD盘)升级到三节点企业版。 兼容MySQL官方GTID功能,默认不开启。 合并AliSQL MySQL 5.7基础版/高可用版 20190915版本及之前的自研功能。 Bug修复 修复重置备实例导致binlog被关闭问题。 20190909 新特性 优化大事务在三节点强一致状态下的执行效率。 支持从Leader/Follower进行Binlog转储。 支持创建只读实例。 系统表默认使用InnoDB引擎。 Bug修复 修复Follower日志清理命令失效问题。 修复参数slave_sql_verify_checksum=OFF和binlog_checksum=crc32时Slave线程异常退出问题。 20190709 新特性 支持三节点功能。 禁用semi-sync插件。 支持表级并行复制、Writeset并行复制。 支持pk_access主键查询加速。 支持线程池。 合并AliSQL MySQL 5.7基础版/高可用版 20190510版本及之前的自研功能。 MySQL 5.6 20200229 新特性 支持Proxy读写分离功能。 性能优化 优化线程池功能。 优化不同CPU架构下的pause指令执行时间。 Bug修复 修复XA事务部分提交的问题。 20200110 新特性 Thread Pool:将线程和会话分离,在拥有大量会话的同时,只需要少量线程完成活跃会话的任务即可。 性能优化 异步清除文件时继续取消小文件的链接。 Bug修复 修复页面清理程序的睡眠时间计算不正确问题。 修复SELECT @@global.gtid_executed导致的故障转移失败问题。 修复IF CLIENT KILLED AFTER ROLLBACK TO SAVEPOINT PREVIOUS STMTS COMMITTED问题。 20191212 性能优化 删除不必要的tcp错误日志 20191115 Bug修复 修复慢日志时间戳溢出问题。 20191101 Bug修复 修复刷新日志时切换慢日志的问题,仅在执行刷新慢日志时切换慢日志。 修正部分显示错误。 20191015 新特性 轮换慢日志:为了在收集慢查询日志时保证零数据丢失,轮换日志表会将慢日志表的csv数据文件重命名为唯一名称并创建新文件。您可以使用show variables like '%rotate_log_table%';查看是否开启轮换慢日志。 SM4加密算法:添加新的SM4加密算法,取代旧的SM加密算法。 Purge Large File Asynchronously:删除单个表空间时,会将表空间文件重命名为临时文件,等待异步清除进程清理临时文件。 TCP错误信息:返回TCP方向(读取、读取等待、写入等待)错误及错误代码到end_connection事件,并且输出错误信息到错误日志。 引入审计日志缓冲机制,提高审计日志的性能。。 Bug修复 禁用pstack,避免存在大量连接时可能导致pstack无响应。 修复隐式主键与create table as select语句之间的冲突。 自动清除由二进制日志创建的临时文件。 20190815 优化实例锁状态:实例锁定状态下,可以drop或truncate表。 20190130版本 修复部分可能导致系统不稳定的bug。 20181010版本 添加参数rocksdb_ddl_commit_in_the_middle(MyRocks)。如果这个参数被打开,部分DDL在执行过程中将会执行commit操作。 201806** (5.6.16)版本 新特性:slow log精度提升为微秒。 20180426(5.6.16)版本 新特性:引入隐藏索引,支持将索引设置为不可见,详情请参见参考文档。 修复备库apply线程的bug。 修复备库apply分区表更新时性能下降问题。 修复TokuDB下alter table comment重建整张表问题,详情请参见参考文档。 修复由show slave status/show status可能触发的死锁问题。 20171205(5.6.16)版本 修复OPTIMIZE TABLE和ONLINE ALTER TABLE同时执行时会触发死锁的问题。 修复SEQUENCE与隐含主键冲突的问题。 修复SHOW CREATE SEQUENCE问题。 修复TokuDB引擎的表统计信息错误。 修复并行OPTIMIZE表引入的死锁问题。 修复QUERY_LOG_EVENT中记录的字符集问题。 修复信号处理引起的数据库无法停止问题,详情请参见参考文档。 修复RESET MASTER引入的问题。 修复备库陷入等待的问题。 修复SHOW CREATE TABLE可能触发的进程崩溃问题。 20170927(5.6.16)版本 修复TokuDB表查询时使用错误索引问题。 20170901(5.6.16)版本 新特性: 升级SSL加密版本到TLS 1.2,详情请参见参考文档。 支持Sequence。 修复NOT IN查询在特定场景下返回结果集有误的问题。 20170530 (5.6.16)版本 新特性:支持高权限账号Kill其他账号下的连接。 20170221(5.6.16)版本 新特性:支持读写分离简介。 MySQL 5.5 20181212 修复调用系统函数gettimeofday(2) 返回值不准确的问题。该系统函数返回值为时间,常用来计算等待超时,时间不准确时会导致一些操作永不超时。

游客yl2rjx5yxwcam 2020-03-08 13:18:55 0 浏览量 回答数 0

问题

生产环境中的 Redis 是怎么部署的?【Java问答】40期

剑曼红尘 2020-06-18 08:28:34 33 浏览量 回答数 1

回答

MongoDB ACID事务支持 这里要有一定的关系型数据库的事务的概念,不然不一定能理解的了这里说的事务概念。 下面说一说MongoDB的事务支持,这里可能会有疑惑,前面我们在介绍MongoDB时,说MongoDB是一个NoSQL数据库,不支持事务。这里又介绍MongoDB的事务。这里要说明一下MongoDB的事务支持跟关系型数据库的事务支持是两码事,如果你已经非常了解关系型数据库的事务,通过下面一副图对比MongoDB事务跟MySQL事务的不同之处。 MongoDB是如何实现事务的ACID? 1)MongoDB对原子性(Atomicity)的支持 原子性在Mongodb中到底是一个什么概念呢?为什么说支持但又说Mongodb的原子性是单行/文档级原子性,这里提供了一个MongoDB更新语句样例,如下图: MongoDB是如何实现事务的ACID? 更新“username”等于“tj.tang”的文档,更新salary、jobs、hours字段。这里对于这三个字段Mongodb在执行时要么都更新要么都不更新,这个概念在MySQL中可能你没有考虑过,但在MongoDB中由于文档可以嵌套子文档可以很复杂,所以Mongodb的原子性叫单行/文档级原子性。 对于关系型数据库的多行、多文档、多语句原子性目前Mongodb是不支持的,如下情况: MongoDB是如何实现事务的ACID? MongoDB更新条件为工资小于50万的人都把工资调整为50万,这就会牵扯到多文档更新原子性。如果当更新到Frank这个文档时,出现宕机,服务器重启之后是无法像关系型数据库那样做到数据回滚的,也就是说处理这种多文档关系型数据库事务的支持,但MongoDB不支持。那么怎么解决Mongodb这个问题呢?可以通过建模,MongoDB不是范式而是反范式的设计,通过大表和小表可以把相关的数据放到同一个文档中去。然后通过一条语句来执行操作。 2)MongoDB对一致性(consistency)的支持 对于数据一致性来说,传统数据库(单机)跟分布式数据库(MongoDB)对于数据一致性是不太一样的,怎么理解呢?如下图: MongoDB是如何实现事务的ACID? 对于传统型数据库来说,数据一致性主要是在单机上,单机的问题主要是数据进来时的规则检验,数据不能被破坏掉。而在分布式数据库上,因为他们都是多节点分布式的,我们讲的一致性往往就是讲的各个节点之间的数据是否一致。而MongoDB在这点上做的还是不错的,MongoDB支持强一致性或最终一致性(弱一致性),MongoDB的数据一致性也叫可调一致性,什么意思呢?如下图: MongoDB是如何实现事务的ACID? MongoDB的可调一致性,也就是可以自由选择强一致性或最终一致性,如果你的应用场景是前台的方式可以选择强一致性,如果你的应用场景是后台的方式(如报表)可以选择弱一致性。 一致性 上面我们讲到了通过将数据冗余存储到不同的节点来保证数据安全和减轻负载,下面我们来看看这样做引发的一个问题:保证数据在多个节点间的一致性是非常困难的。在实际应用中我们会遇到很多困难,同步节点可能会故障,甚至会无法恢复,网络可能会有延迟或者丢包,网络原因导致集群中的机器被分隔成两个不能互通的子域等等。在NoSQL中,通常有两个层次的一致性:第一种是强一致性,既集群中的所有机器状态同步保持一致。第二种是最终一致性,既可以允许短暂的数据不一致,但数据最终会保持一致。我们先来讲一下,在分布式集群中,为什么最终一致性通常是更合理的选择,然后再来讨论两种一致性的具体实现结节。 关于CAP理论 为什么我们会考虑削弱数据的一致性呢?其实这背后有一个关于分布式系统的理论依据。这个理论最早被Eric Brewer提出,称为CAP理论,尔后Gilbert和Lynch对CAP进行了理论证明。这一理论首先把分布式系统中的三个特性进行了如下归纳: 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。 分区容忍性(P):集群中的某些节点在无法联系后,集群整体是否还能继续进行服务。 而CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。 要保证数据强一致性,最简单的方法是令写操作在所有数据节点上都执行成功才能返回成功,也就是同步概念。而这时如果某个结点出现故障,那么写操作就成功不了了,需要一直等到这个节点恢复。也就是说,如果要保证强一致性,那么就无法提供7×24的高可用性。 而要保证可用性的话,就意味着节点在响应请求时,不用完全考虑整个集群中的数据是否一致。只需要以自己当前的状态进行请求响应。由于并不保证写操作在所有节点都写成功,这可能会导致各个节点的数据状态不一致。 CAP理论导致了最终一致性和强一致性两种选择。当然,事实上还有其它的选择,比如在Yahoo的PNUTS中,采用的就是松散的一致性和弱可用性结合的方法。但是我们讨论的NoSQL系统没有类似的实现,所以我们在后续不会对其进行讨论。 强一致性 强一致性的保证,要求所有数据节点对同一个key值在同一时刻有同样的value值。虽然实际上可能某些节点存储的值是不一样的,但是作为一个整体,当客户端发起对某个key的数据请求时,整个集群对这个key对应的数据会达成一致。下面就举例说明这种一致性是如何实现的。 假设在我们的集群中,一个数据会被备份到N个结点。这N个节点中的某一个可能会扮演协调器的作用。它会保证每一个数据写操作会在成功同步到W个节点后才向客户端返回成功。而当客户端读取数据时,需要至少R个节点返回同样的数据才能返回读操作成功。而NWR之间必须要满足下面关系:R+W>N 下面举个实在的例子。比如我们设定N=3(数据会备份到A、B、C三个结点)。比如值 employee30:salary 当前的值是20000,我们想将其修改为30000。我们设定W=2,下面我们会对A、B、C三个节点发起写操作(employee30:salary, 30000),当A、B两个节点返回写成功后,协调器就会返回给客户端说写成功了。至于节点C,我们可以假设它从来没有收到这个写请求,他保存的依然是20000那个值。之后,当一个协调器执行一个对employee30:salary的读操作时,他还是会发三个请求给A、B、C三个节点: 如果设定R=1,那么当C节点先返回了20000这个值时,那我们客户端实际得到了一个错误的值。 如果设定R=2,则当协调器收到20000和30000两个值时,它会发现数据不太正确,并且会在收到第三个节点的30000的值后判断20000这个值是错误的。 所以如果要保证强一致性,在上面的应用场景中,我们需要设定R=2,W=2 如果写操作不能收到W个节点的成功返回,或者写操作不能得到R个一致的结果。那么协调器可能会在某个设定的过期时间之后向客户端返回操作失败,或者是等到系统慢慢调整到一致。这可能就导致系统暂时处于不可用状态。 对于R和W的不同设定,会导致系统在进行不同操作时需要不同数量的机器节点可用。比如你设定在所有备份节点上都写入才算写成功,既W=N,那么只要有一个备份节点故障,写操作就失败了。一般设定是R+W = N+1,这是保证强一致性的最小设定了。一些强一致性的系统设定W=N,R=1,这样就根本不用考虑各个节点数据可能不一致的情况了。 HBase是借助其底层的HDFS来实现其数据冗余备份的。HDFS采用的就是强一致性保证。在数据没有完全同步到N个节点前,写操作是不会返回成功的。也就是说它的W=N,而读操作只需要读到一个值即可,也就是说它R=1。为了不至于让写操作太慢,对多个节点的写操作是并发异步进行的。在直到所有的节点都收到了新的数据后,会自动执行一个swap操作将新数据写入。这个操作是原子性和一致性的。保证了数据在所有节点有一致的值。 最终一致性 像Voldemort,Cassandra和Riak这些类Dynamo的系统,通常都允许用户按需要设置N,R,W三个值,即使是设置成W+R<= N也是可以的。也就是说他允许用户在强一致性和最终一致性之间自由选择。而在用户选择了最终一致性,或者是W 3)MongoDB对隔离性(isolation)的支持 在关系型数据库中,SQL2定义了四种隔离级别,分别是READ UNCOMMITTED、READ COMMITTED、REPEATABLE READ和SERIALIZABLE。但是很少有数据库厂商遵循这些标准,比如Oracle数据库就不支持READ UNCOMMITTED和REPEATABLE READ隔离级别。而MySQL支持这全部4种隔离级别。每一种级别都规定了一个事务中所做的修改,哪些在事务内核事务外是可见的,哪些是不可见的。为了尽可能减少事务间的影响,事务隔离级别越高安全性越好但是并发就越差;事务隔离级别越低,事务请求的锁越少,或者保持锁的时间就越短,这也就是为什么绝大多数数据库系统默认的事务隔离级别是RC。 下图展示了几家不同的数据库厂商的不同事物隔离级别。 MongoDB是如何实现事务的ACID? MongoDB在3.2之前使用的是“读未提交”,这种情况下会出现“脏读”。但在MongoDB 3.2开始已经调整为“读已提交”。 下面说说每种隔离级别带来的问题: READ-UNCOMMITTED(读尚未提交的数据) 在这个级别,一个事务的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为“脏读(dirty read)”。这个级别会导致很多问题,从性能上来说,READ UNCOMMITTED不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的有非常必要的理由,在实际应用中一般很少使用。 READ-COMMITTED(读已提交的数据) 在这个级别,能满足前面提到的隔离性的简单定义:一个事务开始时,只能“看见”已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫“不可重复读(non-repeatable read)”,因为两次执行同样的查询,可能会得到不一样的结果。 REPEATABLE-READ(可重复读) 在这个级别,保证了在同一个事务中多次读取统一记录的结果是一致的。MySQL默认使用这个级别。InnoDB和XtraDB存储引擎通过多版本并发控制MVCC(multiversion concurrency control)解决了“幻读”和“不可重复读”的问题。通过前面的学习我们知道RR级别总是读取事务开始那一刻的快照信息,也就是说这些数据数据库当前状态,这在一些对于数据的时效特别敏感的业务中,就很可能会出问题。 SERIALIZABLE(串行化) 在这个级别,它通过强制事务串行执行,避免了前面说的一系列问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。实际应用中也很少在本地事务中使用SERIALIABLE隔离级别,主要应用在InnoDB存储引擎的分布式事务中。 4)MongoDB对持久性(durability)的支持 对于数据持久性来说,在传统数据库中(单机)的表现为服务器任何时候发生宕机都不需要担心数据丢失的问题,因为有方式可以把数据永久保存起来了。一般都是通过日志来保证数据的持久性。通过下图来看一下传统数据库跟MongoDB对于数据持久性各自所使用的方式。 MongoDB是如何实现事务的ACID? 从上图可以看出,MongoDB同样是使用数据进来先写日志(日志刷盘的速度是非常快)然后在写入到数据库中的这种方式来保证数据的持久性,如果出现服务器宕机,当启动服务器时会从日志中读取数据。不同的是传统数据库这种方式叫做“WAL” Write-Ahead Logging(预写日志系统),而MongoDB叫做“journal”。此外MongoDB在数据持久性上这点可能做的更好,MongoDB的复制默认节点就是三节点以上的复制集群,当数据到达主节点之后会马上同步到从节点上去。

景凌凯 2019-12-02 02:05:12 0 浏览量 回答数 0

回答

Re阿里云RDS如何与本地数据库执行数据同步 首先,从你的功能需求点来讲属于混合云的概念了。目前阿里云RDS SQL Server还没有对混合云的需求有很好的产品支持。 其次,关于错误的解释,RDS SQL Server 2008R2,用户的连接地址是一个虚拟的地址。因为我们是双机高可用版本,用户的这个地址后面挂了两台SQL Server实例,当主库挂掉以后,会在30秒内切换到备库。所以,SSMS报错(仔细看看错误信息的意思)。 再次,根据近10年的SQL Server维护经验来看,建议慎重使用发布订阅(其实是Replication技术,中文名叫复制),这个里面有太多的坑和不可控因素,具体体现在: 1. 每个数据库的Log Reader是单线程,效率非常低,尤其是做大事务操作,写了很多事务日志的时候,LogReader执行超时,挂起。 2. Replication极易报错,比如:主键冲突,数据不存在,更新冲突检测等 3. Replication后期维护成本很高,必须依赖于强大的监控系统,错误检测系统,错误自动修复系统等,否则,人为维护工作量太大 4. Replication是基于表级别的,也就是有新表建立的时候,需要从头建立Replication,走一遍。 5. Replication对大表支持力度很弱。如果表中有大字段,同步效率更低了。 最后,最后,关于如何将RDS数据同步到本地,三种方法: 1. 使用DTS做数据导出,导入到本地 2. 使用用户控制台,下载数据库全备,然后在本地环境恢复 3. 使用BCP命令,导出数据,然后BCP导入到本地环境,参见这个视频: https://help.aliyun.com/document_detail/52050.html?spm=5176.doc52050.6.705.7PrxRE

风移 2019-12-02 00:47:42 0 浏览量 回答数 0

回答

本文介绍如何通过阿里云云存储网关控制台快速创建文件网关并完成共享设置。 前提条件 已注册阿里云账号,并完成实名认证,详情请参见阿里云账号注册流程。 说明 建议您使用RAM账户登录云存储网关控制台进行相关操作,详情请参见账号访问控制。 已开通云存储网关服务。 首次登录云存储网关控制台时,根据页面提示开通云存储网关服务。 在需要创建云上文件网关的地域,已有可用的专有网络VPC,详情请参见创建专有网络和交换机。 在需要创建云上文件网关的地域,已有可用的云服务器ECS,并将此云服务器ECS归属到已创建的专有网络VPC下,详情请参见创建ECS实例。 说明 如果您的本地主机已通过专线和阿里云专有网络连通,您也可以使用本地主机进行操作。 已创建OSS Bucket,详情请参见创建存储空间。 说明 云存储网关支持标准(Standard)类型、低频访问(IA)类型和归档存储类型的OSS Bucket。 对于归档文件,如果在创建共享时未开启归档支持功能,则在进行读操作时需要先手动解冻文件。 步骤一:创建文件网关 登录云存储网关控制台。 选择需要创建文件网关的地域。 在网关列表页面,选择目标网关集群,单击创建。 如果还未创建网关集群,请在概览页面,单击创建网关集群,完成网关集群的创建。 在网关信息页签中,完成如下配置并单击下一步。 参数 说明 名称 输入网关名称。 长度为60个字符,可以包含大小写字母、中文、数字、.、_或-,同时必须以大小写字母或者中文开头。 位置 包括本地数据中心和阿里云,请根据业务需求进行选择。 本地数据中心:选择本地数据中心,则部署本地文件网关。您可以通过阿里云云存储网关控制台部署本地文件网关,也可以通过本地文件网关控制台部署本地文件网关。 阿里云:选择阿里云,则部署云上文件网关。您只可以通过阿里云云存储网关控制台部署云上文件网关。 类型 选择文件网关。 在配置网关页签中,完成如下配置并单击下一步。 如果位置选择阿里云,则需要配置网关信息。 参数 说明 型号 包括基础型、标准型、增强型和性能型,具体规格详情请参见产品规格。 专有网络 选择所需的专有网络。 说明 必须与您创建的云服务器ECS或本地主机选择一样的专有网络。 虚拟交换机 选择所需的虚拟交换机。 说明 必须与您创建的云服务器ECS或本地主机选择一样的虚拟交换机。 如果当前的虚拟交换机所在的可用区没有可以分配的网关资源,请到其他可用区创建虚拟交换机。 在付费类型页签中,完成如下配置,并单击下一步。 参数 说明 付费类型 包括按量付费和包年包月,详情请参见计量项和计费项。 如果选择包年包月,完成文件网关创建后,将跳转至购买页面,请根据页面完成付费,详情请参见购买云存储网关。 到期后 包括转后付费和直接回收。 在总结页签中,确认信息无误后,单击完成。 如果您创建的是云上文件网关,则创建完成后,自动部署,大概需要5~10分钟,当状态显示为运行中,则表示文件网关已激活,部署完成。 如果您创建的是本地文件网关,则创建完成后,还需单击激活网关,进行手动激活。相关参数配置请参见激活网关。 步骤二:添加缓存 说明 此处介绍为云上文件网关创建缓存的步骤。本地文件网关的缓存需要在本地部署平台中创建,详情请参见添加磁盘。 登录云存储网关控制台。 选择目标文件网关所在的地域。 在网关列表页面,找到并单击目标文件网关,进入操作页面。 选择缓存页签,单击创建缓存。 在添加缓存对话框中,完成如下配置。 大小:缓存大小需大于等于40GB,小于等于32TB。 类型:包括高效云盘和SSD,请根据业务需求选择。 单击确认,完成创建。 如果您创建的是包年包月的文件网关,则创建缓存后,将跳转到云存储网关缓存盘(包年包月)页面支付费用,详情请参见购买缓存。 步骤三:创建共享 登录云存储网关控制台。 选择目标文件网关所在的地域。 在网关列表页面,找到并单击目标文件网关,进入操作页面。 选择共享页签,单击创建。 在Bucket设置页签中,完成如下配置并单击下一步。 参数 说明 允许跨域访问Bucket 选择是,可访问与云存储网关不同地域的Bucket。 选择否,只能访问与云存储网关相同地域的Bucket。 Bucket区域 选择Bucket区域。 Bucket名称 选择已创建的Bucket或者输入Bucket下的子目录。 子目录只支持英文和数字。 说明 从1.0.38版本开始支持将文件系统的根目录对接到OSS Bucket的某个子目录,便于用户做访问隔离。 子目录可以为OSS Bucket中已存在的目录也可以为OSS Bucket中还未创建的目录,创建共享完成后,将以该子目录为根目录,后续的文件和目录都会创建该目录下。 加密 包括不加密和服务端加密。 如果选择服务端加密,还需设置密钥ID。您可以在密钥管理服务控制台中创建密钥,详情请参见创建密钥。 开启OSS服务端加密后,允许用户自带密钥,目前支持从密钥管理服务中导入KMS密钥。 开启服务端加密后,通过共享目录上云的文件会在OSS端自动利用KMS密钥进行加密。您可以通过Get Object API验证当前文件是否已经加密,如果返回的Header中x-oss-server-side-encryption字段值为KMS,x-oss-server-side-encryption-key-id字段值为密钥ID,则表示已加密。 说明 白名单用户才能使用此功能。 在密钥管理服务控制台创建密钥时,需选择与OSS Bucket一样的区域。 使用SSL连接Bucket 如果选择是,则可通过SSL连接Bucket。 在基本信息页签中,完成如下配置并单击下一步。 参数 说明 共享名称 NFS或者SMB的共享名称。如果选择NFS协议,则此共享名称也是NFS v4的虚拟路径。 不能以数字开头,不能超过32个字符,可以为英文或者数字。 说明 1.0.35之前版本,如果使用NFS v3协议,则该名称无效,需要使用showmount –e <挂载网关的IP> 查看挂载路径进行挂载。 协议 根据业务需求,选择NFS或者SMB。 NFS协议适用于在Linux系统中对挂载的OSS资源进行访问 SMB协议适用于在Windows系统中对挂载的OSS资源进行访问。 缓存 选择已创建的缓存盘。 说明 5TB以下缓存盘,其20%的空间用于存放元数据;5TB以上的存储盘,1TB用于存放元数据。例如:创建40G的缓存盘,其实际可使用的缓存大小为32G。创建20TB的缓存盘,其实际可使用的缓存大小为19TB。 用户映射 设置NFS客户端用户与NFS服务器用户之间的映射关系,仅当协议类型选择NFS时可以配置。 none:NFS客户端用户不被映射为NFS服务器的nobody用户。 root_squash:限制root用户,当NFS客户端以root用户身份访问时,映射为NFS服务器的nobody用户。 all_squash:限制所有用户,无论NFS客户端以何种用户身份访问,均映射为NFS服务器的nobody用户。 all_anonymous:限制所有用户,无论NFS客户端以何种用户身份访问,均映射为NFS服务器的匿名用户。 归档支持 仅当协议类型选择NFS时可以配置。 选择是,开启归档支持功能。在已归档的文件上发起读操作请求时同步发起解冻请求,请求不会报错,但存在一定的时间延迟。 选择否,关闭归档支持功能。在已归档的文件上发起读操作请求时,需先手动解冻文件,否则请求会报错。 说明 基础型文件网关不支持归档支持功能。 加入同步组 开启该共享的极速同步功能,将其加入同步组,对该共享的Bucket中数据进行的任何改动都会自动同步至共享的本地客户端。开启该选项后,该共享的反向同步选项将自动关闭。 说明 要选择该选项,您必须提前创建一个同步组,且同步组的Bucket必须与共享的Bucket相同。有关创建同步组的详细步骤,请参见极速同步。 目前只有标准型、增强型及性能型的云存储网关支持极速同步功能。 极速同步功能依赖于阿里云消息服务 MNS 实现,因此将共享加入同步组会产生 MNS 服务的费用。计费详情请参见极速同步背景信息中的说明。 高级设置 勾选高级设置后,出现高级设置配置页。 在高级设置页签中,完成如下配置并单击下一步。 参数 说明 模式 复制模式:所有数据都会保存两份拷贝,一份保存在本地缓存,另一份保存在OSS。 缓存模式:本地缓存全量元数据和经常访问的用户数据。OSS侧保持全量数据。 传输加速 传输加速会提高跨域情况下的数据传输速度,充分利用网关的公网带宽,使用前请确保正在使用的OSS Bucket已开启了传输加速。 碎片优化 针对某些反复随机小IO读写的应用,启用此配置可提升性能,请根据场景谨慎选择。 上传优化 实时缓存回收,适用于数据纯备份上云场景。 反向同步 将OSS上的元数据同步回本地。适用于网关容灾和数据恢复/共享场景。 说明 反向同步会扫描Bucket下的所有对象,如果对象数量较多,会产生OSS API请求费用。具体费用,请参见对象存储 OSS 详细价格信息中的请求费用。 如果您在基本信息页签中勾选了加入同步组,则此选项不可用。 反向同步时间间隔 设置反向同步为是,可设置反向同步时间间隔。支持15s-36000s的反向同步间隔,缺省值为36000s。 说明 如果Bucket内的对象比较多,建议反向同步间隔大于3600s,否则会由于反复扫描产生大量的OSS API的请求费用。 忽略删除 文件删除操作不同步至OSS防止误操作。OSS侧保持全量数据。 同步延迟 设置同步延迟,在关闭文件会延迟一段时间再上传,防止频繁的本地修改操作造成OSS碎片。缺省值为5s,最大值120s。 在总结页签中,确认信息无误后,单击完成。 创建完成后,您可以通过客户端访问共享目录,详情请参见访问共享目录。

1934890530796658 2020-03-31 11:22:00 0 浏览量 回答数 0

问题

ES 的分布式架构原理能说一下么(ES 是如何实现分布式的啊)?【Java问答学堂】26期

剑曼红尘 2020-05-26 20:30:13 41 浏览量 回答数 1

回答

转自:阿飞的博客 一、数据库技术选型的思考维度 我们做选型的时候首先要问: 谁选型?是负责采购的同学、 DBA 还是业务研发? 如果选型的是采购的同学,他们更注重成本,包括存储方式、网络需求等。 如果选型的是 DBA 同学,他们关心的: ① 运维成本 首先是运维成本,包括监控告警是否完善、是否有备份恢复机制、升级和迁移的成本是否高、社区是否稳定、是否方便调优、排障是否简易等; ② 稳定性 其次,DBA会关注稳定性,包括是否支持数据多副本、服务高可用、多写多活等; ③ 性能 第三是性能,包括延迟、QPS 以及是否支持更高级的分级存储功能等; ④ 拓展性 第四是扩展性,如果业务的需求不确定,是否容易横向扩展和纵向扩容; ⑤ 安全 最后是安全,需要符合审计要求,不容易出现 SQL 注入或拖库情况。 ⑥ 其他 除了采购和 DBA之外,后台应用研发的同学同样会关注稳定性、性能、扩展性等问题,同时也非常关注数据库接口是否便于开发,是否便于修改数据库 schema 等问题。 接下来我们来看一下爱奇艺使用的数据库类型: MySQL,互联网业务必备系统; TiDB,爱奇艺的 TiDB 实践会有另外的具体介绍; Redis,KV 数据库,互联网公司标配; Couchbase,这个在爱奇艺用得比较多,但国内互联网公司用得比较少,接下来的部分会详细说明; 其他,比如 MongoDB、图数据库、自研 KV 数据库 HiKV 等; 大数据分析相关系统,比如 Hive、Impala 等等。 可以看到爱奇艺的数据库种类还是很多的,这会造成业务开发的同学可能不太清楚在他的业务场景下应该选用哪种数据库系统。 那么,我们先对这些数据库按照接口(SQL、NoSQL)和面向的业务场景(OLTP、OLAP)这两位维度进行一个简单非严谨的分类。 下图中,左上角是面向 OLTP、支持 SQL 的这样一类系统,例如 MySQL,一般支持事务不同的隔离级别, QPS 要求比较高,延时比较低,主要用于交易信息和关键数据的存储,比如订单、VIP 信息等。 左下角是 NoSQL 数据库,是一类针对特殊场景做优化的系统,schema 一般比较简单,吞吐量较高、延迟较低,一般用作缓存或者 KV 数据库。 整个右侧都是 OLAP 的大数据分析系统,包括 Clickhouse、Impala等,一般支持SQL、不支持事务,扩展性比较好,可以通过加机器增加数据的存储量,响应延迟较长。 还有一类数据库是比较中立的,在数据量比较小的时候性能比较好,在数据量较大或复杂查询的时候性能也不差,一般通过不同的存储引擎和查询引擎来满足不同的业务需求,我们把它叫做 HTAP,TiDB 就是这样一种数据库。 二、iQIYI对数据库的优化与完善 前面我们提到了很多种的数据库,那么接下来就和大家介绍一下在爱奇艺我们是怎么使用这些数据库的。 1、MySQL在爱奇艺的使用 ① MySQL 首先是 MySQL。MySQL 基本使用方式是 master-slave + 半同步,支持每周全备+每日增量备份。我们做了一些基本功能的增强,首先是增强了数据恢复工具 Xtrabackup 的性能。 之前遇到一个情况,我们有一个全量库是 300G 数据,增量库每天 70G 数据,总数据量 700G 左右。我们当时只需要恢复一个表的数据,但该工具不支持单表恢复,且整库恢复需要 5 个小时。 针对这个情况我们具体排查了原因,发现在数据恢复的过程中需要进行多次写盘的 IO 操作并且有很多串行操作,所以我们做了一些优化。例如删减过程中的一些写盘操作,减少落盘并将数据处理并行化,优化后整库恢复耗时减少到 100 分钟,而且可以直接恢复单表数据。 然后是适配 DDL 和 DML 工具到内部系统,gh-ostt 和 oak-online-alter-table 在数据量大的时候会造成 master-slave 延时,所以我们在使用工具的时候也增加了延时上的考虑,实时探测Master-Slave 库之间延时的情况,如果延时较大会暂停工具的使用,恢复到正常水平再继续。 ② MySQL高可用 第二是 MySQL 高可用。Master-slave 加上半同步这种高可用方式不太完善,所以我们参照了 MHA 并进行了改动,采用 master + agent 的方式。Agent 在每一个物理机上部署,可以监控这个物理机上的所有实例的状态,周期性地向 master 发送心跳,Master 会实时监测各个Agent的状态。 如果 MySQL故障,会启动 Binlog 补偿机制,并切换访问域名完成 failover。考虑到数据库跨机房跨地区部署的情况,MHA 的 master 我们也做了高可用设计,众多 master 会通过 raft 组成一个 raft group,类似 TiDB 的 PD 模块。目前 MySQL failover 策略支持三种方式:同机房、同地域跨机房以及跨地域。 ③ MySQL拓展能力 第三是提高MySQL扩展能力,以提供更大容量的数据存储。扩展方式有 SDK,例如开源的 ShardingSphere,在爱奇艺的使用也比较广泛。另外就是 Proxy,开源的就更多了。但是 SDK 和 Proxy 使用的问题是支持的 SQL 语句简单,扩容难度大,依赖较多且运维复杂,所以部分业务已经迁移至 TiDB。 ④ 审计 第四是审计。我们在 MySQL 上做了一个插件获取全量 SQL 操作,后端打到 Kafka,下游再接入包括 Clickhouse 等目标端进行 SQL 统计分析。除此之外还有安全策略,包括主动探索是否有 SQL 注入及是否存在拖库情况等,并触发对应的告警。 MySQL 审计插件最大的问题是如何降低对 MySQL 性能的影响,对此我们进行了一些测试,发现使用 General Log 对性能损耗较大,有 10%~20% 的降低。 于是我们通过接口来获取 MySQL 插件里的监控项,再把监控项放到 buffer 里边,用两级的 RingBuffer 来保证数据的写入不会有锁资源竞争。在这个插件里再启动一个线程,从 RingBuffer 里读取数据并把数据打包写到 FIFO 管道里。 我们在每台 MySQL 的物理机里再启动一个 Agent,从管道里阻塞地读取数据发至 Kafka。优化后我们再次进行压测,在每台机器上有 15 万的更新、删除或插入操作下不会丢失数据,性能损耗一般情况下小于 2%。 目前已经在公司内部的集群上线了一年时间,运行比较稳定,上线和下线对业务没有影响。 ⑤ 分级存储 第五是分级存储。MySQL 里会存一些过程性的数据,即只需要读写最近一段时间存入的数据,过段时间这些数据就不需要了,需要进行定时清理。 分级存储就是在 MySQL 之上又用了其他存储方式,例如 TiDB 或其他 TokuDB,两者之间可以进行数据自动搬迁和自动归档,同时前端通过 SDK + Proxy 来做统一的访问入口。这样一来,业务的开发同学只需要将数据存入 MySQL 里,读取时可能从后端接入的任意数据库读出。这种方式目前只是过渡使用,之后会根据 TiDB 的特性进行逐步迁移。 Redis在爱奇艺的使用 接下来是 Redis。Redis 也是使用 master - slave 这种方式,由于网络的复杂性我们对 Sentinel 的部署进行了一些特殊配置,在多机房的情况下每个机房配置一定数量 Sentinel 来避免脑裂。 备份恢复方面介绍一个我们的特殊场景,虽然 Redis 是一个缓存,但我们发现不少的业务同学会把它当做一个 KVDB 来使用,在某些情况下会造成数据的丢失。 所以我们做了一个 Redis 实时备份功能,启动一个进程伪装成 Redis 的 Slave 实时获取数据,再放到后端的 KV 存储里,例如 ScyllaDB,如果要恢复就可以从 ScyllaDB 里把数据拉出来。 我们在用 Redis 时最大的痛点就是它对网络的延迟或抖动非常敏感。如有抖动造成 Redis Master 超时,会由 Sentinel 重新选出一个新的节点成为 Master,再把该节点上的数据同步到所有 Slave 上,此过程中数据会放在 Master 节点的 Buffer 里,如果写入的 QPS 很高会造成 Buffer 满溢。如果 Buffer 满后 RDB 文件还没有拷贝过去,重建过程就会失败。 基于这种情况,我们对 Redis 告警做了自动化优化,如有大量 master - slave 重建失败,我们会动态调整一些参数,例如把 Buffer 临时调大等, 此外我们还做了 Redis 集群的自动扩缩容功能。 我们在做 Redis 开发时如果是 Java 语言都会用到 Jedis。用 Jedis 访问客户端分片的 Redis 集群,如果某个分片发生了故障或者 failover,Jedis 就会对所有后端的分片重建连接。如果某一分片发生问题,整个 Redis 的访问性能和 QPS 会大幅降低。针对这个情况我们优化了 Jedis,如果某个分片发生故障,就只针对这个分片进行重建。 在业务访问 Redis 时我们会对 Master 绑定一个读写域名,多个从库绑定读域名。但如果我们进行 Master failover,会将读写域名从某旧 Master 解绑,再绑定到新 Master 节点上。 DNS 本身有一个超时时间,所以数据库做完 failover 后业务程序里没有立刻获取到新的 Master 节点的 IP的话,有可能还会连到原来的机器上,造成访问失败。 我们的解决方法是把 DNS 的 TTL 缩短,但对 DNS 服务又会造成很大的压力,所以我们在 SDK 上提供 Redis 的名字服务 RNS,RNS 从 Sentinel 里获取集群的拓扑和拓扑的变化情况,如果集群 failover,Sentinel 会接到通知,客户端就可以通过 RNS 来获取新的 Master 节点的 IP 地址。我们去掉域名,通过 IP 地址来访问整个集群,屏蔽了 DNS 的超时,缩短了故障的恢复时间。 SDK 上还做了一些功能,例如 Load Balance 以及故障检测,比如某个节点延时较高的话会被临时熔断等。 客户端分片的方式会造成 Redis 的扩容非常痛苦,如果客户端已经进行了一定量的分片,之后再增加就会非常艰难。 Redis 在 3.0 版本后会提供 Redis Cluster,因为功能受限在爱奇艺应用的不是很多,例如不支持显示跨 DC 部署和访问,读写只在主库上等。 我们某些业务场景下会使用 Redis 集群,例如数据库访问只发生在本 DC,我们会在 DC 内部进行 Cluster 部署。 但有些业务在使用的过程中还是想做 failover,如果集群故障可以切换到其他集群。根据这种情况我们做了一个 Proxy,读写都通过它来进行。写入数据时 Proxy 会做一个旁路,把新增的数据写在 Kafka 里,后台启用同步程序再把 Kafka 里的数据同步到其他集群,但存在一些限制,比如我们没有做冲突检测,所以集群间数据需要业务的同学做单元化。线上环境的Redis Cluster 集群间场景跨 DC 同步 需要 50 毫秒左右的时间。 2、Couchbase在爱奇艺的使用 Redis 虽然提供 Cluster 这种部署方式,但存在一些问题。所以数据量较大的时候(经验是 160G),就不推荐 Redis 了,而是采用另一种存储方式 Couchbase。 Couchbase 在国内互联网公司用的比较少,一开始我们是把他当做一个 Memcached 来使用的,即纯粹的缓存系统。 但其实它性能还是比较强大的,是一个分布式高性能的 KV 系统,支持多种存储引擎 (bucket)。第一种是 Memcached bucket,使用方式和 Memcached 一样为 KV 存储,不支持数据持久化也没有数据副本,如果节点故障会丢失数据; 第二种是 Couchbase bucket,支持数据持久化,使用 Json 写入,有副本,我们一般会在线上配置两个副本,如果新加节点会对数据进行 rebalance,爱奇艺使用的一般是 Couchbase bucket 这种配置。 Couchbase 数据的分布如下图,数据写入时在客户端上会先进行一次哈希运算,运算完后会定位 Key 在哪一个 vBucket (相当于数据库里的某个分片)。之后客户端会根据 Cluster Map 发送信息至对应的服务端,客户端的 Cluster Map 保存的是 vBucket 和服务器的映射关系,在服务端数据迁移的过程中客户端的 Cluster Map 映射关系会动态更新,因此客户端对于服务端的 failover 操作不需要做特殊处理,但可能在 rebalance 过程中会有短暂的超时,导致的告警对业务影响不大。 Couchbase 在爱奇艺应用比较早,2012 年还没有 Redis Cluster 的时候就开始使用了。集群管理使用 erlang 语言开发,最大功能是进行集群间的复制,提供多种复制方式:单向、双向、星型、环式、链式等。 爱奇艺从最初的 1.8 版本使用到如今的 5.0 版本,正在调研的 6.0,中间也遇到了很多坑,例如 NTP 时间配置出错会导致崩溃,如果每个集群对外 XDCR 并发过高导致不稳定,同步方向变更会导致数据丢失等等,我们通过运维和一些外部工具来进行规避。 Couchbase 的集群是独立集群,集群间的数据同步通过 XDCR,我们一般配置为双向同步。对于业务来说,如果 Cluster 1 写入, Cluster 2 不写入,正常情况下客户端会写 Cluster 1。如果 Cluster 1 有故障,我们提供了一个 Java SDK,可以在配置中心把写入更改到 Cluster 2,把原来到 Cluster 1 的连接逐步断掉再与Cluster 2 新建连接。这种集群 failover 的过程对于客户端来说是相对透明和无感的。 3、爱奇艺自研数据库HiKV的使用 Couchbase 虽然性能非常高,并且数据的存储可以超过内存。但是,如果数据量超过内存 75% 这个阈值,性能就会下降地特别快。在爱奇艺,我们会把数据量控制在可用内存的范围之内,当做内存数据库使用。但是它的成本非常高,所以我们后面又开发了一个新的数据库—— HiKV。 开发 HiKV 的目的是为了把一些对性能要求没那么高的 Couchbase 应用迁移到 HiKV 上。HiKV 基于开源系统 ScyllaDB,主要使用了其分布式数据库的管理功能,增加了单机存储引擎 HiKV。 ScyllaDB 比较吸引人的是它宣称性能高于 Cassandra 十倍,又完全兼容 Cassandra 接口,设计基本一致,可以视为 C++ 版 Cassandra 系统。 ScyllaDB 性能的提升主要是使用了一些新的技术框架,例如 C++ 异步框架 seastar,主要原理是在j每台物理机的核上会 attach 一个应用线程,每个核上有自己独立的内存、网络、IO 资源,核与核之间没有数据共享但可以通信,其最大的好处是内存访问无锁,没有冲突过程。 当一个数据读或写到达 ScyllaDB 的 server 时,会按照哈希算法来判断请求的 Key 是否是该线程需要处理的,如果是则本线程处理,否则会转发到对应线程上去。 除此之外,它还支持多副本、多数据中心、多写多活,功能比较强大。 在爱奇艺,我们基于 SSD 做了一个 KV 存储引擎。Key 放在内存里,Value 放在盘上的文件里,我们在读和写文件时,只需要在内存索引里定位,再进行一次盘的 IO 开销就可以把数据读出来,相比 ScyllaDB 原本基于 LSM Tree 的存储引擎方式对 IO 的开销较少。 索引数据全部放在内存中,如果索引长度较长会限制单机可存储的数据量,于是我们通过开发定长的内存分布器,对于比较长的 Key 做摘要缩短长度至 20 字节,采用红黑树索引,限制每条记录在内存里的索引长度至为 64 字节。内存数据要定期做 checkpoint,客户端要做限流、熔断等。 HiKV 目前在爱奇艺应用范围比较大,截至目前已经替换了 30% 的 Couchbase,有效地降低了存储成本。 4、爱奇艺的数据库运维管理 爱奇艺数据库种类较多,如何高效地运维和管理这些数据库也是经历了不同的阶段。 最初我们通过 DBA 写脚本的方式管理,如果脚本出问题就找 DBA,导致了 DBA 特别忙碌。 第二个阶段我们考虑让大家自己去查问题的答案,于是在内部构建了一个私有云,通过 Web 的方式展示数据库运行状态,让业务的同学可以自己去申请集群,一些简单的操作也可以通过自服务平台实现,解放了 DBA。一些需要人工处理的大型运维操作经常会造成一些人为故障,敲错参数造成数据丢失等。 于是在第三个阶段我们把运维操作 Web 化,通过网页点击可以进行 90% 的操作。 第四个阶段让经验丰富的 DBA 把自身经验变成一些工具,比如有业务同学说 MySQL master-slave 延时了,DBA 会通过一系列操作排查问题。现在我们把这些操作串起来形成一套工具,出问题时业务的同学可以自己通过网页上的一键诊断工具去排查,自助进行处理。 除此之外我们还会定期做预警检查,对业务集群里潜在的问题进行预警报告;开发智能客服,回答问题;通过监控的数据对实例打标签,进行削峰填谷地智能调度,提高资源利用率。 三、不同场景下数据库选型建议 1、实用数据库选型树 最后来说一些具体数据库选型建议。这是 DBA 和业务一起,通过经验得出来的一些结论。 对于关系型数据库的选型来说,可以从数据量和扩展性两个维度考虑,再根据数据库有没有冷备、要不要使用 Toku 存储引擎,要不要使用 Proxy 等等进行抉择。 NoSQL 也是什么情况下使用 master-slave,什么情况下使用客户端分片、集群、Couchbase、HiKV 等,我们内部自服务平台上都有这个选型树信息。 2、一些思考 ① 需求 我们在选型时先思考需求,判断需求是否真实。 你可以从数据量、QPS、延时等方面考虑需求,但这些都是真实需求吗?是否可以通过其他方式把这个需求消耗掉,例如在数据量大的情况下可以先做数据编码或者压缩,数据量可能就降下来了。 不要把所有需求都推到数据库层面,它其实是一个兜底的系统。 ② 选择 第二个思考的点是对于某个数据库系统或是某个技术选型我们应该考虑什么?是因为热门吗?还是因为技术上比较先进?但是不是能真正地解决你的问题?如果你数据量不是很大的话就不需要选择可以存储大数据量的系统。 ③ 放弃 第三是放弃,当你放弃一个系统时真的是因为不好用吗?还是没有用好?放弃一个东西很难,但在放弃时最好有一个充分的理由,包括实测的结果。 ④ 自研 第四是自研,在需要自己开发数据库时可以参考和使用一些成熟的产品,但不要盲目自研。 ⑤ 开源 最后是开源,要有拥抱开源的态度。

茶什i 2019-12-27 14:17:56 0 浏览量 回答数 0

问题

ApacheIgnite——新一代数据库缓存系统

忆远0711 2019-12-01 21:56:44 7456 浏览量 回答数 1

回答

详细解答可以参考官方帮助文档 使用数据传输服务(DTS)将本地数据库迁移到 RDS for MySQL,可以实现应用不停服务的情况下,平滑完成数据库的迁移工作。 背景信息 DTS 数据迁移支持 MySQL 的结构迁移、全量迁移和增量迁移。 结构迁移 DTS 会将本地数据库的结构定义迁移到目标实例。目前 DTS 支持结构迁移的对象有:表、视图、触发器、存储过程、存储函数。 全量迁移 DTS 会将本地数据库迁移对象的数据全部迁移到目标实例。如果用户还选择了增量迁移,那么全量迁移过程中,为了保证数据一致性,无主键的非事务表会被锁定,锁定期间这些表无法写入,锁定时长依赖于这些表的数据量大小,在这些无主键非事务表迁移完成后,锁才会释放。 增量迁移 增量迁移会将迁移过程进行数据变更同步到目标实例,如果迁移期间进行了 DDL 操作,那么这些结构变更不会迁移到目标实例。 迁移限制 将本地数据库迁移到 RDS 上有以下限制。 迁移过程中,不支持 DDL 操作 结构迁移不支持 event 的迁移 如果使用了对象名映射功能后,依赖这个对象的其他对象可能迁移失败 当选择增量迁移时,本地 MySQL 实例需要开启 binlog,且本地库的 binlog_format 要为 row。如果本地 MySQL 为5.6版本时,它的 binlog_row_image 还须设置为 full 前提条件 已完成 RDS 实例数据库的准备,可参见申请外网地址和 MySQL 5.7高可用版/5.5/5.6创建数据库和账号。 操作步骤 本例以有公网 IP 的本地数据库迁移到 RDS 上为例。 准备本地数据 在正式迁移之前,需要先在本地数据库和 RDS 实例中创建迁移账号,并在 RDS 实例中创建要迁移的数据库,并将要迁移的数据库的读写权限授权给迁移账号。不同的迁移类型需要不同的权限,如下表所示。 迁移类型 结构迁移 全量迁移 增量迁移 本地数据库 select select select replication slave replication client RDS 实例 读写权限 读写权限 读写权限 在本地数据库中创建迁移账号。CREATE USER 'username'@'host' IDENTIFIED BY 'password';参数说明: username:要创建的账号 host:指定该账号登录数据库的主机。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % password:该账号的登录密码 例:要创建账号为 William,密码为 Changme123 的账号从任意主机登录本地数据库,命令如下: CREATE USER 'William'@'%' IDENTIFIED BY 'Changme123'; 在本地数据库中给迁移账号授权,本地数据库中迁移账号的权限要求请参见上表。GRANT privileges ON databasename.tablename TO 'username'@'host' WITH GRANT OPTION;参数说明: privileges:该账号的操作权限,如 SELECT、INSERT、UPDATE 等。如果要授权该账号所有权限,则使用 ALL databasename:数据库名。如果要授权该账号所有的数据库权限,则使用通配符 * tablename:表名。如果要授权该账号所有的表权限,则使用通配符 * username:要授权的账号名 host:授权登录数据库的主机名。如果是本地用户可以使用 localhost,如果想让该用户从任意主机登录,可以使用通配符 % WITH GRANT OPTION:授权该账号能使用GRANT命令,该参数为可选 例:授权账号 William 对所有数据库和表的所有权限,并可以从任意主机登录本地数据库,命令如下: GRANT ALL ON *.* TO 'William'@'%'; 说明 如果需要进行增量迁移,那么需要确认本地数据库的 binlog 是否开启并正确设置,执行以下步骤。 开启本地数据库的 binlog。 使用如下命令查询是否开启了binlog。show global variables like "log_bin";如果查询结果为 log_bin=OFF,那么本地数据库没有开启 binlog。为了使迁移过程中产生的增量数据能同步迁移,需要修改配置文件 my.cnf 中的如下参数。 log_bin=mysql_bin binlog_format=row server_id=大于 1 的整数 binlog_row_image=full //当本地 MySQL 版本大于 5.6 时,则需设置该项 修改完成后,重启 MySQL 进程。$mysql_dir/bin/mysqladmin -u root -p shutdown $mysql_dir/bin/safe_mysqld &其中,“mysql_dir”为MySQL安装目录。 正式迁移操作 数据准备完毕后,即可进入正式的迁移操作。 在 RDS 管理控制台 上单击迁移数据库,进入 DTS,如下图所示。 单击 创建在线迁移任务,进入 创建迁移任务 页面,如下图所示。 输入任务名称、本地数据库信息和目标数据库信息,单击 授权白名单并进入下一步,如下图所示。 任务名称:自定义任务名称,可以保持默认值 源库信息 实例类型:本地数据库的实例类型,可以选择有公网IP的自建数据库、ECS上的自建数据库、RDS实例、云数据库MongoDB 数据库类型:本地数据库的类型,可以选择 Oracle、MySQL、SQLServer、PostgreSQL、MongoDB 主机名或 IP 地址:本地数据库的公网地址 端口:本地数据库的公网端口 账号:本地数据库的迁移账号 密码:本地数据库迁移账号对应的密码 目标库信息 实例类型:默认为 RDS 实例 RDS 实例 ID:目标 RDS 实例的 ID。点击下拉菜单将自动联想当前登录 RDS 管理控制台 的账号的 RDS 实例,点击选择所需要的实例 账号:目标 RDS 数据库的迁移账号 密码:目标 RDS 数据库迁移账号对应的密码 择迁移类型,并在 迁移对象 中选择要迁移的对象,单击 > 将要迁移的对象放入已选择中,单击 预检查并启动,如下图所示。 说明 数据迁移只会将本地数据库的数据(结构)复制一份到目标数据库,并不会对本地数据库数据(结构)造成影响。 如果要修改迁移对象在目标数据库上的名字,可以在 已选择 列表右侧单击 编辑,修改已选择的对象名称,如上图4所示。 说明 以下以预检查不通过为例进行描述,如果预检查通过,请直接参见步骤 8。 系统显示预检查结果,如下图所示。 单击检测结果 为失败的检测项后的 !,查看失败详细信息,根据失败详细信息完成错误排查。 错误排查完毕后,在 迁移任务列表页面,选择当前迁移任务,单击 启动,如下图所示。 系统预检查通过后,单击确定,自动进行迁移任务,如下图所示。 后续操作 因迁移账号拥有读写权限,为了保证本地数据库安全,请在数据迁移完成后,删除本地数据库和 RDS 实例中的迁移账号。

2019-12-01 22:57:10 0 浏览量 回答数 0

回答

简介 ES是一个基于RESTful web接口并且构建在Apache Lucene之上的开源分布式搜索引擎。 同时ES还是一个分布式文档数据库,其中每个字段均可被索引,而且每个字段的数据均可被搜索,能够横向扩展至数以百计的服务器存储以及处理PB级的数据。 可以在极短的时间内存储、搜索和分析大量的数据。通常作为具有复杂搜索场景情况下的核心发动机。 ES就是为高可用和可扩展而生的。一方面可以通过升级硬件来完成系统扩展,称为垂直或向上扩展(Vertical Scale/Scaling Up)。 另一方面,增加更多的服务器来完成系统扩展,称为水平扩展或者向外扩展(Horizontal Scale/Scaling Out)。尽管ES能够利用更强劲的硬件,但是垂直扩展毕竟还是有它的极限。真正的可扩展性来自于水平扩展,通过向集群中添加更多的节点来分担负载,增加可靠性。ES天生就是分布式的,它知道如何管理多个节点来完成扩展和实现高可用性。意味应用不需要做任何的改动。 Gateway,代表ES索引的持久化存储方式。在Gateway中,ES默认先把索引存储在内存中,然后当内存满的时候,再持久化到Gateway里。当ES集群关闭或重启的时候,它就会从Gateway里去读取索引数据。比如LocalFileSystem和HDFS、AS3等。 DistributedLucene Directory,它是Lucene里的一些列索引文件组成的目录。它负责管理这些索引文件。包括数据的读取、写入,以及索引的添加和合并等。 River,代表是数据源。是以插件的形式存在于ES中。  Mapping,映射的意思,非常类似于静态语言中的数据类型。比如我们声明一个int类型的变量,那以后这个变量只能存储int类型的数据。比如我们声明一个double类型的mapping字段,则只能存储double类型的数据。 Mapping不仅是告诉ES,哪个字段是哪种类型。还能告诉ES如何来索引数据,以及数据是否被索引到等。 Search Moudle,搜索模块,支持搜索的一些常用操作 Index Moudle,索引模块,支持索引的一些常用操作 Disvcovery,主要是负责集群的master节点发现。比如某个节点突然离开或进来的情况,进行一个分片重新分片等。这里有个发现机制。 发现机制默认的实现方式是单播和多播的形式,即Zen,同时也支持点对点的实现。另外一种是以插件的形式,即EC2。 Scripting,即脚本语言。包括很多,这里不多赘述。如mvel、js、python等。    Transport,代表ES内部节点,代表跟集群的客户端交互。包括 Thrift、Memcached、Http等协议 RESTful Style API,通过RESTful方式来实现API编程。 3rd plugins,代表第三方插件。 Java(Netty),是开发框架。 JMX,是监控。 使用案例 1、将ES作为网站的主要后端系统 比如现在搭建一个博客系统,对于博客帖子的数据可以直接在ES上存储,并且使用ES来进行检索,统计。ES提供了持久化的存储、统计和很多其他数据存储的特性。 注意:但是像其他的NOSQL数据存储一样,ES是不支持事务的,如果要事务机制,还是考虑使用其他的数据库做真实库。 2、将ES添加到现有系统 有些时候不需要ES提供所有数据的存储功能,只是想在一个数据存储的基础之上使用ES。比如已经有一个复杂的系统在运行,但是现在想加一个搜索的功能,就可以使用该方案。 3、将ES作为现有解决方案的后端部分 因为ES是开源的系统,提供了直接的HTTP接口,并且现在有一个大型的生态系统在支持他。比如现在我们想部署大规模的日志框架、用于存储、搜索和分析海量的事件,考虑到现有的工具可以写入和读取ES,可以不需要进行任何开发,配置这些工具就可以去运作。 设计结构 1、逻辑设计 文档 文档是可以被索引的信息的基本单位,它包含几个重要的属性: 是自我包含的。一篇文档同时包含字段和他们的取值。 是层次型的。文档中还可以包含新的文档,一个字段的取值可以是简单的,例如location字段的取值可以是字符串,还可以包含其他字段和取值,比如可以同时包含城市和街道地址。 拥有灵活的结构。文档不依赖于预先定义的模式。也就是说并非所有的文档都需要拥有相同的字段,并不受限于同一个模式 {   "name":"meeting",   "location":"office",   "organizer":"yanping" } {   "name":"meeting",   "location":{     "name":"sheshouzuo",        "date":"2019-6-28"   },   "memebers":["leio","shiyi"] } 类型 类型是文档的逻辑容器,类似于表格是行的容器。在不同的类型中,最好放入不同的结构的文档。 字段 ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。 映射 每个类型中字段的定义称为映射。例如,name字段映射为String。 索引 索引是映射类型的容器一个ES的索引非常像关系型世界中的数据库,是独立的大量文档集合。   关系型数据库与ES的结构上的对比 2、物理设计 节点 一个节点是一个ES的实例,在服务器上启动ES之后,就拥有了一个节点,如果在另一个服务器上启动ES,这就是另一个节点。甚至可以在一台服务器上启动多个ES进程,在一台服务器上拥有多个节点。多个节点可以加入同一个集群。 当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示: 节点主要有3种类型,第一种类型是client_node,主要是起到请求分发的作用,类似路由。第二种类型是master_node,是主的节点,所有的新增,删除,数据分片都是由主节点操作(elasticsearch底层是没有更新数据操作的,上层对外提供的更新实际上是删除了再新增),当然也能承担搜索操作。第三种类型是date_node,该类型的节点只能做搜索操作,具体会分配到哪个date_node,就是由client_node决定,而data_node的数据都是从master_node同步过来的 分片 一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。   为了解决这个问题,ES提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。 分片之所以重要,主要有两方面的原因:   1、允许你水平分割/扩展你的内容容量 允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量 至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由ES管理的,对于作为用户的你来说,这些都是透明的。   2、在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,ES允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。 复制之所以重要,主要有两方面的原因: (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。 (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行 总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。   默认情况下,ES中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。 3、插件HEAD elasticsearch-head是一个界面化的集群操作和管理工具 ● node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。 ● cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。 ● index:类比关系型数据库里的DB,是一个逻辑命名空间。 ● alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名● customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。 ● type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。 ● mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。 ● document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。 ● field:类比关系数据库里的field,每个field 都有自己的字段类型。 ● shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。   shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。 ES中的索引原理 (1)传统的关系型数据库 二叉树查找效率是logN,同时插入新的节点不必移动全部节点,所以用树型结构存储索引,能同时兼顾插入和查询的性能。因此在这个基础上,再结合磁盘的读取特性(顺序读/随机读),传统关系型数据库采用了B-Tree/B+Tree这样的数据结构做索引 (2)ES 采用倒排索引 那么,倒排索引是个什么样子呢? 首先,来搞清楚几个概念,为此,举个例子: 假设有个user索引,它有四个字段:分别是name,gender,age,address。画出来的话,大概是下面这个样子,跟关系型数据库一样 Term(单词):一段文本经过分析器分析以后就会输出一串单词,这一个一个的就叫做Term Term Dictionary(单词字典):顾名思义,它里面维护的是Term,可以理解为Term的集合 Term Index(单词索引):为了更快的找到某个单词,我们为单词建立索引 Posting List(倒排列表):倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。(PS:实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,可以想象成是Python中的元组,或者Java中的对象) (PS:如果类比现代汉语词典的话,那么Term就相当于词语,Term Dictionary相当于汉语词典本身,Term Index相当于词典的目录索引) 我们知道,每个文档都有一个ID,如果插入的时候没有指定的话,Elasticsearch会自动生成一个,因此ID字段就不多说了 上面的例子,Elasticsearch建立的索引大致如下: name字段: age字段: gender字段: address字段: Elasticsearch分别为每个字段都建立了一个倒排索引。比如,在上面“张三”、“北京市”、22 这些都是Term,而[1,3]就是Posting List。Posting list就是一个数组,存储了所有符合某个Term的文档ID。 只要知道文档ID,就能快速找到文档。可是,要怎样通过我们给定的关键词快速找到这个Term呢? 当然是建索引了,为Terms建立索引,最好的就是B-Tree索引(MySQL就是B树索引最好的例子)。 我们查找Term的过程跟在MyISAM中记录ID的过程大致是一样的 MyISAM中,索引和数据是分开,通过索引可以找到记录的地址,进而可以找到这条记录 在倒排索引中,通过Term索引可以找到Term在Term Dictionary中的位置,进而找到Posting List,有了倒排列表就可以根据ID找到文档了 (PS:可以这样理解,类比MyISAM的话,Term Index相当于索引文件,Term Dictionary相当于数据文件) (PS:其实,前面我们分了三步,我们可以把Term Index和Term Dictionary看成一步,就是找Term。因此,可以这样理解倒排索引:通过单词找到对应的倒排列表,根据倒排列表中的倒排项进而可以找到文档记录) 为了更进一步理解,用两张图来具现化这一过程: (至于里面涉及的更加高深的数据压缩技巧,以及多个field联合查询利用跳表的数据结构快速做运算来查询,这些大家有兴趣可以自己去了解)

问问小秘 2020-04-29 15:40:48 0 浏览量 回答数 0
阿里云大学 云服务器ECS com域名 网站域名whois查询 开发者平台 小程序定制 小程序开发 国内短信套餐包 开发者技术与产品 云数据库 图像识别 开发者问答 阿里云建站 阿里云备案 云市场 万网 阿里云帮助文档 免费套餐 开发者工具 企业信息查询 小程序开发制作 视频内容分析 企业网站制作 视频集锦 代理记账服务 企业建站模板